p

ALGORITHMS FOR INEXACT MATCHING

Linda G. Shapiro

Department of Computer Science

Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061

ABSTRACT

In this paper we formally define the
structural description of an object and
the concepts of exact and inexact matching
of two structural descriptions. We dis-
cuss the problems associated with a
brute-force backtracking tree search for
inexact matching and analyze the kinds of
errors that can occur to make the tree
search fail. We develop the formulas tQat
can be used in lookahead operators to rule
out a node near the top of the tree
because too much error will have accumu-
lated by the time the search reaches the
bottom. Using these formulas, we describe
several different algorithms to make the
tree search more efficient. We present
experimental results showing that forward
checking is the most efficient of the
algorithms tested.

Key Words: structural description, match-
ing, inexact matching, relational
homomorphism, tree search, backtrack-
ing, forward checking, lookahead,
relaxation :

the National
grants

This research was funded by
Science Foundation under
MCS-7923827 and MCS-7919741

I.
Structural Descriptions and Exact Matching

A structural description D of an
object 1is a pair D = (P,R). P =
{Pl,...,Pn} is a set of primitives, one

for each of the n primitive parts of the
object. Each primitive Pi 1is a binary
relation Pi ¢ A x V where A is a set
of possible attributes and V is a set of
possible values. R = {PRl,...,PRK} is set

of named N-ary relations over P. For each
k =1,...,K, PRk is a pair (NRk,RK) where
NRk is a name for relation Rk, and for
some positive integer Mk, Rk ¢ P**MK.
Thus the set P represents the parts of

an object, and the set R represents the
interrelationships among the parts.

One way that structural descriptions
are used 1is to define prototype objects.
The structural descriptions of prototype
objects are called stored models and are

CH1499-3/80/0000-0202500.7501980 IEEE

202

Robert M. Haralick
Department of Electrical Engineering
Department of Computer Science
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061

used as part of the
recognition system.

knowledge base of a
Such a system inputs
candidate objects, computes their struc-
tural descriptions and tries to identify
each candidate with a stored model. Thus
instead of asking whether two structural
descriptions match each other, we will
only ask whether a candidate structural
description matches a prototype structural
description. This one-way matching will
be defined in terms of exact matching in
this section and 1in terms of inexact
matching in Section II.

In exact matching, a candidate primi-

tive Cj matches a prototype primitive Pi
if the binary vrelation Pi is a subset of
the binary relation Cj. Thus, every

attribute-value pair (a,v) in the primi-
tive Pi is also an element of the primi-
tive Cj. To define the matching of a can-
didate relation to a prototype relation,
we need the concept of composing a rela-
tion with a mapping and the concept of a
relational homomorphism.

Let R ¢ P**N be an N-ary relation

over a set P and h be a function
h:P-->Q mapping elements of P into a
set Q. We define the composition R™h of
R with h by

R~h = {(gl,...,gn) € Q¢ | there exists
(pl,...,pn) € R with h(pi) =
i=1,...,N}

qi,

Let S ¢ Q**N be a second N-ary rela-
tion. A relational homomorphism from R
to S is a mapping h:P-->Q that satis-
fies R™h ¢ S. That is, when a relational
homomorphism is applied to each component
of an N-tuple of R, the result is an N-tu-

ple of S.

A relational homomorphism maps the
primitives of P to a subset of the primi-
tives of Q having all the same interrela-
tionships that the original primitives of
P had. If P is a much smaller set thanm Q,
then finding a one-one relational homomor-
phism is equivalent to finding a copy of a
small object as part of a larger object.
Finding a chair in an office scene 1is an
example of such a task. If P and Q are
about the same size, then finding a rela-

tional homomorphism is equivalent to det-
ermining that the two objects are similar.

Let Dp = (P,R) be a prototype struc-
tural description and Dc = (Q,S) be a can-
didate structural description. Let P =
{Plr-'-rpn}r Q = {er'--er}r R =
{ (NR1,R1),..., (NRk,RK)}, and S =
{(NS1,51),...,(NSk,Sk)}. We say that Dc
matches Dp if there is a mapping h : P

--> Q satisfying

1} h(Pi) = Qj implies Pi € Qj, and
2) NRi = NSj implies Ri~h 2 8j.
That 1is, if a relation Ri in Dp has the

same name as a relation Sj in Dec, then h,
correspondence from the
to the primi-
a rela-

which makes the
primitives of the prototype
tives of the candidate, must be

tional homomorophism from Ri to Sj.

II. Weighted Prototype
Structural Descriptions

In inexact matching, the parts of the
candidate object may not be exactly the
same as the parts of the prototype
object--in fact some of them may be badly
distorted or missing altogether. Simi-
larly, some of the interrelationships pre-
sent in the prototype may not hold in the
candidate. The problem of distorted parts
and Fu

has been addressed by Tsai [6].
Since our main concern in this paper is
with relationships, we will handle the

part matching problem with a simple dis-

tance measure. That is, for each attri-
bute a, there 1is a threshold ta by
which the wvalue of a in a candidate

primitive can differ from the value of a
in the corresponding prototype primitive.

Thus a candidate primitive Cj inexactly
matches a prototype primitive Pi if for
every pair (a,v) in the prototype primi-
tive Pi, there 1is a pair (a,v') in the
candidate primitive C€j with | wv-v' | <
ta.

In handling missing parts and missing
relationships, we want to take into
account the fact that some parts are more
important than others and some relation-
ships are more important than others. We
represent this fact by assigning a weight
to each part and each N-tuple in the
model. This extends our definition of the
prototype as follows.

A Weighfed prototype structural des-

cription D is a 4-tuple D =
(P,wp,R,WR) where P = {Pl,...,Pn} is a

set of primitives as before, and wp is a
primitive-weighting function, wp:P-->[0,1]
that assigns a welght to each primitive in

P and satisfies 3 wp(Pi) = 1. R =
{(NR1,R1),...,(NRK,RK)} is again a set of
named N-ary relations over P. WR =

203

{wl,...,wK} is a
functions. For each k
assigns weights to the
tion Rk. Thus each
Wk:Rk-->[0,1] satisfying

set of N-tuple-weighting

=l.r---r K, wk
Mk-tuples of rela-
wk is a function

Jo wk(r) = 1.

r €

Rk

III. €-Homomorphisms

Since the prototype relations are now
weighted, the relational homomorphisms
must take these weights into account.
Suppose R is an N-ary relation over a
set P, w:R-->[0,1] is a weighting func-
tion for R, and s is an N-ary relation
over set Q . Let h be a mapping
h:P-->Q from set P to set Q. An N-tu-
ple r of R is satisfied by h with
respect to S if h(r) Is an element of S.
An €-homomorphism from R to S with res-

pect to w is a mapping h:P-->Q0 such
that:
:E wir) < e

r € R

h(r) g s
That is, the sum of the weights on those
N-tuples that are not satisfied by h
with respect to S8 1is 1less than the
threshold e.

The inexact matching problem may now

be stated as follows. Let Dp be a

weighted prototype structural description,
and let Dc be a candidate structual des—
cription. Suppose Dp = (P,wp,RP,WRP)
where P = {P1,...,Pn}, RP =
{ (NR1,R1),..., (NRk,RK) }, and WRP
{wl,...,wk}. Suppose Dc = (C, RC) where
= {C1,...,Cm} and RC

{ (NS1,51),..., (NSK,SK)}. Let A
set of attributes in P and C,

V be the set of values for the attri-
butes. Then Dc inexactly matches Dp
with respect to the attribute-value thres—

I oon

be the
and let

holds T = {ta | a € A}, the missing parts
thresholg tm, and the relation thresholds
E = {ei | PRi € RP} if there is a map-
ping h:P-->C U {null} that satisfies
1) If h(Pi) = Cj € c, then Cj inexactly
matches Pi with respect to T.
2) wp(Pi) < tm.
Pi e p - :
h(Pi) = null
3) If NRi = NSj, then h is an €i-homomor-
phism with respect to wi from Ri to
Sj.

IV. Matching Structural Descriptions

The relational homomorphism problem
(for O-homomorphisms or exact matches) has
been shown to be a special case of a more

general problem called the consistent

labeling.

labelin problem (Haralick and Shapiro,
1978 [2]). The consistent labeling prob-
lem is defined as follows.

U be called
units and L be
labels. Let T
raint relation.
(ul,...,uN) 1is
label of one unit

Let a set of objects
a set of objects called
c U**N be a wunit const-

That is, if an N-tuple
an element of T, then the
ui in the N-tuple |is
constrained by the labels of the other

units in the N-tuple. Let R c (U X L)**N

be a unit-label constraint relation. That
is, 1if an N-tuple ((ul,11),...,(uN,1N))

[written as (ul,ll,...,uN,1N)] is an ele-

ment of R, then unit ul may have label 11,
unit u2 may have label 12, . . . , and
unit uN may have label 1N, all simultane-
ously. The consistent labeling problem is
to find a mapping £ U --> L satisfying
that 1if (ul,...,uN). is in T, then
(ul,f(ul),...,uN,£(uN)) is in R. The

4-tuple (U,L,T,R}) is called a compatibil-
ity model, and £ is called a consistent

2.

(ul,...,uN) € T

Ew(ul,...,uN,h(ul)

Note that when Ew(ul,...,uN,11,...,1N) is
defined to be w(ul,...,uN) when ((ul
,11) , ..., (UN,1IN)) is not an element of R
and 0 otherwise (where w is the weighting
function discussed in Section III), then
the inexact consistent labeling problem is
equivalent to the problem of finding €-ho-
momorphisms.

The labeling problem 1s combinatorial
in nature and can be solved by a brute
force backtracking tree search. The back-
tracking strategy suffers from thrashing
behavior. That is, the search fails at
several different places in the tree, all
for the same reason. If the reason for
failure could be remembered or antici-
pated, then the tree search could be made
more efficient.

To understand this thrashing behavior
better, consider why the tree seach could
fail without our expecting it to fail. We
might not expect it to fail because of our
shortsightedness: we have taken into
account the error incurred against all
past units (those units which bave already
been assigned labels) but have not taken
into account the minimum error that the
current labeling must incur against future
unis or the minimum error that future
units have with future units.

To take these errors into account we
must divide T into wvarious pieces based
upon the set Up of past units which have

T(u,i;up) = {(ul,...,uN) € T | ui

Few oy

u

204

The general consistent labeling prob-
lem and thus the relaticnal homomorphism
problem can be solved by a tree search
incorporating a look-ahead, forward check-
ing, and/or relaxation operator. In this
section, we begin the extension to €-con-
sistent labelings.

Lookahead for Inexact Matching

be a
T X L**N
function.

Let (u,L,T,R)
model. Let Ew
non-negative
11;.0-71N)

compatibility
--> [0,1] be a
Ew(ul, ... ,uN,
is the error that occurs when
the N-tuple (l11,...,1N) of labels is
applied to units (ul,...,uN). The inexact
consistent labeling problem is to find all

mappings h : U --> L so that the sum of
the errors incurred by h on all N-tuples

of units that constrain one another is
less than a given EO0. That is, we must
find all h satisfying

h(uN)) < €0.

been assigned labels and the set Uf of

future units which have not been assigned
labels. T intersect Up**N 1is the set of
all N-tuples composed of units which have
already been assigned 1labels and which,
therefore, have an exact error of

Ew(ul,...,uN,h{ul),...,h(uN)).
(ul,...,uN) € T intersect Up*#*N

the set of all
which have not

T intersect Uf**N is
N-tuples composed of units

already been assigned labels. Hence, the
partial labeling h which is only defined
over Up cannot influence or force any
errors in T intersect Uf**N. We may take

the smallest possible future error due to
N-tuples of units in T intersect UE**N as
zero, or if we like a better lower bound,
we can use

min Ew(ul,...,uN,11,...,1N).
(11,...,1N)
(ul,.-.,uN) € T intersect Uf**N

T has N-tuples other than those in T
intersect Up**N and T intersect Uf*#N.
For example, there are those N-tuples hav-
ing (N-1) wunits from Up and one unit from
Uf. This subset of T will have an associ-
ated minimum error that strongly depends
on the partial labeling h. We can give an
explicit expression for this minimum error
if we define the subset T(u,i;Up) of T by

and n # i implies un € Up}

N
obviously,\.J U/ T(u,i;Up) is the
ueuf i=1
set of all N-tuples in T having (n-1) com-
ponents being units in Up and one compo-

nent being some future unit in UEF. Also

N
epf(u,l;Up,h) =

i=1 (ul,...

error that the current 1labeling h
units in Up causes on future unit
label 1. Should this error be
greater than the error budget for future
units, label 1 can be excluded from
further consideration.

is the
on past
u with

The smallest error that future unit u
can incur given h is min epf(u,l;Up,h).
The smallest error that the future units
individually incur given the partial
labeling h is

wibl,...

suli-1),u,u(i+1),...

sUN) € T(u,i;up)

notice that since no two Components of an
N-tuple in T can have the same value,
T(u,i;Up) intersect T(u,j;Up) is the empty
set when i # j. Hence for a given future
unit u and label 1, the quantity

fUN h(ul),.
1,h(u(i+l)),...,h(uN))

o.rh(u(i—l)),

Should this error exceed the error budget
for future wunits, then the tree Search
must either try the next label on the cur-
rent unit or backtrack.

There are yet other subsets of N-tu-
ples in T which we have not accounted for
and for which the labeling h forces some
error. The next one we might consider is
that set of N-tuples from T having (N-2)
of its components being units in Up and
two of its components being units in UFf.
To help us give an explicit expressiocn for

:Z min epf(u,l;Up,h). this error, we define the subset

) leL T(u,i,v,j;Up) of T by

ueUf
T(u,i,v,j;Up) = {(ul,...,uN) € T | ui=u, uj=v, and
n# i,j implies un € Up}

N N having (N-2) components being in Up and
Then \,} \,} \“} \bj T(u,i,v,j:Up) two components being in Uf. These sets
u € Uf v € Uf i=1 j=1 are all mutually exclusive when u # wv.

vV > u

all N-tuples in T

EE Ew(ul,..

is precisely the set of

eff{u,l,v,m;Up,h) =

i=1 j=1 (ul,..
is the error that the current labeling h
on Up causes on the future unit-label
pairs (u,l1) and (v,m).

ep(Up,h) = Z

.'U,.- ’
-yUN) € T(u,i,v,j;Up)

Ew(ul,...

Hence, for a given pair of future unit-la-
bel pairs (u,l) and (v,m) the quantity

-yuN/h(ul),...,1,...,m,...,h(uN))

sefViea

V. Tree Searching Algorithms

(ul,...,uN) € T intersect Up**N

If at the tree search, the
this partial labeling
budget then the tree
the next label for

there is no next

any time in
€rror incurred by
éXxceeds the error
Search must either try
the current wunit or if
label, it must backtrack.

Forward checking proceeds in a manner

Similar to backtracking. But it recog-
nizes that in addition to the error
ep(Up,h) which the partial labeling h

incurs against the past units Up, the par-

205

In the standard backtracking
approach, each partial labeling h defined
on the set of past wunits Up incurs an
error ep(Up,h), where
fuN,h(ul),...,h(uN)).
tial 1labeling h commits the past units

with their assigned labels from h to have
a minimum error with the future units UF.
By doing some forward checking, letting
the past units with their assigned labels
broadcast to each future unit-label pair
this incurred error, it becomes easy to
keep track of the minimum error the past
units must have with the future units.
Recall that ef(u,l;Up,h) is the total
error accumulated by future unit-label
pair (u,l) from all the past units in Up

with their assigned labels from 5
ep{(Up,h) + z min
l el
u € Uf

in the error budget check. If this quan-
tity exceeds the error budget, -forward
checking fails and we must either try the

next label for the current unit or back-
track.

Looking ahead by one proceeds in a
manner similar to forward checking. But
it recognizes that in addition to the
minimum error that a partial 1labeling

creates by past units against past units
and past units against future units, there

is some minimum error of future units
against future units. We called
eff(u,l,v,m;Up,h) the error that future

" ep(Up,h) + ;g

veut

min epf(v,m;Up
meL

exceeds the error budget, then the pair
(u,1) can be dropped from consideration as
a possible participant in the extension of
labeling h. This idea may be applied
iteratively, whereupon it becomes a
weighted discrete relaxation operator, the
natural generalization of the discrete
relation operator originally defined by
Ullman [7], independently rediscovered by

z min z min
1€l meL
u € UE v € UE
v > u

,h)+z

Hence looking ahead by one uses the gquantity

ep(Up,h) + z

u € Uf

1€l

in the error budget check. If this quan-
tity exceeds the error budget, looking
ahead by one fails and we must either try

the next label for the current unit or
backtrack.
VI. Results

In order to thoroughly test our inex-
act matching algorithms we have developed
a statistical model that allows us to gen-
erate random binary relation consistent
labeling problems and a set of criteria on
which to compare the performance of the
algorithms in finding €-consistent label-
ings. For a description of this model,
see Haralick and Elliott [3] who explored

the behavior of various algorithms for
finding exact or zero-consistent label-
ings.

min epf(u,l;Up,h) + :E

u

206

Forward checking uses

epf(U:l;Uprh)

unit-label pair (u,l) has with future unit
label pair (v,m) taking intec account that
past wunits in Up must have the labels
assigned to them by h. Then the minimum

error that a future unit-label pair (u,l)
incurs with the future units (taken one at

a time) is
}Z min eff(u,l,v,m;Up,h).
meL
v € uf
v # u
If for any unit-label pair (u,l) the
quantity
min eff(u,l,v,m,Up,h)
meL
veut
vF#U
waltz [8], and also discussed in Rosen-
feld, Hummel, and Zucker [4], Haralick and

Shapiro [2], and Gaschnig {1].

We have already observed that the
smallest error future units can have with
future units taken one at a time given the
partial labeling h on Up is

eff(u,l,v,m;Up,h)

min eff(u,l,v,m;Up,h)
meL

min
1€l
€ Uf

for binary rela-
that determines if
is an element of

A consistency check
tions is the operation
a pair ((ul,11),(u2,12))

the unit-label constraint relation. A
back check is a consistency check per-
formed in the context of straight back-

lookahead is a consistency
check performed in the context of forward
checking or lookahead by one. A lookup is
a table lookup performed in the context of
forward checking or 1lockahead by one.
Finally, the term node refers to a node of
the tree in the tree search and represents
the operation of assigning a particular
label to a unit. The criteria measured by
the program include number of consistency
checks, number of back checks, number of
lookaheads, number of lookups, and number
of nodes 1in the tree. These quantities

tracking. A

can be measured for the entire tree and
for each level in the tree. We also
recorded the time to perform a tree search
although this 1is machine and language
dependent.

backtracking alone,
forward checking, and
by one, we

consistency

In comparing
backtracking plus
backtracking plus lookahead
looked at the number of
checks, the number of nodes, and the exe-
cution time for a tree search. In gen-
eral, we found that backtracking plus for-
ward checking had the least number of
consistency checks and the least time,
backtracking plus lookahead by one was

next, and backtracking alone had the high- -

est number of consistency checks and the
most time. Shown below is the total num-
ber of consistency checks as a function of
number of units for the three different
search algorithms with p = .5 and € = .1.

T T T

® BACKTRACKING ALONE .
= BACKTRACKING WITH LOOKAHEAD BY ONE

2 BACKTRACKING WITH FORWARD CHECKING

/

TOTAL NUMBER OF CONSISTENCY CHECKS

L 4 3y L

[7] 9
NUMBER OF UNITS

o

With respect to the size of the por-
tion of the tree actually searched, we
found that backtracking alone searched the
most nodes, backtracking with forward
checking was next, and backtracking with
lookahead by one searched the fewest
nodes. Thus the forward checking and
looking ahead by one beat the straight
backtracking in number of consistency

207

checks, time, and number of nodes. The
looking ahead by one beat the forward
checking in number of nodes searched, but
used many more consistency checks (and
therefore time) to do so. This would
indicate that as was the case for exact
matching (Haralick and Elliott [3]), in

inexact matching,
most efficient of
search.

forward checking is the
the three methods of

Due
the rest
For more

[5]«

to lack of space, we have omitted
of the results from this paper.
results, see Shapiro and Haralick

REFERENCES

Gaschnig, J., "A General Backtrack
Algorithm that Eliminates Most Redun-
dant Tests", Proceedings of the 5th
International ~Joint er “on

Conference
Artificial Intelligence, 1972,
457.

on
P-

"The
Part
Ana-
Vol.

pp.

Haralick, R.M. and L.G. Shapiro,
Consistent Labeling Problem:
1%, IEEE Transactions on Pattern
lysis and Machine Intelligence,
PAMI-1, No. 2, April 1979,
173-184.

Haralick, R.M. and G.L. Elliott,
"Increasing Tree Search Efficiency
for Constraint Satisfaction Prob-
lems", Proceedings of the 6th Inter-
national Joint Conference on Artifi-

cial Intelligence, 1979.

Rosenfeld, A., R.A. Hummel, and S.W.
Zucker, "Scene Labeling by Relaxation
Operations", IEEE Transactions on
Systems, Man, and Cybernetics, Vol.
SMC-6, June 1976, pp. 420-433.

Shapiro, L.G., and R.M. Haralick,
"Structural Descriptions and Inexact
Matching", to appear in IEEE Transac-
tions on Pattern Analysis and Machine

Intelligence, 1981.

Tsai, W.H. and K.S.
recting Isomorphisms of Attributed
Relational Graphs for Pattern Analy-
sis, School of Electrical Engineer-
ing, Purdue University, 1979.

Fu, Error—Cor-

Ullman, J.R., "An Algorithm for Sub-
graph Homomorphisms", Journal of the
ACM, Vol. 23, Jan. 1976, pp.31-42.

Waltz, D.L., Generating Semantic Des-
criptions from Drawings of Scenes
with Shadows, MIT Tech. Rep. Al271,
Nov. 1972.

