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Abstract

An ATR algorithm for low quality imagery is reported.
Compact shaped targets are represented by their 2D silhou-
ettes. Associated with each point on the silhouette, there is a
direction roughly perpendicular to the local segment of the
silhouette. The location of each silhouette point is assumed
to be perturbed along that direction. A statistical technique
is used to estimate the variance of that perturbation for the
silhouette points of the hypothesized target. This variance
is then used to estimate the location covariance of the tar-
get centroid. Target detection and recognition is based on
this covariance. Target scaling, aspect, and rotation are not
considered. Experiments on 31 FLIR images give a correct
recognition of target identity and target location for 29 of
the 31 images.

1. Introduction

Automatic target recognition (ATR) applications are
characterized by their great variability in target shape and
appearance, scale and orientation, lighting and imaging
condition, natural background clutter, camouflage, etc. This
has resulted in the fact that generic target recognition prob-
lem is far beyond the capability of the state-of-the-art ATR
systems. Currently, the research in this area is mainly fo-
cused on algorithms with various restrictions on the appli-
cation.

In this work, we study the situation where interested tar-
gets, which are 3D objects in general, always appear at the
same distance (hence with the same scale) and with the
same aspect. This way, although the target may look dif-
ferent in different images due to the varying imaging con-
ditions, its silhouette, or its boundary in the 2D image, re-
mains the same and there is no rotation involved. The in-
formation contained in the geometric shape of the target
boundary is all we have to discriminate one target from an-
other. [1][4]

Due to the great variability in the image forming process
and the usual low quality of the images, image segmentation
and edge detection based algorithms give very low perfor-
mance. The low level information has to be gathered with
the help of higher level knowledge. We adopt a hypothesis
and test paradigm to use target shapes in making measure-
ments at each location in the image for each interested tar-
get. Target detection and recognition is carried out based on
those measurements.

The measurement made here for each target hypothesis
is the location covariance of its centroid. This is obtained
by taking the target boundary as a polygon, estimating the
location covariance of the vertices, and analytically prop-
agating the covariance of the polygon’s vertices to that of
its centroid. Correct hypotheses are associated with small
measurement values, and large location covariance values
are usually observed for incorrect hypotheses.

Experiments on 31 FLIR (forward looking infrared) im-
ages give a correct recognition of target identity and target
location for 29 of the 31 images.

2. Framework of the algorithm

There are a finite number of interested targets, each being
represented by a digitized 2D contour. Targets may appear
at any location in the image except the boundary regions.
The task is to decide how many, if any, targets are in the
image, their identities, and the locations of their centroids.

In the kernel of the algorithm, a hypothesis is made that
some targett is present in the image with its centroid located
at some location(r; c). The contour of targett is imagined
in the image with its centroid at(r; c). The pixel locations
on the contour form the set of vertices of a polygon.

The pixel values of the input image is assumed to be cor-
rupted by some additiveiid normal perturbation. This per-
turbation on the pixel values causes the uncertainty in the
vertices’ locations if they were to be estimated. This un-
certainty is modeled as a perturbation. We are mainly in-
terested in the part of the perturbation that is perpendicular



to the local segment of the target contour. Next section de-
scribes how the variance of this perturbation is estimated,
and then analytically propagated to the location of the poly-
gon’s centroid, resulting in an estimate of the covariance
matrix of the centroid location. The trace (sum of diagonal
elements) of this matrix is the major measurement, from
which the inference about the presence of targett at loca-
tion (r; c) will be made. Bigger values of the trace show
greater variability in the centroid location, indicating less
likelihood of the target’s presence at that location.

Multiple hypotheses are made by the algorithm for all
targets at all possible locations, and the associated measure-
ments are made. These hypothesis are compared by these
measurements, and the choice is made in favor of smaller
measurement values.

Right now we make use of the domain knowledge that
each image in our test image set contains one and only one
target. With this knowledge, the decision rule for target de-
tection and recognition is simply to claim the presence of
the target at the location whose corresponding hypothesis
has the smallest trace value. We are still working on prop-
erly setting up thresholds for the trace values for different
targets. This will allow multiple target presence in the im-
age even with overlap between them, and will avoid claim-
ing at least one target per image when there is none.

The geometric shape of the polygon plays an important
part in deciding the contribution from each boundary point
to the trace. The importance of the boundary points depends
highly on each other, and in general differs from each other.
Our study shows that using all boundary points to model
the targets is often less as effective as using only a subset
which is optimal in certain sense. In choosing the subset,
we wanta) the subset retains enough discriminatory power
to distinguish the target from others; andb) the trace of the
centroid location covariance matrix is the smallest among
all subsets of the same size. The details of the criteria and
the algorithm for choosing the subset is omitted here.

3. Centroid covariance matrix estimation

3.1. Boundary point location variance

Figure 1 illustrates the hypothesis that targett is present
at (r; c). Targett happens to be a side view of a car. The
black dots show its boundary points, and the small cross
shows the centroid. The dotted lines parallel to the row and
column axes show the pixel grid of the image.

Let P be one of the boundary points, andd be the direc-
tion assigned for it, which is roughly perpendicular to the
local segment of the hypothesized target boundary. Through
P and along the directiond we have a straight linel which
is digitized by the pixel grid of the image. The pixel lo-
cations through whichl passes form thesupportof l. This
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Figure 1. Illustration of the estimation of
the location variance of hypothesized target
boundary points.

support is denoted by� = (
1; 
2; : : : ; 
M ) whereM is the
total number of points onl. � is shown in the figure by the
unfilled circles lying on the linel. Let P be the�-th point
on l. For integer valued� > 0 (� = 3 in the figure) we
define the� -segment forP to be the segment of� centered
onP and with length2� + 1. Let it be denoted by

�P;� = (
��� ; 
���+1; : : : ; 
�+�)

In the figure, it is represented by the unfilled circles onl be-
tweenA andB inclusively. LetS = (s1; s2; : : : ; sM ) and
H = (h1; h2; : : : ; hN ) whereN = 2� +1 be the profiles of
the unperturbed image pixel values on� and�P;� , respec-
tively. H is just one segment ofS andhn = s(����1)+n
for n = 1; 2; : : : ; N .

Since� and�P;� are essentially along a straight line, by
translating and rotating the axes of the coordinate system,
they can be converted into sets of 1D positions. HenceS

andH are taken as 1D digital signals.
When the image pixel values are perturbed by additive

iid normal noise, the observed pixel values on� form Ŝ =
(ŝ1; : : : ; ŝM ) whereŝm = sm + �m for m = 1; 2; : : : ;M .
�1; �2; : : : ; �M areiid n(0; �2) random variables.

The location of the boundary pointP in � can now be
estimated aŝ� satisfying
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�

NX
n=1

(ŝ(����1)+n � hn)
2

The noise perturbation in̂S propagates tô�. Then the per-
turbation�� = �̂ � � causes uncertainty on the location of
the target boundary pointP .
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m is the second order derivative value at
m of the
cubic spline constructed fromH .

The last equation gives the location variance of the
boundary pointP along the directiond. In our application,
we choose� = 3, and since we do not have the unperturbed
H , we substituted̂H for H .

3.2. Polygon vertices and centroid

A simple polygon is represented by an ordered (either
clockwise or counter-clockwise) set ofN 2D locations
P1; : : : ; PN of its vertices.

Let Pi have coordinates(xi; yi) for i = 1; 2; : : : ; N .
Let x = (x1; : : : ; xN )

T and y = (y1; : : : ; yN )
T .

The centroid of the polygon is denoted byQ(x;y) =
(Qx(x;y); Qy(x;y))

T , and can be expressed as

Qx(x;y) =
Kx

3S
Qy(x;y) =

Ky

3S

where

Kx =

NX
i=1

(xiyi+1 � xi+1yi)(xi + xi+1)

Ky =

NX
i=1

(xiyi+1 � xi+1yi)(yi + yi+1)

S =

NX
i=1

(xiyi+1 � xi+1yi)

where the notation ofxN+1 = x1 andyN+1 = y1 is used.

3.3. Perturbation on the vertices

SupposePi = (xi; yi)
T is affected by an additive per-

turbation�Pi = (�xi;�yi)
T , which is called the input

perturbation. We assume that this perturbation is along a
certain known direction denoted by a constant unit vector
di = (di;x; di;y)

T . We model the perturbation along this di-
rection by a normal random variablevi � N(0; �2i ), where
the estimation of�2i is described in Section 3.1. We fur-
ther assume thatvi andvj are independent ifi 6= j. Then
v = (v1; : : : ; vn)

T has the mean vector0 and covariance
matrixDiag(�21 ; : : : ; �

2
N ).

The perturbed location of thei-th vertex is given by�
x̂i
ŷi

�
=

�
xi
yi

�
+

�
vidi;x
vidi;y

�
(1)

3.4. Perturbation on the centroid

Due to the perturbation on the vertices, the location of
the centroid is perturbed. This perturbation is called the
output perturbation and is expressed as

�Qx = Qx(x+�x;y +�y)�Qx(x;y)

�Qy = Qy(x+�x;y +�y)�Qy(x;y)

Using linear approximation, we have

Qx(x+�x;y +�y) � Qx(x;y) +AT � v

Qy(x+�x;y +�y) � Qy(x;y) + CT � v

whereA = @Qx(x;y)
@v

andC =
@Qy(x;y)

@v
areN � 1 real

vectors. Fori = 1; 2; : : : ; N , letai =
@Qx

@vi
andci =

@Qx
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.
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whereKx, Ky, andS are given in Section 3.2, and

@S

@vi
= (yi+1di;x � xi+1di;y) + (xi�1di;y � yi�1di;x)

@Kx

@vi
= (xiyi+1 � xi+1yi)di;x

+(xi + xi+1)(yi+1di;x � xi+1di;y)

+(xi�1yi � xiyi�1)di;x

+(xi�1 + xi)(xi�1di;y � yi�1di;x)

@Ky
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+(xi�1yi � xiyi�1)di;y

+(yi�1 + yi)(xi�1di;y � yi�1di;x)

where the notation ofx0 = xN ; y0 = yN is used. The mean
and covariance of�Q are then given by
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�
=

�
0
0

�
(4)

��Q �

 PN
i=1 a

2
i�

2
i

PN
i=1 aici�

2
iPN

i=1 ciai�
2
i

PN

i=1 c
2
i�

2
i

!
(5)

The above result was validated using a statistical test in
a controlled experiment where a quadrilateral is used for
the polygon, and noise perturbations with known parame-
ters were generated and used to perturb the locations of the
vertices. The centroid of the vertex-perturbed polygon is
calculated, and its sample mean and covariance matrix are
compared with the theoretically predicted values given by
Equations (4) and (5). The empirical result agreed with the
theoretical prediction, although the details are omitted here.
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Figure 2. Performance of the algorithm using
different target model sets in the experiment.

4. Experiment on FLIR imagery

Our test image set consists of 31 FLIR images, in each of
which there is a distinct target. The images are 8-bit images
of size 512 � 410. For each of the targets, we have the
locations of all the boundary points relative to the centroid
of that target. The sizes of the target boundaries range from
270 to 728, and the area inside them range from 2609 to
15085, all in number of pixels. For each boundary point,
we define a direction that is roughly perpendicular to the
local segment of the boundary, as needed in estimating the
covariance of the centroid’s location.

For each target, we choose 9 different subsets of the
boundary points. The sizes of the subsets are 10%, 20%,
. . . , 90% of that of the originalboundary. These percent-
age values are called the percentage indices of the subsets.
Together with the original boundary, with percentage index
100%, there are 10 models for each target. For each of the
percentage indices, we construct a target model set by in-
cluding the target models of that percentage index from all
31 targets. For example, the so-called “10% model set” in-
cludes 31 models, each of which is a 10% target model con-
structed from the respective original target boundary. Each
of the 10 model sets is used in a separate experiment to de-
tect and recognize the targets in the 31 images.

The performance of the algorithm, in terms of number of
correct detection and recognition, and the location accuracy
for the correctly detected and recognized targets, varies with
the different target model sets in use, as shown in Figure 2.

The best performance occurred for the 10% model set,
where the detection and recognition rate is satisfactorily
high, and the location performance is perfect. This shows
that enough discriminatory power is retained by only the
10% of the target boundary points which are properly cho-
sen. When the percentage index of the model sets increases,
more and more boundary points are used which include

points that not only are marginally discriminatory but also
enlarge the difference between the assumed model for the
noise and the actual noise itself.

We also ran the algorithm with model sets of lower per-
centage indices. When the percentage index is smaller than
5%, the performance drops rapidly. This is because too few
boundary points are used which do not bear enough feature
information to detect targets and to discriminate between
them.

We see that the model sets with percentage indices be-
tween 10% and 50% yield quite good performance in both
correct detection and recognition rate, and location accu-
racy for correctly detected targets, although we should re-
port that the best result on this test image set of 30 correct
detection and recognitions has been achieved by the max-
imum likelihood ratio algorithm [4] with a 60% model set
constructed in a different way.

5. Conclusion

We described a technique for estimating the location co-
variance matrix of the target’s centroid in grey level images,
and using it for target detection and recognition. The esti-
mation procedure was validated by a statistical test. Exper-
iments on FLIR imagery yielded quite satisfactory results.
Thus the use of a target’s location covariance is a promising
alternative as a criterion for detecting and locating targets.

Research is still under way for taking out the assumption
of one and only one target per image. This will involve a
proper way of setting up thresholds for the trace measure-
ments associated with the hypotheses.
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