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Abstract 

For complete automatic left ventricle border detection 
in a cardiac frame, the apex needs to be located. .4s the 
apex zone has less contrast and is harder to identify [l], [4] 
in the gray scale left ventriculograms, we use the left ven- 
tricle’s longitudinal axis [2] to assist in apex location. To 
automatically find the longitudinal axis of the left ventricle 
in any frame, we find the longest segment from either the 
anterior aspect of aortic valve or the inferior aspect of the 
aortic valve to the left ventricle border. We assume that 
the ruled surface generated by the sequence of longitudinal 
axes through the cardiac cycle is of sufficiently simple form, 
so that the perturbation error, especially the large errors, 
between the automatically measured axis and the physzcian 
defined axis can, in part, be filtered out by a robust proce- 
dure. 
To discriminate those automatically determined axes that 
might differ significantly from the physician defined ground 
truth, we use Huber’s weight function in an iterative 
reweighted least square robust fitting. We show that when 
the variance of the inlier noise is 1 mm2 and variance of 
the outlier noise is 100 mm2 and outliers occur in 15% 
of the longitudinal axes, then the robustly estimated axis 
end points have a root mean square error of 2.2 mm. By 
contrast, with only inlier noise and using only 85% of the 
longitudinal axis data, the ordinary least squares estimate 
has a root mean square error of 1.34 mm. With both inlier 
and outlier noise, an ordinary least squares estimate would 
produce estimated apex vertices having a root mean square 
error of 10.5 mm. We demonstrate that for 90% of 1200 
frames of clinical data, the automatically determined apex 
location is less than an arc length distance of 1% of the 
ventricle border length from the ground truth apex loca- 
tion as delineated by the cardiologist. 
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I. INTRODUCTION 

The apex point is the farthest point along the LA from 
the aortic valve (AoV) plane. To keep track of the changing 
shape at the apex, we must keep track of the apex points 
of the LA. During the systole and diastole periods of the 
cardiac cycle, the heart’s motion causes the LA to change 
its length and inclination (position). When these auto- 
matically measured longitudinal azes are observed frame by 
frame, they fall into two classes. Most measured axes are 
small perturbations from the axis that a physician would 
delineate. A few have very large perturbations and are 
called outliers. Because outliers have an unusually great 
influence on least square estimators, it would be inappro- 
priate to use least squares estimation in such a situation. 
Therefore, we determine the apex points of the LA in 
each frame of the cardiac cycle by robustly estimating the 
ruled surface coefficients using an iterative reweighted least 
squares (IRLS) fit. 
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II. FORMAL PROBLEM STATEMENT 

Given the noisy perturbed automatically measured LA 
data of the LV, we must robustly estimate the ruled sur- 
face and its coefficients using an iterative reweighted least 
squares. From the fitted surface, we can then produce fit- 
ted estimates of the measured longitudinal axis. 
We first give the noise model for the measured apex data 
for any frame j and then express the same model in matrix 
form for the complete cardiac cycle. Let [z(j), y(j)], j = 
1, , F denote the coordinates of the automatically mea- 
sured LA apex (denoted by vertex u. in fig. 1) for the 
cardiac cycle having F frames. The measured [z(j), y(j)] 
coordinates for frame j are assumed to follow a Gaussian 
noise model given by: 

(1) 
where, {Be(j) = l,&(j) = j, B*(j) = j”} is the basis set. 
Q(f) - N(O,4(f)), s(f) - M(O,~~(f)). 4(f) is 
the variance of the noise for z-coordinate for frame j. 
g;(j) is the variance of noise for y-coordinate for frame 
j. The Gaussian noise perturbing two different frames is 
assumed to be independent. We also assume that the z- 
coordinate and y-coordinate noise are independent. Let 
(2=(a3,alra2)T and P=(be, bi, 5~)~ be the coefficients as- 
sociated with z and y coordinates of the apex respectively. 
If all the frames of the cardiac cycle are taken into account 
and represented in a matrix form we have: V=[X YlFx2, 
where X = [z(l), . ,z(F)lT and Y = [y(l), ,y(F)]*. 
Let Fin and Fout be the set of inlier and outlier frames, 
#En + #Fout = F, where F is the total number of frames 
in the cardiac cycle. F,,,={F& U F,,t} is called the Com- 
bined Data. We also assume that #F&t < i #F,,. The 
above model can be represented in the matrix form as: 

[ V ] = [ XY lFx2 = [B$lFx2 + [ qr q, lFx* (2) 

where $ = [ afl ]3x2 are the coefficients associated with 
the z- and y-coordinates. B$ is the matrix holding the 
true unperturbed coordinates of the cardiac cycle. V is the 
matrix holding the LA data since it consists of the observed 
apex or aortic coordinates for the complete cardiac cycle. 
B is the basis matrix for the given cardiac cycle: B = 

1 1 12 

l I 

FX3 

lj+ The distribution of the noise vector 7, 

l&F* 
(F x 1) for the cardiac cycle has mean 0 and covariance C,, 
given as: qz - N(0, C,). Similarly, the distribution of the 
noise vector q,, (F x 1) for the cardiac cycle has mean 0 and 
covariance C yr given as: qy N N(O,Z,). The covariance 
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LONGITUDINAL AXIS AND RULED SURFACE 
Example of Systole Cycle (Contraction phase) 

where the variance for frame f is given as: 

where, 02,~ > gf, i.e., the noise from to the outlier frames 
(Fout) is much larger than the noise from to the inlier 
frames (F,,). The covariance for y-coordinate (C,) is de- 
fined in the same way as C,. Note the Gaussian noise 
perturbing two different frames is assumed to be indepen- 
dent. 

The problem is to estimate [i(f), i(f)], f = 1, . , F, 
the coordinates of LA apex or aortic points using an it- 
erative least square robust procedure (IRLS). In matrix 
notation we estimate: V=[f ?] = [BGlFX2 where, 2 = 
[i(l),. .,i(F)]= and 2 = [c(l), ..,$(F)lT. $(3 x  2) is 
the estimated coefficient matrix. The problem thus reduces 
to estimating 6 using an iterative least square robust pro- 
cedure (IRLS). 

III. RULED SURFACE s, AND ITS COEFFICIENTS 

Consider the ruled surface (see fig. 1) generated by the 
L-4 during the cardiac cycle. We model this ruled surface in 
the quadratic parametric form given in Eq. 1. Let the apex 
and aortic end vertices of the LA for a frame f in the car- 
diac cycle be [am, ye(f)] and [q(f), y*(f)] respectively. 
The ruied surface is mathematically given as: 

s.,,.A)=(l-A)[ :.;;I +(A)[ ;ijq (5) 

where X, 0 5 X < 1, is the variable designating a position 
along the LA and f = 1.. , F  is the frame number. Thus, 
the ruled surface equation is a function of the end coordi- 
nates of the LA which in turn is a function of @  = [ a p ], 
the apex coefficient matrix and C = [ 7 6 1, the similariy 
defined aortic coefficient matrix. Since the estimation for 
the apex coefficients and aortic coefficients is similar, we 
use a generic (z, y) in the remainder of the paper, not dis- 
tinguishing between (z,, y,,) and (Q,, ye). 

IV. ESTIMATION OF ROBUST COEFFICIENTS 

The coefficient matrix of the ruled surface is robustly 
estimated using the iterative re-weighted least square pro- 
cedure in which low weights are assigned to the outliers 
which have high residual error and high weights are as- 
signed to the inliers which have low residual error. This 
weighting has the effect of reducing the influence of the 

\ - 
Longitudinal Axis 

Ruled Surf& Leftve;tric,e 

Time (f-J --- > 

Fig. 1. Diagram showing the generation of the ruled surface from 
the motion of the LA in time. Longitudinal axes (or long axis) is 
the segment joining the starting vertex U. and endirlg vertex vb. 

outliers on the estimated coefficients. .it each iteration, a 
weighted least square problem is solved. The weight ma- 
trix for the first iteration is taken to be the identity matix. 
The weights for each successive iteration are a function of 
the residual errors of the previous iteration. The weights 
for the current iteration are a function of the normalized 
residuals of estimated z- and estimated y- apex coordinates 
from the previous iteration. Thus, given the matrices for 
the Combined Data V, the basis matrix B, the diagonal 
weight matrix W, the weighted least squares problem is to 
determine lit, to minimize the weighted residuai squared 
error function EL defined by: 

E; = 11 W(V-B&J /I2 (6) 

The estimated apex coordinate matrix V is given by the 
product of B and the estimated coefficients 4, given as: 

ir=B& (7) 

To determine the qw that minimizes et, we take the partial 
derivative of et with respect to &,, and equate the result 
to 0. Since IRLS is an iterative process, at the cfh iteration 
we denote the weight matrix by W,. The robust coefficient 
vector (&bust)c is given as: 

= {B= WTIWcB)-; x  
3x2 3xF 

(BTWTWeV) (8) 

FL2 

where, the weight matrix W  given as: 

wFxF 
= ~%/(4), 42),w(3), . ..a w(F)) (9) 

where, the weight w(f) is given as: 

w(f) = min ( f&+-H, 
I vnz(f)+ I m,(f) I ’ l) (10) 

where, Hz and Hy is a Huber’s function for z- and y- 
coordinates and is given as a product of tuning constant 
(Tc) and the median of the normalized absolute residuals 
is given as: 
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Note “med” is the median computation over F frames 
of the cardiac cycle. The range of the tuning constant 
(T,) is shown in the parameter table 1. The weights de- 
pend upon the absolute value of the normalized residual 
error. If the residual error is high, then low weights are 
assigned and vice versa. Eq. 8 can be solved using a 
singular value decomposition. Convergence is achieved in 
fewer than 10 iterations. Thus, the robust coefficients are: 
tL*ust=(4ro*“sthLb 

V. EXPERIMENT DESIGN 

A. Data Generation Process 

We have generated two kinds of data sets, Inlier Data 
sets, consisting of (F-n,) frames and Combined Data sets, 
consisting of F frames of which (F-n,) is the number of in- 
lier frames and n0 is the number of outlier frames. no is an 
experimental parameter and is fixed between 0% to 20% of 
F. The set of no outlier frames FO,,t={ji, ji, j3, . . . . jn,} is 
selected at random by sampling the set { 1, , F} without 
replacement. Once we generate the sets of inlier and out- 
lier frames, the synthetic Inlier Data and Combined Data 
is then generated using Eq. 1 and Eq. 2. The variation of 
Inlier (of,,) and Outlier noise (&) is shown in parameter 
table 1. An ordinary least squares fitting is applied to the 
Inlier Data. A robust iterative re-weighted least squares is 
applied to the Combined Data. The ratio of their errors 
measures the efficiency of the robust procedure. 

B., Eficiency of a robust procedure (@‘) 

The statistical efficiency of the robust procedure measures 
how well the robustly computed z- and y-coordinates of 
the end vertices for data with outliers compare with the 
non-robustly computed z- and y-coordinates of the a ex 
vertices for data without outliers. This can be define B as 
the ratio of the mean error of Inlier Data having (F - n,) 
frames, to the mean error of the Combined Data having 
F frames. Thus the estimated statistical efficiency iv is 

basically the ratio of&J to $yp”: rj” = $&, where, 
* 

QLp+(=p p and (1‘4 

fe F.,(t) 11 
-J-- 
F-w-3 

C(&yf) - (!r,“(f))tY 
IE ‘-S”(L) 11 

.20 

Similary, we can compute the denominator &$“‘, 0;“’ 

and @m for the Combined Data. 

C. Analytical er-ror measure, A&‘” for Inlier Data 

The analytical error measure of the ruled surface is com- 
puted by finding the expected value of the experimentally 
estimated error and is given as: 

AQa” = E [@] (13) 
Substitutin 
and then 

the value on the right, solving the equation, 
a 8. dmg for the y coordinate we have: 

AQT = & [Xp- (I - P)T (I - P) x:y + 

YfpJ (I - P)T (I - P) Y:;’ + 

24” phi (14) 

where, W equals identity, I, and the projection operator 
is: P =B (BT WT W B)-‘BT WT W. 

VI. EXPERIMENTS. RESULTS & DISCUSSIONS 

A. Results %Y Discussions on Synthetic Data 

The first four relationships are between the error mea- 
sure of ruled surface and variance of the inlier noise and last 
relationship is between robust efficiency and number of out- 
liers. We see from the curves (fig. 2), that as we increase 
the inlier perturbation, the error measure of the non-robust 
ruled surface also increases. This is because the inlier ver- 
tices are a functions of the input random perturbations. 
We also observe that with increasing inlier perturbation, 
the analytical error measure increases and has a difference 
of 0.09 mm compared to the experimental value when stan- 
dard deviation of the inlier noise is 1 mm2. Curve 3 shows 
that as we increase the inlier perturbation, the square root 
of joint error measure for Combined Inlier and Outlier Data 
using the non-robust ruled surface is approximately 10.5 
mm. This is because the outlier perturbation is 50-100 
times larger than the inlier perturbation and we are using 
the plain least squares estimate. As this Combined data 
undergoes the IRLS algorithm, the error measure drops 
drastically (0.5 mm to 2.2 mm) for inlier noise with stan- 
dard deviations between 0.5 mm-l mm. This demonstrates 
that the effect of outliers has been totally removed by as- 
signing low weights to large outliers using IRLS fit proce- 
dure. In experiment 5 (see curve 3), as we increase the 
number of outliers (no) from 0, the efficiency (rj+) drops 
slowly. In this experiment, the inlier noise (UK) is fixed to 
1 mm2, outlier noise (o:,,) is fixed to 100 mm2, total trials 
(To) are fixed to 100, and tuning constant (7’,) is fixed to 
3.0 for this parametric apex model. As we decrease or in- 
crease the tuning constant below or above 3.0 repectively, 
rj$, drops sleeply at higher number of outliers. For the 
stability of the efficiency curve, !I’, was selected as 3.0. We 
also observed that as we increase the outlier noise, keeping 
every thing else the same, a good tuning constant for our 
parameteric apex model lies in the range: 2.0 to 3.0. 

Proceedings of the 1997 International Conference on Image Processing (ICIP '97)  
0-8186-8183-7/97 $10.00 © 1997 IEEE



Fig. 2. Plot of joint mean error measure of the non-robust and 
robust ruled surface (in mm) with varying inlier noise (u,,,) (in 
mm), The parameters are: total trials CT,). total studies (N) \ -,, \ I 
nun&r of bothers (a,) and the outlier noise (u,‘,,) is fixed to 
100, 10, 10 and 100.0 mm2 respectively. At o,,=l, square root 
of Qc+,m=1.25mm, square root of (67 &,““)=0.09 mm. 

Fig, 3. Plot of efficiency (vj”) vs. n,, keeping T0 fixed to 100, u:” 
fixed to 1 mn?, & fixed to 100 mm’. 

B. Results and Discussions on Clinical Data 

We evaluate the robustly estimated apex location by 
comparing against the ground truth apex location as de- 
lineated by the cardiologist. In cardiological imaging it 
is a standard practice to divide the ventricle border into 
100 equal length segments and compare the estimated po- 
sition of the apex on the LVC as the vertex number, (re- 
ferred also as serial number) which begins from the ante- 
rior aspect of aortic valve (i.e. in clock wise direction). 
We perform two types of experiments first, we compute 
the absolute position error of the estimated serial num- 
ber to the true serial number as given by the cardiologist. 
In second experiment we compute the mean apex position 
error over all the patient studies N. If (&(f), g,,(f)) is 
the robust apex coordinates produced by the IRLS algo- 
rithm, for frame number f and patient study n, and if 
(xEue(f), ype(f)) is the apex coordinates as given by the 
cardiologist for frame f study n,- then the estimated dis- 
tance between these coordinates d,,(f) is given as: &(f)= 

J[?,(/) - .p (f)12 + [G,(f) - yzue(f)12. Since we are 
interested in the serial number of the robust apex starting 
from the anterior aspect of aortic valve, this can be com- 
puted as the serial number on true LVC whose distance 
from the robust coordinates is minimum. The expression 
for the robust serial number (Sn( f)) on true LVC is given 
as: in(f)= {i 1 min d,(f), 1 < i 5 P}, where, P is the 

total number of vertices on the LVC. We estimate the mean 
absolute position error over all the frames F and studies 
N by: 

The probability of absolute position error is computed as 
follows. Let n(e) be the number of times the absolute posi- 
tion error e,(f) occurs with an error e (say e 5 5), then the 
probability (P(e)) that the robust serial number and true 
serial number differ by e is given as: ‘P(e) = $+$. The 
results are plotted in fig. 4, left. As the error (e) inceases, 
the number of frames having error less than e drops. From 
the curve we see that about 60% frames have an error of 
0 (same as the cardiologist location) and about 90% of the 
frames have an error of 1 which is considered as very close 
and excellent. The bias study plot is shown in fig. 4, right. 

Fig. 4. Performance on 40 clinical studies consisting of 1200 frames. 
Left: Absolute position error, Right: Bias Study for apex posi- 
tion. 

VII. CONCLUSION 

We have developed a robust algorithm for fitting the the 
left ventricle longitudinal axis and estimating its apex co- 
ordinates. Our method shows that if the cardiac cycle has 
15% outliers, the robust procedure has an efficiency of 90%. 
We validated our algorithms and showed a difference of 0.09 
m m  between the experimental and analytical errors when 
inlier noise is 1 mm2. We also demostrated our algorithm 
on clinical data sets. 

Dl 

PI 

(31 

[41 

REFERENCES 
Jasjit S. Suri, Robert M. Haralick and Florence H. Shoe- 
han, Correction of Systematic Errors in Automatically Pm- 
duced Boundaries from Low Contrast Ventriculogmms, Proc. 
of ICPR, Vienna, 1996. 
Jasjit S. Suri, Robert M. Haralick and Florence H. Sheehan, 
Accumte Left Ventricle Aper Posttion and Boundary Estima- 
tion Fmm Noisy Ventriculoqmms. Proc. of IEEE Computers 
in Cardiology, Indianapolis. 1996. 
S.K.Setarehdan and J.J.Soraehan. Automatic Left Ventricular 
Centre Point Eztmction in i?cho&liographic images, Signal 
Processing Journal, Vol.61 Issue 3, EURASIP, Elsevier Science 
Pu blications, 1997. 
Jasjit S. Suri, Robert M. Haralick and Florence H. She+ 
ban, Two Calibration Algorithms for boundary estimation of 
Left Venttick in X-my Images, Published in Proc. of: 18th 
IEEE Intematzonal Conference of Engineering in Medicine 
and Biology (EMBS), Amsterdam, The Netherlands, ISBN 
90-9010005-9(CD-ROM) SOE 9609001, Ott 31-Nov. 3, 1996. 

121 

Proceedings of the 1997 International Conference on Image Processing (ICIP '97)  
0-8186-8183-7/97 $10.00 © 1997 IEEE


