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Abstract 

This paper presents a statistical approach for detect- 
ing corners from chain encoded digital arcs. An arc point 
is declared as a corner if the estimated parameters of the 
two fitted lines of the two arc segments immediately to the 
right and left of the arc point are statistically significantly 
different. The corner detection algorithm consists of two 
steps: corner detection and optimization. While corner de- 
tection involves statistically identifying the most likely cor- 
nerpoints along an arc sequence, corner optimization deals 
with improving the locational errors of the detected corners. 

The major contributions of this research include devel- 
oping a method for analytically estimating the covariance 
matrix of the fitted line parameters and developing a hy- 
pothesis test statistic to statistically test the difference be- 
tween the parameters of two fitted lines. Performance eval- 
uation study showed that the algorithm is robust and ac- 
curate for complex images. It has an average misdetection 
rate of 2.5% and false,alarm rate of 2.2% for the complex 
RADIUS images. This paper discusses the theory and per- 
formance characterization of the proposed corner detector. 

1. Introduction 

Corners have long been important two dimensional fea- 
tures for computer vision research. They have been used ex- 
tensively for matching, pattern recognition, and data com- 
pression. Various algorithms have been developed for de- 
tecting comers. Comer detection algorithms can be roughly 
grouped into two categories: one is based on the detection 
directly from the underlying grayscale images; the other is 
based on the digital arcs, resulting from edge detection and 
linking. Various techniques have been developed for comer 
detection from digital arc sequences. The basis for these 
techniques is to identify the locations of the endpoints of 
each maximal line segment. Different criteria have been 
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proposed for detecting comer points including maximum 
curvature, deflection angle, maximum deviation, and total 
fitting errors [1][5][6][11]. A major problem with existing 
approaches is that the employed criterion is not tied to a sta- 
tistical analysis, therefore rendering existing methods sus- 
ceptible to noise. To overcome this, we present a statistical 
approach for comer detection. Here, the corner criterion 
is treated as a random variable and is subject to perturba- 
tion. Given an arc segment, a corner is defined to be a point 
where two underlying line segments meet and form a ver- 
tex, whose included angle is statistically larger than an angle 
threshold. The comer detection procedure involves sliding 
a Context window of specified length over the arc sequence, 
performing a least square line fitting to the arc points lo- 
cated immediately to the left and right of the center of the 
window, estimating the parameters of the fitted lines, and 
their covariance matrices, and finally performing a hypoth- 
esis test to test the statistical difference between the param- 
eters of the two fitted lines. If the difference is significant, 
the arc point located in the center of the window is declared 
as a comer point. Finally, a comer optimization procedure 
is performed to improve the locational errors of the detected 
comers. 

The major contributions of this research include devel- 
oping a method for analytically estimating the covariance 
matrix of the fitted line parameters and developing a hy- 
pothesis test statistic to statistically test the difference be- 
tween the parameters of two fitted lines. This paper is ar- 
ranged as follows. In section 2, we state the problem and 
present the associated noise and comer models. Section 3 
discusses in detail the theoretical aspects of the corner de- 
tector. The performance evaluation of the corner detector 
is covered in sections 4 and 5. The paper ends in section 6 
with a discussion and summary of the proposed approach. 

2. Problem statement 

A comer point represents a discontinuity in the curva- 
ture of a curve. The location of the discontinuity can be 
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approximated by the intersection of two straight lines that 
underlie the arc segments to the right and left of the cor- 
ner point, Perturbation to the points on the ideal underlying 
lines gives rise to the observed arc segments. This section is 
concerned with the definition of the perturbation model and 
the comer model. 

2.1. Perturbation model 

Given an observed sequence of ordered points from a 
linearcsegment,S = {($,,Q,Jln = l,..., N},whereN 
is the number of points on the arc segment, the perturba- 
tion model assumes that (0,) &) result from random per- 
turbations to the ideal points (zn, gn), n = 1,. . . , N, con- 
strained to be on the line 

s,cos0+y,sin@-p=O, n=l,...,N; 

where 8 and p are the parameters of the underlying line that 
gives rise to the observed arc segment. It is further assumed 
that the random perturbations are independently and iden- 
tically Gaussian distributed in the direction perpendicular 
to the underlying line. Analytically, the perturbation model 
can be expressed as follows: 

wheren = l,..., N and & are independently and identi- 
cally distributed as N(0, a2). 

2.2. Corner model 

For a piecewise linear approximation of a curve, comer 
points are the end points of each line segment. Thus, an end 
point is a comer point if the underlying two line segments 
immediately to the right and left of the point meet and form 
a vertex, whose included angle is statistically larger than a 
given angle threshold. A comer is defined as follows. 

Given an observed sequence of ordered points from an 

arc segment, S = { In = 1,. . ., N} and a point 

(a,, &) along the a& segment, the arc point divides the 
arc segment S into two sub-segments Si and SZ , where 

n = 1 ,..., In = 

k+l,..., N}. Let 81 and 62 be the estimated orientations 
of the two lines that fit to ,S and S2, and 8i2 be the included 
angle between the lines, 8i2 is then defined as 

Given an included angle threshold Q,, the comer detec- 
tion problem may be formulated as a hypothesis testing 
problem as follows: 

Ho : 81~ < t’, HI : 812 L e. (3) 

wh” 012 represents the population mean of random vari- 
able e12. 

The hypothesis testing identifies the most likely comer 
point along an arc sequence. Specitlcally, given a signifi- 
cant level (Y, the P-value of each observed B12 is computed 
and compared with CY. If the P-value 5 (Y, the null hypoth- 
esis is rejected and the arc point being considered (& , &) 
is a comer point. Figure 1 illustratively shows the comer 
model just described. In the section to follow, we describe 
the theoretical derivations that lead to the solution to the 
above hypothesis testing problem. 

xcos e1 + Ysiq = p1 kthpoint 

3. Theory for the proposed approach 

\ 
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Figure 1. An example of the corner model 

In this section, we detail the theoretical aspects of the 
developed algorithm. Specifically, we describe least-square 
line fitting, covariance propagation, and hypothesis testing. 

3.1. Least-square line fitting 

To estimate the line parameters for each arc segment, we 
perform a least square line fitting to the arc points. The 
least-square fitting can be formulated as follows: 

Assume p5r1t.s (Pn,&J, n = l...N, lie on an arc seg- 
ment S, resulting from perturbation of ideal points (zn, v,) 
locating on the line 2, cos 0 + vn sin 8 - p = 0. Perturba- 
tion to each point follow the perturbation model in equation 
(1). 

To estimate the best fitting line parameters b and i using 
the least square method, we need to minimize the sum of 
squared residual errors: 

(4) 

363 

Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97)
1063-6919/97 $10.00 © 1997 IEEE 



where Z? is called design matrix, 6 the parameter matrix, 
and g = fitfi the scatter matrix. fi and 0 are defined as 

where& = cos8andp = sin8 

4; a result, we need to minimize fitsfi subject to h2 + 
P = 1. Introducing the Lagrange multiplier A, the func- 
tion to be minimized can be expressed as 

e2 = &ljlh - x(&b - 1) (5) 

where C is referred to as constraint matrix and is defined as 

Taking partial derivatives of e2 w.r.t. 6 and A, and setting 
them to zeros yields the simultaneous equations 

S&j-~C~ = 0 0% 
@& = 1 (7) 

This system is readily solved by considering generalized 
eigenvectors of eq(6). 

3.2. Covariance propagation 

The random perturbation on ideal points X=(zn, y,), 
n = l,... ,iV,lyingonl.in~s,cos8+y,sin8-p = 0, 
yields observed arc points X = (4,) in), n = 1,. . .;iV. 

The use of 2 for estimating line parameter 0 = 
( > P 

yields 4 = e 
( > P ’ 

a least square estimate of 0. The per- 

turbation accompanying Y? induces a corresponding pertur- 
bation on 0. In this section, we will analytically estimate 
A@, the perturbation of 0, expressed in its covariance ma- 
trix CA@, in terms of the covarkince matrix &X Of 2. 

Based on the covariance propagation theory [2], the 
scaler criterion function F that needs to be minim&d can 
be defined as 

F(6), 22) = f+(2,cosl+ yjn sin8 - $)2 
n=l 

Define g as follows: 

Then based on [2], CA?, the covariance matfix of the esti- 
mated line parameters 8 can be computed from: 

(9) 

where $$ and $& are evaluated at ideal line parameter 8 
and points X, and &x represents the input perturbation. 
From eq(9), we can easily obtain 

f 

ag2Nx2 
-= 

.?X 

2Nx2 

For the given perturbation model in equation (l), the input 
covariance matrix &x is given by 

. . . 0 0 

&X = U2 
0 d . . . 0 

0 . . . d NxN 

where 

d= 
cos2 0 sin 8 cos 0 

sin e cos 0 sin2 e > 

Define 

and 

2x1 _ aF 
5% 9 --do= ( > g 

(8) 
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After algebraic operations and SimpliEcations, we obtain 

CA, = (u$ 2> 

(10) 

Geometrically, k can be interpreted as the signed distance 
between a point (x,y) and the point on the line closest to the 
origin. As a result, Si represents the spread of points along 
the line. A larger Si, i.e., points with larger spread along 
the line yields better fit as indicated with smaller covariance 
matrix trace. In addition, pk is the mean position of the 
points along the line. It acts like a moment arm. A larger 
pk, i.e., a longer moment arm, can induce more variance to 
the estimated fi. Further investigation of eq(l0) reveals that 
cri is invariant to coordinate translation and rotation while 
ai is variant to coordinate translations that change pk. 

The way in which we have derived the covariance matrix 
&e requires that the matrices w and y be 
known. But X and 0 are not observed. 2 and 0 are ob- 
served instead. So, to obtain an estimated covariance matrix 
&o, we substitute R and 6 for X and 0 in eq(l0). 

3.3. Hypothesis testing 

With covariance matrices computed, we can proceed to 
develop a test statistic to decide statistically whether the an- 
gular parameters of the two fitted lines differ by a threshold 
00. Given two arc segments Sr and S2, a least-square line 
fitting is performed to Et a line to S1 and a line to Ss using 
the method described in section 3,1, thus resulting in esti- 
mated line orientation parameters 01 and 82. From equation 
(lo), we obtain &i, and a&, the estimated variances of 6, 
and 62. The hypothesis testing can then be formulated as: 

Ho : 42 < 4, HI : 012 L 80 (11) 

where &-, (ranging from 0 to 90 degree) is a user supplied 
angular threshold, and 64s is the population mean of random 
variable 42, which is defined as 

612 = IO, - 021 

since 

Thus, a likelihood ratio test statistic can be designed as fol- 
lows: 

(12) 

The distribution of the test statistic under null hypothesis is 
a non-central Cl&squared with two degrees of freedom. 

where the noncendity parameter h is 

Given the test statistic and its distribution, a significant level 
of a = 0.01 was selected to perform the test. If the p-value 
of a test is larg:x than c, the null hypothesis is accepted, i.e., 
no comer exists between St and Sa. Gn the other hand, if 
the p-value of the test is less than (Y, the null hypothesis is 
rejected and the vertex formed by arcs Sr and Sa is declared 
a comer. 

3.4. Corner optimization 

The set of comer points detected in a digital arc are only 
optimal locally but not globally. It is not globally optimal 
because not all the points on the arc are used to detect the 
comer points. This may result in high locational errors. To 
reduce the location errors with the detected comers, we per- 
form a comer optimization. The comer optimization, based 
on Pavlidis’s discrete optimization method [5], iteratively 
shifts the detected comer points to produce a better approx- 
imation of the arc sequence. While the iterative optimiza- 
tion procedure is guaranteed to terminate with improved lo- 
cation errors, it however.may terminate at a local minimum 
rather than at the global minimum. 

4. Performance evaluation 

This section discusses results from a series of experi- 
ments aimed at characterizing the performance of the pro- 
posed algorithm using images from the RADIUS database. 
A total of 80 model board images are used. Each image 
represents an outdoor scene, containing primarily building 
structures. The input to the comer detector are sequences of 
arc segments resulting from an edge detection and linking 
operation. The groundtruth points for these images are ob- 
tained by manually annotating the aerial images to delineate 
the edges of the buildings and other structures in the image 
[lo]. The criteria used for the evaluation are misdetection 
(MD) and false alarm (FA) rates. 

Figure 2 plots the average false alarm rate and misdetec- 
tion rate versuf the context window length for all images. 
It shows as the window length increases, the false alarm 
rate decreases quadratically while the misdetection rate in- 
creases quadratically. A larger context window yields more 
data for more accurate statistical analysis, which leads to 
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a decrease in false alarm rate. Ou the other hand, the as- 
sumption of only one corner present in the context win- 
dow leads to an increase in misdetection as window size 
increases. However, this increase only becomes apparent 
after the window size exceeds certain threshold. 

Figure 3 gives the average MD and FA rates versus the 
included angle threshold. It shows as the included angle 
increases, the false alarm rate tends to decrease. This is be- 
cause we are looking for building comers, which often have 
large included angles. Increasing the included angles filters 
out comers with small included angles, therefore reducing 
the false alarm rate. On the other hand, increasing the in- 
cluded angle may increase the n&detection rate. Figure 3 
also shows that while a small increase in the angle threshold 
leads to marginal improvement in false alarm, it however 
could lead to a dramatic increase in misdetection. 

*rerapl*dnrmard nr”..mnra*rda~ 

. 01)* j . ..+ (- ..: i . . . . 

~~~: 

22 30 40 50 ccl IO Kl 

Figure 2. Misdetection and false alarm 
rates versus context window length, 80 = 30 

;,, ..,.... .i.. _ ..; j ._........ /. j .._ .j ._._ .-j... I. ..::: 

~~~~ 

10 a7 30 
llw%Ldz 

* m a, so 

Figure 3. Misdetection and false alarm 
rates versus included angle threshold, with 
window length being 25 pixels 

We also study the average performance of the comer de- 
tector for all 80 RADIUS images using the context window 

length and included angle thresholds derived from previous 
experiments, i.e., optimal window length of 30 pixels and 
optimal included angle threshold of 5 degree. The results 
show that the comer detector has an average misdetection 
rate of about 2.5% and false alarm rate of about 2.2% re- 
spectively. 

5. Performmce coxuparison 

This section describes results of evaluating the perfor- 
mance of our comer detector against that of Lowe’s al- 
gorithm [4] using both synthetic data and RADIUS data. 
The criterion used for the evaluation include both visual 
inspection, and false alarm and m&detection rates when 
groundtruth data are available. Lowe’s algorithm has been 
widely cited aud was found superior to most comer detec- 
tion algorithms available [8] [7] [3]. 

5.1. Synthetic curves 

Here we evaluate the performance of the two algorithms 
using the synthetic curves for polygonal approximation. 
Synthetic curves were generated by sampling the original 
model curve consisting of piecewise linear line segments 
and by perturbing each sampled pixel with iid Gaussian 
noise with mean 0 and variance g2. The reconstructed 
test curves c&sist of p&tubed sampled points. Figure 4 
shows two synthetic curves adapted from those of Rosin [7] 
and Teh [9] respectively. Figure 5 shows the results from 
Lowe’s algorithm (a and b) and our algorithm (c and d). Vi- 
sually, both algorithms performed equalIy well on the two 
curves; but our algorithm outperformed Lowe’s algorithm 
for both curves. Lowe’s algorithm tends to detect local 
irregularity like small bumps or dips as comers, therefore 
yielding a higher false alarm rate. 

Figure 4; Synthetic test cnrves adapted 
from Rosin (a) and Teh (b). 

5.2. RADIUS data 

A comparison was also carried out on 4 different RA- 
DIUS images. The goal here is to find the building comers 
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cc> (4 
Figure 5. Results of polygonal approximation to the 
curves shown in figure 4 using Lowe’s algorithm (a) and (b); 
and our algorithm (c) and (d), where window length=50 and 
angular threshold=25 Polygons are obtained by connecting 
the detected comers. 

from the edge images of the buildings. Groundtruth build- 
ing comers were obtained via the annotation procedure as 
described above. The criterion is therefore the misdetec- 
tion and false alarm rates. Tables 1 and 2 show the per- 
formance of the two algorithms for each of the four images. 
As expected, while both algorithms are comparable in terms 
of n&detection rates, our algorithm has much lower false 
alarm rates for all four images. Lowe’s algorithm tends to 
make 2 to 7 times as many false alarm mistakes. This again 
demonstrates the superiority of our algorithm. 

1 Table 1. Performance of Lowe’s alnorithm 1 
Images 1 FA 1 MD” 

1 1 10.6 1 1.3 
2 9.2 1.6 
3 9.3 0.7 
4 10.1 3.8 

*, 

2 5.4 1.8 
3 1.3 1.8 

I 

4 1 4.4 1 2.0 

6. Discussion and Conclusions 

form a vertex. The arc point closest to the vertex point is de- 
clared as a comer if the angular orientations of the two lines 
that form the vertex are statistically significantly different. 
Performance evaluation study showed that the algorithm is 
robust and accurate for complex images. It has an average 
urisdetection rate of 2.5% and false alarm rate of 2.2% for 
the complex RADIUS images. The study also revealed that 
our algorithm has consistently outperformed Lowe’s tech- 
nique on both synthetic and real data, with much lower false 
alarm rate. A major factor that contributes to the low false 
alarm rate of our algorithm is that we take the perturbation 
on the estimated line parameters into consideration, allow- 
ing us to treat the included angle as a random variable and 
statistically test its range. This represents a better model 
for comer detection than existing techniques, where the cor- 
ner criteria like curvatures or tangent angles are treated as 
scalars rather than random variables, ignoring any pertur- 
bation they may be subject to and therefore leading to high 
false alarm rate for noisy images. 
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