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Abstract 

Poor contrast in the apex zone and non-homogeneous 
mixing of the dye with the blood in the left ventricle causes 
the left ventricle pizel-based classifiers operating on ven- 
triculograms [l] to yield boundaries which are not close 
to ground truth boundaries az delineated by the cardiolo- 
gist. They have a mean boundary error of about 6.4 mm 
and an error of about 12.5 mm in the apex zone. These 
errors have a systematic positional and orientational biaz, 
the boundary being under-estimated in the apex zone. 

aries produced by a pizel-based classifier fall short (under 
estimated) in the apex zone with respect to the ground 
truth boundaries [l]. The calibration procedure discussed 
in this paper removes all systematic position, orientation, 
and shape errors from the initial classifier boundaries. 

This paper discusses two calibration methods: the iden- 
tical coeficient and the independent coefficient to remove 
these systematic biases. From these methods, we consti- 
tute a combined algorithm which reduces the boundary 
error compared to either of the calibration methods. The 
algorithm, in a greedy way, computes which and how many 
vertices of the left ventricle boundary can be taken from 
the computed boundary of each method to best improve 
the performance. 

We employ two different calibration techniques: the 
identical coefficient and the independent coefficient. Each 
method produces estimates for the vertices of the poly- 
gon bounding the LV. We then combine these vertex sets 
to form a final boundary. We select in a greedy way, that 
fixed subset of estimated vertex positions fromeach method 
which when combined together minimizes the resulting er- 
ror between the final estimated polygon boundary and the 
ground truth. 

The corrected boundaries have a mean error of less than 
3.5 mm with a standard deviation of 3.4 mm over the ap 
proximately 6 x 10’ vertices in the data set of 291 studies. 
Our methodology reduces the mean boundary error by 2.9 
millimeters over the boundary produced by the classifier. 
We also show the calibration algorithm performs better 
in the apex zone where the dye is unable to reach. For 
end-diastole, it reduces the error in the apex zone by 8.5 
millimeters over the pizel-based classifier boundaries. 
Key Words: Left Ventricle, Low Contrast, Boundaries, 
Calibration, Motion, Quantitative Analysis, Polyline 

Our limited database consists of N=291 patient stud- 
ies, each having F=2 frames, end-diastole (ED) and end- 
systole (ES), and having a ground truth polygonal bound- 
ary of P=lOO vertices, and a 100 vertex raw boundary 
created from pizel-based classifier. To produce estimates of 
performance based on this database which are not biased 
high, we use a cross-validation methodology. The psrtition 
protocol uses a database of N patients studies and parti- 
tions into K subsets each containing $ studies. Estimates 
from each calibration transformation are obtained using L 
of the K subsets. Rotating through all L choose K com- 
binations, we measure the accuracy of the results on the 
remaining K-L subsets using the polyline distance metric. 
The mean and standard deviation of the resulting set of 
NxFxPx wpi$& numbers is then used to estimate 
the overall performance. 

I. INTRODUCTION 

In the X-ray ventriculograms of the left ventricle (LV), 
the boundary at the apez moves at a different rate than 
the inferior and anterior walls during the heart cycle [2], 
[3]. Besides this, the gray scale left ventriculogram (LVG) 
have poor contrast with a high level of noise. This noise is 
due to the scattering of radiation by tissue volume which is 
not related to the LV [4], artifacts generated by breathing 
of the patient during catheterization procedure, and inter- 
ference of ribs and diaphragms. This makes the boundary 
estimation process of the LV very difficult. The contrast 
medium (a Barium compound dye) non-uniformly mixes 
with the blood and the apex zone of the LV typically does 
not receive much dye [5]. As a result, the initial bound- 

Because of the small number of patient studies, N=291 
and large number of parameters (about 200 times N) in the 
transformation, there is a danger of memorization rather 
than generalizationin the estimation of the transformation 
parameters. As P decreases, the generalization will be bet- 
ter but the representation of the true LV shape will get 
worse causing higher error. As P increases, generalization 
will be lost but the representation of the true LV shape 
will get better. With the other parameters K, L and N 
fixed, there will be an optimal number of boundary vertices 
balancing the representation error with the memorization 
error. Cur protocol finds this optimal number. 

II. Two BOUNDARY CALIBRATORS 
Ground truth boundaries refer to the hand delineated 

boundaries traced by the cardiologist. Raw or initial or 
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classifier boundaries are the the boundaries produced by 
the pizel-baaed classification algorithm (I]. 

In the identical coeficient method, the estimated x and 
estimated y coordinates are computed using the same lin- 
ear combination of raw x and raw y coordinates associated 
with that vertex of the LV boundary. In the independent 
coeficientmethod, the estimated x and estimated y coordi- 
nates are computed as a different linear combination of the 
raw x and raw y coordinates associated with that vertex 
of the LV boundary. The problem of boundary estimation 
then reduces to a problem of determining the coefficients 
of the linear combination. This can be accomplished by 
solving a regression problem as discussed below. 

A. Identical Coeficient Method (IdCM) for any j+ame 

Let gk and hk be the row vectors of x-coordinates and 
y-coordinates respectively for the ground truth LV bound- 
aries for patient n, where n = 1, . . . . N. Let T: and s: be 
the row vectors of x-coordinates and y-coordinates respec- 
tively for therclassifier boundary for any patient n, where 
7t = 1, . . . . N. For any frame of the heart cycle t, the cal- 
ibrated boundary of the LV in LVG using the IdCM, we 
are: 

l Given: Corresponding pairs of ground truth bound- 
aries R [2N x P], and the classifier boundaries Q 
[2N x (P + 3)], respectively: 

Rz( ;) +[ jgj 

where, (ulnr~ln), (wn,4 ad (w, a,), (wn,mn) =e 
the coordinates for the anterior aspect (AAV), (first vertex 
of LVC) and inferior aspect (IAV), (last vertex of LVC) 
of the AoV plane of the LV from ground truth boundary 
for patient n. Column with unity is introduced due to the 
translation effect. 

. Let A [(P + 3) x P] be the unknown regression coeffi- 
cient matrix that minimizes (1 R - Q A 115. 

B. Independent Coeficient Method &CM) for any frame 

Using the same notation: gl, &, r; and s:, the calibrated 
bo;$;$zf the LV in LVG using the InCM we are:. 

Correspondmg ground truth boundaries R 
[N x 2;], and the classifier boundaries Q [N x (2P+5)] 
respectively: 

, , 
9; h; 

+1 8, 1 Wl VI1 w?l Yl 

a= ... 

( ) 

Q= 
. . 

. . . 

( L-Y 

. . . 
& h;V rb & 1”lN VlN “2N “1N i 

where, symbols have same meaning. 
. Let A [(2P+5) x 2P] be unknown regression coefficient 

matrix that minimizes I] R - Q A ]12. 
Then for any classifier boundary matrix Q produced by 
the image processing algorithm, the calibrated coordinate5 
of the boundary are given by QA, where A is the esti- 
mated coefficients. The above two methods are different in 

-0 (OFT UNE, 

Fig. 1. Boundary Calibration System for running IdCM and k&M 
algorithms for any frame t of the heart cycle. We sample and 
interpolate the 100 vertex polygonal boundary to P, vertices, 
then partition the database into K subsets, L used for training 
and K - L used for tcrting. Magnification conversion factors M 
used to convert pixels to mm, where 1 pixel = 0.39 mm. 

the way the calibration model is set up. In IdCM formu- 
lation, the coefficients that multiply gk also multiply hk, 
hence the name identical coefficient method. In InCM, the 
new (z, y)-coordinates of the vertices of each boundary is 
a difierent linear combination of the old (zc, y)-coordinates 
for the polygon, hence the name independent coefficient 
method. For IdCM, the number of coefficients estimated 
in the A matrix is (P + 3) x P. For InCM, the number of 
coefficients estimated is (2 P + 5) x 2 P. Thus the InCM re- 
quires around 4 times the number of coefficients of IdCM, 
and this difference represents a significant factor in the abil- 
ity of the technique to generalize rather than memorize for 
our data size (N). 

III. GREEDY ALGORITHM: CALIBRATION BY VERTEX 

Fig. (1) shows the overall boundary calibration system, 
where the heart of the system is the IdCM or InCM cali- 
brator. In either case of the calibration model, we find the 
off-line coefficient matrix A(t) to minimize: 

2 
%f+ = II R(t) - Q(t) A(t) 11’ . 

Using the partitio? protocol, and generaliring for any frame 
t, the minimising At, and estimated boundaries I%.,, on the 
test set Qtc, are: 

At, = ( QT, Qtt I-’ QT, Rtg., fit, = Qtc At, (2) 

At, is calculated using a singular value decomposition. 
Given the test set (Qtc) or training set (QtT), we can es- 
timate the calibrated boundary for IdCM and InCM as: 

^ * L 
Rid = Qte Aid, & Ri, = Qte Ai, . / L , (3) 
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A. Beat InCM index selection: Greedy Algorithm 

Fig. (2) shows the object process diagram for combining 
the IdCM and InCM LV boundaries using a Greedy algo- 
rithm. We select a fixed subset of estimated vertex posi- 
tions from these technique which when combined together, 
minimizes the resulting error between the final estimated 
polygon boundary and the physician traced LV boundary. 
Let S, Sid and Si, be three sets consisting of all vertices, 
IdCM pool vertices and InCM pool vertices respectively. 
Let k&d and fii,, be the estimated boundary matrices from 
IdCM and InCM techniques. Let R,t and R be the ma 
trices consisting of (2, y) coordinates from original ground 
truth with P,=lOO and sampled P, vertices respectively. 
Initially all the vertices are considered in the IdCM pool 
and the error is computed. Denote its error by ‘id. Now we 
select that vertex from IdCM pool which when combined 
with InCM pool vertices yields an estimated boundary er- 
ror lower than Bid. This procedure is repeated until there 
is no further improvement. If l be the error at any time 
in the Greed? do-while loop, then, the Greedy boundary 
calibration algorithm consists of the following steps. 
Greedy Boundary Calibration Algorithm 
&=S S;,=#, r=O gc=O /* greedy counter */ 
while (e < e&j) do 

gc++ 
For each i E Si& /* total vertices are Pid */ 

end /* end of while loop */ 

Sid = &  - {i} ; s;, = s;, u(i) 
Combine IdCM (fiid) and InCM ($,,): 
bn= Combine(Rid, Ri,, N, P2, Sid, Sin, gc) 

performance Evaluation: 
q = PolyPerformance( k,,,,,,, Rgt, N, A, Pa) 

end /* end of for loop */ 
ArgMin Comp.: Min. error Kc best vertex j selection: 
(emin, j) = ArgMi444, Pid - v ) 
if( Emin < C) then Sid=Sid-G} ; Si,=S;, U fi} 
else break; endif 

IV. POLYLINE BASED PERFORMANCE 

The polyline distance D, (B1 : Bz) between two polygons 
representing boundary B1 and B2 is symmetrically defined 
as the average distance between a vertex of one polygon to 
the boundary of the other polygon. To define this measure 
precisely, first requires having defined a distance d(v, s) be- 
tween a point z1 and a line segment s. The distance d(v, s) 
between a point v having coordinates (z~,~~), and a line 
segment having end points (21, yr) and (02, ys) is: 

d(v,s) = min{dl, 41; if X < O,A > 1 
IdAl; if OI,Xll, 

c4l 

where 
dl = (80 - my + (Yo - y1)2 

4 = (20 - ~2)’ + (YO - ~2)’ 

A=( Ya-Y1)(Yo-11)+(21-“~)(20--E11 (5) 

(2rEl)*+(Y -yt)’ 
&  = (&‘a-Ylh-m“)+ =2-21)(t’0-lh) 

Fig. 2. For loop for combining the IdCM and I&M calibrstiolu used 
in the greedy do-while loop. The data structure of the do-while 
loop ir implemated in the form of lirts where the beat vertex is 
computed and emptied from the IdCM pool and unioned in the 
I&M pool. The do-while loop is implemented independently for 
ED and ES frmm. 

The distance db(u, B2) meazuring the polyline distance 
from vertex v to the boundary B2 is defined by: 

The distance &(Br, BP) between the vertices of polygon 
Bl and the sides of polygon B2 is defined as the sum of the 
distances from the vertices of the polyeron B1 to the closest 
side of B2. 

dvb(&, Bd = 

On reversing the computation from BZ to B1, we can sim- 
ilarly compute f&,b(Bs, Br). Using Eq. 6. the oolvline dis- 
tance between polygons, D,(Br : Bz)‘is defined by: 

D,(Bl : B2) = dub(&, &) + d&h, Bl) 
(#vertices E B1 + #vertices E B2 

7) 

Using the definition of the polyline distance between 2 poly- 
gons, we can now compute the overall mean error of the 
system, denoted by e’,‘. and defined by: 

where, D#(G,,t, C,,t) is the polyline distance between the 
ground truth Gnt and calibrated polygons C,t for patient 
study n and frame number t. Using the definition of the 
polyline distance between 2 polygons, the standard devia- 
tion can be computed as: 

NxFx(#vcr.~B~+#uct.~B~) 

(9) 
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A. Error per vertex tY ETTOT per Arc Length 

Using the polyiine distance formulae, we can compute 
the error per vetiez from one polygon (ground truth) to 
another polygon (calibrated). This is defined as the mean 
error for a vertex IJ over all the patients and all the frames. 
The error per vertez for a fixed vertex v when computed 
from ground truth to calibrated boundary, defined by: 

e,“c = cf”=, c,“=, db(v, GA) 
FxN 

Similarly, we can compute the error per vertez from cali- 
brated to ground truth using Eq. (10). Error per arc length 
is computed in the following way: For the values efc where 
v=l, 2,3,. . . PI, we construct a curve fGc defined on the 
interval [O,l] which takes the value e,“” at point I which is 
the normalized arc length to vertex v and whose inbetween 
values are defined by linear interpolation. We compute 
the curve fCG, from calibrated boundary to ground truth 
boundary in d similar way. We then add algebraically these 
two curves to yield the final error per arc length, given as: 
f = ,Q=;F. 

V. DATA ANALYSIS: 3 ALGORITHMS 

The performance of the system can be judged by evaluat- 
ing the error measures on the test data set, Qlc. We here 
show the performance of IdCM, InCM and the Greedy algo- 
rithms. All our performance is with respect to the original 
ground truth boundaries having P,=lOO vertices. We an- 
alyze the data in about 9 different ways [S] but we present 
here the main three. 

A. Data Analysis 1: Vertez Optimization Ed Pooling 

We find the mean error (e’,‘:‘,) as a function of the num- 
ber of sampled polygon boundary vertices P, on the LVC. 
The optimization curve and operating point is shown in fig. 
3 (left). We use N=291, K=145, L=144. We now vary the 
number of vertices P, on the LV polygon varying it from 10 
vertices to 90 vertices with 5 vertex increments. If L=144 
are the training sets then for each combination there are 
K - L test set boundaries on which the error is computed. 
We choose the number of vertices P, to minimize the error 
on the test set. Since there are KC~=145 trials, each trial 
has (K - L) subsets, each subset consists of $$ patients (in 
a protocol if X N is not a perfect division, then for the last 
trial in KC~ combinations, we have (K - L+rp) patients as 
testing set, where rp is a remainder number of $) and each 
patient consists of P, vertices and F=2 frames. We thus get 
the total number of vertices as: F x KC~ x (K -L) x g x P,, 
resulting in: N x F x P, x *i&&j vertices for each 
(N, K, L, F, Pz) tuple. We see from the fig. 3 (left) that 
the optimal number of vertices in InCM are 15, karf the 
optimal number of vertices in IdCM which are 30, the rea- 
son being that the number of coefficients that have to be 
estimated in InCM is about four times the number of coef- 
ficients that have to be estimated in IdCM. Fig. 3 (right) 
shows the effect of the Greedy calibration algorithm, where, 

Fig. 3. Left: Vertex Optimization uing the polyline distance metric 
(PDM) for 3 calibration techniques, Idcm, Incm and Greedy. The 
IdCM operating point is 30 vertices and I&M operating point is 
15 vertices. Greedy does the best. Partition Protocol Parameters: 
N=291, F=2, K=145, L=144,Pl=100,P~=30. Mean error for 
IdCMz3.8 mm, InCMz3.9 mm and Greedyz3.5 mm. So greedy 
improve by 0.3 mm over IdCM method. IUght: Plot showing 
the reduction in the error for ED and ES frames when some 
vertices are calibrated using IdCM and others using InCM. With 
the increase I&M pool, the error drops. 

ED and ES frame errors drop when the IdCM pool vertices 
are transferred to InCM pool. This is implemented using 
the Greedy do-while loop where some columns (or vertices) . 
of IdCM matrix I&d are replaced by corresponding columns 
(or vertices) of InCM matrix, I&, yielding I?,,. Fig. 3 
(left) shows that the Greedy algorithm reduces the error 
by 0.3 mm over IdCM. The best performance over all the 
three techniques is by the Greedy algorithm with the opti- 
mal number of vertices being 30. Note also that in Greedy 
calibration technique, the error does not rise very sharply 
after 30 vertices but rises gradually by ( &o)*h of a mm. 

B. Data Analysis 2,J: Cumulative distribution of 
( 

ED+ES o ) errors and Error Per Arc Length along LVC 

Fig. 4 shows the cumulative distribution of end frame er- 
rors ( v) from IdCM, InCM and Greedy algorithms. 
Fig. 5 demonstrates the mean error per arc length along 
the LVC. The abscissa shows the length of the arc starting 
from AAV. The ordinate shows the error at each vertex 
in mm. As seen in the plot, the mean erroF per vertez is 
largest near the middle of the normalized arc length which 
is close to the apex of the LV. Thus the error is maximum 
in the apex region. We see that Greedy algorithm does 
best in the apex zone compared to the IdCM and InCM 
methods. The error per vertex in fig. 5 shows that in the 
ED frame, the apex zone error is reduced by 8.5 mm (from 
12.5 mm to about 4 mm), while in ES frame, the apex 
zone error is reduced by 3 mm (from 9 mm to 6 mm). The 
corresponding mean error over ED and ES frames of the 
pizel-based boundaries was 6.4 mm which is reduced to 3.8 
mm in IdCM and 3.5 mm in Greedy. As per our assump- 
tion, the error is least at the end points of the LVC since 
the AoV plane is known, thus the error per vertez curve 
drops at both ends (fig. 5). 
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Fin. 4. Cumulstive distribution vs. rnesn error of I e ) errors, 
- Left: Identical coeffident method. Middle: Inhep&d& coeffi- 

dent method. Right: Greedy vs. IdCM. The curves shows that 
80% patient estimated boundaries have emx 5 4 mm in IdCM, 
while 72% of the patients have error 5 4 nun in I&M, and 81% 
of the patients have ermr 5 4 mm in Greedy. Calibration Pa- 
rameters: Nz291, F=2, K=145, L=144, P, =100, Ps =30. 

~*sl..wT,“.w--. 

Fig. 5. Mean error per arc length (EPAL) using polyline distance 
method, superposition of 4 curves: the initial classifier boundary 
error, IdCM, I&M and Greedy calibration method. Lefi: ED 

‘frame aight: ES frame. Greedy does the best out of dI the 3 
algorithms presented for both ED and ES frames. Greedy method 
also does better in the spcx cone (0.4-0.5), compared to all other 
vertices. In ED frame, spex error reduces by 8.5 mm and in ES 
frame, apex error reduces by 3 mm. 

VI. CONCLUSIONS 

We presented a Greedy calibration algorithm for calibrat- 
ing the initial pirei-based classifier boundaries which takes 
best of the two calibration methods: the identical co@- 
cient and the independent coefficient. The mean error over 
ED and ES frames using a cross-validation protocol and 
polyline distance mettic is 3.5 millimeters over the data 
base of 291 patient studies. The Greedy algorithm is an 
improvement over the identical coefficient method by 0.3 
mm which is significant for the accuracy of the overall cali- 
bration system. The Greedy algorithm also shows the best 
performance in the apex zone of the LV where the dye was 
unable to reach, reducing the error by about 8.5 mm. We 
thus see that the calibration step constitutes a very signif- 

icant last step for final boundary estimation. 

(a2) ED Frame: GT and Calibrated (Estimated) 
Fig. 6. Flmults of Greedy algorithm. Upper: (al) Clmsifier (thin) 

vs. ground truth (GT), (thick). Bottom :(s2) Calibrated (thin) 
VI. 8round truth (GT) (thick). Bsck8round: Left Ventiiculqrsun 
(LVG), Calibration Porameteta: Nz291, K=145, L=144, F=2, 
P,=loO, P,=30, Mean end frame error (=$=)x1.16 mm, 

Mean error (e~~~)=3.50, Std. Deviation (tiN*p)=3.40 mm. 
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