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Abstract

Poor contrast in the apex zone and non-homogeneous
mixing of the dye with the blood in the left ventricle causes
the left ventricle pizel-based classifiers operating on ven-
triculograms [1] to yield boundaries which are not close
to ground truth boundaries as delineated by the cardiolo-
gist. They have a mean boundary error of about 6.4 mm
and an error of about 12.5 mm in the apex zone. These
errors have a systematic positional and orientational bias,
the boundary being under-estimated in the apex zone.

This paper discusses two calibration methods: the iden-
tical coefficient and the independent coefficient to remove
these systemnatic biases. From these methods, we consti-
tute a combined algorithm which reduces the boundary
error compared to either of the calibration methods. The
algorithm, in a greedy way, computes which and how many

. vertices of the left ventricle boundary can be taken from
the computed boundary of each method to best improve
the performance.

The corrected boundaries have a mean error of less than
3.5 mm with a standard deviation of 3.4 mm over the ap-
proximately 6 x 10* vertices in the data set of 291 studies.
Our methodology reduces the mean boundary error by 2.9
millimeters over the boundary produced by the classifier.
We also show the calibration algorithm performs better
in the apex zone where the dye is unable to reach. For
end-diastole, it reduces the error in the apex zone by 8.5
millimeters over the pizel-based classifier boundaries.
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Calibration, Motion, Quantitative Analysis, Polyline

1. INTRODUCTION

In the X-ray ventriculograms of the left ventricle (LV),
the boundary at the apez moves at a different rate than
the inferior and anterior walls during the heart cycle [2],
[3]. Besides this, the gray scale left ventriculogram (LVG)
have poor contrast with a high level of noise. This noise is
due to the scattering of radiation by tissue volume which is
not related to the LV [4], artifacts generated by breathing
of the patient during catheterization procedure, and inter-
ference of ribs and diaphragms. This makes the boundary
estimation process of the LV very difficult. The contrast
medium (a Barium compound dye) non-uniformly mixes
with the blood and the apex zone of the LV typically does
not receive much dye [5]. As a result, the initial bound-
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aries produced by a pizel-based classifier fall short (under
estimated) in the apex zone with respect to the ground
truth boundaries [1]. The calibration procedure discussed
in this paper removes all systematic position, orientation,
and shape errors from the initial classifier boundaries.

We employ two different calibration techmiques: the
identical coefficient and the independent coefficient. Each
method produces estimates for the vertices of the poly-
gon bounding the LV. We then combine these vertex sets
to form a final boundary. We select in a greedy way, that
fixed subset of estimated vertex positions from each method
which when combined together minimizes the resulting er-
ror between the final estimated polygon boundary and the
ground truth.

Qur limited database consists of N=291 patient stud-
ies, each having F=2 frames, end-diastole (ED) and end-
systole (ES), and having a ground truth polygonal bound-
ary of P=100 vertices, and a 100 vertex raw boundary
created from pizel-based classifier. To produce estimates of
performance based on this database which are not biased
high, we use a cross-validation methodology. The partition
protocol uses a database of N patients studies and parti-
tions into K subsets each containing % studies. Estimates
from each calibration transformation are obtained using L
of the K subsets. Rotating through all L choose K com-
binations, we measure the accuracy of the results on the
remaining K-L subsets using the polyline distance metric.
The mean and standard deviation of the resulting set of

-1\t
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the overall performance.

Because of the small number of patient studies, N =291
and large number of parameters (about 200 times ) in the
transformation, there is a danger of memorization rather
than generalization in the estimation of the transformation
parameters. As P decreases, the generalization will be bet-
ter but the representation of the true LV shape will get
worse causing higher error. As P increases, generalization
will be lost but the representation of the true LV shape
will get better. With the other parameters K,L and N
fixed, there will be an optimal number of boundary vertices
balancing the representation error with the memorization
error. Our protocol finds this optimal number.

numbers is then used to estimate

II. Two BoUNDARY CALIBRATORS

Ground truth boundaries refer to the hand delineated
boundaries traced by the cardiologist. Raw or initial or
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classifier boundaries are the the boundaries produced by
the pizel-based classification algorithm [1].

In the identical coefficient method, the estimated = and
estimated y coordinates are computed using the same lin-
ear combination of raw z and raw y coordinates associated
with that vertex of the LV boundary. In the independent
coefficient method, the estimated z and estimated y coordi-
nates are computed as a different linear combination of the
raw ¢ and raw y coordinates associated with that vertex
of the LV boundary. The problem of boundary estimation
then reduces to a problem of determining the coefficients
of the linear combination. This can be accomplished by
solving a regression problem as discussed below.

A. Identical Coefficient Method (IdCM) for any frame

Let g, and h, be the row vectors of z-coordinates and
y-coordinates respectively for the ground truth LV bound-
aries for patient n, where n = 1,...,,N. Let r; and s;‘ be
the row vectors of z-coordinates and y-coordinates respec-
tively for therclassifier boundary for any patient n, where
n = 1,...,N. For any frame of the heart cycle ¢, the cal-
ibrated boundary of the LV in LVG using the IdCM, we

are:
o Given: Corresponding pairs of ground truth bound-

aries R [2N x P}, and the classifier boundaries Q
[2N x (P + 3))], respectively:

’
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where, (41n,1n), (U1n,V1n) 80d (U2n,v2n), (U2n,v2n) are
the coordinates for the anterior aspect (AAV), (first vertex
of LVC) and inferior aspect (IAV), (last vertex of LVC)
of the AoV plane of the LV from ground truth boundary
for patient n. Column with unity is introduced due to the
translation effect.

o Let A [(P + 3) x P] be the unknown regression coeffi-

cient matrix that minimizes || R — QA ||2.

B. Independent Coefficient Method (InCM) for any frame

Using the same notation: g;,, h;,,, r‘ and sl , the calibrated
boundary of the LV in LVG using the InCM we are:

¢« Given: Corresponding ground truth boundaries R
[N x 2P}, and the classifier boundaries Q [N x (2P +5)]
respectively:

91 hlx T; 3’, luyy vyg ugy vag
R = Q= -
an By TN oy LUV VIV YN V2N
[\ Rt o S

where, symbols have same meaning.
o Let A [(2P+5)x2P] be unknown regression coefficient
matrix that minimizes || R — QA ||2.
Then for any classifier boundary matrix Q produced by
the image processing algorithm, the calibrated coordinates
of the boundary are given by QA, where A is the esti-
mated coefficients. The above two methods are different in

Proceedings of the 1996 International Conference on Pattern Recognition (ICPR '96)

BOUNDARY CALIBRATION SYSTEM
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Fig. 1. Boundary Calibration System for running IdCM and InCM
algorithms for any frame t of the heart cycle. We sample and
interpolate the 100 vertex polygonal boundary to P, vertices,
then partition the database into K subsets, L used for training
and K — L used for testing. Magnification conversion factors are
used to convert pixels to mm, where 1 pixel = 0.39 mm.

the way the calibration model is set up. In IdCM formu-
lation, the coefficients that multiply g,, also multiply A,
hence the name identical coefficient method. In InCM, the
new (2,y)-coordinates of the vertices of each boundary is
a different linear combination of the old (z, y)-coordinates
for the polygon, hence the name independent coefficient
method. For IdCM, the number of coefficients estimated
in the A matrix is (P +3) x P. For InCM, the number of
coefficients estimated is (2 P+5) x 2 P. Thus the InCM re-
quires around 4 times the number of coefficients of IdCM,
and this difference represents a significant factor in the abil-
ity of the technique to generalize rather than memonrize for
our data size (N).

III. GREEDY ALGORITHM: CALIBRATION BY VERTEX

Fig. (1) shows the overall boundary calibration system,
where the heart of the system is the IdCM or InCM cali-
brator. In either case of the calibration model, we find the
off-line coefficient matrix A(t) to minimize:

QA I (1)
Using the partition protocol, and generalizing for any frame

t, the minimizing A, and estimated boundaries R., on the
test set Qq., are:

Atr = ( Q;I;- Q:- )—1

Il R(2) -

2
€itr

31'- R!‘r: &e = Qu AtrJ (2)

" A, is calculated using a singular value decomposition.
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Given the test set (Q:.) or training set (Q:,), we can es-
timate the calibrated boundary for IdCM and InCM as:

R1d - Qt: tds & R«n = Qte Am (3)
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A. Best InCM indez selection: Greedy Algorithm

Fig. (2) shows the object process diagram for combining
the IdCM and InCM LV boundaries using a Greedy algo-
rithm. We select a fixed subset of estimated vertex posi-
tions from these technique which when combined together,
minimizes the resulting error between the final estimated
polygon boundary and the physician traced LV boundary.
Let S, S;q and Sin be three sets consisting of all vertices,
IdCM pool vertices and InCM pool vertices respectively.
Let R;; and R;,, be the estimated boundary matrices from
IdCM and InCM techniques. Let R, and R be the ma-
trices consisting of (z,y) coordinates from original ground
truth with P,=100 and sampled P, vertices respectively.
Initially all the vertices are considered in the IdCM pool
and the error is computed. Denote its error by €;4. Now we
select that vertex from IdCM pool which when combined
with InCM pool vertices yields an estimated boundary er-
ror lower than €;4. This procedure is repeated until there
is no further improvement. If € be the error at any time
in the Greed§ do-while loop, then, the Greedy boundary
calibration algorithm consists of the following steps.
Greedy Boundary Calibration Algorithm

$:a=S; Sin=0, €=0 gc=0 /* greedy counter */

While (¢ < €4) do

ge++
For each i € S;4, /* total vertices are Pig */
Sia=Sia—{i} ;5 Sin=S:mU{i}

Combine [dCM (Ry¢) and InCM (Ryn):
Rom= Combine(Rig, Rin, N, Py, Sid, Sin, g6)
Performance Evaluation:
¢; = PolyPerformance( Rcom, Ryt, N, Py, P)
end /* end of for loop */
ArgMin Comp.: Min. error & best vertex j selection:
(Emin: j) = ArgMin(e[i], Rd - gc )
if( Emin < 6) then S.-g:S“—{j} 3 Sin=Sin U {J}
else break; endif
end /* end of while loop */

IV. POLYLINE BASED PERFORMANCE

The polyline distance D, (B; : B;) between two polygons
representing boundary B, and B; is symmetrically defined
as the average distance between a vertex of one polygon to
the boundary of the other polygon. To define this measure
precisely, first requires having defined a distance d(v, s) be-
tween a point v and a line segment s. The distance d(v, s)
between a point v having coordinates (z,,%,), and a line
segment having end points (z1,¥1) and (@2, ¥3) is:

_ min{d;,dz}; if A<0,A>1
dv,e) = { Jd; if o<acy, @
where
d = \/(Eo —21)" + (v - 0)?
d2 = \/(lo e 22)2 + (yO - y2)2 (5)
A= !V:‘hzﬂo—hgﬂh-z;5!:0—:11
z22—Z1 ) +(ya-y1
di+ = W= Z1~-To)+{Ta—=21 }(Yo—¥1
3(%—:1)’4’(7:—2{1)’
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Fig. 2. For loop for combining the IdCM and InCM calibrations used
in the greedy do-while loop. The data structure of the do-while
loop is implemented in the form of lists where the best vertex is

puted and emptied from the IdCM pool and unioned in the
InCM pool. The do-while loop is impl ted indep tly for
ED and ES frames.

The distance dy(v, Ba) measuring the polyline distance
from vertex v to the boundary B; is defined by:

d(v, s)

min

(v, B2) 1€ sides By

(6)
The distance dys(Bi1, B2) between the vertices of polygon
Bj and the sides of polygon B; is defined as the sum of the
distances from the vertices of the polygon B; to the closest

side of B;.
2dub(Bl,B:) = Z d(v, B3)
v€ veriices By

On reversing the computation from B; to B;, we can sim-
ilarly compute dy3(B3, B1). Using Eq. 6, the polyline dis-
tance between polygons, D,(B) : B;) is defined by:

dys(B1, Bz) + dus(Bz, By) )
(F#vertices € By + #vertices € By)

D, (Bl H Bz)

Using the definition of the polyline distance between 2 poly-
gons, we can now compute the overall mean error of the

system, denoted by e:::, and defined by:

R >

1577 2

N

=1 Di{Gnt,Cns)
n=1 HI\Hn

FxN (8)

where, D,(Gpt,Cr) is the polyline distance between the
ground truth Gy, and calibrated polygons Cy; for patient
study n and frame number ¢. Using the definition of the
polyline distance between 2 polygons, the standard devia-
tion can be computed as:

2
I d N poly
soly Ptms Lome E-@ ver. Gng (d’(”'c’")’eurpl
Tnrp { NXFX(#ver.€By +#ver.€H;) +
r N poly
Toem En=x qu ver.Cn¢ (d"("’a"')"‘mw) N
NxFx(f#ver.€B,+#ver.€B;) }!
(9)
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A. Error per vertez & Error per Arc Length

Using the polyline distance formulae, we can compute
the error per vertez from one polygon (ground truth) to
another polygon (calibrated). This is defined as the mean
error for a vertex v over all the patients and all the frames.
The error per vertez for a fixed vertex v when computed
from ground truth to calibrated boundary, defined by:

Et_l En—l (v, Gnt)
FxN

(10)

Similarly, we can compute the error per vertez from cali-
brated to ground truth using Eq. (10). Error per arc length
is computed in the following way: For the values eS¢ where
v=1,2,3,...P,, we construct a curve fGC deﬁncd on the
interval [0,1] which takes the value eSC at point = which is
the normalized arc length to vertex v and whose inbetween
values are defined by linear interpolation. We compute
the curve fC€€, from calibrated boundary to ground truth
boundary in 4 similar way. We then add algebraically these
two curves to yield the final error per arc length, given as:
f - [GC;[OG )

V. Data ANALYSIS: 3 ALGORITHMS

The performance of the system can be judged by evaluat-
ing the error measures on the test data set, Q;.. We here
show the performance of IACM, InCM and the Greedy algo-
rithms. All our performance is with respect to the original
ground truth boundaries having P, =100 vertices. We an-
alyze the data in about 9 different ways [6] but we present
here the main three.

A. Data Analysis 1: Vertez Optimization & Pooling

We find the mean error (e, P) as a function of the num-
‘ber of sampled polygon boundary vertices P, on the LVC.
The optimization curve and operating point is shown in fig.
3 (left). We use N=291, K=145, L=144. We now vary the
number of vertices P, on the LV polygon varying it from 10
vertices to 90 vertices with 5 vertex increments. If L=144
are the training sets then for each combination there are
K — L test set boundaries on which the error is computed.
We choose the number of vertices P, to minimize the error
on the test set. Since there are X C,=145 trials, each trial
has (K —~ L) subsets, each subset consists of & % batients (in
a protocol if ¥ % is not a perfect division, then for the last
trial in ¥C, combmatlons we have (K — L+rp) patients as
testing set, where r, is a remainder number of &) and each
patient consists of P, vertices and F=2 frames. We thus get
the total number of vertices as: Fx®Cpx(K—-L)x ¥ xP,,

resulting in: N x F x P, x _’2_11 '! £ vertices for each

(N,K,L,F, P,) tuple. We see from the fig. 3 (left) that
the optimal number of vertices in InCM are 15, half the
optimal number of vertices in IdCM which are 30, the rea-
son being that the number of coefficients that have to be
estimated in InCM is about four times the number of coef-
ficients that have to be estimated in IdCM. Fig. 3 (right)
shows the effect of the Greedy calibration algorithm, where,
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Fig. 3. Left: Vertex Optimization using the polyline distance metric
(PDM) for 3 calibration techniques, Idcm, Incm and Greedy. The
IdCM operating point is 30 vertices and InCM operating point is
15 vertices. Greedy does the best. Partition Protocol Parameters:
N=291, F=2, K=145, L=144, P, =100, P,=30. Mean error for
IdCM=3.8 mm, InCM=3.9 mm and Greedy=3.5 mm. So greedy
improve by 0.3 mm over JdCM method. Right: Plot showing
the reduction in the error for ED and ES frames when some
vertices are calibrated using IdCM and others using InCM. With
the increase InCM pool, the error drops.

ED and ES frame errors drop when the IdCM pool vertices
are transferred to InCM pool. This is implemented using
the Greedy do-while loop where some columns (or vertices)
of IdCM matrix R;, are replaced by corresponding columns
(or vertices) of InCM matrix, R, yielding Reom- Fig. 3
(left) shows that the Greedy algorithm reduces the error
by 0.3 mm over I’CM. The best performance over all the
three techniques is by the Greedy algorithm with the opti-
mal number of vertices being 30. Note also that in Greedy
calibration technique, the error does not rise very sharply
after 30 vertices but rises gradually by (1—(1,6)"' of a mm.

B. Data Analysis 2,3:  Cumulative disiribution of
(ERLES) errors and Error Per Arc Length along LVC

Fig. 4 shows the cumulative distribution of end frame er-
rors (E2+ES) from IdCM, InCM and Greedy algorithms.
Fig. 5 demonstrates the mean error per arc length along
the LVC. The abscissa shows the length of the arc starting
from AAV. The ordinate shows the error at each vertex
in mm. As seen in the plot, the mean error per vertez is
largest near the middle of the normalized arc length which
is close to the apex of the LV. Thus the error is maximum
in the apex region. We see that Greedy algorithm does
best in the apex zone compared to the IdCM and InCM
methods. The error per vertez in fig. 5 shows that in the
ED frame, the apex zone error is reduced by 8.5 mm (from
12.5 mm to about 4 mm), while in ES frame, the apex
zone error is reduced by 3 mm (from 9 mm to 6 mm). The
corresponding mean error over ED and ES frames of the
pizel-based boundaries was 6.4 mm which is reduced to 3.8
mm in IdCM and 3.5 mm in Greedy. As per our assump-
tion, the error is least at the end points of the LVC since
the AoV plane is known, thus the error per vertez curve
drops at both ends (fig. 5).
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Fig. 4. Cumulative distribution vs. mean error of (%) errors,
Left: Identical coefficient method. Middle: Independent coeffi-
cient method. Right: Greedy vs. IdCM. The curves shows that
80% patient estimated boundaries have error < 4 mm in IdCM,
while 72% of the patients have error < 4 mm in InCM, and 81%
of the patients have error < 4 mm in Greedy. Calibration Pa-
rameters: N=291, F=2, K=145, L=144, P, =100, P, =30.
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Fig. 5. Mean error per arc length (EPAL) using polyline distance

method, superposition of 4 curves: the initial classifier boundary
error, IdICM, InCM and Greedy calibration method. Left: ED
‘frame Right: ES frame. Greedy does the best out of all the 3
algorithms presented for both ED and ES frames. Greedy method
also does better in the apex zone (0.4-0.5), compared to all other
vertices. In ED frame, apex error reduces by 8.5 mm and in ES
frame, apex error reduces by 3 mm.

VI. CoNCLUSIONS

We presented a Greedy calibration algorithm for calibrat-
ing the initial pizel-based classifier boundaries which takes
best of the two calibration methods: the identical coeffi-
cient and the independent coefficient. The mean error over
ED and ES frames using a cross-validation protocol and
polyline distance metric is 3.5 millimeters over the data
base of 291 patient studies. The Greedy algorithm is an
improvement over the identical coefficient method by 0.3
mm which is significant for the accuracy of the overall cali-
bration system. The Greedy algorithm also shows the best
performance in the apex zone of the LV where the dye was
unable to reach, reducing the error by about 8.5 mm. We
thus see that the calibration step constitutes a very signif-
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icant last step for final boundary estimation.

(a2) ED Frame: GT and Calibrated (Estimated)

Fig. 6. Results of Greedy algorithm. Upper: (a1) Classifier (thin)
vs. ground truth (GT), (thick). Bottom :(a2) Calibrated (thin)
vs. ground truth (GT) (thick). Background: Left Ventriculogram
(LVG), Calibration Parameters: N=291, K=145, L=144, F=2,
P, =100, P,=30, Mean end frame error (Eézﬂ’i):us mm,

P2l¥ 1-3.50, Std. Deviation (a{,’;‘}, )=3.40 mm.

Mean error (e,
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