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ABSTRACT 

Receiver operating characteristics (ROC) curves have the 
property that they start at (0,l) and end at (1,O) and are 
monotonically decreasing. Furthermore, a parametric rep- 
resentation for the curves is more natural, since ROCs need 
not be single valued functions: they can start with infinite 
slope. In this article we show how to fit parametric splines 
and polynomials to ROC data with the end-point and mono- 
tonicity constraints. Spline and polynomial representations 
provide us a way of computing derivatives at various loca- 
tions of the ROC curve, which are necessary in order to find 
the optimal operating points. 

Density functions are not monotonic but the cumulative 
densityfunctions are. Thus in order to jit a spline to a den- 
sity function, we fit a monotonic spline to the cumulative 
density function and then take the derivative of the fitted 
spline function. Just as ROCs have end-point constraints, 
the density functions have end-point constraints. Further- 
more, derivatives of splines are spline functions and can 
be computed in closed form. Thus smoothing of histograms 
can also be treated as a constrained monotone regression 
problem. The algorithms were implementation in a mathe- 
matical programming language called AMPL and results on 
sample data sets are given. 

1. INTRODUCTION 

In this paper we consider two problems where monotonic 
curve fitting with endpoint constraints is necessary. The 
first problem comes about while fitting a function to data 
points that represent the operating characteristics of a sys- 
tem (see [1, 2, 31). Since the receiver operating characteris- 
tic (ROC) curve is plot of probability of r&detection versus 
the probability of false alarm, the data points are monoton- 
ically decreasing, and the fitted function also needs to be 
monotonically decreasing. The second problem is that of fit- 
ting smooth functions to normalized histograms. Although 

probability density functions are not monotonic, the cumu- 
lative density functions are. So, one can fit a monotonically 
increasing function to the normalized cumulative histogram 
and then take the derivative of the fitted function. 

Most of the related work is in the statistics literature. 
Although the algorithm in [4] results in a smooth histogram, 
it does not give us a differentiable function. The work re- 
ported by Ramsay [5] is closest to ours; he forces the fitted 
spline to be monotonic by using integrated basis splines, 
which are monotonic, and then constraining the regression 
coefficients to be non-negative. 

In section 2 we pose the constrained monotone regres- 
sion as an optimization problem that can be solved using 
standard packages. In section 3 we use the method de- 
scribed in section 2 to fit ROC curves. In section 4 we 
discuss how to convert the histogram fitting problem into a 
monotone regression problem. 

2. CONSTRAINED MONOTONE REGRESSION 

Let (yi, ti), i = 0,. . . , n - 1, be the given data set, where 
Y; L yitl and ti < t;tl. The problem is to find a function 
y(t) that is (i) monotonically decreasing within the interval 
[to, tn-i], (ii) attains given values cd and cs at the end-point, 
that is, y(to) = c,, and y(t,-1) = cb, and (iii) minimizes the 
sum of squared residuals. The monotonicity constraint can 
be achieved by requiring the derivative to be non-positive, 
that is, y’(t) 5 0. If we required y’(t) 1 0, then we would 
get a monotonically increasing y(t). 

In the next subsection we let y(t) be a spline function 
and show find the regression coefficients such that y(t) sat- 
isfies all the constrains. In the following subsection we use 
polynomials for y(t). We implemented both algorithms in 
AMPL, a mathematical modeling language [6]. 
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2.1. Spline regression 

In this section we show how to fit splines to data while 
satisfying the monotonicity and end-point constraints. The 
discussion here is based on books by de Boor [7] and Dierckx 
[al. 

A function y(t), defined on a finite interval [a, a], is 
called a spline function of degree k > 0, having as knots the 
strictly increasing sequence Xj, j = 0, 1,2,. . . , m + 2k ,f 1, 
if the following two conditions are satisfied: 

1. On each knot interval [Xj,Xj+r], y(t) is given by a 
polynomial of degree k at most. 

2. The function y(t) and its derivatives up to order k - 1 
are all continuous on [a, a]. 

We will assume that the number of knots and the knot 
locations Xj are known. The spline, y(t), can be defined 
as a linear combination of a finite number of basis splines 
or B-sphnes. The jth basis spline, Bj,k(t), where k is the 
degree, is defined recursively as follows 

%“(‘) = { 0 oth&ise. 
1 ifX.<t<Xj+l, 

Bjrk(t) = ,j:;*Aj Bj,k-l(t) + 'jSktl - ' Bj+l,k-l(t). 
Ajtktl -Ajtl 

B-splines have the property that they are non-negative 
and vanish unless Xj 5 t < Xj+k+r. In particular, for 
quadratic splines, if Xj < t < Xj+r, then Bj-z,z(t), Bj-1,2(t), 
and Bj,z(t) are the only non-zero B-splines of degree k := 2. 

Given the knot locations, Xj, the spline function y(t) 
can be evaluated at any parameter location t; as follows. 
Let Xj be such that Xj 5 t; < Xj+r _ Then 

Y(k) = 2 a&,k(ti). 

I=j-k 

where al, 1 = 0,. . . , m + 12, are spline coefficients. The 
monotonicity constraints, in the case of splines, can be im- 
posed by using the derivative properties of spline coefficients 
(see [7, 8] for proofs). 

If al 5 crl+r, then y is monotonically increasing, (1) 

If al 2 al+l, then y is monotonically decreasing.(2) 

It is important to’note that equation (1) is a suficient but 
not necessary condition for a spline function to be mono- 
tonically increasing; similarly, equation (2) is a sufficient 
but not necessary condition for a monotonically decreasing 
spline. Necessary conditions are known for the monotonic- 
ity of cubic splines [9], but we are unaware of any such 
necessary conditions for splines of higher order. The con- 
strained optimization problem can now be stated as: 
Find ao,..., am+k, t0 minimize 

n-1 

c (Yi - Y(tiv 
i=o 

subject to 

y(h) = c, 
?/(tvz-1) = Cb 

ac 2. aI+1 forl=O,...,m+k-1, 

where c, and cb are given constants. This is a constrained 
optimization problem (least squares with linear constraints) 
and can be expressed in AMPL [6] and solved by various 
solvers, such as MINOS [lo] or NPSOL [ll]. For a survey 
and comparison optimization techniques and software, see 
P21 

Finally, the derivative of a spline y(t) is given by (see 
[7] for proof): 

y’(k) = 2 (k - ‘,t;;k;la~;, &,u(ti). (3) 
l=j-k+l 

2.2. Polynomial fitting 

Now we solve the constrained monotone fitting problem 
again, but this time we use a polynomial representation 
for y(t) : 

y(t) = a0 + alt + azt2 + *.. + a&*, 

where m is the user-specified degree of the polynomial. We 
can now write the monotonicity constraint as 

y’(t) = p1 + 2&t + . . . + mp,t+‘) 5 0. 

The above equation constrains the derivative y’(t) to be 
non-negative. One way of enforcing that is to compute the 
extrema of y’(t) and constrain them instead. To do that, 
we would need to find the roots of y”(t) and would need 
to constrain the values of y’(t) at the roots. In our fitting 
problem, polynomials of degree 8 - 15 are commonly used; 
finding roots of polynomials of degree 13 and constraining 
function values at those roots appears cumbersome. In- 
stead, we will solve the simpler problem of constraining 
y’(t) only at sampled points. This may give a nonmono- 
tonic fit, but any departure from monotonicity should small 
and should decrease if more sample points are added. Thus 
the constrained optimization problem can now be stated as: 
Find ao, . . . , am, to minimize 

subject to 

fJto)jfYj = C. 

j=O 

C(tn-l)jolj = Cb 

j=O 

xj’(ti)(j-l)‘aj > Ofork=O,...,?Z-1, - 
j=l 

where c, and cb are given constants. This is again a least 
squares problem with linear constraints. 
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3. ROC CURVE FITTING 

We now apply the regression method discussed in the pre- 
vious section to ROC data. The receiver operating char- 
acteristic curve data is an ordered sequence of 2D points 
(zi,yi), i = O,.. ,n - 1, such that (i) (ZO,YO) = (0, l), 
(ii) (zn-rryn-r) = (l,O), (iii) zi 5 zi-1, and (iv) yi > 
y;+l. The problem is to fit a parametric curve (z(t),y(t)), 
0 5 t 2 1, such that z(t) is monotonically increasing, 
y(t) is monotonically decreasing, (z(O), y(0)) = (0, l), and 
(+)I Y(l)) = (130). 

Fcr fitting splines, we choose the knot locations Xj and 
parameter locations ti as follows: 

t; = --&i=o ,..., n-l, 
n-l 
j-k 

Xj = -, j=O,...,m+2k+l, 
m 

where k is the (user-specified) degree of basis splines, and 
m + k + 1 is the number of basis splines. With this choice of 
parameter locations, t;, and knot locations, Xj, we see that 
to = xk = 0 and t,-1 = Xm+k = 1. Now two separate mono- 
tonic functions z(t) and y(t) can be fit to (zi, t;) and (yi, ti), 
respectively. In this case z(t) needs to be monotonically in- 
creasing, y(t) monotonically decreasing, and both have to 
satisfy the end-point constraints. Note that other parame- 
terizations such as arc length parameterization could have 
been chosen instead. The optimization problem can be set 
up as discussed in section 2. A sample spline fit, computed 
by our method, is shown in figure 1. 

For fitting polynomials, we choose the parameter loca- 
tions 

t;=2 2 
( > 

- 1. 
a-1 

We see that, to = -1, and t,-1 = 1, and the end-point 
constraints now become 

z(to) = 2(-l) = 0 

z(t?P-1) = z(1) = 1 

y(to) = y(-1) = 1 

Y(L1) = y(l)=O. 

A monotonically increasing polynomial z(t) satisfying the 
end-point constraints can be fit to (z;, ti), i = 1,. . . , n - 1, 
as discussed in section 2. Similarly we can fit a monotoni- 
cally decreasing polynomial y(t) that satisfies the end-point 
constraints. A sample polynomial fit is using our method 
is shown in figure 2. 

4. HISTOGRAM FITTING 

Let the normalized histogram data be (vi, ti), i = 0,. , n- 
1, where fi is the normalized frequency at ti, and fo = 
f,,-1 = 0. The problem is to fit a curve y(t) such that 
(i) y(t) 2 0, (ii) area of y(t) within the interval [to, t,-11 
is equal to 1, and (iii) y(t) minimizes the sum of squared 
residuals. 

Since the density function is non-negative, the integral 
of the density function is a monotonically increasing func- 
tion. Let (Yi, ti), i = 0,. , n - 1, be the normalized cu- 
mulative frequencies, such that YO = 0, and Y,-1 = 1. The 

x 

Figure 1: ROC curve fitting with splines. The number of 
data points, n, was 88 and m was 13. The spline fit required 
49 MINOS iterations. 

problem is to find a monotonically increasing function Y(t), 
to < t 5 t,-1 such that Y(to) = 0, and Y(t,-1) = 1. Again, 
spl&e or polynomial fitting can be done using the method 
discussed in section 2. Finally, since y(t) = Y’(t), we can 
find the function y(t) that fits the normalized histogram by 
computing the derivative of function Y(t) that was fitted to 
the cumulative histogram. Since the cumulative function, 
Y(t), is non-negative and satisfies the condition Y(1) = 1, 
we are guaranteed that the area under the density function 
y(t) is equal to 1. The derivatives can be computed using 
equation 3. In figure 3 we show the result of application of 
our algorithm on histogram data. 

5. DISCUSSION 

In this paper we gave algorithms for fitting monotonic splines 
and polynomials with end-point constraints to ROC data. 
The monotonicity constraints amounted to constraining the 
spline coefficients to be in increasing (or decreasing) order 
and the end-point constraints were incorporated by one lin- 
ear equality for each endpoint. The constrained regression 
problem was thus posed as a least-squares problem with 
linear constraints. We gave detailed algorithms and showed 
results using our implementation. 

To fit a spline to a density function we fit a monoton- 
ically increasing spline to the cumulative density function, 
which is monotonically increasing, and take the derivative 
of the fitted spline function. The end-point constraints are 
that the density function value at the left end point (in case 
of one variable) is 0, and at the right end point is 1. Thus 
histograms can approximated by smooth splines using the 
methodology described in this paper. 

Currently the order of splines, and the knot locations 
are provided by the user (we used second-degree basis splines, 
and uniform knot locations). The optimal order and knot 
location problem is a model selection problem that can be 
addressed using a cross validation approach [13], or MDL/AI( 
method [14, 151, or a Bayesian approach. Furthermore, 
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Figure 2: ROC curve fitting with polynomials. The number 
of data points, n, was 88 and m was 15. The polynomial fit 
took MINOS 696 iterations. 

Histogram Fitting with Splines 

Figure 3: Histogram fitting with splines. 

confidence intervals can be estimated using bootstrap tech- 
niques. 

Acknowledgement: We would like to thank Ken Thorn- 
ton for discussions on a different formulation of the problem; 
this work was done while Tapas Kanungo was visiting Bell 
Labs, Murray Hill, and he would like to thank Henry Baird 
for inviting him there. 

PI 

E31 

141 

[51 

[cl 

PI 

PI 

PI 

[lOI 

WI 

PI 

1131 

iI41 

il.51 

T. Kanungo, M. Y. Jaisimha, J. Palmer, and Ft. M. 
Haralick. A methodology for quantitative performance 
evaluation of detection algorithms. IEEE Trans. on 
Image Processing (to appear), December 1994. 

T. Kanungo. On optimal operating points. Techni- 
cal Report ISL-TR-94-07, University of Washington, 
Seattle, WA, 1994. 

J. Friedman and R. Tibshirani. The monotone smooth- 
ing of scatterplots. Technometrics, 26(3):243-250, 
1984. 

J. 0. Ramsay. Monotone regression splines in action. 
Statistical Science, 3(4):425-461, 1988. 

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: 
A Modeling Language for Mathematical Programming. 
The Scientific Press, South San Francisco, 1993. 

C. de Boor. A Practical Guide to Splines. Springer- 
Verlag, New York, 1978. 

P. Dierckx. Curve and Surface Fitting with Splines. 
Clarendon Press, New York, 1993. 

F. N. Fritsch and R. E. Carlson. Monotone piecewise 
cubic interpolation. SIAM J. Numer. Anal., 17(2):238- 
246, 1980. 

B. A. Murtagh and M. A. Saunders. Minos 5.1 user’s 
guide. Technical Report SOL 83-20R, Stanford Uni- 
versity, 1987. 

P. E. Gill, W. Murray, M. A. Saunders, and M. H. 
Wright. User’s guide for NPSOL (version 4.0): A for- 
tran package for nonlinear programming. Technical 
Report SOL 86-2, Stanford University, 1986. 

J. J. More and S. J. Wright. Optimization Software 
Guide. SIAM, Philadelphia, PA, 1993. 

S. N. Wood. Monotonic smoothing splines fitted by 
cross validation. SIAM Journal on Scientijic Comput- 
ing, 15(5):1126-1133, 1994. 

J. Rissanen. Stochastic Complexity in Statistical In- 
quiry, volume 15. World Scientific Series in Computer 
Science, 1989. 

F. S. Cohen and J. Y. Wang. Part i: modeling im- 
age curves using invariant 3-d object curve models- 
a path to 3-d recognition and shape estimation from 
contours. IEEE Trans. on Pattern Anal. and Machine 
Intel., 16(1):1-12, 1994. 

6. REFERENCES 

[l] T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. 
HaraIick. A quantitative methodology for analyzing 
the performance of detection algorithms. In Proc. of 
IEEE Int. Conf. on Computer Vision, pages 247-252, 
Berlin, May 1993. 

295 

Proceedings of the 1995 International Conference on Image Processing (ICIP '95) 
0-8186-7310-9/95 $10.00 © 1995 IEEE 


