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Abstract 
In this paper, we consider the problems of finding 

corresponding points from multiple perspective projec- 
tion images (the correspondence problem), and esti- 
mating the 3-D point from which these points have 
arisen (the triangulation problem). We pose the trian- 
gulation problem as that of finding the Bayesian max- 
imum a posteriori estimate of the 3-D point, given its 
projections in N images, assuming a Gaussian error 
model for the image point co-ordinates and the cam- 
era parameters. We solve this by an iterative steepest 
descent method. We then consider the correspondence 
problem as a statistical hypothesis verification prob- 
lem. Given a set of 2-D points, UndeT the hypothesis 
that the points are in correspondence, the MAP esti- 
mate of the 3-D point is computed. Based on the MAP 
estimate, we derive a statistical test for verifying this 
hypothesis. To find sets of corresponding points when 
multiple points in each of N images are given, we pro- 
pose a method that does the Bayesian triangulation 
and hypothesis verification on each N-tuple of points, 
selecting those that pass the hypothesis test. We char- 
acterize the performance of the Bayesian triangulation 
in terms of the average distance of the triangulated 3- 
D point from the true 3-D point, and of the point cor- 
respondence method in terms of its misdetection and 
false alarm rates. 
Keywords : Bayesian, Correspondence Problem, Hy- 
pothesis Testing, Maximum A Posteriori Estimation, 
Triangulation. 

1 Introduction 
The point correspondence problem is the problem 

of finding sets of points which are projections of the 
same 3-D point, from multiple images of a scene. The 
triangulation problem is the problem of estimating the 
co-ordinates of a 3-D point, given its projections in 
multiple images. These problems arise in 3-D recon- 
struction, photogrammetry, object pose estimation, 
and point-feature-based object recognition. 

In perspective projection imagery, a point in one 
image projects to an epipolar line on another image. 
If the camera parameters and the co-ordinates of the 
image points are known without error, then the corre- 
spondence problem can be solved by searching along 
the epipolar line of each point in the other images [2]. 
However, if there are random perturbations in the co- 
ordinates of the image points or the camera parame- 
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ters, no point will exactly ‘be the intersection of the 
epipolar lines of its corresponding points. One could 
argue that if these perturbations are small, the inter- 
sections of the epipolar lines of corresponding points 
would be close to each other, and decide that a set of 
points is in correspondence if the separation of these 
intersections points is within a certain threshold. It 
is not clear how this threshold should be determined, 
however. In this sense the correspondence problem 
is not well-formulated, because the random perturba- 
tions in the camera parameters and the co-ordinates 
of the points have not been modelled explicitly. 

The triangulation problelm has been extensively an- 
alyzed in the photogrammetry literature [3] [4]. If there 
is no error in the camera parameters and the image 
points, the 3-D point is the intersection in space of 
the rays projected through the image points from the 
respective centers of perspectivity. When there are 
random perturbations in the camera parameters and 
the image points, these rays will not intersect. In this 
case, the usual method is a least-squares approach, 
involving minimizing the sum of squared residual dis- 
tances of the observed points from the projections of 
the triangulated point. In more recent work, Longuet- 
Higgins [5:] derived a method for triangulation and es- 
timating relative orientation given eight corresponding 
points from two images. Hartley [6] gave an analytical 
solution to the triangulation problem that is invari- 
ant to projective transformations of space? assuming 
a Gaussian noise model for the perturbations in the 
image points. 

These triangulation methods make the assumption 
that the given 2-D points are guaranteed to be per- 
spective projections of the same 3-D point. When 
the correspondences between the 2-D points are not 
known, one can make a h,ypothesis about a particu- 
lar set of 2-D image points being in correspondence, 
and triangulate to get a 3-D point under this hypoth- 
esis. This hypothesis should then be validated, based 
on how good the estimate of the 3-D point is. How- 
ever, the above methods do not address the issue of 
validating, this hypothesis. 

Recently, there has been considerable interest in the 
problem of finding corresponding image points with 
the aim of eettine a eood trianeulation. Scott and 
Longuet-H&gins [Y] prgposed a mEthod for finding cor- 
responding points from a pair of images based on a 
proximity matrix that involves Gaussian weighted dis- 
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tances between features. They use the eigenvectors of 
this matrix to construct a pairing matrix, which mini- 
mizes the inner product of the pairing matrix and the 
proximity matrix. Shapiro and Brady [8] also pro- 
posed a similar eigenvector approach to determining 
point correspondences. Cheng et al [9] proposed two 
methods that find corresponding points and do trian- 
gulation. One approach is based on the work of Scott 
and Longuet-Higgins [7]. They construct a proxim- 
ity matrix using the squared distances between the 
observed 2-D points and the projections of a “pseudo- 
triangulated” point, that is, a point that minimizes the 
3-D distance to the rays projected back through the 
image points. The other method poses the correspon- 
dence problem as that of finding a maximum matching 
in a bipartite graph in which the nodes are the points 
from two images. This problem is then solved as a 
network flow maximization problem by assigning an 
appropriate weight to each edge based on a similarity 
function of the points that are connected by the edge. 

None of these methods takes into account the un- 
certainty in the locations of the image points and the 
camera parameters with an explicit noise model. Also 
these methods are restricted to finding corresponding 
points and triangulating them from just two images, 
and do not generalize to more than two images. 

In this paper, we find the maximum a posteriori es- 
timate of the 3-D point, given its projections in N im- 
ages, assuming a Gaussian error model for the image 
point co-ordinates and the camera parameters. We 
then consider the correspondence problem as a statis- 
tical hypothesis verification problem. Given a set of 
2-D points, under the hypothesis that the points are 
in correspondence, the MAP estimate of the 3-D point 
is computed. Based on this estimate, we derive a sta- 
tistical test for verifying the hypothesis that the given 
image points are in correspondence. To find sets of 
corresponding points when multiple points in each of 
N images are given, we propose a method that does 
the Bayesian triangulation and hypothesis verification 
on each N-tuple of points, and selects those that pass 
the hypothesis test. We also describe extensive ex- 
periments that were performed to validate the theory, 
and to characterize the performance of the point cor- 
respondence algorithm. 

2 A Bayesian Formulation of the Tri- 
angulation Problem 

In this section, we formulate the triangulation prob- 
lem as a Bayesian maximum a posteriori estimation 
problem, assuming the perturbations in the observed 
2-D points and the camera parameters to be Gaussian 
distributed with known covariance matrices. 
2.1 Problem Statement 

Let ?r,%s,. . . , 2~ be observed image points, from 
perspective projection images 11, . . . , IN respectively. 
Estimates 61, &, . . . ,6N of the parameter vectors of 
the cameras of images 12, .: . , IN respectively are . 
given. We assume that &,0s, . , . , ON are indepen- 
dent and normally distributed around the true cam- 
era parameters 81, . . . , ON respectively, with known 
covariance matrices Gil, . . . , CiN respectively. We 

consider the true camera parameters 81, . . . ,6N as 
random variables with independent a priori densities 
ded,. . . , p 
the result o i 

6,) respectively. The observed points are 
random perturbations on the perspective 

projections of a 3-D point i in the respective images, 
i.e. 

sij =~(q,e~)+~~,i=~ ,..., N  

where I’(& 8;) denotes the perspective projection of 
the 3-D point 6 in a camera with parameter vector t9i. 
We assume the random perturbations (ii, i = 1,. . . , N  
to be independent, and Gaussian distributed with zero 
mean and known covariance matrices CLEF,. . . , Ck, 
respectively. We consider the 3-D point 6 as a random 
variable with a priori density p(q). The triangulation 
problem can then be posed as: 

Find q = (a, y, ,z)~ to maximize 

which is equivalent to finding q = (c, y, .z)~ to mini- 
mize 

-lnp(q,~l,...,~N,(jl,...,BIN) 

2.2 Solution 
We have, 

p(% %, . I kN, $1,. . . , e^N) 

= J J . . . P(&, . . . , ?N Id, I..., 8N,& I..., @N)’ 81 eN 
P(q, 81,. . . ,dN 1 01,. . . , eN)p(&, . . . ,8N)d& . . . d6N 

Given the true camera parameters 01,. . . ,0N, q is 
independent of 61, . . . ,6N, hence 

P(q, il, . . . I ~NI 61, . * .I 6N) 

= 

Here we also used the facts that the perturbations on 
the points 21,. . . , %N are independent of each other, 

. .A ,. 
the perturbations in el,. . . , &, 
each other, and 01,. . . , 

are independent of 
8 N  are a priori independent 

of each other. 
Now, if the covariance matrices &,. . . , CeN have 

small diagonal entries (as is usually the case), then to 
a first approximation, 

s 
e- p(ii 1 9, k)& 1 ~i)p(4)~ej = ~(2~ 1 q, &))P(&) 
, 

Hence 

P(q, 21,. * *, gN, 81 r--,dN) =p(q)fip(% 1 ‘di)P(&) 

i=l 
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To find p(% ) q, &), we note that 

2% - P(q, 6;) = %  - p(q, ei) + p(q, ei) - qq, i&) 

= k - qq,ei) + g(q,$) (ei - ii) (1) .[ 1 
By our noise model, jti - P(q,&) N ~(0, Q), 
and (0; - &) - N(0, Cei). Hence Izi - P(q,&) - 

N(O, &(q, ii)), where 

Hence 

So finding q to minimize 
. n 

-lnP(q,j;l,...,~N,elr...reN) 

is equivalent to finding q to minimize 

- ln p(q) 
N 

+ g { i(k - P(q, 8,))’ [ei(q, ii)]-l (ki - P(q, e^i)) 

+ ~ln2?r+~ln(&(q,&)l -lnp(s^i)} 

If the 3-D point and the camera parameters are a pri- 
OTi uniformly distributed, p(q 
are constants. Hence the pro b 

and p(ii), i = 1,. . . ! N  
lem reduces to f indmg 

q to minimize 
. n 

e(% 21,. . . , ?N, fh, . . . , f lN) 

= &ii - P(q, L&i))’ [e,(q, &)I -l (;;i - P(q, 3;)) 
i=l 

+ ln J&(s, &)I (2) 

We do the minimization by a steepest descent 
procedure. We start with an initial guess qo = 
(20, Yor 20) T, and at each iteration i, take a step 
(Azi+rAyi+rA.~i+r)~ from qi in the direction of the 
negative gradient of E evaluated at qi, so as to reach 
the minimum of E along that direction. We use a 
golden search [lo] to find the minimum in the neg- 
ative gradient direction. The intuitive idea behind 
this is that close to the minimum, &(q, &), and hence 

ln (&(s, 4)l t erm in E, is almost a constant, and so the 
vaiiation in’e is dominated by the variation in 

gtai - p(q, di))T [&(q, &)I -’ (5ti - P(q, &)) 
kl 

This sum of quadratic forms should be a convex U 
function, and has a unique lminimum in the negative 
gradient direction. 

In the im.plementation, the vector of camera param- 
eters was taken as 

e = (a, 4 C, aor yo, zo, f)T 

(a, b, c) are the quaternion parameters [ll] of the rota- 
tion matrix that rotates the world reference frame into 
the camera reference frame. (co, yo, zo) is the origin 
of the camera reference frame in the world co-ordinate 
system. f is the focal length of the camera. Details 
about the computation of the perspective projection 
P(q, 0) of a 3-D point q, the gradient G  of the ob- 
jective function of the Bayesian triangulation, and the 
computation of an initial guess for the steepest descent 
solution, using this representation, are given in [I]. 

3 Finding Corresponding Points 
Suppose N points are given, one in each of N per- 

spective projection images, and the question is to de- 
termine whether or not the points are in correspon- 
dence. To answer this, one can make a hypothesis 
that the points are in correspondence, and triangulate 
these points to obtain an estimate of the 3-D point. 
This estimate should then be used to verify the hy- 
pothesis that the given 2-D points were in correspon- 
dence. The Bayesian formulation of the triangulation 
problem described in the previous sections leads to 
such a test for verifying the hypothesis that the given 
2-D points are in correspondence, as follows. 

Because of the first order approximation we made in 
equation (I), the MAP estimate of q under a uniform 
prior density is equivalent to the maximum likelihood 
estimate under the following noise model: 

f; = P(q,i;) + &, i = 1,. . . , N  

where & - N(O, %(qr &) . 
b 

Close to the minimum, 
this nonlinear model can e approximated to a first 
order by a linear model. Consider a linear model of 
the form 

y = Ax + q 

where y is an M-dimenisional vector of observations, x 
is a pdimensional parameter vector, and 7 - N(0, X). 
Let il be the maximum likelihood estimate of x. It is 
known [12] that the quadratic form 

(y - A%)TC-l(y - AS) 

has a XL-,, distribution. This quadratic form is used 
as a statistic to verify the hypothesis that the model 
is correct. So if the hypothesis that the 2-D points 
are in correspondence were correct, then at the point 
q that minimizes e, 

6(q,j;, ,..., %,j, ,..., &)= (3) 

j&G - P(q, h>jT [e,(q, fsi)]-1 (ai - P(q, &)) 
i=l 
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would have a xiN-s distribution. This is because 
,. 

Xl,*-., ?, are all 2-D vectors, and the vector q being . 
estimated is a 3-D vector. b(q, 21,. . . , j;,, 01,. . . ,6~) 
can thus be used as a test statistic to verify the hy- 
pothesis that the given 2-D points are in correspon- 
dence. Let zc, be such that P(x&-z > sa) = (3~. If 
6 l=- xa, reject the hypothesis that the N points are 
in correspondence. The probability of rejecting a true 
hypothesis in this statistical test is (Y. 

To find corresponding N-tuples of points when mul- 
tiple points in each image are given, we propose the 
following method. For each N-tuple of points con- 
taining one point from each image, under the hypoth- 
esis that those N points are in correspondence, we 
do the Bayesian triangulation and hypothesis verifica- 
tion. If an N-tuple passes the test, we declare that set 
of points as a correspondence. The threshold for the 
hypothesis test can be set to limit the probability of 
rejecting a correct correspondence to a given value. 

4 Experiments and Results 
In this section we describe experiments to charac- 

terize the performance of the Bayesian triangulation in 
terms of the distance of the triangulated 3-D point to 
the true 3-D point, and of the point correspondence 
method in terms of its misdetection and false alarm 
rates. In these experiments, we used the geometry and 
camera parameters of model board 2 of the RADIUS 
data set [13]. The parameters used for the cameras 
and their covariance matrices of the were estimated by 
a multi-image camera calibration procedure [14]. For 
characterizing the performance of the Bayesian trian- 
gulation, 3-D points were randomly generated from 
the volume occupied by the model board, and pro- 
jected into the cameras. The co-ordinates of the pro- 
jected points and the camera parameters were per- 
turbed with Gaussian noise of the respective covari- 
ante matrices. The noisy points and camera parame- 
ters were then input to the Bayesian triangulation and 
hypothesis test procedure. 

Fig. 1 plots the mean and the standard deviation 
of the distance of the triangulated 3-D point from the 
true 3-D point as a function of the variance of the 
noise in the image points. Fig. 2 plots the mean and 
the standard deviation of the distance of the triangu- 
lated 3-D point from the true 3-D point, as a function 
of the number of cameras used for the triangulation. 
10000 trials were done for each value of the noise vari- 
ance and the number of cameras. For model board 
2 of the RADIUS data set, the cameras are approx- 
imately 20 feet from the board. It is seen that the 
average distance from the estimated 3D point to the 
true 3D point is about 0.4 inches using 3 cameras, and 
reduces to about 0.1 inch using 15 cameras for the tri- 
angulation. Increasing the noise does not significantly 
degrade this performance. 

The misdetection rate of the hypothesis test with a 
given threshold is the ratio of the number of trials for 
which the value of the test statistic is more than the 
threshold to the total number of trials. Fig. 3 plots the 
misdetection rate as a function of the threshold of the 
test, for various number of cameras used for the tri- 
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Mean and Std.Dev. of Distance of 
Triangulated 3-D Point from True 3-D Point 

““m  

Figure 1: Mean and standard deviation of the distance 
of the triangulated 3-D point from true 3-D point v/s 
noise variance. 

Mean and Std.Dev. of Distance of 
Triangulated 3-D Point from True 3-D Point 

Figure 2: Mean and standard deviation of the distance 
of the triangulated 3-D point from true 3-D point v/s 
number of cameras. 

angulation. The threshold is the corresponding quan- 
tile of the xiN-a distribution. Thus the misdetection 
rate is seen to be 0.2 for a threshold of 0.8, 0.3 for a 
threshold of 0.7, etc. This also validates the assertion 
that the distribution of the statistic is x&-s. This 
distribution was also validated from the histograms of 
the test statistic by the Kolmogorov-Smirnov test [lo]. 
Fig. 4 plots the misdetection rate as a function of the 
variance of the noise in the image points. The misde- 
tection rate is seen to be almost invariant to the noise 
variance. This is because the distribution of the test 
statistic is ~2~-3, independent of the noise variance. 

We characterized the performance of the point cor- 
respondence method proposed in section 3 in terms 
of its false alarm and misdetection rates. An N-tuple 
of points that is declared to be in correspondence by 
the point correspondence method, but is actually not 
in correspondence, is a false alarm. The ratio of the 
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Misdetection Rate v/s Threshold 
for Hypothesis Test 

Fig. 5 plots the misdetection rate of the point corre- 

Misdetection Rata v/s Threshold 
(Point Correspondence Algorithm) 

10 

o.y,- 
Thre&%ld for wypothe:% Test ’ 

Figure 3: Misdetection rate of hypothesis test v/s 
threshold. 

Misdetection Rate v/s Noise Variance 
(Hypothesis Test, 3 Cameras) 

&‘I/ 

3.0 
&ise &rian& (pi&j SC 

Figure 4: Misdetection rate of hypothesis test v/s 
noise variance. 

number of false alarms produced by the algorithm to 
the total number of incorrect correspondences input 
to the algorithm is the false alarm rate. An N-tuple 
of points which are actually projections of the same 
3-D point, but which is not declared as a correspon- 
dence by the point correspondence method, is a mis- 
detection. The ratio of the number of misdetections 
produced by the algorithm to the total number of true 
correspondences input to the algorithm is the misde- 
tection rate. In these experiments, 20 3-D points were 
randomly generated from the volume of model board 2 
of the RADIUS data set, and projected in 3 cameras. 
The projected points and camera parameters were per- 
turbed by Gaussian noise. The lists of points in each 
image were randomly shuffled and input to the point 
correspondence method, which does the Bayesian tri- 
angulation and hypothesis verification on each triple 
of points, accepting those that pass the test as valid 
correspondences. 10 such trials were done for each 
value of the variance of the noise in the image points. 

L , 

Hy$kesis T%% Thre%old (q%nontile of%ii2) 

Figure 5: Misdetection rate of point correspondence 
method v f s threshold. 

spondence method as a function of the threshold used 
in the hypothesis test, and Pig. 6 plots the false alarm 

False Alarm Rate v/s Threshold 
(Point Correspondence Algorithm) 

usis T%t Thrtsd (q%intile of’hiA2) 

Figure 6: False alarm rate of point correspondence 
method v/s threshold. 

rate again.st the threshold. The misdetection rate was 
somewhat, higher than predicted by the threshold of 
the hypothesis test. A possible reason for this is that 
the number of trials (10 different noise values for the 
perturbations in the point,s and the camera parame- 
ters) was not sufficient to give experimentally observed 
misdetection rates close to the predicted rate. Fig. 7 
plots misdetection rate v/t3 false alarm rate operating 
curves. 

5 Discussion and Conclusion 
In this paper, we gave a statistically sound formu- 

lation of the problems of d.eciding whether a given set 
of N points from iV perspective projection images is in 
correspondence, and triangulating these points to es- 
timate the 3-D point that gave rise to them. We posed 
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False Alarm Rate v/s Misdetection Rate 
Operating Curve 

J 
04 
Misdete&n Ra$ lo 

Figure 7: Misdetection rate v/s false alarm rate. 

the triangulation problem as a Bayesian maximum a 
posteriori estimation problem, assuming a Gaussian 
error model for the observed 2-D points and the cam- 
era parameters. We solved this problem by an itera- 
tive steepest descent method. Based on this Bayesian 
estimate of the triangulated 3-D point, we derived a 
statistical test for verifying the hypothesis that the 
given 2-D points were in correspondence. The thresh- 
old of this hypothesis test can be set to limit the mis- 
detection rate to a desired level. For finding corre- 
sponding points when multiple points in each of N 
images are given, we proposed a method that does this 
hypothesis verification test with a given misdetection 
rate threshold on each N-tuple of points having one 
point from each image, and accepts those N-tuples 
that pass the test as valid correspondences. We car- 
ried out extensive experiments to characterize the per- 
formance of the Bayesian triangulation and the point 
correspondence method. 

A drawback of this method of finding correspond- 
ing points is that it is computationally very slow. To 
reduce the number of tuples of points that have to be 
examined, a fast front-end to this algorithm should be 
developed for generating reasonable hypotheses. This 
can be done, for instance, by projecting each image 
point to its epipolar lines on the other images, and col- 
lecting points which lie “close” to each others’ epipolar 
lines. The Bayesian triangulation and hypothesis ver- 
ification will then be done only on these hypothesized 
correspondences. This front-end could also be any 
other method of finding corresponding points. The 
correspondences generated by this method can then 
be considered as hypotheses verified by the hypothe- 
sis test. 

The Bayesian triangulation and the point corre- 
spondence method are at present being used in con- 
junction with camera calibration [14], feature extrac- 
tion operators [15] 
tion algorithms [17 i 

161, and partial model reconstruc- 
in the RADIUS project for auto- 

matic site model construction. 
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