
Understanding Mathematical Expressions from Document Images

Jaekyu Ha & Robert M. Haralick Ihsin T. Phillips

Dept. of Electrical Engineering, FT-10
Unversity of Washington

Seattle, WA 98195, U.S.A.

Dept. of Computer Science
Seattle University

Seattle, WA 98122, U.S.A.

Abstract

This paper proposes a system that understands
mathemaiical ezpressions on binarized printed docu-
med images. The system first e&acts a set of ‘prim-
dives from the image. Each of the e&acted primi-
tives ti associated with a ‘bounding boz’ and its label.
Using the ai%ributes of ihe primitives, the system con-
structs an initial hierarchy. Construction of an initial
hierarchy includes merging a group of primitives into
a key word. iVezt, the system checks the validity of
the hierarchy according to conventional mathematical
syntaz rules. If any syntaz error is detected, the sys-
tem makes attempts to correct the errors. The modi&
cation step includes reconfiguring the initial hierarchy,
reviding the original image for possible missing prim-
itives, placing dummy primitives into missing spots in
the hierarchy, and so on. The corrected hierarchical
structure can be converted into the format for a par-
ticular publication system such as T@.

1 Introduction

We propose a system that understands mathemati-
cal expressions on binarized printed document images.
The input to the system is a mathematical expression
and the output of the system is a hierarchical repre-
sentation of the expression (see Section 3).

The system works as follows. Given a mathematical
expression in a binary image format, the system first
extracts a set of “primitives” from the image. Each of
the extracted primitives’is associated with a ‘bounding
box’ and its label. Using the attributes of the primi-
tives, the system constructs an initial hierarchy for the
expression. The initial hierarchy construction includes
merging a group of primitives into a key word. Next,
the system checks the validity of the hierarchy accord-
ing to conventional mathematical syntax rules. If any
syntax error is detected, the system makes attempts to
correct the errors. The modification step includes re-
configuring the initial hierarchy, revisiting the original

image for possible missing primitives, placing dummy
primitives into missing spots in the hierarchy, etc.

The system has the capability of checking the ‘sim-
ilarity’ of a pair of given hierarchical structures. This
capability can be an aid to the information retrieval
system for locating related technical documents in
databases.

The remaining of the paper is written as follows.
In the next section, we give our motivation for the
research and development of a math expression un-
derstanding system (MEUS) and a brief discussion of
some related works on the topic. A complete descrip-
tion of our system is given in section 3. Our summery
is given in section 4.

2 Motivation

Symbol recognition problems in document images
arise in many areas such as mathematical expressions,
line drawings, music scores, chemical graphs, and so
on. In general, recognition problems in these areas
are not easily tractable due to the following reasons:
Firstly, many of the symbols in nontext zones are rep-
resented not by alphanumeric symbols but by non-
alphanumeric symbols. Secondly, symbols in non-text
zones in documents have different spatial configura-
tions from those of ordinary texts. Due to these dif-
ficulties, the development of recognition systems for
the above areas has been put aside for the time being.
Unfortunately, modern optical character recognition
(OCR) systems can recognize only ordinary texts with
high accuracy. Though a few researches have been re-
ported in each of the above areas, unified approach
has not been attempted so far.

A system which can understand a mathematical ex-
pression on a printed document is obviously needed for
technical document understanding and information re-
trival systems. Today, many sophisticated algorithms
have been developed for OCR. The research on the
document page layout and structure analysis also has

956
O-8186-7128-9/95 $4.00 0 1995 IEEE

Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR '95)
0-8186-7128-9/95 $10.00 © 1995 IEEE

made a significant progress.
The main purpose of an OCR system is to capture

information on documents so that the information can
be stored and retrieved easily. Since there does not
exist an OCR engine that has in it the mathemat-
ical recognition capability, most OCR systems cap-
ture only the text information and leave all mathc
matical expressions unrecognized. Recently, the docu-
ment understanding and information retrieval research
community has recoginized that there are needs for a
mathematical expression understanding system. Since
scientific and technical documents, in general, contain
mathematical expressions which may give precise in-
formation about the documents, textual information
without the presence of the mathematical expressions
may not be meaningful for technical document under-
standing and information retrieval. Thus, a completed
computerized archival of technical documents is not
possible without a system which understands math-
ematical expressions. But the research on this topic
is still in its infancy. The earliest report on under-
standing mathematical expressions was pioneered by
Anderson (1968). The other reports can be found in
Chang (1970), Martin (1971), Okamoto & Miyazawa
(1992), and Lee & Lee (1993).

3 Math Expression Understanding
System (MEUS)

We give a brief description of the proposed MEUS
system. First, it extracts all primitives from a given
mathematical expression. Primitive extraction is per-
formed by applying a connected component labeling
algorithm to a given image which contains only a
mathematical expression. Since some symbols may
consist of two or more connected components, merg-
ing of some connected components is required to ob-
tain meaningful primitives. Second, it builds up a hi-
erarchical structure for that mathematical expression.
The structure can be conveniently represented using
trees. We will explain, later in detail, how such a
tree can be constructed with connected components.
A tree which represents the hierarchical structure of
a mathematical expression will be called an eqres-
sion free (ET). (This terminology might confuse some
readers since the usage of this terminology with a dif-
ferent meaning can be found in many data structures
text books). Third, it checks the mathematical syn-
tax and correct possible errors in the data structure.
Once we have built up the expression tree, it must be
checked whether the mathematical syntax is correct
among neighboring objects or not. If syntax errors
are found, the expression tree has to be modified by

spliting/merging nodes. Finally, we can convert the
corrected data structure into the format for a partic-
ular publicartion system such as TEX.

3.1 Object-Oriented Representations

Mathematical expressions are represented with var-
ious kinds of entities (primitive symbols). Such primi-
tive symbols include all possible alphabetic characters,
numerals, math operators and so on. In addtion, each
primitive element in mathematical expressions can be
attributed with its name and bounding box informa-
tion. The bounding box of each primitive symbol is
meant to be the smallest bounding box. The MEUS
will use this information to abstract the data structure
of symbols in a mathematical zone. Since all primi-
tives are equally important, they are the objects with
which we an.alyze and understand a given mathemat-
ical expression. Though extraction of such primitive
objects is the first step to understanding mathemati-
cal expressions, proper combination of some of those
primitives must be syntactically correct in a mathe-
matical sense.

The object-oriented representations of mathemat-
ical expressions consist of three parts: a set of ob-
jects, a set of operations and abstract data structures.
Objects can be categorized into two classes: primi-
tive and compound objects. A primitive object is one
which cannot be resolved any more. In mathematical
expressions, possible symbols are alphabetic charac-
ters (English;, Greek, Hebrew, ...), numerals (0, 1, 2,
3, 4, 5, 6, 7, 8, 9), math operators (computational
and relational.), and other symbols ((,), -+, do, . . v).
A compound1 object is a proper combination of prim-
itive objects.. For example, in the expression $$,
primitive objects are z, +, y, -, Z, 2, +, y and 2.
Any combination of these primitive objects cannot be
a compound object. In the object-oriented represen-
tation, an object is an entity whose behavior is char-
acterized by the actions that it suffers and that it re-
quires of other objects. Therefore, the first two of the
above primitive objects cannot be combined to form
a compound object because such combination cannot
characterize any action with other objects.

3.2 Construction of an Expression Tree

Trees are used in representing data structures that
have a hierac:hical, or nested, or one-to-many relation-
ship among their component elements. A tree can con-
tain any elements we choose. It is assumed that each
element contains information which describes some
objects, and that information is divided into two parts:
a key part and a data part. The key part has the

957

Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR '95)
0-8186-7128-9/95 $10.00 © 1995 IEEE

unique identification property: that is, there cannot
be two different elements with the same key value.

When we discuss trees, we will rarely refer to their
elements but will instead refer to their nodes. Each
node may contain one or more elements. Reference
to a node is therefore an implicit reference to the ele-
ments that it contains In addition to containing data
elements, a node may contain information about its re-
lationship woth other nodes. Exactly what additional
information it contains depends on how the tree is
implemented. It is customary to illustrate hierachi-
cal relationships among nodes with arrows connecting
pairs of related nodes. In the tree that we will dis-
cuss, the direction of an arrow always indicates the
decomposition of a compound object.

As long as mathematical expressions are concerned,
an abstract data structure can be implemented using
an expression tree. Properties of an expression tree
are summarized as

l Each node represents an (simple or compound)
object.

e The root node represents the entire mathematical
expression.

e The internal nodes represent compound objects,
each of which consists of two or more objects and
satisfy the syntax rule.

e The leave nodes represent simple (primitive) ob-
jects.

An expression tree is a very useful abstraction of a
mathematical expression. Given a whole math zone,
the corresponding expression tree represents abstract
data structure of the math zone. Combination of two
or more objects should be interrelated.

Construction of an expression tree will be per-
formed through two steps: top-down process (for an
initial expression tree) followed by bottom-up process
(for a final expression tree).

Top-down Process

Suppose that we are given all primitive objects and
their associated bounding boxes within a math zone.
The first step to the construction of an expression tree
is to do the structured zone division of the whole math
zone by the recursive X-Y cut process described in
[Ha et. al., 19941. During the X-Y cut process, we
divide the math zone by left-to-right vertical division
and then, we divide each subzone by top-to-bottom
horizontal division, and we repeat such division until
we reach primitive objects. Figure 1 illustrates how

Cl Cl 0

q oo q o
Figure 1: Top-down process for the initial expression
tree: the example expression is &-

to do the structured zone division to obtain an initial
expression tree for an example mathematical expres-
sion.

We propose an algorithm for construction of an ini-
tial expression tree as follows: Given the bounding
boxes of all primitive symbols within the entire math
zone,

1. resolve overlapping objects

2. divide the math (or sub-) zone by left-to-right
vertical division

3. divide the math (or sub-) zone by top-to-bottom
horizontal division

4. do steps I-3 recursively until no further division
is necessary

Notice that only primitives cannot be divided further.

Bottom-up Process

As you notice in Figure 1, construction of a proper
expression tree is not always guarranteed by such suc-
cessive zone divisions. It is because spatial relations
between neighboring objects are not considered in the
division. Therefore, it is natural to do the reverse pro-
cess while considering spatial relations between neigh-
boring objects. Possible spatial relations with neigh-
boring objects are above, below, left, right, above right,
above left, below right, below left: the last four are
declarative properties, for example, subscript and su-
perscript. Taking such spatial relations into consider-
ation, a coarse expression tree which has resulted from
the top-down zone division process has to be reformed
by spliting and/or merging internal and external nodes
(Figure 2). And such reformation is possible by check-
ing the mathematical syntax with neighboring objects
from leaves to the root of the initial expression tree.

958

Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR '95)
0-8186-7128-9/95 $10.00 © 1995 IEEE

nnn

Figure 2: Bottom-up process for the final expression
tree: the example expression is =+

i+ E+p *

3.3 Symbol Recognizer

Now, we explain construction of our symbol recog-
nizer, without which the MEUS cannot be complete.

Character recognition techniques associate a sym-
bolic identity with the image of a character. Two
main approaches to character recognition are the
statistical/decision-theoretic and structural/syntactic
approaches. Each of them have their merits and de-
merits. In the structural/syntactic approach, a pat-
tern is often represented as a string, a tree or a
graph of pattern primitives and their relations. The
decision-making process is, in general, a syntax anal-
ysis or parsing procedure. However, the use of for-
mal language-theoretic models to represent patterns
is the main drawback of the syntatic approach. Pat-
terns are natural entities which cannot strictly obey
the mathematical constraints set by the formal lan-
guage theory. In the statistical/decision-theoretic ap-
proach, a pattern is represented by a feature vector
and the decision-making process is essentially classifi-
cation in the partitioned feature space. Though sta-
tistical pattern recognition techniques cannot handle
the structural information about the interconnections
in complex patterns very well, it is considered par-
ticularly suitable for recognizing individual characters
since all statistical variations in features (patterns) are
considered by training feature vectors.

So, it would be a good choice to implement our ex-
perimental symbol recognizer based on the statistical
pattern recognition paradigm. For this purpose, large
samples will be collected from UW English Document
Image Database I, which was prepared by the Univer-
sity of Washington for researchers who are develop
ing algorithms for use in document analysis and opti-
cal character recognition. Feature vectors from such
large samples will be trained through neural networks

to partition the feature space. Feature extraction will
be performed1 by the morphological closing transfor-
mation described later in this document. Finally, a
binary decis:ion tree classifier will be constructed as
the prototype of our experimental symbol recognizer.

4 Discussions
This paper outlines our proposed mathematical ex-

pression understanding system. In the design of the
system, we adopt the object-oriented approach to de-
scribe the datta abstraction. A hiearchical structure of
mathematical expression is given as an expression tree.
There are many sub-problems needed to be solved in
the implementation of the system: how to preprocess
the document image, how to find math zones in the
image, how to evaluate the understanding system, and
so on. These sub problems will have to be solved to
automate the mathematical expression understanding
system.

References

PI

PI

PI

Fl

PI

PI

PI

PI

R.M. Haralick and L.G. Shapiro, Computer and
Robot Vision, Volume I, Addison-Wesley, 1992.

Henry S. Baird, Structured Document Image Anal-
ysis, Springer Verlag, 1992.

T. Akiya.ma and I. Masuda, “A Method of Doc-
ument Image Segmentation Based on Projec-
tion Profiles, Stroke Densities, and Circumscribed
Rectangles,” Trans. IECE Japan, vol. J69-D, no.
8, 1986, pp. 1187-1196.

R. H. Anderson, Syntaz-directed recognition of
handprinted 2-D mathematics, Ph.D. Dissertation,
Harvard IJniversity, Cambridge, MA, 1968.

S. K. Chang, “A method for the structural analysis
of 2-D mathematical expressions,” Inf. Sci., 2(3),
pp. 253-272, 1970.

W. A. Martin, “Computer input/output of math-
ematical expressions,‘” Proc. 2nd Symp. Symb. AZ-
gebraic Manipulation, Los Angeles, CA, 1971.

Hsi-Jian ILee and Min-Chou Lee, “Understand-
ing Mathematical Expressions in a Printed Docu-
ment,” Proc. the second ICDAR, Tsukuba, Japan,
pp. 502-565, 1993.

J. Ha, I.T. Phillips and R.M. Haralick, “Recur-
sive X-Y Cut using Bounding Boxes of Connected
Components,” ISL Report, Dept. Electrical Eng.,
University of Washington, 1994

Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR '95)
0-8186-7128-9/95 $10.00 © 1995 IEEE

