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ABSTRACT 
In this paper we describe a robust technique for solv­

ing the 3D to 2D perspective projection pose estimation 
problem given corresponding point sets. The technique has 
considerable advantage over the least squares technique in 
that twenty or thirty percent of the corresponding point 
pair matches can be completely incorrect and the robust 
technique is able to determine the correct pose almost as 
accurately as the least squares technique if the least squares 
technique were to be given only the seventy to eighty percent 
correctly matched corresponding point pairs. Evidently, 
when the least squares technique is given a corresponding 
point pair data set with twenty or thirty percent of the 
corresponding pairs being incorrect matches, the technique 
becomes one of least virtue in the sense that the answer 
determined by least squares becomes virtually meaningless. 
Since computer vision procedures for determining corre­
sponding point matches are notorious for being errorful, 
techniques for robust estimation of pose are important 
to have in the computer vision toolbox. Our conclusion 
about the robust technique are supported by hundreds of 
thousands of controlled experiments. 

1. The Pose Estimation Problem 

Let y1 , ••• , YN be the observed 3D model points in 
Euclidean 3-space. Let R be a rotation matrix and t be 
a translation vector. Let (unl,un2),n = 1, ... ,N be the 
corresponding 2D perspective projection of the 3D points. 

Then, the relationship between the 3D model points and 
the 2D perspective projection points is given by 

Unl = Jr1Yn + t1 
raYn + ta 

f r2Yn + t2 
Un2 = raYn + ta 

t = (t1, t2, ta)' 

R= U~) 
where f, the focal length, is the distance of the image plane 
in front of the origin which is the center of perspectivity. 
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In the 3D coordinate system of the camera, the perspective 
projections are given by 

where Unl = fvnl and Un2 = fvn2· 

The problem of pose estimation is to determine the 
unknown rotation matrix R and the translation vector 
t given the 3D model points and the corresponding 2D 
perspective projection points on the image plane. This 
problem is known as the exterior orientation problem in the 
photogrammetry literature. The dissertation by Szczepan­
ski (1958) surveys nearly 80 different solutions beginning 
with one given by Schrieber of Karlsruhe in the year 1879. 
The first robust solution in the computer vision literature 
was Fischler and Bolles (1981). Wrobel and Klemm (1984) 
discuss the fact that there are configurations of points for 
which the solution is unstable. 

2. The Iterative Least Squares Solution 

This section describes iterative procedures for determin­
ing a least squares solution for R and t. In the following 
subsections, we use the superscript or subscript k to denote 
the values in the k1h iteration step. Let 

(
Xnl) (Ynl) Xn = Xn2 = R Yn2 + t 
Xna Yna 

be the rotated and translated point of Yn· Let dn be the 
estimated depth of each point Xn relative to the camera 
coordinate system. 

2.1 Method 1 

One iterative procedure for determining a least squares 
solution for R and t is 

(1) Choose initial reasonable values for the depth d~ of each 
point. The initial values could, for example, be the same 
constant for each point, the constant representing an 
initial guess of how far the object is from the perspective 
center. 



(2) Iterate. Suppose the depth values d~, n = 1, ... , N are 
given. Define the depth values for the ( k + 1 )'h iteration 
by: 

( 2.1) Find the rotation matrix Rk and the translation 
vector tk which minimizes 

N 

f~ =I: Wn!!RkYn + tk- d~vnl! 2 

n=l 

where the {wn I n = 1, ... , N} are non-negative 
weights reflecting the goodness of the observations. 
Rk and tk constitute the solution to the 3D-3D pose 
estimation problem (Arun, 1987; Haralick et al., 
1987). 

(2.2) Define 

where 

and 
N 

Dy = I: llYn - Yl! 2 

n=l 
N 

D., = I: l!xn- xl!2 
n=l 

A typical convergence characteristic of the computed 
depth values is shown in Figure 4. This experiment is 

performed in a noise free environment with N = 10. The 
depth values of the first five points are plotted against the 
iteration number. The correct depth values are 33.27, 34.98, 
38.81, 40.39, and 42.68. 
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Figure 1 illustrates the convergence characteristics of 
Method 1. Convergence is achieved in about ten iterations. 
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2.2 Method 2 

Replace the step (2.2) of Method 1 with (2.4). 

(2.4) Define d~+ 1 by 

dk+l = (RkYn + tk)'vn 
n V~Vn 

It can be shown that with this technique the residual 
squared error f~+l ::; Ei. 

N 

Ei+l =I: Wni!Rk+lYn + tk+l- d~+ 1 vnl!2 
n=l 
N 

::; I: Wni!RkYn + tk- d~+1 vnl! 2 
n=l 

N 

=I: Wn!l(x~- d~vn) + (d~vn- d~+1 vn)ll 2 

n=l 
N 

=I: Wn [l!(x~- d~vn)W + 2(x~- d~vn)'(d~- d~+l )vn 
n=l 

+ (d~ -d~+1 ) 2 I!Vnll 2 

N 

= f~ + I: Wn( d~ - d~+l) [2( X~ - d~ Vn)'vn 
n=l 

+ ( d~ - d~+l )l!vnll2 

N 

= Ei +I: w,.( d~- d~+ 1 ) [2x~' Vn- 2d~l!vnl! 2 

n=l 

+ (d~- d~+ 1 )!1vnW 
N 

= f~ +I: Wn( d~- d~+l) [2x~' Vn- ( d~- d~+l )llvnll2
] 

n=l 

Consider the terms in the bracket as a function of d~+ 1 • 

The function reaches a minimum when 

The resulting value of the terms in the bracket at the 
minimum is 

k Xn Vn 
( 

k' )2 
- dn- l!vnl!2 

This value cannot be positive. Since Wnl!vnl! 2 > 0, when 

each term in the summation is not positive and from this 
we can infer 



A typical convergence characteristic of the computed 
depth values is shown in Figure 5. This experiment is 
performed in a noise free environment with N = 10. The 
depth values of the first five points are plotted against the 
iteration number. Notice how the convergence is monotonic. 
The correct depth values are 33.27, 34.98, 38.81, 40.39, and 
42.68. 
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F. = u _ f r2Yn + t2 
n2 n2 rsYn + ta 

These equations can be linearized by Newton's first order 
approximation as follows: 

where 

Fnl ~ F~l + Vnl + bnlll::.</> + bn12!::.8 + bnlsl::.'I/J 

+ bn14l::,.tl + bn15!::,. t2 + bnlsl::.ts 

Fn2 ~ F~2 + Vn2 + bn21!::.</> + bn22!::.8 + bn23l::,.'I/J 

+ bn24l::,.tl + bn25!::,. t2 + bn26l::.ts 

b (
8Fnl)o 

nil = """"l'Jq} ' b (
8Fnl)o 

ni2= BO 

b (8Fn1)
0 

ni3 = 87/J ' b (
8Fnl)o 

ni4 = 8tl 

b (8Fn1)
0 

ni5 = ""7Ji; ' b (8Fn1)
0 

ni6 = 8ts 

for i = 1, 2, where the superscript 0 implies that the 
IB function values are computed with the approximations 

5B lOB 15B 2BB 

!TEPA liON NINER 

Figure 2 illustrates the convergence characteristics of 
Method 2. Convergence has been observed to be monotonic 
and is achieved in a few hundered iterations. 

2.3 Least Squares Adjustment by Linearization 

Let </>, 8, and '1/J be the three angles that define the 
rotation matrix R such that 

R = R.(¢)R,(O)R,(,P) 

( 

cosOcos</J cosOsin.P -sinO ) 
= -cos¢sin1/•+sin¢sin0cos¢ cos¢cost/J+sin¢sinllsin.P sin¢cos8 

sin¢sin .p +cos ¢sin Ocos .P -sin ¢cos .P + cos¢sin8sint,'• cos¢cos0 

As there always exists random errors in the measure­
ment of the image coordinates, let 

Un;=U~;+Vn;, i=1,2, n=l, ... ,N 

where ( u~1 , u~2 ) are the measured image points and ( Vnt, Vn2) 
are the corrections needed to account for the random error 
in the measured coordinates. Similarly, let 

</>= <f>O+!::,.<f> 

8 = 8° + !::.8 

'1/J= ¢0 +!::.¢ 

t;=t~+l::.t;, i=1,2,3 

where </>0 , ()0 , ¢ 0 , t~, tg and tg are some approximations, and 
t::.¢>,t::.8,t::.¢,!::.tt,l::.t2 and t::.ts are their corresponding cor­
rections. We assume that the corrections t::.'s are small 
and the collinearity equations are linear over the small 
intervals between the true values of these parameters and 
their corresponding approximation. 

Let 
F. _ u f rtYn + t1 

nl - nl - raYn + ts 
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( <f>0 , 8°, 'I/J0 , t~, ~' tg). In matrix notation, the linearized equa­
tion can be expressed as 

( 

blll 
b121 

bNll 
bN21 

or simply 

b112 
b122 

bN12 
bN22 

bus bl14 bus b,..) (!~) = 
b123 b124 b125 b126 

bN13 bN14 bN15 bN16 t::.t2 bN23 bN24 bN25 bN26 l::.ts 

( 
-F11 ) ( Vn ) -F12 Vt2 

. . . - . . . 
-FJ11 VNI 

-FJ12 VN2 

Bt::.=F-v 

This equation can be solved using the singular value de­
composition method. The computed corrections !::. = 

(!::.</>, !::.8, !::.¢, t::.t1, t::.t2 , t::.t3)' from one iteration are used to 
update the parameters A = ( </>0 , 8°, ¢ 0 , t~, tg, tg)' and then 
these updated parameters are used as approximations in 
the next iteration. The whole iteration process is repeated 
until the corrections becomes negligibly small. 

2.4 Robust M-Estimation 

This section describes some robust techniques used in 
nonlinear regression problems. In particular, it can be used 
to solve robustly the equation Bt::. = F -v which results from 
the linearization of the original pose estimation problem. 
Any estimate Tk defined by a minimization problem of the 
form. 

or by an implicit equation 

n 

L¢(x;-Tk)=O 
i=O 



where p is an arbitrary non-negative function (called object 
function), 

8 
1/J(x- Tk) = ar;;P(x- Tk) 

is called an M-estimate. This last equation can be written 
equivalently as 

n 

L::w;(x;-Tk)=O 
i=O 

where 

this gives a formal representation of Tk as a weighted mean 

n 

LWiXi 

Tk=~ 
n 

L::w; 
i=l 

with weights depending on the sample (Huber, 1981). It is 
known that M-estimators minimize objective functions more 
general than the familiar sum of squared residuals associated 
with the sample mean. Among many forms of functions p 

and¢ proposed in the literature, Huber's and Tukey's form 
is investigated in the experiments described in this paper. 
Huber derived the following robust p and¢. 

(x) _ { 0.5x 2
, if lxl::; a; 

p - aixi- 0.5a2 , otherwise. 

1/J(x) = x, if lxl::; a; { 

-a, if x < -a; 

a, if x >a. 

Tukey's ¢ function can be expressed as 

if lxl::; a; 
if lxl >a. 

where a is a tuning constant, 1.5 for Huber's and 6 for 
Tukey's. 

The nonlinear regression problem can be formulated 
as follows. Let J; : Em -+ E, i = 1, ... , n be functions 
that map m-dimensional space into a real line. Let 0 = 
(01 , 02 , ••• ,Om)' E Em be them-dimensional unknown vector 
to be estimated. The solution to the set of n equations 

J;(O)=y;, i=1, ... ,n 

which minimizes 

can be found in several different ways. To create a scale 
invariant version of theM-estimator, the robust estimate of 
scale such as the following is introduced. 

S = median;ly;- f;(O)i 
0.6745 
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where 0.6745 is one half of the interquantile range of the 
Gaussian normal distribution N(O, 1). Here we take the 
median of the nonzero deviations only because, with large 
m, too many residuals can equal zero (Hogg, 1979). 

In robust estimation, the estimates are obtained only 
after an iterative process because the estimates do not have 
closed forms. Two such iterative methods are presented 
here that can solve the minimization problem stated above 
(Huber, 1981 ). 

2.4.1 Modified Residual Method 

In this method, the residuals are modified by a proper 
¢ function before the least squares problem is solved. The 
iterative procedure to determine 0 is 

(1) Choose an initial approximation 0°. 

(2) Iterate. Given the estimation 0k in step k, compute the 
solution in the (k + 1)th step as follows. 

(2.1) Compute the modified residuals r; for i = 1, ... , n. 

where 
r; = y;- J;(Ok) 

Sk = ~~~nlr;i/0.6745 
(2.2) Solve the least squars problem X 6 = r•. where 

X= [x;i] is the gradient matrix. 

The solution for this equation can be found using 
the standard least squares method. If the singular 
value decomposition of the matrix X is X= U1E1 V', 
then the solution is 1; = VE1 1U{r*. 

(2.3) Set 0k+ 1 = 0k +h. 

2.4.2 Modified Weights Method 

Taking the derivative of the objective function p with 
respect to 0 and set it to zero, we get 

In the standard weighted form 

where 

8J;(O) _ 
~w;r;ao;--0 

Therefore, the iterative procedure to determine 0 is 

(1) Choose an initial approximation 0°. 



(2) Iterate. Given ()k at kth step, compute ()Hl as follows. 

(2.1) Solve 
PX8=Pr 

where 

P= (Vw1 ) 
VwN 

(2.2) If his the solution in step (2.1), then set 

()Hl = ()k +h 

3. Experimental Results 

To measure the performance of the pose estimation al­
gorithms, several hundred thousand controlled experiments 
were performed. This section describes how the controlled 
experiments are constructed and shows the results from 
those experiments. The results are presented as graphs 
where the sum of errors of the three rotation angles, </1, B, .,P, 
is plotted against various control parameters such as the 
signal to noise ratio (SNR), the number of matched points, 
or the number of outliers, which will be defined later. 

3.1 Data Set Generation 

A set of 3D model points, y; = (yil, y;2, y;a)', i = 1, ... ,N, 
are generated within a box defined by 

Yil, Y;2, Y;a E [0, 10] 

That is, each of the three coordinates are independent ran­
dom variables each of them uniformly distributed between 
0 and 10. Next, three rotation angles are selected from an 
interval [20, 70] and the translation vector t = ( t1, t2, t3) is 
also generated such that t1 and t 2 are uniformly distributed 
within an interval [5, 15] and t 3 is within [20, 50]. Having 
these transformation parameters, the 3D model points are 
rotated and translated in the 3D space forming a set of 
3D points x;,i = 1, ... ,N. At this stage, independent 
identically distributed Gaussian noise N(O,a) is added to 
all three coordinates of the transformed points x;. To test 
the robustness of the algorithms, some fraction of the 3D 
points, x;, are replaced with randomly generated 3D points, 
z; = (zil,Zi2,Z;a)',i = 1, ... ,M. M is the number of the 
replaced 3D points and 

Zil = t1 + V;1 

Zi2 = t2 + V;2 

where vil, v;2, i = 1, ... , Mare independent random variables 
uniformly distributed within an interval [-5, 5]. These 
random points, z;, are called outliers in our experiments. 
To get the matching set of 2D points, x;, i = 1, ... , N are 
perspectively projected onto the image plane. Given the 3D 
model points and the corresponding 2D points on the image 
plane, each algorithm is applied to find the three rotation 
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angles and the translation vector. 

One can notice from the above description that there 
are three parameters we can control in each experiment. 
They are the number of 3D model points N, the standard 
deviation a of the Gaussian noise, and the number of outliers 
M. In the experimental result, we use SNR and the percent 
of outliers PO, in place of a and M respectively, where 

3.2 Results 

SNR = 20 log 10 db 
a 

M 
PO= N X 100% 

For each parameter setting, (N, SNR, PO), 1000 ex­
periments are performed to get a reasonable estimate of 
the performance of the algorithms. For each algorithm, we 
performed three different sets of experiments (E1, E2, and 
E3), as follows. 

E1: Set N = 20. Estimate the sum of the three rotation 
angle errors against SNR (20db to 80db in 10db step) 
for different PO (0% to 20% in 5% step). 

E2: Set SNR = 40db. Estimate the sum of the three rotation 
angle errors against PO (0% to 20% in 5% step) for 
different N (10 to 50 by steps of 10). 

E3: Set PO = 10%. Estimate the sum of the three rotation 
angle errors against SNR (20db to 80db in 10db step) 
for different N (10 to 50 by steps of 10). 

Figure 6 shows the results of E1, E2, and E3 performed 
for the initial approximation algorithm using iterative least 
squares solution (A1), Method 2 of section 2.2. Initial 
estimates for the approximating depth are set to 10 in 
all experiments. For the linearized algorithms, the initial 
estimate of the three rotation angles are selected randomly 
within 15 degrees of the true angles. The initial approximate 
of the translation vector is selected randomly within ±10 of 
the true translation vector. Figures 7 and 8 show the result 
of the least squares adjustment by linearization algorithm 
(A2), algorithm in section 2.3, and the robust M-estimate 
algorithm (A3), modified weights algorithm in section 2.4.2, 
respectively. Figure 9 compares the three algorithms A1, 
A2, and A3 in the experiment set El. Figures 10 and 
11 compare the three algorithms in the experiment set E2 
and E3 respectively. One more experiment compares the 
algorithms A2 and A3. With N = 20 and PO = 10%, 
algorithms A2 and A3 are applied for SNR from 20db to 
40db in a step of 10db, and the algorithm A2 is applied for 
N = 18, PO= 0% and SNR from 20db to 40db in a step of 
10db. This compares the efficiency of the robust technique 
against the non-robust technique in the case where the non­
robust technique uses only the non-outlier points given to 

the robust technique. Figure 12 shows the result of this 
experiment. 
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Figure 3 illustrates the performance characteristics for 
the initial approximation solution (Method 2). 

AHI.II.f ERROR {NOHROIIUST) MOLE EIUWR AN(.Lf [MLJR .. .. .. . \ IJJT • Be 

• '(wt • tt5 

"' t 'Jo_llll•lB "' "' .. .. 
38 38 38 

28 21 " 
Ill " " 

"' 30 •• "' .. 18 "' .eo .I ·" .2 "' "' .. "' "" " "' 
StiK(db), ltSNft£•28 OIJILI£R, SHK•4i:kil SHH~Ob), 
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the least squares adjust by linearization. 
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Figure 5 illustrates the performance characteristics of 
the robust M-estimate algorithm. 
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Figure 6 illustrates the performance charcteristics of 
angle error as a function of signal to noise ratio for the 
initial approximation method, the non-robust linearized 
least squares adjustment, and the robuts M-estimate. 
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Figure 7 illustrates the performance characteristics of 
angle error versus fraction of outliers for the initial approx­
imation method, the linearized least squares adjustment, 
and the robust M-estimate. 
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Figure 8 illustrates the performance characteristics of 
angle error versus fraction of outliers for the initial approx­
imation method, the linearized least squares adjustment, 
and the robust M-estimate. 
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Figure 9 illustrates the efficiency of the robust tech­
nique operating on a data set of 20 points, 18 points hav­
ing Gaussian noise and 2 outliers, against the non-robust 
technique operating on a data set having 18 points having 

Gaussian noise. 
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