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Abstract

We present an approach to estimating high dimensional
discrete probability distributions with decomposable graph-
ical models. Starting with the independence assumption we
add edges and thus gradually increase the complexity of our
model. Bounded by the Minimum Description Length prin-
ciple we are able to produce highly accurate models without
overfitting. We discuss the properties and benefits of this ap-
proach in an experimental evaluation and compare it to the
well studied Chow-Liu algorithm.

1 Introduction

In this paper, we discuss the problem of estimating high
dimensional discrete probability distributions. A problem
that arises in a wide variety of different research areas such
as computer vision, text mining or information retrieval.
These applications require to estimate high dimensional
probability distributions from training data. It is generally
not possible to estimate the joint distribution directly (even
with a large training set), since the number of distinct ob-
servations grows exponentially with the number of dimen-
sions. This problem can be solved by exploiting (condi-
tional) independence relations within the population of in-
terest. In recent years graphical models have been an ac-
tive area of research. They combine graph and probability
theory and allow to model multivariate domains. A graph-
ical model consists of a graph and a list of probability ta-
bles. The graph encodes the (conditional) independences
between the random variables while the probability tables
store marginal probability distributions that are necessary
to express the joint distribution (see section 2 for details).
In this paper we discuss undirected discrete graphical mod-
els. To learn a graphical model in general the graph and the
probabilities have to be learned from data. To learn the op-
timal structure of the graph is computationally intractable

in general due to the high number of possible graphs. Thus
greedy methods are widely used. One tractable subclass
of graphical models are dependence trees, for which Chow
and Liu [3] developed an optimal algorithm. The Chow-Liu
algorithm has been extended in numerous ways (see for ex-
ample [11], [5]). The remainder of the paper is organized
as follows. In section 2 we discuss decomposable graphical
models and describe their relationship to the Chow-Liu al-
gorithm. In section 3 we describe the greedy forward selec-
tion procedure that we used in our experiments and a stop-
ping criterion based on the Minimum Description Length
principle. Section 4 describes experimental results and sec-
tion 5 concludes with future research directions.

2 Decomposable Graphical Models

First, we give the notation that is used throughout the pa-
per. � � ���� � � � � ��� denotes the vector of discrete ran-
dom variables. � ��� denotes the joint probability distribu-
tion of the variables in �. ��, where � � ��� � � � � ��, is
a subset of� and � ���� denotes the marginal probability
distribution of that subset. A graphical model � � �����
consists of an undirected graph � and a list of marginal
probability distributions �. The graph � � ����� is com-
posed of a set of vertices� and an edge set �. The vertices
of the graph correspond to the random variables�, thus we
will use them interchangeably throughout the paper. Gener-
ally, we are given a dataset � � ���� � � � � �� � drawn from
an unknown population, for which we wish to estimate the
joint probability distribution. The graph � encodes the de-
pendences between the variables. The Markov properties
form the theoretical foundation for this encoding (see [8]
for a detailed discussion). Informally, they can be described
as follows: If there is an edge between two vertices the two
variables are dependent; if a there is path between two vari-
ables then the two variables are conditionally independent
given the other variables. If there is no path between two
variable they are independent. In this paper we limit our-
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Figure 1. Dependence graphs and their junc-
tion trees.

selves to the subclass of decomposable graphical models
[8]. A graphical model is decomposable if its graph is tri-
angulated:

Definition 1 A graph G = (V, E) is called triangulated iff
all cycles of ������ � � have a chord. A chord is an edge
in the graph that connects two non-consecutive edges of the
cycle.

If a graph is triangulated it permits the derivation of a sec-
ondary graphical structure [8]:

Definition 2 Let � be the set of maximal cliques of the
graph � and � be a tree with the elements of � as its ver-
tices. Then � is called a junction tree iff the intersection
�� � �� is contained in all nodes on the path between ��

and ��, for all possible pairs ����� ������� �� � ��.

Each edge ���� ��� in the junction tree that connects the
two cliques �� and �� has the intersection ��� � �� � ��

associated with it. ��� is called a separator. The junc-
tion tree of a graphical model serves a number of important
purposes. It provides the terms necessary to express the
joint probability distribution as a function of lower order
marginals, it is used to perform exact inference and it per-
mits efficient sampling [6]. The list of separators of a junc-
tion tree are always unique, however the graphical structure
of the tree is not. Figure 1 (taken from [8]) shows a graph
and the two possible junction trees that can be derived from
the graph.
The (conditional) independence assumptions that are en-
coded in the model graph � allow to express the joint prob-
ability as a product of lower order marginals:

	����� �

�
���

	������
���

	�����
(1)

where � is list of cliques of the graph and 	 is the list of
separators contained in the junction tree. The closed form
expression for the joint probability only exists if the graph
is decomposable (and therefore a junction tree exists). In
the case of a non-decomposable graph a computationally
expensive procedure called iterative proportional fitting has
to be used to find such a factorization.

For a given dataset
 we are generally interested in find-
ing the model that includes all the (conditional) indepen-
dences that govern the population from which
 was drawn.

Given a model we can estimate the marginal distributions
(defined by the cliques and separators) from the dataset.
The resulting joint distribution 	����� is an approxima-
tion of the joint distribution 	 ���. In order to measure the
goodness of the approximation the Kullback-Leibler (KL)
divergence is used:


�	� 	��� �
�

���

	 ��� ����
	 ���

	�����
� (2)

The KL divergence is not a metric (it does not satisfy the tri-
angle inequality) and has the property that 
�	� 	��� � �.
It is only zero if the two probability distributions are equal.
The Chow-Liu algorithm [3] is an optimal algorithm to find
dependence trees, a subclass of graphical models where the
graph � is a tree and therefore the joint distribution can be
expressed as a product of second order marginals. It has
been shown that the Chow-Liu algorithm guarantees to find
the optimal tree with respect to the KL divergence. Depen-
dence trees have been widely used since their introduction
in the late 60’s. See [3] and [11] for details and variations of
the Chow-Liu algorithm. The complexity of the Chow-Liu
algorithm is ��
�� where 
 is the number of variables.

3 Model Selection in High Dimensions

The objective of model selection is to find a model that
minimizes the KL Divergence while maintaining a simple
model; i.e. one with as few edges as possible. To find a opti-
mal model one would have to search the entire model space.
Since a brute force search is intractable, greedy algorithms
are widely used. Deshpande et al. [4] give a theoretical de-
scription of an algorithm for efficient stepwise selection in
decomposable models. The algorithm allows the efficient
enumeration of all edges that can be added to a decompos-
able graph while maintaining decomposability. Based on
this procedure an algorithm for efficient foward selection
can be derived, which we will refer to as the Efficient For-
ward Selection (EFS) algorithm in the remaining part of the
paper. For details on our implementation of the algorithm
see [1]. Forward selection starts with the independence as-
sumption (a graph with no edges) and repeatedly adds edges
until the model fits the data according to a stopping criterion
(see below). Malvestuto [10] shows that the KL divergence
can be rewritten as:


�	� 	��� � ���	 � ���
�

where��	 � �
�

���
� ���

�
	 ��� is the entropy of 	 and

��
� is the model entropy which is defined as:

��
� �
�

���

��	���
�

���

��	��
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Like in (1) � denotes list of cliques of the graph and � is
the list of separators. Thus, to minimize the KL divergence
in our model search only the model entropy ���� needs
to be minimized. The algorithm in [4] shows that the de-
crease in model entropy can be calculated individually for
each edge that is eligible for addition. At each step in the
algorithm we have a list of edges that can be added to the de-
composable model and for each edge we know the quantity
by which the model entropy will decrease if that edge was
added. Our implementation of the EFS algorithms follows
a greedy strategy by always choosing the edge, which will
decreases the model entropy the most. The complexity of
the EFS algorithm is ������ where � is the total number
of edges added by search procedure. To avoid overfitting
we use a score based on the minimum description length
(MDL) principle [7] as our stopping criterion. The descrip-
tion length associated with a model estimates the expected
number of bits necessary to optimally encode the dataset
given the model. The model itself also has to be encoded
since the data could not be decoded without it. The MDL
balances between model fit and model complexity. The de-
scription length is composed of the number of bits neces-
sary to encode the model graph �, the marginal probability
distributions � associated with the cliques of the graph and
the observed dataset�. Since we are not interested in creat-
ing the actual code but merely the code length we can omit
terms that are constant for all candidate models. To encode
the graph it is sufficient to encode the cliques of the graph:

������� �

����

���

������ � �� ������

where � � � is the number of cliques, �� is the size of the
��� clique. [6] shows that (1) can be rewritten in terms of
conditional probabilities

�
��� �������
	�� �	��	�

� � �	��
�


�

���

� �	�����
�	��

�

Thus, the description length of the probability tables is:

����
� � 
���	��
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��

���

�	��
���	�����

� � ��	

where 
 is the number of bits necessary to encode a sin-
gle parameter and �	�� is the size of the subspace defined
by the subset of features �� . To estimate the description
length of the data we can use the model entropy:

������ �� 	����

The total description length is then the sum of �������,
����
� and ������. We keep adding edges to our candi-
date model as long as the description length decreases. This
definition of the description length was inspired by [7] and
[6].

4 Experimental Evaluation

4.1 Synthetic Data

In the first round of experiments we sample a dataset
from a known graphical model. The model is created at
random with 
� vertices, 167 edges, an average clique size
of ��
� and a maximum clique size of �. Figure 2 shows the
percentage of edges that were present in the original graph
but not found by the EFS algorithm. The error decreases as
the size of the training sample increases. For each size of
the training set we ran the learning procedure �� times and
averaged over the error.

4.2 Classifying Handwritten Digits

In another round of experiments we used the EFS al-
gorithm to recognize handwritten digits from the MNIST
database [9]. This database consists of �� 
 �� grayscale
images. The database contains a training set with 60000
images and a test set with 10000 images. Since we are pri-
marily interested in estimating high dimensional probability
distributions we did minimal preprocessing: Binary images
were created by thresholding using a global threshold and
we derived two binary datasets: a ����dimensional dataset
of the original images and a ��
�dimensional dataset of the
images scaled to �
 
 �
. For both datasets we estimated
the class conditional probabilities using the EFS algorithm.
During classification we picked the class that had the high-
est probability given the test image. We repeated the same
procedure for the Chow-Liu algorithm. The lowest error
rates were obtained when the threshold was high. There-
fore we averaged over thresholds ranging from ��� to ���.
The following table shows the average and best error rates
for the different learning procedures and datasets:

Algorithm/Size Best Average
EFS/400 ����� �����
Chow Liu/400 ���
� �����
EFS/256 ���
� �����
Chow Liu/256 ���
� �����

The error rate is somewhat larger than the ones reported
in [2] and [9]. We attribute this to the fact that we did no
preprocessing or feature extraction. Bach and Jordan show
in [2] the insensitivity of graphical models to missing pix-
els. For future research we plan to investigate the effect of
noise (randomly added pixels) on the performance of this
approach.

4.3 Splice Dataset

The Splice Dataset [11] contains a dataset from the area
of molecular biology. It contains a total of 64 ternary fea-
tures and each observation belongs to one of three classes.
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Figure 2. Percentage of unrecognized edges
over training set size (in thousands)

As described in [11] only a small number of features are
necessary for classification. To find these features we con-
verted the class label into an additional variable and used
this augmented dataset to learn a graphical model and a
Chow-Liu tree. According to the Markov properties only
the variables connected to the “class variable” are signifi-
cant for classification. We extracted those features and the
reduced dataset was classified. Figure 3 shows the error rate
for classification with a graphical model, a Chow-Liu tree,
after feature extraction using the graphical model and after
feature extraction using the Chow-Liu algorithm. While the
EFS and Chow-Liu algorithms perform almost equally well
in the full space, there is a clear advantage of the graphical
model over the Chow-Liu tree when it comes to automated
feature selection. This is due to the fact that Chow-Liu al-
gorithm is limited to finding trees and is therefore not able
to detect all dependences simultanously.

5 Conclusions and Future Work

This paper makes a number of contributions. To our
knowledge it is the first report on a practical implemen-
tation of the EFS algorithm described theoretically in [4].
We showed by experimental evaluation how this approach
can be used to estimate high dimensional probability dis-
tributions quite accurately and how it can be used to per-
form automatic feature selection. The proposed stopping
criterion based on the MDL guarantees a good balance be-
tween model complexity and accuracy. A desirable trait
it shares with the Chow-Liu algorithm. The presented ap-
proach suggests a large number of possible extensions. Our
approach does not account for uncertainty about the model
itself. This can be addressed by using mixtures of graphical
models (similar to the mixtures of trees in [11]). We are also
planing to investigate the impact of different choices for the
MDL, the sensitivity to noise and the effectiveness of search
strategies other than greedy search.
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