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Abstract

In this paper we discuss a hybrid technique for piecewise-
smooth optical flow estimation. We first pose optical flow
estimation as a gradient-based local regression problem
and solve it under a high-breakdown robust criterion. Then
taking the output from the first step as the initial guess,
we recast the problem in a robust matching-based global
optimization framework. We have developed novel fast-
converging deterministic algorithms for both optimization
problems and incorporated a hierarchical scheme to han-
dle large motions. This technique inherits the good sub-
pixel accuracy from the local gradient approach and the in-
sensitivity to local perturbation and derivative quality from
the global matching approach, and it overcomes the limita-
tions of both. Significant advantages over competing tech-
niques are demonstrated on various standard synthetic and
real image sequences.

1. Introduction
Optical flow is a measure of 2D image velocity. It is of tra-
ditional importance in computer vision for 3D motion and
structure analysis [10] and also receives increasing interest
in video coding and computer graphics [14]. The demand
on accuracy and efficiency in many real-world applications
keeps optical flow estimation an active field of research.

Usually optical flow estimation techniques are either
matching-based or gradient-based, and use either local or
global optimization schemes. We have developed a hybrid
technique which incorporates all of the above. It is com-
posed of two steps, the first being a gradient-based local
regression method, and the second being a matching-based
global optimization method with the output from the first
step as its initial guess. Hierarchical processing is adopted
to handle large motions [3].

The gradient-based local regression method uses a
high-breakdown robust criterion, namely Least Median of
Squares (LMS) or Least Trimmed Squares (LTS) [13], to
solve the optical flow constraint (Eq. 3) [11]. We approx-
imate the criterion by a novel deterministic iterative algo-

rithm whose complexity adapts to local outlier contamina-
tions. It converges faster and achieves more stable accuracy
than the random sampling algorithm previously used in op-
tical flow estimation [1, 12, 15, 19].

The precision of gradient-based techniques saturates
near motion boundaries, where the quality of derivatives be-
comes extremely poor. The smoothing effect of the hierar-
chical process even worsens the situation. To achieve high
boundary fidelity, we use the result from the gradient-based
step as the initial guess and minimize a robust matching-
based global energy. The energy is designed so that each
flow vector minimizes the forward or backward warping er-
ror and maintain smoothness with the majority of its neigh-
bors. The high-quality initialization enables the use of a
fast-converging deterministic optimization procedure which
results in good sub-pixel accuracy.

The following section provides a review of optical
flow estimation research and motivates our study. Sec-
tion 3 briefly describes the gradient-based local regression
method, and Section 4 explains the matching-based global
optimization method. Experimental results on various syn-
thetic and real image sequences and comparison with other
techniques are given in Section 5. Finally Section 6 con-
cludes our work and points out future work directions.

2. Optical Flow Estimation
2.1. Brightness Conservation Constraint
The fundamental assumption enabling optical flow estima-
tion is brightness conservation, i.e.,

I(x; y; t) = I(x+ u�t; y + v�t; t+�t); (1)

where V = (u; v)0 is the optical flow vector. Depending
on what variation of Eq.(1) is used, optical flow estimation
methods are classified into two main categories, matching-
based and gradient-based 1. Matching-based methods make
direct use of Eq.(1). They can handle large motions and

1Frequency/phase-based methods are close to frequency-domain equiv-
alents of the above two methods [2].
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avoid tricky derivative computation, but straightforward im-
plementations usually suffer from poor sub-pixel accuracy
[2]. Gradient based methods use the linear approximation
of Eq. 1

Ixvx + Iyvy + It = 0; (2)

a.k.a the Optical Flow Constraint Equation (OFCE) [9],
where (Ix; Iy; It)0 is the spatiotemporal image intensity gra-
dient. They have been the most popular because of the rel-
atively low complexity and good accuracy, but they meet
difficulties with large motions and derivative evaluation.

2.2. Flow Smoothness Constraint
For each pixel the brightness constraint (Eq.1 or 2) forms
one constraint on (u; v). Additional constraints come from
the flow field smoothness assumption, which means neigh-
boring pixels experience consistent motion. Based on how
smoothness is imposed, approaches are further divided into
two types, local parametric and global optimization. Lo-
cal parametric methods assume that within a certain neigh-
borhood, which could be as large as the entire image, the
flow field is described by a parametric model [3], with the
simplest and most popular model being piecewise constant.
Their accuracy and efficiency are among the best according
to various comparative studies [2, 7], but they degrade or
fail when local information becomes insufficient or unreli-
able. Global optimization methods cast optical flow estima-
tion in a regularization framework—every vector satisfies
its brightness constraint while maintaining coherence with
its neighbors [9]. Such approaches are less sensitive to lo-
cal constraint quality, but existing techniques of this type,
even those using robust estimators [4], tend to oversmooth
the flow field.

Most traditional techniques assume only one of these ap-
proaches. A detailed survey and comparison of these tech-
niques is given by Barron et al. [2].

2.3. Robust Methods
In fact many existing techniques are able to produce rea-
sonably good results when their assumptions approximately
hold, and the real challenge in motion estimation is to
achieve high robustness against assumption violations es-
pecially motion discontinuities.

One attempt at enhancing robustness is to use model-
based techniques [14, 18], which make explicit assump-
tions about objects and motions in the scene, as opposed
to general flow estimation techniques which only assume
piecewise-smooth flow. Model-based formulations usually
involve large-scale nonconvex optimization problems. In
practice the solution often boils down to a procedure al-
ternating between general motion estimation and interpre-
tation, and the achievable accuracy largely depends on the

initial motion estimates from a general method [16]. More-
over, precisely modeling motion fields is difficult. Some
motions (e.g. facial expression) do not have explicit mod-
els, and some have models constantly varying with time
[17, 16]. Therefore, although model-based techniques have
achieved some success, they are not a replacement for gen-
eral estimation techniques.

Another approach, which is applicable to general opti-
cal flow estimation, is to use robust statistics [13]. Most
traditional techniques solve the estimation problems in the
Least-Squares (LS) sense. LS criteria have little tolerance
to assumption violations, and they form a major source of
gross errors. This problem has been widely recognized and
led to extraordinary efforts of replacing LS estimators in tra-
ditional techniques by more robust ones. For instance, [4]
uses an M-estimator in the Horn-Schunck method [9]; [1]
uses an LMS estimator in the Lucas-Kanade (LK) method
[11]. Our technique applies robust criteria to piecewise-
smooth motion estimation.

3. Gradient-Based Local Regression
The first step in the proposed technique is a gradient-based
local regression method. Following LK [11], we group n
OFCEs around each pixel, forming a linear equation in V

AV = b (3)
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0
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The LK method solves it in an LS sense. More robust
criteria have also been experimented with, including M
[4], LMS [1] and LTS [19]. Among them we find high-
breakdown robust criteria [13], e.g. LMS and LTS, are most
appropriate [19].

So far all optical flow techniques using high-breakdown
criteria [1, 12, 15, 19] adopt the bootstrap-like algorithm
given in [13]—the estimate with the best criterion value is
picked from a random pool of trial estimates. They uni-
formly apply the algorithms to all pixels disregarding the
actual amount of outliers.

By taking advantage of the piecewise smoothness prop-
erty of optical flow fields and the selection capability of ro-
bust estimators, we have proposed a deterministic adaptive
algorithm. Basically starting from LS estimates, we itera-
tively choose neighbors’ values as trial solutions, select in-
liers using LMS, calculate updated solutions using LS on
inliers and the associated criterion values, and finally keep
the solution with the best criteria value [13]. This method in
effect provides an estimator whose complexity depends on
the actual outlier contamination. It is faster and has more
stable accuracy than algorithms based on random sampling.
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(a) Groundtruth (b) LK (c) OurI (d) OurII (e) BA
Figure 1: TS sequence results

The performance of the LS and LMS methods are com-
pared on a synthetic sequence Translating Squares (TS). It
contains two squares both translating at 1 pixel/frame. Vec-
tor plots around the motion boundary (shadowed) are given
in Fig. 1. The result from our first method has a much more
clear-cut motion boundary than that from LK. However the
position of the boundary still has noticeable offsets from the
truth. These errors are due to derivative estimation failure,
which is inevitable to all gradient-based methods. In order
to tackle this problem, we further enhance the result by a
matching based approach.

4. Matching-Based Global Optimization
Global optimization techniques minimize a global energy
E =

P
all pixels iEB(Vi) + �ES(Vi) where Vi is the flow

vector at pixel i. ES represents flow smoothness, nor-
mally defined on the difference between each vector and its
neighbors; EB represents brightness conservation, defined
in matching-based approaches on the intensity error (Eq. 1)
between two frames; and � controls their relative impor-
tance. Various formulations of ES have been presented to
account for discontinuities; in particular, the notion of weak
continuity [6] has been popular [4]. Pointing out that such
formulations are special cases of robust estimation prob-
lems, Black [5] poses both EB and ES using M-estimators.

Beside those mentioned in Section 2, many serious prob-
lems exist with current global matching formulations. (i)
They are very hard to solve, especially in a robust estima-
tion framework. Simulated annealing type of methods [8]
have to be used [5], which are extremely slow and unsta-
ble. (ii) The advantage of matching-based methods at mo-
tion discontinuities is usually lost with crude hierarchical
schemes. (iii) Their difficulty with sub-pixel accuracy still
has not been effectively dealt with. (iv) Pixels at occlusions
and image borders might not be visible in both frames and
thus the matching criteria result in gross errors [16]. (v)
Various parameters including �, and scales in M-estimator
based methods, have to be manually tuned for meaningful
outputs. As a consequence of all above problems, so far
no such methods to our knowledge consistently outperform

gradient-based counterparts.
In the follows we present a novel approach which over-

comes most of above limitations and achieves highly com-
petitive performance.

4.1. Global Energy Design
Matching Error. We observe that without aliasing, all pix-
els in a frame are visible in the previous or the next frame.
This means in order to find correspondence for all pixels,
at least three successive frames instead of two should be
examined. Therefore we propose the normalized matching
error

EB(Vi) =

(
2en(Vi)

Ii+In(Vi)
; ep(Vi) > en(Vi)

2ep(Vi)
Ii+Ip(Vi)

; otherwise

where Ip(Vi); In(Vi) are warped intensities in the previ-
ous and the next frames respectively, and ep(Vi) = jIi �
Ip(Vi)j; en(Vi) = jIi � In(Vi)j. This error measure not
only allows matching against occlusions, but also provides
a means to detect such situations.

Smoothness Error. This term requires a vector Vi to
be smooth with the majority of its 8-connected neighbors
Vj ; j 2 Ni. We calculate error vector energies eVi(j) =
jVi � Vj j

2 for all Vj ’s, select those consistent with Vi,
eVi(inliers), using the LMS-LS procedure (Section 3), and
compute the normalized smoothness error as

ES(Vi) = eVi(inliers)=(jVij
2 + 1):

This scheme rejects outliers adaptively according to local
flow variation. In contrast, previous uses of M-estimators
select outliers by a fixed global scale and have difficulties
with scenes having a wide range of motions (Fig. 6(b)).

Finally our global energy is simply

E =
X

all pixels i

EB(Vi) +ES(Vi) (4)

Notice that no tuning parameters such as � exist in this mea-
sure. By use of normalization and adaptive scaling, differ-
ent sources of errors are automatically balanced, and hence
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this method has good local accuracy and consistent perfor-
mance on different data.

4.2. Minimization
Each flow estimate Vi affects the global energy E through
its own pixel energy EB(Vi) +ES(Vi) and smoothness en-
ergies of a few neighbors. The set of affected pixels is called
a clique [8]. The minimum of E is reached when all cliques
have the lowest energy. Starting from a field of initial es-
timates, we may in turn perturb each estimate, observe its
clique energy change, and accept the candidate if it leads to
a total energy decrease. Two critical problems in this pro-
cedure are how to generate candidates and when to accept
a candidate. Greedy algorithms accept a candidate iff. the
clique energy reduces. Stochastic algorithms occasionally
accept a “bad” candidate to avoid local optima. Candidates
may be generated according to a fixed global schedule, or
randomly by sampling local distribution [6].

With a good initial guess seldom available, random
schemes usually have to be used [5]. However, equipped
with the high-quality initial estimates from the robust local
gradient method (Section 3), we are able to minimize the
global energy using a simple fastest-descent algorithm.

We first calculate the clique energy for all pixels. Then
we repeatedly visit each pixel examining whether a trial es-
timate from a candidate set results in a lower pixel energy.
The candidate set consists of the 8-connected neighbors and
their average which were updated in the last visit. Once see-
ing a pixel energy decrease, we accept the candidate and up-
date the clique energy. This process continues until no pixel
is updated. It converged quickly in all our past experiments.

As it is clear in Fig. 1(c), estimates from the first step
have excellent accuracy away from discontinuities. Draw-
ing candidates from them, together with the averaging up-
date, passes on the good sub-pixel accuracy to the estimates
in the global matching step.

4.3. Overall Algorithm
We employ a hierarchical process [3] to cope with large mo-
tions and expedite convergence. We create a P -level image
pyramid Ip; p = 0; : : : ; P � 1 and start estimation from the
top (coarsest) level P � 1 with a zero initial flow field. At
each level p, we warp images Ip using the initial flow V p

0

obtaining images Ipw. On Ipw we calculate the residual flow
�V p using the local gradient method and add it to V p

0 yield-
ing V p

1 . Then we refine V p
1 by applying the global matching

method to Ip, resulting in the final flow estimate on Level
p, V p

2 , which is projected down to Level p � 1 as its initial
flow field V p�1

0 . Finally the flow estimate on the original
resolution is V 0

2 .
Hierarchical schemes have lots of limitations which are

often overlooked. The projection and warping operations

oversmooth the flow field; they often even become the ac-
curacy bottleneck especially at discontinuities. Errors in
coarser levels are magnified and propagated to finer levels
and are generally irreversible [5, 16]. These problems are
much alleviated by our global refinement step—it works
on the original pyramid images and corrects gross errors
caused by derivative computation, projection and warping.

5. Experiments and Analysis
We calculate derivatives from a first-order spatiotemporal
facet model on a support of size 3�3�3 [19]. Optical flow
is estimated on the middle frame of every three frames. The
number of pyramid levels is empirically determined. Bilin-
ear interpolation is used for image warping. The constant
flow window size is fixed at 9�9. No image pre-smoothing
is done. We handle estimates at image borders such that
they also have good accuracy and the resulting flow field
is of the same size as the original image. For the experi-
ments reported here, we use only trial values which are at
least T1 and T2 pixels different from the current estimate in
the propagation procedures described in Section 3 and 4.2
respectively. T1; T2 are used to speed up the computation
but they do not affect the results. We set T1 = 0:01 for
synthetic data and T1 = T2 = 0:05 in all other cases.

Results are given for four techniques: (i) LS local gradi-
ent (LS), (ii) LMS local gradient (OurI), (iii) global match-
ing (OurII) and (iv) Black and Anandan’s robust regulariza-
tion method (BA) [4]. BA’s code was provided by Michael
Black with all parameters set as in [4]. It calculates flow
on the second of two frames. (i) is a modified version of
Lucas and Kanade’s [11]; and (ii) is an improved version of
Bab-Hadiashar and Suter’s method [1]. All experiments are
carried out on a PIII 500MHz PC running Solaris.

5.1. Synthetic Sequences
Four image sequences with flow groundtruth are used for
quantitative comparison. Two error measures are reported.
One is the angular error e6 used in [2]. The other is the
error vector magnitude measure ej�j = jV �V0j=jV0j, where
V0 is the correct flow vector. We also report the consumed
CPU time in seconds to give a rough idea on speeds. All
measures are summarized in Table 1. Generally, consistent
observations of smaller errors indicate better quality. But
due to the simplicity of the data and the crudeness of the
error measures, the numbers should not be taken literally to
claim quantitative merits.

The TS sequence was introduced in Section 3. Vector
plots for OurII and BA are given in Fig. 1. OurII has al-
most perfect results except the rounded corners, where the
background motion becomes dominant. BA produces poor
accuracy on this one—it achieves global smoothness with
the sacrifice of local fidelity.
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Three synthetic sequences are obtained from John Bar-
ron [2], Translating Tree (TT), Diverging Tree (DT) and
Yosemite (YOS). TT and DT simulate translational camera
motion with respect to a textured planar surface. TT’s mo-
tion is horizontal and DT’s is divergent. YOS’s motion is
mostly divergent. The cloud part is excluded from evalua-
tion. See [2] for detailed descriptions of these data. We use
2 levels of pyramid for TT and DT, and 3 levels for YOS.

Figure 2: TT, DT middle frame Figure 3: YOS middle frame

Data Technique e6 (Æ) ej�j (%) time (sec)
LS 6.14 15.12 0

TS BA 8.12 21.08 1
OurI 1.09 2.65 0
OurII 0.32 0.79 1
LS 2.36 5.48 1

TT BA 2.61 6.62 11
OurI 1.39 3.22 7
OurII 0.49 1.53 8
LS 6.12 18.33 1

DT BA 6.57 20.70 11
OurI 5.00 16.14 10
OurII 4.43 17.25 14
LS 3.69 12.68 4

YOS BA 2.77 10.16 62
OurI 3.42 11.10 40
OurII 2.87 9.94 55

Table 1: Quantitative measures

5.2. Real Sequences

Results on two well-know real image sequences, Hamburg
Taxi (TAXI), and Flower Gargen (FG), are given below.

TAXI [2] has four moving objects: three cars at image
speeds 3.0, 1.0, 3.0 pixels/frame (from left to right) respec-
tively, and a pedestrian in the upper-left walking rightwards
at about 0.3 pixels/frame. Two levels of pyramid are used.
Vector plots with enough details do not fit the page, so we
display the horizontal flow component as intensity images
in Fig. 6. Brighter pixels represent larger speeds to the right.
In LS the flow fields of the vehicles have severely invaded
into the background. BA’s result is completely smoothed

out. Better performance might be obtained by tuning pa-
rameters. But smoothing seems to be inevitable in scenes
of such diverse motions as long as rigid global parameters
are used. OurI preserves motion boundaries better but still
shows smoothing incurred by the hierarchical process. Our-
sII gives the best result.

Motion in FG is caused by camera translation. Three
main layers are observed due to the scene depth correspond-
ing to the tree in front (maximum speed as large as about
6 pixels/frame), the garden and the rest background. This
version of FG was obtained from Michael Black. It has a
dark strip at the right border. Three levels of pyramid are
used. Horizontal flows are given in Fig. 6. In all results the
motion of the tree twigs smears into the background. The
reason is that, the background sky has little texture and thus
any flow estimate yield good matching (aperture problem);
and the errors are further enlarged by the hierarchical pro-
cess. BA and OurII work much better than LS and OurI.
But BA still has considerable oversmoothing between every
pair of layers, and one twig in the upper-right is missing.
OurII shows a very clear layered look. The results are su-
perior to those produced by other general method [16], and
are highly competitive to those from model or layer based
techniques [14, 18].

Figure 4: TAXI middle frame Figure 5: FG middle frame

6. Conclusions And Discussion
This paper has presented a novel hybrid optical flow estima-
tion technique. A gradient-based local regression method is
employed to produce an initial solution, and then the result
is refined in a matching-based global optimization frame-
work. This technique has inherited the merits of both ap-
proaches and overcome their limitations. In particular, high
sub-pixel accuracy of the local gradient method is passed
on to the global matching method, and the latter corrects
most errors caused by failure in gradient evaluation and
smoothing in the hierarchical process. Our results on vari-
ous standard testing sequences show significant advantages
over previous general techniques and high competitiveness
with model/layer based ones.

As robust estimation has formed a trend in computer vi-
sion, its efficient and effective implementation remains a
great challenge. Therefore the contribution of our work not
only lies in the new robust formulations, but more impor-
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(a) LS (b) BA (c) OurI (d) OurII

(e) LS (f) BA (g) OurI (h) OurII

Figure 6: TAXI (1st row) and FG (2nd row): intensity images of x-component

tantly in the optimization schemes which achieve the de-
signed robustness. We are probably the first to approxi-
mate a high-breakdown robust criterion by a deterministic
algorithm with adaptive complexity. We define a matching
criterion on three instead of two frames to avoid the vis-
ibility problem caused by occlusions [16]. Comparing to
previous related work, our robust regularization method has
the advantages of automatically balancing different energy
terms, and solving the large-scale nonconvex problem with
a simple greedy method. The above are all accomplished
by carefully integrating standard robust methods with the
characteristics of the optical flow application.

We are currently extending the research in a number of
directions. First the reported algorithm exposes the viabil-
ity of reliable general motion estimation from a hybrid ap-
proach; but many details still need careful consideration.
The matching error is able to detect occlusions, and thus
can guide image warping. We have already carried out some
experiments in this direction and obtained preliminary suc-
cess. As far as application is concerned, we are now ex-
ploring automatic motion interpretation, particularly model
selection [17], motion segmentation [14], layered represen-
tation [18], from the flow estimates. We expect these tasks
be much eased with the high-quality input. In addition, the
proposed robust approaches might find applications in other
computer vision problems such as image restoration.
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