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Abstract

We formulate optical flow estimation as a two-stage re-
gression problem. Based on characteristics of these two
regression models and conclusions on modern regression
methods, we choose a Least Trimmed Squares followed by
weighted Least Squares estimator to solve the optical flow
constraint (OFC); and at places where this one-stage robust
method fails due to poor derivative quality, we use a Least
Trimmed Squares estimator to robustify the facet model fit-
ting.

This two-stage robust scheme produces significantly
higher accuracy than non-robust algorithms and those only
using robust methods at the OFC stage. On the synthetic
data, the one-stage robust method has an average error
of 7:7% against 24% of Black’s and 19% of the pure LS
method; and the two-stage robust method further reduces
the error by half near motion boundaries. Advantages are
also demonstrated on real data.

1. Introduction

Gradient-based optical flow estimation techniques essen-
tially consist of two stages, estimating derivatives, and orga-
nizing and solving optical flow constraints (OFC). Deriva-
tives are usually estimated by convolving the neighborhood
data with masks [2]. OFCs are based on the optical flow
constraint equation Ixu + Iyv + It = 0 (OFCE) [12][2],
where Ix; Iy ; It are spatial and temporal image intensity
gradients, and (u; v) is the optical flow vector. Additional
constraints are acquired from either differentiating the OFC
[10] or requiring the flow field to be smooth within a cer-
tain neighborhood [12][14]. The former scheme is often
integrated to a regularization method for higher robustness
[27][17]. Interested readers are referred to [2][3] for quite
comprehensive optical flow technique review and compari-
son.

Both derivative estimation and OFC stages involve esti-
mation by pooling information in a certain neighborhood
and are regression procedures in nature. Classical ap-
proaches solve both regression problems in a Least-Squares
(LS) sense. As it is well-known, when the neighborhood
model is violated, the results from LS regression can be ar-
bitrarily bad. Multiple motion in a neighborhood, caused
by either independent moving objects or different depths,
non-translational motion, brightness variation, shadow, re-
flection, large image noise, : : :, all create great difficulties
to those LS approaches.

To enhance resistance against erroneous derivatives and
motion modeling, a host of robust methods have been in-
troduced to the OFC stage. For instance, [4][13] explicitly
model the motion in a region as having more than one lay-
ers; [21][18] search for the most prominent motion through
modified Hough Transform. Initial pointer into this litera-
ture can be gleaned from [3][1]. The type of methods we
are more interested in recover the motion representing the
majority of the neighborhood data by solving the OFCs us-
ing robust regression tools. M-Estimators [7][16] and Least
Median of Squares (LMedS) estimators [19][1] were pre-
viously employed for this purpose. Although significant
improvement upon LS methods has been reported, choice
of these tools usually lacks solid statistical justification and
what technique is most appropriate remains an open prob-
lem.

Meanwhile, as a very similar information pooling step
and a vital step for accurate motion recovery [2], deriva-
tive calculation has seldom received proper attention. Crude
derivative estimators [2][7] are widely used. This fact is
probably due to the thought that poor derivative estimates
near occlusions are inevitable but they can be treated as
gross errors by a robust OFC method [6][1]. This thought
is not always true. Firstly, at some places, e.g. near im-
mediate motion boundaries, bad derivatives can totally dis-
rupt the OFC model so that no regression method works
any more. This will be verified by experimental results in
Section 5.1.2. Secondly, robust derivative estimation is fea-
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sible. [5][22] used robust regression methods to preserve
discontinuities in surface reconstruction. These kinds of
methods can be extended to derivative computation.

Based on conclusions on modern regression methods
[25] [20] [23] and characteristics of the optical flow con-
straints, we find that the Least Trimmed Squares followed
by weighted Least-Squares (LTS.LS) regression technique
might be more appropriate for the OFC stage. We calculate
derivatives from the 3D cubic facet model to achieve higher
precision [27]. This approach reveals that the derivative es-
timation step is also a regression problem in nature, which
can be robustified when the LS technique fails. We choose
a Least Trimmed Squares (LTS) estimator for robust facet
model fitting. Preliminary experimental results show that
this scheme permits correct flow recovery even at immedi-
ate motion boundaries.

The rest of this paper is organized as follows. Section 2
formulates derivative estimation and OFC solving as regres-
sion problems. Section 3,4 describes how we choose appro-
priate robust tools for these two problems according to their
individual characteristics. Experimental results and com-
parison are presented in Section 5. Finally Section 6 sum-
marizes this contribution and points out future work direc-
tions.

2. Two-Stage Regression Framework

The linear regression model assumes the relationship be-
tween the observation vector Y and the unknown parameter
� is,

Y N�1 = XN�M�M�1 + �N�1,
where X is the design matrix and � is the error vector. � is
usually estimated as

�̂ = argmin�F (r),
where r is the residual error Y � Ŷ = Y �X�̂. The crite-
rion function F (r) differs among estimators depending on
what error model is assumed. The LS estimator assumes
� to be iid with zero mean and small variance �2 and uses
F (r) = krk2 =PN

i=1 r
2

i .
In this section we show that both derivative estimation

and the OFC stage of optical flow estimation can be formu-
lated as such regression problems.

2.1. Optical Flow Constraint

Following [10] we constrain the optical flow vector V =
(u; v)0 at (x; y; t) by

AV + � = b (1)

where

A =

0
BB@

Ix Iy
Ixx Ixy
Iyx Iyy
Itx Ity

1
CCA b = �

0
BB@

It
Ixt
Iyt
Itt

1
CCA :

We further assume that flow vectors in each small neigh-
borhood of N pixels is constant, and hence each vector V
conforms to N sets of constraints simultaneously. This con-
stitutes our optical flow constraint [27], a linear regression
model

AsV + � = bs (2)

whereAs = (A0

1
; A0

2
; : : : ; A0

N )
0, bs = (b0

1
; b0
2
; : : : ; b0N ), and

each pair of Ai; bi are the A; b defined by Eq.(1) at pixel i,
i = 0; : : : ; N�1. In our experiment, we choose the constant
flow neighborhood size to be 5� 5, so N = 25.

This optical flow constraint has the advantage that a large
number of equations are provided for each vector estimate
on a small data support (100 equations in a 9� 9� 5 neigh-
borhood). The compactness is important because smaller
neighborhood size means less chance of multiple motion,
and a larger sample size brings higher statistical efficiency
(Section 3). For example, [1] chooses much larger smooth-
ness window size as only first order constraints are used.
Second order derivatives are analogous to signals in higher
frequency bands. Using constraints of them can increase
the regression stability but they are usually avoided due to
estimation quality concerns [2]. Nevertheless throughout
experiments we find second order derivatives from the 3D
cubic facet model have sufficient accuracy.

2.2. Derivatives From the Facet Model

The facet model basically characterizes each small im-
age data neighborhood by a signal model and a noise model
[11][27]. Low-order polynomials are the most commonly
used signal form. We use a 3D cubic polynomial for deriva-
tive estimation. Here “3D” means that the polynomial is
about the spatiotemporal variable (x; y; t); “cubic” means
that the highest order of a term is 3. The facet model finds
the polynomial coefficient vector a from the linear regres-
sion model

Da+ � = J (3)

where J is the observed image data vector (formed by
traversing the neighborhood data lexicographically), and
D is the design matrix composed of 20 canonical polyno-
mial bases (1; x; y; t; x2; : : : ; xyt). We use the facet model
neighborhood size 5 � 5 � 5 and so D has dimension
125 � 20. Once a is found, the spatiotemporal derivatives
are merely scaled versions of its elements. More details
about derivatives from the facet model can be found in [27].

Most popular derivative estimators in optical flow esti-
mation are neighborhood masks. They essentially come
from facet models [11] of different dimension (1D, 2D or
3D), order (1st, 2nd or 3rd) or neighborhood size (2, 3 or
5). For example, the four-point central difference mask
(�1; 8; 0;�8; 1)=12 Barron uses [2] is actually a 1D cubic
facet model on a neighborhood of 5 pixels [27]. Our facet
model outperforms it on most image sequences.
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3. Robust OFC-Stage

An LS estimator is optimal only when X contains no er-
ror and noise in Y is Gaussian. When either condition has a
significant violation, it can be completely disrupted. There
are majorly two types of significant model violations (gross
errors), those caused by bad Y values are y-outliers and
those caused by error in X are leverage points. The perfor-
mance of a regression estimator is usually characterized by
statistical efficiency and breakdown point. Simply put, sta-
tistical efficiency indicates the accuracy when no gross error
is present, and breakdown point is the smallest fraction of
contamination that can cause the estimator to take on val-
ues arbitrarily far from the truth. These two factors work
against each other. A good regression tool should have both
values high [20] [25].

To choose an appropriate robust estimator for the OFC
stage, let us first study its characteristics. Both the obser-
vation vector bs and the design matrix As are composed of
derivative estimates. Because derivatives are contaminated
by error, both y-outliers and leverage points might happen.
If derivative estimates are roughly equally possible to be
bad, because the size of As is double of that of bs, chances
of leverage points are even higher than y-outliers. Hence
the right estimator should be resistant to both gross errors,
especially leverage points. Secondly, a significant portion
of these constraints might be gross errors, when, for exam-
ple, multiple motion models happen in a neighborhood, so
the estimator’s breakdown point should be high. Finally,
the number of constraints are relatively small, therefore this
estimator should have good statistical efficiency on a small
sample size.

M-estimators [7][16] are resistant to y-outliers and have
relatively high statistical efficiency, but they meet with com-
putational difficulties such as initial guess dependency and
non-convexity (for redescending estimators [7]), have a low
breakpoint (about 1=(p+1)where p is the dimension of �),
and they are vulnerable to leverage points [20][25]. The
LMedS [20][19][1] estimator is resistant to both types of
gross errors, has a breakdown point as high as 50%, does
not need a initial guess and is guaranteed to converge. How-
ever it has extremely low statistical efficiency, which means
that it tends to have very large estimation variances when
no gross error is present. Using LMedS seems to trade the
accuracy of majority of the flow field for that of the minor-
ity.

The Least Trimmed Squares (LTS) estimator [20] was
introduced to repair the low efficiency of LMedS,

�̂ = argmin
�

hX
i=1

(r2)i:n (4)

where h < n and (r2)1:n � : : : � (r2)n:n are the ordered

squared residuals. Recalling that a Least-Squares estima-
tor is �̂ = argmin�

PN

i=1 r
2

i , LTS allows the fit to stay
away from the gross errors by excluding the largest squared
residuals from the summation. Owning almost all merits of
LMedS and better statistical efficiency, LTS is usually con-
sidered to be preferable to LMedS [25].

Efficiency of LTS can be further improved by a Weighted
Least-Squares (WLS). [20] defines an error scale as �̂ =

C
q

1

n

Ph

i=1(r
2)i:n, where C is a factor used to achieve

consistency at Gaussian error distributions; and then makes
use of the weights

wi =

�
1 if jri=�̂j � 2:5
0 if jri=�̂j > 2:5

(5)

to do the WLS

�̂ = argmin
�

nX
i=1

wir
2

i : (6)

We call the above procedure Least Trimmed Squares fol-
lowed by (weighted) Least-Squares (LTS.LS), and use it to
solve the optical flow constraint.

4. Robust Derivative Estimation

Now we examine what a robust tool can be used to im-
prove the derivative quality. Since the dimension of the pa-
rameter a is high, 20 for our 3D cubic facet model, sim-
ple M-estimators cannot be used because of the low break-
down point of 1/21. We are again led to the Least Trimmed
Squares estimator. Unlike the OFC stage, where we esti-
mate two parameters out of 100 constraint equations, in this
stage, there are 20 parameters but only 125 constraint equa-
tions. With a rather small sample size, WLS can hardly
improve results of LTS. So we decide to use LTS for robust
facet fitting.

Also due to the problem of small sample size, LTS tends
to have low efficiency than LS when there is no significant
model violation. So LTS facet model should be used when
failure of the LS facet cannot be tolerated by the robust
OFC. Detecting failures of the LS facet model through a
systematic error analysis [27] is part of our future work. In
this paper we emphasize on how high boundary accuracy is
enabled by robust derivative estimation.

5. Experiments and Analysis

We demonstrate on both synthetic and real data how opti-
cal flow accuracy significantly improves from our LS-based
method (LS-LS) to proposed one-stage robust method (LS-
LTS.LS), and from LS-LTS.LS to the two-stage robust one
(LTS-LTS.LS). We also compare our results with those from
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Black and Anandan’s dense regularization approach [7]. We
use the default parameters as suggested in Black’s software.
For more accurate results, we modified his C code to out-
put floating-point instead of 8-bit flow vectors. We imple-
mented LS-LTS.LS and LTS-LTS.LS using standard func-
tions in S-Plus [23] with all parameters as default.

5.1. Experiments on Synthetic Data

Figure 1. Central
frame of the syn-
thetic sequence

5 10 15 20 25 30
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10

15

20

25

30

Figure 2. Correct
flow field

We synthesized an image sequence to highlight motion
boundary accuracy. Fig. 1 gives the central frame and the
correct flow field. The image size is 32� 32 and the veloc-
ity magnitude is 1 pixel/frame. To facilitate comparison, we
shade all estimates with error vector magnitude larger thanp
0:004, a somehow arbitrary number, and call these esti-

mates bad estimates. We calculate the average error vector
magnitude for interested flow field regions. Since in this
experiment the true velocity magnitude is 1, this measure
multiplied by 100 is the average error percentage (AEP).
We use AEP as the quantitative accuracy measures. Each
optical flow constraint equation is a line au + bv + c = 0
in the u; v coordinate, with its distance to the true velocity
an indicator of the degree of modeling imperfection. OFC
cluster plots can be used to visualize derivative quality and
results of different estimators.

5.1.1. Optical Flow Field Comparison

The result from LS-LS (Fig. 3(a)) has an AEP of 19.06%
and almost all estimates within the boundary part, whose
supports contain data from the other motion model, turned
out to be bad. LS-LTS.LS reduces the AEP to 7.73% (
Fig. 3(b)), but many estimates near the boundary are still
compromises of the two different velocities, with the AEP
of shaded pixels still as high as 47:79%.

Fig. 3(c) is an improved version of Fig. 3(b) by recom-
puting the vectors at the shaded pixels using LTS-LTS.LS.
The AEP of the updated estimates reduces by about half to
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(a) LS-LS
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(b) LS-LTS.LS
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(c) LTS-LTS.LS
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(d) Black

Figure 3. Optical flow estimates on the syn-
thetic data (bad estimates are shaded)

25.08%. It has few compromises of two motion models and
almost all bad estimates on the boundary take the motion of
the other side. This is largely due to the randomness in the
LTS implementation [23]. Even though the theoretical per-
formance is not achieved, the boundary location error has
been reduced to about 1 pixel. Such a high boundary ac-
curacy might benefit applications such as motion segmenta-
tion.

Black’s result (Fig. 3(d)) has an high AEP of 23.89%.
We are looking into why this method performs so badly
here. Possible reasons are poor derivative quality, and M
estimators’ inherent problems of low breakdown point and
leverage point sensitivity.

5.1.2. OFC clusters—A Closer Look

We now illustrate the reasons of such accuracy contrast by
examining three typical points, (5, 5), (5, 20) and (14, 17)
in Fig. 3. Their true velocities are marked by black dots in
Fig. 4.

(5, 5) is a point where most derivatives are of good qual-
ity, as can be told from the nice OFC cluster at the true ve-

1063-6919/00 $10.00 � 2000 IEEE 



(a) (5, 5): LS facet (b) (5, 20): LS facet

(c) (14, 17): LS facet (d) (14, 17): LTS facet

Figure 4. OFC cluster plots at three typical
pixels

locity (Fig. 4(a)). However, even in this favorable case, LS-
LS only yields (0.9734, 0.0015) while LS-LTS.LS yields
(numerically) exactly (1, 0). The 9� 9� 5 support of point
(5, 20) has 1=9 conveying the left motion mode. Accord-
ingly we observe a clear cluster at the true velocity and a
small vague one at the left velocity (Fig. 4(b)). LS is to-
tally lost in this not-so-bad case, yielding a compromise of
(0.5933, 0.518), as oppose to LS-LTS.LS, which gives (-
0.0051, 0.9913). These two cases suggest that LS-LTS.LS
significantly outperforms LS-LS at the OFC stage.

In the above the facet model fitting error can be com-
pensated by robust OFC. But this is not the case with (14,
17), a boundary point on the right side. Fig. 4(c) shows
constraint lines scattering around with two very vague clus-
ters at (0; 1) and (1; 0). Estimates from LS-LS (-0.3937,
0.2482) and LS-LTS.LS (0.0708, 0.1267) are totally wrong.
Here applying robust regression at the OFC stage alone does
not help any more. The reason is that derivative estimation
at most points fails and a large portion of the constraints
become gross errors, so that the major optical flow con-
straint model does not exist. Without this model, where can
a regression technique “regress” to? In contrast, Fig. 4(d)

Figure 5. Central frame of the SRI sequence

(a) Black (b) LTS-LTS.LS

Figure 6. OF field of SRI in the box

shows the OFC plot from the robust facet model fitting. The
major motion model becomes clear so that LTS.LS yields a
good estimate at (0:0109; 1:0000).

5.2. SRI Tree Sequence

The SRI tree sequence [2] (Fig. 5) is widely used for
comparing optical flow estimation accuracy. [7] demon-
strates the motion boundary preserving capability on it.
However when applying Black’s method to different im-
age sequences, we find that although it preserves boundaries
better in some cases, sometimes it smears boundaries more
than non-robust techniques. Such inconsistency also shows
up on this sequence.

To closely compare motion boundary accuracy, we show
the unsampled optical flow estimates (Fig. 6) within the
framed box. The middle part of the block has smaller veloc-
ity magnitude because it is farther from the camera. Black’s
result does not show proper foreground and background
speed contrast, while the proposed LTS-LTS.LS method
preserves the discontinuities well.
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6. Discussion

The primary novel contribution of this work is that it in-
corporates robust derivative estimation into the optical flow
method. It carefully analyzes the characteristics of the two
regression stages and chooses robust tools correspondingly.
Preliminary experimental results on both synthetic and real
image sequences verified the effectiveness.

More experiments and extensive qualitative and quanti-
tative comparison with other approaches are being carried
out. So far robust facet fitting are conducted at manually
chosen places. This could be automated by integrating mo-
tion boundary detection into the algorithm. A possible ap-
proach is to systematically analyze the errors in facet fitting
and optical flow estimation [27], and consequently apply
one- and two-stage robust methods adaptively. At the same
time we are also seeking for more appropriate robust re-
gression techniques to estimate derivative and solve optical
flow constraints. We expect to apply this technique to mo-
tion segmentation and triangulation problems in the future.
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