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CHAPTER 14 

Statistical morphology 

R. M. HARALICK, E. DOUGHERTY, J. HA, T. KANUNGO, S. KARASU, 
C. K. LEE, L. RYSTROM, V. RAMESH & I. PHILLIPS, Department of 
Electrical Engineering, University of Washington 

SUMMARY This paper first introduces a parametric model for the generation of 
stationary random correlated binary sequences. The parameters of the model include the 
probability that a pixel is a binary one pixel and the length of the structuring element 
which dilates the initially spatially uncorrelated sequence. The spatial statistics of such 
eroded, dilated, opened and closed correlated binary sequences are derived in terms of the 
spatial statistics of the input binary sequence. Understanding of such one-dimensional 
processing is a precondition for understanding what happens in the more interesting two­
dimensional case. 

1 Introduction 

Statistical morphology is concerned with the statistical characterization of the four 
morphological operations-dilation, erosion, opening and closing. By statistical 
characterization of a morphological operator, we mean the statistical characteriza­
tion of the output in terms of the statistical characteristics of the input. Characteri­
zation of operators allows us to predict the characteristics of the output of an 
algorithm composed of a sequence of morphological operations in terms of the 
statistical characteristics of the input and the sequence of morphological operators 
used. Furthermore, such statistical analyses of morphological algorithms are 
necessary to evaluate the algorithm's performance. 

In this paper, we describe what we have learned about one way to characterize the 
dilation and opening morphological operators in a one-dimensional setting, i.e. the 
input to each of these operators is assumed to be binary one-dimensional. The input 
is modeled as a union of randomly translated discrete lines of a fixed length. The 
line segments can overlap and result in line segments of various lengths. Thus, the 
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final output appears as an unordered pattern of lines and gaps of various lengths. 
This input is characterized by giving its line and gap length distribution and the 
distribution of the number of line and gap segments of various lengths. Therefore, 
the characterization of a morphological operator entails a similar characterization of 
the output. 

There has been recent interest in the area of statistical morphology and some 
results have been published in the literature. Morales and Acharya (1992) analyzed 
the statistical characteristics of a morphological opening on gray scale signals 
perturbed by Gaussian noise. Stevenson and Arcs (1992) studied the effects of 
opening for a class of structuring elements. Astola et al. (1993) studied the output 
distributions of one-dimensional gray scale filtering. Costa and Haralick (1992) 
came up with an empirical description of the output gray level distributions of 
morphologically opened signals. Dougherty and Loce (1993) used libraries of 
structuring elements to restore corrupted signals in the case when a noise model is 
available. 

In the following section, we set up the notation and difinitions used in this paper. 
In Section 3, we give a formal statement of the random process used to generate 
random sequences. In Section 4, we give a maximum likelihood algorithm for 
estimating the model parameters. The four morphological operators are character­
ized in Section 5. 

2 Notation and definitions 

Dilation is the morphological transformation which combines two sets using vector 
addition of set elements. If A and Bare sets in 7L 2

, the dilation of A by B is the set of 
all the possible vector sums of pairs of elements, one coming from A and one 
coming from B (Haralick et al., 1987). 

Definition 1. The dilation of A by B is denoted by A EB B and is defined by 

A EBB= {cE 7L 2 Ic=a+b for some aEA and bEB} 

Erosion is the morphological dual of dilation. If A and B are sets in 7L x 7L, then the 
erosion of A by B is the set of all elements of x for which x +bE A for every bE B. 

Definition 2. The erosion of A by B is denoted by A 8 B and is defined as 

A 8B={xE7L2 Ix+bEA for every bEB} 

Opening an image with a disk structuring element smoothes the contour, breaks 
narrow isthmuses, and eliminates small islands and sharp peaks or capes. 

Definition 3. The opening of a set B by a structuring element K is denoted by 
B o K and is defined as 

BoK=(B 8 K) EB K 

The morphological operation of closing smoothes the contours in an image, fuses 
narrow breaks and long thin gulfs, eliminates small holes and fill gaps in the 
contours. 

Definition 4. The closing of a set B by a set K is denoted by B • K and is defined as 

BeK=(BEBK)GK 
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3 Random model 

3.1 Generation process 

Let us consider the discrete interval D = [1, d] of length d. A line-throwing process 
randomly throws discrete lines K = [ 1, k] of length k into the interval D. These lines 
may overlap and create lines of lengths l greater than k. 

The line-throwing process is as follows. First, the process is initialized by 
marking all the pixels in the interval D with a 0. Next, each pixel in the interval Dis 
independently changed to a 1 with probability q. This set is now dilated with a line 
K of length k and whose origin is the extreme left point (1). 

There are two questions that need to be answered: 

(1) What is the joint density function associated with the line and gap lengths? 
(2) Given an estimate of the density function of the line lengths, how do we 

estimate the probability q? 

3.2 Joint probability distribution of line and gap lengths 

More formally, let the line lengths and gap lengths be denoted by l and g 
respectively. Let the observed line and gap lengths beg

0
, lpg

1
, •• • , lN,gN. It should 

be noted that these g; and l; values are ordered, and there are N lines and N + 1 gaps. 
The first question implies finding P(gu lpgp lp ... , lN,gNiq, k) and the second 
question implies finding E[qlg0 , lpgp .. . , lN,gN, k]. 

Now, using Bayes theorem, we have 

P(g0 , lpgp .. . , lN,gNiq, k)P(qlk)P(k) 
P(qlgo, lpgp .. . , lN,gN, k) Jq' 1 P(g l l I I k)P( llk)P(k) d I 

q'=O O>l>gl>···>N>gNq, q q 

To evaluate the above, we need to evaluate P(llq, k). Let w(l, t, k) be the number of 
different point sets with t elements, which, when dilated by K, produce a line of 
length l, i.e. 

w(l, t, k)= #{AlA EB K = [1, l], #A =t} 

It can be shown that w(l, t, k) can be expressed recursively as 

k 

w(l,t,k)= I w(l-j,t-1,k) 
j= 1 

The initial conditions on w(l, t, k) are as follows: 

(1) if t~l-k+2, then w(l,t,k)=O; 
(2) ifl=kandt=1,thenw(l,t,k)=1; 
(3) if l =f. k and t = 1, then w(l, t, k) = 0; 
(4) if l>tk and t= 1, then w(l,t,k)=O. 

(1) 

A program was written to compute the values of w(l, t, k) and is tabulated in 
Appendix A. A proof that w(l, t, k) is given by equation (1) is given in Appendix B. 

Using the definition of w(l, t, k), we can express P(llq, k), i.e. the probability of 
observing a line of length l given q and K, as follows: 

1-k+ 1 

P(ll q, k) = I w(l, t, k)q1(1- q)<l-t> 
t=[l/kl (2) 
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Since this P(llq, k) term is a probability, it should sum to unity, i.e. 

00 00 1-k+1 

L P(llq,k)= L L w(l,t,k)q1(1-q)(l-t)=1 (3) 
l=k l=k t=[lfk] 

The joint probability of observing the lines and gaps is thus given by 

P(go, ll>gl> 11> . .. 'lN,gNI q, k) = [(1- q)I:~=OYn] fi ['" -±+ 1 w(ln, tn, k)q'"(l- q)ln-tn] 
n= 1 t"=l/./kl 

(4) 

The reasoning behind the above probability is as follows. The first term is the 
probability of the gap events. The summation computes the sum of the gap lengths; 
this is the total length of gap events. The product is over each line segment and 
there are N such lines. The inside summation is over the number of possible events 
in the set before dilation. Let the length of the nth line segment be ln. Then, the 
minimum number of events that gave rise to a line of length In is lin/ k l and the 
maximum number is ln = k + 1. In other words, if there are fewer than lin/ k l 
elements in the point set before dilation, after dilation with a structuring element of 
length k, the resultant line will have a length smaller than ln. Similarly, if the initial 
point set had more than In+ k + 1 points, after dilation, the result will have a length 
greater than In. 

Next, l" is the probability of tn events turning on and (1- q)'"- 1
" is the probability 

of the rest of the events not turning on. Finally, w(l, t, k) denotes the number of 
ways that tn events can be chosen such that the dilation results in an interval of 
length/. 

4 Parameter estimation 

In many problems in computer vision, the form of the probability densities may be 
assumed or may be known as a priori knowledge, but the values of the associated 
parameters are usually not known. The process of determining the values of 
the parameters from observations is known as parameter estimation and the value 
of the parameter that results is called an estimate. In general, the parameters to be 
estimated may be scalars, vectors or matrices. People usually use two kinds of 
estimation methods in the parameter estimation, based on the availability of prior 
knowledge about the distribution of the parameters to be estimated. 

Maximum likelihood estimation assumes that the parameters are constants which 
are simply unknown. This approach requires no prior knowledge of the probability 
of various values of the parameters. Bayesian estimation assumes that the par­
ameters are random variables for which a prior density function is given. This 
approach is usually used when prior knowledge about the parameter values is 
available, and thus the parameter is treated as a random vector with an associated 
probability density function. 

We also conducted experiments to estimate parameters of the generation process 
using a constrained optimization method, but the results were not satisfactory. 
Instead, we use a maximum likelihood estimation technique which gives much 
better results in comparison with the optimization technique. 

4.1 Maximum likelihood estimation 

Maximum likelihood estimation (MLE) can be thought of as a procedure to be used 
when one has no prior knowledge (or is willing to assume none) about the 
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probability of various values of the parameter. In our situation, the parameters to be 
estimated are the probability q and the length k of the structuring element involved 
in a line-throwing process. Let I= (g0 , lpg1, l2 ,g2 ••• • , lN>gN) be an observation and 
let p = (q, k) be the vector of parameters to be estimated. In the context of an 
estimation problem, this kind of observation is viewed as a random variable, which 
is characterized by the joint conditional probability density P(llp). When viewed as 
a function of p=(q,k) this conditional probability density is called a likelihood 
function. The likelihood function L(llp) of a line-throwing process takes the form 

(5) 

The MLE chooses as its estimate the value which maximizes the likelihood 
function. 

If the necessary derivatives exist, one can obtain the MLE by setting the 
derivatives of L(llp), or log L(llp), to zero. However, q is a continuous variable 
which takes values between 0 and 1, and k is a discrete variable which takes positive 
integers. We do not know of a way to obtain a closed form solution from the 
derivative of L(llp) with respect to q. Therefore, we must obtain the MLE p= (q, k) 
which maximizes L(llp) numerically. In the next section, some graphs are shown 
for a particular observation I, and these might give some intuition to the character­
istics of the likelihood function L(llp). 

4.2 Bayesian estimation 

Simple Bayesian methods determine the posterior probability density P(p I/) based 
on the observed data and prior knowledge about the parameters. From Bayes' 
theorem, the posterior probability density can be expressed as 

P(IIp) 
P(p I/)= P(I) P(p) 

where the probability that I is observed is calculated as 

If the first term on the right-hand side is termed as the standardized likelihood, we 
can state Bayes' theorem in words as. 

(posterior belief)= (standardized likelihood) x (prior belief) 

The interpretation of this formula is simple and very commonsensical. Values of the 
unknown parameters which give rise to large values of the standardized likelihood 
will lead to higher posterior beliefs than will values of the unknown parameters 
which give rise to small values of the standardized likelihood. Furthermore, high 
values of prior belief correspond to parameter values which are likely to have led to 
the data we observed. 

A sharply peaked likelihood function dominates over less sharply peaked prior 
densities and makes two posteriors obtained using two different but smooth priors 
become close together and vice versa. A special case is when the prior density P(p) 
is uniform, i.e. when all values of pin the region of interest are equally likely. Ifthis 
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FIG. 1. Maximum likelihood function for dilation length (a) k= I and (b) k=2. 
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likelihood function for k=3 
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FIG. 2. Maximum likelihood function for dilation length (a) k=3 and (b) k=4. 
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likelihood function for k=S 
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FIG. 3. Maximum likelihood function for dilation length (a) k=5 and (b) k=6. 

is the case 
likelihood 

4.3 Beha'{;. 

Now, we' 
give us sm 

Let us • 
process oc 
process c:u 
observed t 

000001111111 : 

Then, the 

In the fig1. 
shown. Ea 
occurs at f;. 

Althoug: 
leads to an 
were used 
instance w 
the fact th 
estimated­
tend to sh 
observatim 

Interesti 
variance oJ 
sequence. 

4.4 Regres. 

An alterna 
parameter~;; 

linear moe 
simulated 
understooc 
situations. 
additional : 
lengths fro 
the under!~ 
regression_ 
known. 

The in 
lug2, · · ., ( 
lengths. Fr 
i.e. H(i)= 



Statistical morphology 349 

is the case, then maximizing the posterior density is equivalent to maximizing the 
likelihood function, and the Bayesian estimate is equal to the MLE. 

4.3 Behavior of the likelihood function L(I/p) 

Now, we will consider the behavior of the likelihood function L(llp ). This might 
give us some insight before we actually carry out parameter estimation. 

Let us consider the discrete interval D = [0, 99]. Assume that a line-throwing 
process occurs on D with p and k unknown. As explained earlier, a line-throwing 
process can be simulated by a morphological operation. Let us suppose that we have 
observed the following, as a result of the line-throwing process: 

000001111111110001111110011111101111111001111111111110000011111100011111111110000000000111111111000 

Then, the observation I will be 

I= (go, lug,, /2 ,g2, /3 · g3, /4,g4, Is ,gs' l6,g6, /7 ,g7, Is ,gs) 

= (5, 9, 3, 6, 2, 1, 7, 2, 12, 5, 6, 3, 11, 10, 9, 3) 

In the figures, plots of the likelihood function L(I IP) for various values of k are 
shown. Each plot is unimodal and shows a sharp peak. The maximum probability 
occurs at k=6 andp~0.15. 

Although it would have been easy to choose an example where the observation 
leads to an estimate p and k that is close to the true parameter values p and k that 
were used to generate the observation, we have chosen in the above example an 
instance where the true values were p = 0.3 and k = 6. This observation illustrates 
the fact that, as the observation tends to become filled with binary 1 events, the 
estimated values for k will tend to shift higher and the estimated values for p will 
tend to shift lower. This shifting tends to maintain itself, even if the size of the 
observation sequence becomes larger. 

Interesting questions in estimation concern the determination of the mean and 
variance of the estimators as a function of p, k, and n, the size of the observation 
sequence. 

4.4 Regression estimation 

An alternative to the maximum likelihood approach for estimating the two model 
parameters, pixel turn-on probability and dilation line segment length, is to use a 
linear model and select an estimator based on minimizing the fitting error over 
simulated data realizations. The advantage of the linear model is that it is well 
understood and may give reasonable results, evenin some highly non-linear 
situations. Often, non-linear functions of the realizations are created to allow 
additional flexibility in fitting, for instance, forming a histogram of the line segment 
lengths from the line segment length realization. We formed a linear estimator for 
the underlying 'seed probability' using the observed values and their squares in the 
regression. We assumed the dilation line segment length and interval length to be 
known. 

The input to the estimator is a single realization of the form 
lug2, .. . , /N_ 2,gN-l, IN, which is simply a vector of the observed line and gap run 
lengths. From the observed data vector, a histogram of the observed counts is made, 
i.e. H(i) = # {llli=i,j = 1, 3, ... , N}. In addition to the histogram, another statistic, 



350 R. M. Haralick et al. 

i.e. the sum of the observed gap lengths (g10131 = ~;g;), was formed from the 
realization. This was done because of the role of this statistic in the joint gap length 
run length density function. A linear estimator of the probability p can be formed as 
p = (gtotai> H)x, where x is a column vector determined from a least-squares 
regression procedure using simulated data. An additional constraint is that p is a 
probability and thus must lie between zero and one. This constraint was taken into 
account when solving the least-squares problem by using the methods described by 
Lawson and Hanson (1991). The results of this regression did not produce 
satisfactory estimates. 

S Characterization of morphological operators 

Let us suppose that the random model generation process in Section 3 produces N 
line segments in an interval of length d, with a gap as the first event and a gap as the 
last event. Thus, there are N + 1 gaps and the maximum length a line can have is 
M=d-2, in order to allow two gaps of length 1 on either side. Let m1,m2, ... ,mM 

be the number of lines with lengths 1, 2, ... , M respectively. We have the following 
relationships: 

M 

I im;~d-(N + 1) 
i; 1 

M 

I m;=N~LM/2J 
i; 1 

The first expression states that the number of locations covered by the generated 
lines plus one location for each of the N + 1 gaps must be less than d, i.e. the total 
length of the interval. The second expression says that the sum of the number of 
lines of each different length must be N, i.e. the total number of lines must be less 
than LM/2J to permit gaps to separate the different lines. 

From Section 3, we know that 

P(g0 , lpgp lp ... , lN,gNiq, k, d, N) 

=[(1-q):E~=lgn] fi ['"-±+ 1 

w(ln,tn,k)q1"(1-q)'"- 1
"] 

n;1 t,=ll,/kl 

We can rewrite the above equation in terms of m; terms as follows (it should be 
noted that m;=O for O~i<k) and M=N-2: 

P(g0 , lpgp lp ... , lN,gNiq, k, d, N) 

N [i-k+1 Jm; 
= [(1-q)d-:Eff;kim;] .n I. w(i, t;, k)q''(l-qy-r, 

•;k t,=l•/kl 
(6) 

·Now, since the order of gaps and lines does not affect the right-hand side of the 
above equation in any way, we can conclude the following: 

P(mk, mk+ 1> ••• , mMiq, k, d,N) 

M [i-k+1 ]m' = [(1-q)d-l:ff;kim;] .n I. w(i, t;, k)q1'(1-qy-r, 
•;k t,=l•/kl -

(7) 

We can now investigate the effect of morphological operations on the distributions 
of line and gap lengths. 
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5.1 Dilation 

We are given a model of the input in terms of the pixel turn-on probability q and the 
dilation line length k. We want to consider what happens if the input is dilated with 
a line of length kd. Since the input itself was a result of a dilation of a point set 
produced by randomly turning on each pixel with a probability q and dilating the 
result with a line of length k, we can now consider the two dilations as a single 
dilation operation with a structuring element of length k + kd -1, instead of as two 
dilations with lengths k and kd. Thus, the probability equation for the distribution 
of the line lengths does not change, except that the line length used for dilation is 
k+kd instead of k. This is summarized below. 

(8) 

5.2 Erosion 

In the case of erosion with a line of length ke, all the lines in the input with lengths 
smaller than ke are eliminated. Furthermore, all the lines with lengths greater than 
or equal to ke become smaller by a length ke- 1 at the output. Thus, if m; is the 
number of lines in the input with length i and m; is the number of lines of length i in 
the output, we can say that m;=O for O~i<ke and m;=m;+k. for ke~i~M-ke, 
where M is the maximum line length possible in the input. This results in the 
shifting of the whole frequency plot to the left by ke- 1. Such a statement could not 
be made in the case of dilation, because of the fact that two lines of lengths i and j 
could merge and produce a line of length i + j, so decreasing the counts of m; and mj 
by one and increasing the count of m; + i by one. 

Now, we give a more formal treatment for the output distribution for the case 
ke > k. Since all the lines of length k, ... , ke are eliminated after erosion, we need to 
find the conditional probability of the event. Let us denote this conditional 
probability by P(mk, mk+ 1 ... , mk.- 1 Jq, k, d). To find the final conditional probabili­
ties, we need to sum the conditional probability P(mk, mk + 1 ..• , mM I q, k, d) over the 
mk,mk+~>···,mk.- 1 terms as 

(9) 

where ke > k and the conditonal probabilities are evaluated using equation (7) but 
with different values of Nand where the summation is done over all non-negative 
integers nR, ... , nR.-• satisfying 

ke-t 

In;~N 
i=k 

5.3 Opening 

The results of opening are similar to those of erosion. After opening with a line of 
length k0 , all the lines in the input with a length smaller than k 0 are eliminated, but 
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the rest of the lines longer than k 0 are left unchanged. Thus, if m; is the number of 
lines in the input with length i and m~ is the number of lines of length i in the output, 
we can say that m~=O for O::::;.i<k0 and m;=m; for k0 ::::;,i::::;.M, where M is the 
maximum line length possible in the input. It follows that 

P(mko> ... ,mMiq,k,d,k0 ,N) 

(10) 

where the conditional probabilities are evaluated using equation (7) but with 
different values of N. 

5.4 Closing 

Closing by a line of length kc is a dilation by a line of length k 0 , followed by an 
erosion by a line of length kc. The dilation gives rise to a condition probability given 
by (see Section 5): 

(11) 

This is followed by an erosion by a length k0 • However, since the minimum length 
in the input to erosion is k 0 , no line segments in the input will be eliminated. Now, 
we can use the same formulation we used for computing the conditional probabili­
ties in the case of erosion, i.e. 

P(mk, .. . , mMiq,k,kc, d,M)= L · · · L P(mk+kc-1> ... ,mMiq,k, d,N-k+I- 1 

n1) 

nk nk+kc-1 l=k 
X P(nk, .. . , nk+kc-1lq, k, kc, d, N) (12) 

6 Summarizing remarks 

To characterize statistically the dilation and opening morphological operators, we 
characterized the input statistically and then used the same representation to 
characterize the output. The statistical characterization of the input and output was 
in terms of the distributions of line lengths, gap lengths and number of line lengths 
per unit length. The output was characterized in a similar fashion. The parameters 
of the output were represented as functions of the parameters of the input and the 
parameters of the morphological operators. MLE of the input model parameters 
was derived and experimentally validated. 
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TABLE Al. Values of w(l, t,k) tabulated for various values of I, t and k 

t=O 

1=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 I 2 I 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 6 4 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 7 10 5 I 0 0 0 0 0 0 0 0 0 
0 0 0 0 6 16 15 6 0 0 0 0 0 0 0 0 
0 0 0 0 3 19 30 21 7 0 0 0 0 0 0 0 
0 0 0 0 16 45 50 28 8 0 0 0 0 0 0 
0 0 0 0 0 10 51 90 77 36 9 0 0 0 0 0 
0 0 0 0 0 4 45 126 161 112 45 10 0 0 0 0 
0 0 0 0 0 30 141 266 266 156 55 11 0 0 0 
0 0 0 0 0 0 15 126 357 504 414 210 66 12 0 0 
0 0 0 0 0 0 5 90 393 784 882 615 275 78 13 0 
0 0 0 0 0 0 50 357 1016 1554 1452 880 352 91 14 
0 0 0 0 0 0 0 21 266 1107 2304 2850 2277 1221 442 105 15 

Here, k = 3; t increases from left to right, starting from 0 at the left -hand column; I increases from top to 
bottom and starts with 0 at the top row. 
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Appendix A: tabulated values of w(l, t, k) 

Table AI, we give sample output of the w(l, t, k). There are a few things worth 
noting. 

(1) The non-zero numbers fall in a wedge-shaped region. On one side of the 
wedge, the slope is given by 1 unit increment in l for every unit increment in 
t. On the other side, there are k units of increment of l for every unit 
increment oft. 

(2) for the special case of k = 2, this wedge becomes Pascal's triangle. 
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Appendix B: proof of w(l, t, k) 

Let L be the discrete interval [1, 1] of length land K be a structuring element of 
length k, i.e. K= [1, k]. Consider the point set E>! £ [1, 1] such that E>! EB K= [1, 1] 
and #E>!=t. Now, since after dilation ofE>! with a structuring element oflength k 
we produce a line length of l, it is obvious that the last element in the set must fall 
precisely on the point 1-k + 1. If there is any element after this point, then it dilates 
past the end of l, which we postulate to be not allowed. This we state in the 
following proposition. 

Proposition B 1. Let E>! £ [ 1, 1] be such that E>! EB K = [ 1, 1] and # E>! = t. Then, we 
have 

[ 1- k + 1, 11 n e: = { 1- k + 1} 

Next, we claim that {l-k+ 1} does not belong toe:-; for i>O. 

Proposition B2. Let E>!=~ £ [1,1-1] be such that E>!=~ EBK=[1,1-i] and 
# E>! = ~ = t- 1, Then, for i > 0, we have 

{1-k+ 1}¢0!=~ 

Now we have t-1 points remaining. To be able to cover the whole line of length l 
with t points, it is clear that the remaining t- 1 points must cover either 1- 1 points, 
or 1-2 points, or ... 1- k points. If the dilated line covers a length smaller than 
1- k, the final line will have gaps and, hence, will not cover an l interval of length l 
completely. Thus, to count the number of different point sets that, on dilation, can 
give rise to a line of length l, we need to count the number of different point sets 
that, on dilation, can give rise to lines of lengths of 1- 1, 1- 2, .. 0, 1- k. 

Proposition B3. Let E>!=~ £ [1,1-1] be such that E>!=~ EBK=[1,1-i] and 
# E>! = ~ = t- 1, Then, for 1 ~ i ~ k, we have 

E>!=~ EB K u {1-k+ 1} EB K=L 

The following proposition states that two sets are different if, when dilated, they 
give rise to two intervals of different lengths, i.e. they are mutually exclusive. 

Proposition B4. Let E>!=;1 £ [1,1-1] be such that E>!=;1 EBK=[1,1-i] and 
#E>!=~ =t-1. Then, for i#j, we have 

e:=~ #E>!=~ 
From the above two propositions, we can see that, to count the number of ways of 
constructing an interval of length l from t points, we could count the number of 
ways of constructing intervals of lengths 1- 1, 1- 2, ... , 1-k, and sum the counts, 
since these are mutually exclusive events. This we state in the following 
proposition. 

Proposition BS. Let 

w(l, t, k)= # {E>!IE>!- 1 EB K= [1, 1] and #E>!= t} 

Then, we have 
k 

w(l,t,k)= L w(l-i,t-1,k) 
i= 1 
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