8
Spatial Reasoning Using Modular Inference

Engines

LINDA G. SHAPIRO

PRASANNA G. MULGAONKAR ROBERT M. HARALICK
SR! International, Menlo Park, CA University of Washington

Knowledge about three-dimensional (3-D) spatial relationships can be
encoded as modular inference engines, each of which is an “expert” in
analyzing some facet of a single spatial relationship. A collection of such
experts codifying the rules of perspective geometry, for example, can
then be used to generate hypothetical descriptions of 3-D scenes ob-
served in a perspective image. We describe a spatial reasoning system
based on this paradigm that can analyze digitized line drawings of
planar and conic 3-D objects and can generate consistent 3-D descrip-
tions from single perspective views. The inference engines operate under
distributed control in an organization we call the “network” model. This
model is superior to traditional blackboard-based systems and is easier
to maintain than an agenda-based system. It can be implemented using
associative memory.

1. INTRODUCTION

A key part of the complex visual processing performed by humans is
the mapping from the 2-D visual patterns sensed by the retina to 3-D
structures in space. This spatial-reasoning ability involves analysis of a
large number of diverse visual cues and brings to bear a large unquan-
tifiable body of knowledge culled from prior experience. In order to
develop computer systems that will perform vision tasks of complexity
similar to those encountered by the human visual system, it is neces-
sary to investigate all potential sources of information used in this
spatial reasoning, as well as techniques for efficiently organizing the
information.

We contend that one aspect of this spatial reasoning can be viewed as
hypothesis-based reasoning. The physics of the imaging process that
produces the retinal image provides strong constraints on the possible
3-D interpretations that can be ascribed to the elements of the scene.
Knowing the nature of the 3-D elements that are likely to be part of the

263

264 MULGAONKAR, SHAPIRO, and HARALICK

scene, and given the “measurements” that can be made on the image,
one can generate and test hypotheses describing the scene contents.
Any hypothesis that does not violate the constraints imposed by the
physics of image formation is a consistent or plausible description of
the world.

In reality, the world consists of many types of 3-D elements, which
have common properties and which interact with the imaging process
in different ways. For example, polyhedra produce polygons of almost
constant intensity in the image plane (ignoring surface markings and
reflectance changes), and specular objects produce strong highlights
that change with the viewpoint. The computer vision literature is re-
plete with techniques that exploit a large range of such phenomena.
The “shape-from” techniques estimate 3-D surface properties based on
various features such as observed intensity changes (Horn, 1975, 1977)
texture gradients (Witkin, 1981), and symmetries (Kanade, 1981).
Model-based matching assumes detailed geometric knowledge about a
small set of 3-D objects (Horaud & Bolles, 1986; Ikeuchi, 1987). Knowl-
edge-based systems predict what they expect to see in complex scenes
and use feedback from the image features to constrain their expecta-
tions (Brooks, 1981; McKeown, 1984).

All these techniques have one common underlying theme: Although
the projection from 3-D to 2-D is not directly invertible, only a few
possible spatial configurations can give rise to the observed spatial
patterns in the image. For example, under the assumption that surface
markings are evenly distributed, only one particular surface slope
would give rise to an observed texture gradient. The interplay of the
relationships between 3-D entities and the observed spatial rela-
tionships between their images is the key to inverting the projection. At
first glance, such a technique may appear to produce only local de-
scriptions of single entities. What allows the technique to work, how-
ever, is that these local inferences can then be propagated to neighbor-
ing regions, using hypothesized spatial relationships between the
entities in the world.

In the remainder of this chapter, we describe a system set up to
explore this technique of producing and testing hypotheses about the
spatial configurations in the scene. We describe the origin of the knowl-
edge encoded in the system, specifically that of perspective geometry
pertaining to the projection of lines, planes, and circular arcs. Next, we
describe how the knowledge is encoded and organized, comparing the
network model used in our system to the two classical techniques in
the AI literature. Finally, we discuss the experiments run with our
prototype system.

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 265

2. CONSTRAINTS OF PERSPECTIVE GEOMETRY

The human visual system uses a large amount of diverse knowledge
sources in concert to analyze its visual input. Information, such as
stereo disparity, focal adaptation, and occlusion due to motion, contrib-
ute important cues which provide distance information in absolute or
relative terms. In addition, we have the capacity to infer three-dimen-
sional (3-D) structure from monocular gray-tone pictures. The process
of forming such images from scene structures is one of central projec-
tion. Central projection is not an information preserving mapping.
Points in the real world are three-dimensional. Points in the perspec-
tive or central projection are two-dimensional. Lines viewed on their
ends will appear as points in the perspective projection. Planes viewed
on their sides will appear as lines in the perspective projection. There-
fore, it is not possible to compute a unique 3-D interpretation for any
given 2-D image.

During the process of image interpretation, some additional knowl-
edge has to be inserted into the computation in order to compensate for
the lost information. Researchers in the past have used various tech-
niques to supply this missing information. The pioneering work by
Roberts (1965) on model-based interpretation of images made up for the
missing information by supplying exact 3-D models of expected ob-
jects. Later, researchers concentrated on various different ways of defin-
ing the models. Brooks (1981) worked with a symbolic theorem prover
to constrain the free parameters of the image formation process using
known models and projective invariants to guide the search.
Mulgaonkar, Shapiro, and Haralick (1984) utilized spatial relationships
between 3-D primitives of rough object models to control the computa-
tion of the free parameters. Recent work on the back projection problem
by Barnard (1982) has examined some conditions under which mean-
ingful inferences can be made about 3-D structures without the use of
an object model. However, the inferences that can be made by back
projection of individual elements in an image are very few, precisely
because of the multiplicity of interpretation that each primitive ele-
ment may have.

In this chapter we show that we can utilize equations of perspective
geometry in a cooperative sense to rule out a large number of the multi-
ple interpretations and arrive at a plausible structure or structures that
could give rise to the image. Haralick (1980) has an excellent compila-
tion of relevant equations for the perspective projection of points, lines,
and planes. Mulgaonkar (1984) contains additional equations dealing

266 MULGAONKAR, SHAPIRO, and HARALICK

with the perspective projection of conic sections in a common
framework.

The domain from which we draw the examples in this chapter con-
sist of solid objects made up of planar and cylindrical faces. We are
given an image consisting of edges and arcs corresponding to edges
between surfaces in the scene. We do not assume any a priori knowl-
edge about the objects other than the class of surfaces defined above
and possible spatial relationships that can be used to define their ar-
rangement in space. For example, we know that straight lines can be
parallel to each other, they can lie in a plane, they can be perpendicular
to planes, and so on. We show how we can use this knowledge along
with the mathematics which transforms the generic class of 3-D primi-
tives into their corresponding images to infer the 3-D structure given a
single 2-D image. We assume a nonsingular or general viewpoint which
means that straight lines in the image are projections of straight-line
segments in the world and no lines in three-space project onto points in
the image.

As an example, consider the type of reasoning that would be in-
volved in interpreting the line drawing shown in Figure 8.1. In this
example, as in subsequent ones, we follow the convention that image
primitives are labeled using lower-case letters, and their corresponding
3-D counterparts are labeled with the equivalent upper-case letters. The
image consists of nine visible straight line segments which, when taken
four at a time, bound three surfaces. We do not know how these surfaces
are arranged in space. However, we do know that any possible arrange-
ment must be such that from some camera position it produces the
observed arrangement of lines and regions in the image. Not all pos-
sible arrangements of these lines would satisfy this condition. For ex-
ample, if lines A and B (corresponding to line segments a and b) were
parallel and lines C and D (corresponding to line segments c and d)
were parallel, then the lengths of the line segments C and D must be
equal. In addition, the plane ABCD corresponding to the region abcd
would have to be horizontal because the intersection of the images of
the parallel pairs lie on the horizontal line through the center of the
image.

The key feature of the reasoning is that we measured relationships
between the lower-case entities to determine the possible relationships
between the corresponding upper-case entities. We define an
interpretation of an image to be a set of inferred relationships between
the 3-D entities which, when transformed by the rules of perspective
geometry, agree with the measurements made in the image. Of all pos-
sible interpretations, we look for those that are in some sense maximal

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 267

Figure 8.1. A Typical Line Drawing Requiring Interpretation.

or best. In this chapter, we define an optimal interpretation to be that
interpretation (or interpretations) that constrains the largest number of
3-D entities.

The search may be performed by hypothesizing possible rela-
tionships between groups of 3-D entities and verifying their correspon-
dence with measurements by applying the perspective equations. In
reality, this problem is a lot more complicated. Spatial relationships
between 3-D entities have numerical valued attributes whose values are
drawn from the infinite domain of real numbers. For example, parallel
lines are attributed by the normal distance between them; surfaces have
the direction cosines of their normals as attributes. The values of these
attributes control the appearance of the entities in the projection.
Therefore, a hypothesis cannot be verified until all relevant attributes
of the spatial relationships have numerical values. The domain of the
attribute values is infinite and therefore we must compute them rather
than search for them.

The equations of perspective geometry can be inverted and values
for the attributes computed based on the spatial relationships present
in the hypothesis. For example, if a pair of lines in the image is hypoth-
esized parallel in three-space, then the direction cosines of the lines
can be computed based on the measured location of their vanishing
point in the image. Perspective geometry provides a large repertoire of
such inferences and, therefore, a large number of attributes relate to

268 MULGAONKAR, SHAPIRO, and HARALICK

more than one image level measurement. Thus, there are often multiple
computation paths by which we can compute the values of most at-
tributes. The definition of consistency in this framework then becomes:

A hypothesis consisting of proposed spatial relationships between 3-D
entities is inconsistent if the measurements from the image imply that
some attribute of some relational tuple in the hypothesis, simultaneously,
must have more than one distinct value. A hypothesis that is not incon-
sistent is consistent,

The vision system described in this chapter uses this definition of
consistency to find the largest consistent hypothesis relating the 3-D
entities corresponding to the entities visible in a given perspective
image.

In the next section, we define the notion of an inference engine used
for applying a single rule of perspective geometry to a hypothesis. We
develop the concept of a string of inference steps consisting of sequen-
tial applications of inference engines to compute numerical values for
attributes. We then prove the stability of such a distributed computa-
tion scheme for determining the consistency of a given hypothesis.

3. INFERENCE ENGINES

Inference engines are modular computation units which accept as in-
put a specific set of attributed relational tuples made up of possible
relationships between world entities and a set of measurements taken
from the image. Based on the measurements and on the previously
computed values for the attributes of the relational tuples, they com-
pute values for other attributes of tuples in the input set.

The mode of operation of these inference engines is as follows: The
initial input consists of a hypothesis whose validity is to be deter-
mined. All the attributes of all the relational tuples in the hypothesis
are initially valueless. Inference engines are triggered based on their
input requirements and compute values for some attributes. For exam-
ple, if the hypothesis contains a relational tuple of the form (parallel
lineA lineB), the vanishing point inference engine would be triggered,
since all parallel lines have the same vanishing point, and it would
compute a value for the vanishing point attribute of lineA and lineB.
The processing involved in this case is to compute the intersection of
the corresponding image lines linea and lineb. Subsequent inference
engines whose computations use vanishing points may then be trig-
gered. For example, one inference engine may compute the focal length

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 269

of the camera based on vanishing points for two nonparallel, planar
pairs of lines. This inference engine would look for the following rela-
tional tuples in the hypothesis:

(3D-line lineA *a *b *c *d)

(3D-line lineB *a *b *c *d)

(parallel lineA lineB *upx *upz)

(parallel lineC lineD *upx *upz)

(in-a-plane lineA lineC *normala *normalb *normalc *offsetd)
(not-parallel lineA lineC *angle)

The terms with asterisks are place holders for the attributes of the
relational tuples. For example, the attributes of the 3-D line-relational
tuples define the equation of the line in the form

*ax + *by + *cz + *d = 0;

the attributes of the parallel relational tuples encode the vanishing
point in screen coordinates for the pair of lines participating in the
relation; and the attributes of a plane define the plane equation. The
inference engine would examine the vanishing point attributes of
the two parallel tuples to see if they had values assigned to them. To
summarize, inference engines are independent computational modules
which compute values for attributes of an input set of relational tuples,
based on measurements from the image and possibly some previously
computed attributes of some tuples in the input. A hypothesis is incon-
sistent if applications of these engines lead to distinctly different values
for any attribute.

The questions that arise in this context deal with the stability of
termination of the computations. Suppose a set of inference engine
applications determine a hypothesis to be valid. Is it possible to apply a
different set of engines or to change the order of application and arrive
at the conclusion that the same hypothesis is inconsistent? Is it possible
that changing the order of engine applications changes the final set of
values for the attributes in a hypothesis and, if so, does the application
process involve a search for the correct sequence of applications?

These questions arise in every blackboard type distributed computa-
tion system where a group of modules can independently update and
change information in a common data store. Independent modules can
be shown to be correct. However, since the inference engines interact
with each other and use the results of each other’s calculations, the
question of order dependence and uniqueness of result must be proved.

In predicate calculus, consistency of a set of predicates may be

270 MULGAONKAR, SHAPIRO, and HARALICK

viewed as a conjunction of conditions that the set of predicates must
jointly satisfy. Since conjunction is a commutative operation, the order
in which the terms of the predicate are tested is irrelevant. Intuitively, it
may seem that similar results should hold for applications of inference
engines because they, too, check consistency with respect to individual
rules of perspective geometry. However, inference engines cannot be
applied in any arbitrary order. An engine can only be applied if the
information it requires to execute is already present. That is, if an
inference engine requires some attributes of some tuples in the input
hypothesis set to have previously computed values, it cannot operate
until some other module computes the required values. Thus, there is a
partial ordering which describes all the legal sequences in which the
engines may be applied. Other complications result from the fact that
inference engines compute values for attributes in addition to provid-
ing a consistent/inconsistent response. These values cause the state of
the hypothesis to incrementally change. Therefore, some thought is
required to show that the intuitive result does indeed hold and that
inference engine application is a stable process whose result does not
depend on the particular sequence chosen.

By carefully formalizing the concept of an inference engine, we can
prove a series of interesting theorems which show the desired proper-
ties of the inferencing process. These theorems were originally proved
in Mulgaonkar (1984) and Mulgaonkar, Shapiro, and Haralick (1986).

We start with some definitions of the terms involved.

We say that an inference engine E is applicable to a subset K of the
input hypothesis H if the following conditions are met:

1. K satisfies the input requirements of E. That is, K contains the
relational tuples that E uses as the basis of its computation and the
required attributes of tuples in K have previously been assigned
values.

2. No proper subset of K satisfies the input requirements of E.

An application of E to K is denoted E(K) where E is applicable to K.
An application may succeed or fail. An application fails if the value
computed by E for some attribute of K is inconsistent with a previously
computed value for the same attribute. If the application succeeds, the
set K is changed to a new set K’ which differs from the original in that,
at most, one attribute of K, which was previously undefined, now has a
numeric value associated with it.

An inference step consists of one application of E to a subset K of the
hypothesis and the replacement of the subset K by the new subset K’ in
the set of input hypotheses.

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 271

A sequence of inferences on a hypothesis H is a sequence E(E, ;...
(H) . . .) of inference steps where each engine is applied to the output of
the previous step. We stipulate that no inference engine may apply
more than once to the same subset K of H.

A sequence of inferences E(E;_, ... (H)...)iscalled terminating if
either E,(.) is a failed inference step, or there does not exist any other
inference engine E; , ; which is applicable to the result of the sequence.

Theorem 1: Consider a sequence of applications of the inference engines to a
hypothesis H. If at the i, step, engine E; is applicable, then E; will remain
applicable at all inference steps j > i. That is, we can defer the application
of an applicable inference engine.

Theorem 2: If, at Step i, application of inference engine E; would fail, then E;
would fail even if its application is deferred.

Theorem 3: Changing the order of application of inference engines does not
cause a successful sequence to terminate in failure.

Theorem 4: Any sequence is either a terminating sequence or can be extended
by further applications of inference engines to form a terminating
sequence.

Theorem 5: If any one sequence of applications of a set of inference engines to
a hypothesis terminates in failure, then all possible sequences of applica-
tions terminate in failure.

Theorem 6: If any one sequence of applications terminates successfully, then
all possible sequences terminate successfully.

Theorem 7: Ignoring permutations, there is at most one successful sequence
of applications of a set of inference engines to a hypothesis.

We use the concept of terminating sequences to define consistency of
hypotheses as follows: A given hypothesis is inconsistent with respect
to the knowledge encoded in a given set of inference engines and the
measurements from a given image if it has an associated sequence of
applications which terminate in failure. If, on the other hand, the asso-
ciated sequence of applications (which may be of zero length) ends
successfully, then the hypothesis is consistent.

As examples, we list a few of the inference engines that are imple-
mented in the experimental system. The system currently has 100 in-
ference engines. Any vision system that goes all the way from low-level
image operations to a final interpretation of the scene would require a
much greater variety of knowledge sources. The system reported here
has the specific task of verifying our hypothesis that perspective geom-
etry provides a strong enough set of constraints to produce reasonable
hypotheses about scene structure. In addition, these constraints can be

272 MULGAONKAR, SHAPIRO, and HARALICK

implemented to use closed form inverse projection equations instead of
a theorem prover search over the infinite real number set.

Inference Engine 1: Given the hypothesis that two lines are parallel and the
fact that their images are not parallel, determine the vanishing point of
the lines as the intersection of their images.

Inference Engine 2: Given the hypothesis that two lines are coplanar, and the
fact that they do not have a common vanishing point, compute the van-
ishing trace of their common plane.

Inference Engine 3: Given a plane with a known vanishing trace, compute the
vanishing points of all lines hypothesized as lying in that plane.

Note that Engines 1 and 2 both compute values for the same at-
tribute—the vanishing point of a line. This is the basis of consistency
checking. The method relies on the fact that perspective geometry has a
large number of such mutually constraining equations.

In summary, we have shown that the problem of checking the con-
sistency of hypotheses against the constraints of perspective geometry
can be solved efficiently. Thus, such a process can be usefully incorpo-
rated as one component of an image-interpretation system on an equal
footing with other shape-from processes. It could be used to verify the
consistency of hypotheses generated using, say, shape-from-shading or
shape-from-symmetry. In addition, by incorporating processes for hy-
potheses generation, it can be used to generate all consistent interpreta-
tions for the structures in the scene.

4. DISTRIBUTED PROCESSING

Each inference engine is a complete module. As its input, it takes the
entire hypothesis that has been constructed up to that point and exam-
ines it for specific conditions under which it can operate. For example,
consider an inference engine which computes the vanishing point of
parallel lines. Given the data from the image and a hypothesis about the
lines in the 3-D world, this inference engine computes the vanishing
point of the lines which are hypothesized as being parallel. What
should the hypothesis contain that enables this engine to “fire”? It must
contain a prediction that there exist two lines (say, line a and line b)
which are parallel in the world. Only when such a prediction is present
in the hypothesis will the inference engine be able to perform its
function.

Once the inference engine detects that such a prediction is present in
the hypothesis, it obtains the relevant parameters from the image mea-

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 273

surements (say, the equations of the projections of these lines), and
computes the vanishing point. Now there are three choices open. First,
it may be the case that the vanishing points of the two lines were
previously unknown. In this case, the action taken by the inference
engine is simply to assert that the vanishing point of the two lines is the
one that it just computed. Second, based on inference engines that were
activated before the current one, it may happen that the vanishing point
of one or both of these lines may have previously been assigned some
values. If the newly computed vanishing point matches the previously
asserted values, everything is fine. Otherwise, the hypothesis is incon-
sistent because the two different reasoning paths, which lead to values
for the same physical attribute, do not yield the same result. In this
case, the inference engine must indicate that an inconsistency has been
detected.
To sum up, inference engines:

1. Check the hypothesis for relevant predictions.

2. Use the predictions combined with measurements from the image
to compute the values for attributes.

3. Check these values for consistency with previous predictions for
the same attributes.

4. If the hypothesis is inconsistent, indicate that backtracking must
occur in the search for the interpretation.

5. REQUIREMENTS FOR CONTROL

In this section, we are concerned with the question of how such a group
of modules can be controlled. Since inference engines accept as input
hypotheses modified by other engines, and in turn modify the at-
tributes of the hypotheses themselves, we need to have a technique for
sharing all available information in a global sense.

Secondly, note that if an inference engine works on some subset of
the hypothesis, and if its conclusion is that the hypothesis is con-
sistent, the hypothesis may remain unchanged. That is, all the predic-
tions that formed a part of the hypothesis before the inference engine
was invoked are all still present at the termination of the inference
process. Therefore, some care has to be taken to ensure that the same
inference engine does not claim that it is still applicable and repeat its
calculations over and over again. Effective control of the inference pro-
cess demands that an effective technique be developed for marking the
fact that a certain subset of predictions has been examined by some
particular inference engine at some state in the process of interpreta-

274 MULGAONKAR, SHAPIRO, and HARALICK

tion. We will first examine the question of data sharing and sequencing
the inference engines, and then look at the use of associative memory
for saving the history of computations done by each engine.

6. BLACKBOARD-BASED SYSTEMS

It should be clear from the previous section that the inference engines
can run in an entirely distributed mode of operation as long as there is
some common area where the hypothesis can be stored for access and
updated by each module. A common data area for such purposes is
called a blackboard in the Al literature. The first use of this term in a
large expert system was in the HEARSAY II expert system for the
speech analysis (Erman, Hayes-Roth, Lesser, & Reddy, 1980). A black-
board can be defined as a structured global database which can be
queried and updated by independent processes which use the data.
Access mechanisms have to be provided for the access and update
procedures to maintain consistency of the database. Computational
processes in HEARSAY II were organized as independent units (de-
mons) which would be triggered by specific processing conditions
noted in the blackboard. For example, if the sentence currently being
parsed had a noun phrase isolated, the adjective expert would recog-
nize that fact by examining the blackboard and get triggered.

Let us examine how such a completely distributed system would
actually work in a programming environment which is sequential. Each
self-contained expert would need to have the capability of analyzing
the contents of the blackboard to determine if it could use the available
data and contribute new information to the system. On determining
that it was in fact capable of performing its specified task, it would then
need to compute its results and place them in the appropriate place in
the global database.

Such a control strategy is conceptually simple. However, in sequen-
tial computing machines, it needs modification. The usual modifica-
tion is the addition of a supervisory task whose function it is to poll
each module to determine if it could run and, if so, to allow it to
complete its task. The simplest supervisory strategy is to sequentially
poll each module in turn until one full sweep of all the modules yields
no new information on the blackboard.

In addition, each module needs to remember the particular set of
inputs that it has examined so that when it is polled again, it will not
repeat calculations that it has already performed. Otherwise the system
will loop forever, constantly repeating the same task over and over
again.

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 275

To summarize the distributed processing control strategy with pro-
cesses communicating over a common shared database:

1. A supervisory process sequentially invokes each computational
module.

2. Each module examines the available data and determines if it can
work.

3. If it can perform its duties, it remembers the exact condition under
which it was triggered and updates the database with its
conclusions.

4. The process terminates when no module can add any new informa-
tion to the blackboard.

Although this control strategy works well in many situations, it is
easy to see that it has shortcomings. It takes a certain amount of effort
for each module to determine if its conditions have been met by pre-
vious computations and if it can compute new results using input it
had not used before. Sequentially invoking each module is computa-
tionally very expensive. Most of the time the majority of the modules
will simply not be applicable. As the number of modules increase, the
time spent in the supervisory process rises and becomes comparable to
the time spent by the modules actually computing new results.

The solution to this problem is to recognize the fact that the modules
are not actually independent. Most modules depend on others for their
input. Consider the example given before; the adjective detection mod-
ule depends on the fact that a noun phrase has been detected by a
previous module. Consequently, it is possible to effectively disregard
the existence of the adjective module until an appropriate noun phrase
has been detected. This can be done by providing the supervisory pro-
cess with the appropriate “meta” knowledge about the task and, in-
stead of a simple sequential scan of the modules, it performs the task of
invoking the computations in a more intelligent fashion.

However, if the supervisory process needs to perform checks of com-
plexity similar to that of the modules themselves, nothing is gained. On
the other hand, recognizing the fact that the modules are related, the
task of checking the preconditions of a module can be delegated to the
other modules which are related. In the simplest case, if Module A uses
the output of B as its input, Module B can check its output at the time it
is generated and inform Module A when its output is of the correct
form.

Systems using this strategy are termed agenda-based systems in the
Al literature.

276 MULGAONKAR, SHAPIRO, and HARALICK
7. AGENDA-BASED CONTROL STRATEGY

The most complex agenda-based system in the Al literature is the AM
expert system (Lenat & Davis, 1982) whose field of expertise is in the
area of arithmetic proofs. In essence, agenda-based systems also consist
of independent processes communicating over a common shared infor-
mation source. However, each module knows about the other modules
in the system, and knows the conditions which are required by the
other modules to perform their tasks. Once a module computes a partic-
ular piece of information, it knows which of the other modules could
use what it has just computed. It then checks to see if the preconditions
of the other modules are satisfied by the state of the blackboard updated
with the information it just computed. If it detects that some module
has all the information it needs, that module is triggered.

On sequential systems, the process of triggering a module is imple-
mented by placing the module to be executed in a first-in, first-out
queue. The task of the supervisory process is then reduced to removing
the first task on the queue and executing the appropriate module. The
process terminates when the queue is emptied. This simple strategy
may be further enhanced by treating the queue as a set and allowing the
supervisory process the freedom to choose the next module to be tried.
This allows some meta-level knowledge about the problem domain to
be placed in the control process.

Under such a control paradigm, it is not necessary for each module
to check the blackboard for its preconditions. The fact that someone
placed it on the agenda queue is sufficient information that its precon-
ditions are satisfied. From the standpoint of execution speed, this situa-
tion is excellent. Unless some module can potentially run, its precondi-
tions are never checked and, for all practical purposes, does not exist.
Thus, unlike the distributed processing case described earlier, there is
no overhead involved with checking if all the modules can execute.

In summary, the agenda-based systems are characterized by the
following:

1. Each module knows which other modules depend on it for input.

2. Each module checks all the preconditions for those modules which
depend on it.

3. If some other module’s preconditions are satisfied, the module is
placed on a processing queue for future execution.

However, the drawback with this scheme is that the checking of precon-
ditions is far too distributed. Consider what happens if a new module
must be added to the system. If the new module takes n pieces of data

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 277

as its input, and if each of these pieces is updated by m possible mod-
ules, in the worst case mn modules must be changed to recognize the
existence of the new module. In each of those mn cases, code corre-
sponding to the full check on the preconditions of the new module
must be added and checked. This becomes worse as more and more
modules are added. So although we gain execution speed, it is at the
expense of readability and maintainability of the system as a whole.
Contrast this situation with the demon-based control strategy. Demons
are totally uncoupled and, consequently, whenever a new module must
be added to the system, the only change that must be made is to inform
the supervisory process that the number of modules to be polled has
increased.

In the next section, we present a hybrid technique which retains the
best of both worlds. It has the advantage of the ease of maintenance of
the distributed control strategy, along with the speed of the agenda
system. Although it is not as fast as the agenda system or as uncoupled
as the distributed system, we find it to be a suitable blend of the two.

8. THE NETWORK MODEL FOR MODULE CONTROL

All inference engines take a particular set of tuples and their attributes
from the hypothesis as their input and produce new values for some of
the attributes as their output. These new values update the hypothesis
and are, in turn, accepted as inputs by other inference engines in the
system. This fact can be compactly denoted by representing the engines
as nodes in a network. The nodes in a network may have some arcs
leading into the node and some arcs leading out of the node. Every
node leading in corresponds to an input attribute of some tuple which
must have a previously computed value, while outgoing arcs represent
values for attributes that are computed by the inference engine located
at the node.

In addition to these data paths, the inference engines have access to
the measurements that are computed from the image. All the inference
engines have equal access to the entire set of image information. Since
the image information is given a priori, there is no need to explicitly
denote it as inputs to the inference engines.

In addition, the tuples in the hypothesis must be of the right form.
For example, consider the input requirements of an inference engine
that computes the focal length of the camera. We know that the vanish-
ing points of two perpendicular lines contain enough information to
compute the focal length. Thus, a module which performs this calcula-
tion needs to have two lines in the image which are mutually perpen-

278 MULGAONKAR, SHAPIRO, and HARALICK

dicular. Besides, it needs the computed vanishing points for each of the
lines. The vanishing points must be nonsingular. Only under these
conditions can the inference engine perform its computation. If this
engine were to be controlled using an agenda-based paradigm, all these
checks would need to be performed by each inference engine which
computes vanishing points of a line. Thus, the inference engines,
which compute vanishing points for a line, need to know not only all
the information about the line, but also all information about other
lines in the image and their current status to be able to determine if the
focal length expert should be invoked.

From the point of view of modularity, it is desirable that the amount
of information that any given module needs to know should be re-
stricted to the minimum necessary to achieve the desired efficiency. If
the focal length computing module were to be updated to require some
additional information as input, the amount of updating necessary to
keep the system consistent would be minimized.

In the network approach, the only information that is provided to the
modules that compute values for attributes is the names of the in-
ference engines which could potentially use the computed value. Thus,
all that the vanishing point calculation engines need to know is that
there exists a module for the computation of focal length which uses
vanishing point that it calculates.

Once an inference engine has computed its values and updated the
global database to reflect the changes, it then triggers the appropriate
inference engine which could use the results of its computation. It is
the job of the triggered module to check the conditions and determine if
it indeed has all the required information. If a module gets triggered
and figures out that it cannot do its task, it turns itself off. It then stays
off until some other module determines that it may be able to use its
output.

The key to the success of such a scheme hinges on the fact that once
values are computed for any attribute, these values remain in the global
database and are not lost. Thus, if at a later time some module can use
them, they are still available.

In the case of the focal length module, consider what happens when
some module computes the vanishing point of some line. Assume for
the moment that this is the only line for which a vanishing point has
been calculated. The vanishing point module turns on the focal length
module. However, all the input conditions for the focal length module
have not yet been satisfied. Consequently, the focal length module
turns itself off. It will stay off until a vanishing point gets calculated for
some other line in the image. Once again it will get invoked, and will
examine the available information to see if it can perform its task.

Initially all the modules are deactivated. The process that generates

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 279

the hypotheses turns on appropriate modules depending on the tuples
being hypothesized. Not all these modules may actually be applicable.
Each module then gets a chance to see the input and check its own
conditions. Those that are not applicable, turn themselves off. Others
compute new values and, in turn, mark other modules for activation.

Thus, this scheme is decoupled in the sense that the conditions for
activating each module is concentrated in the module itself. It has the
flavor of an agenda-based system. Modules know of the existence of
other modules to the point that they know which modules could, under
some circumstances, use the output that they generate. The advantage
of this system over the pure demon-based system is that most of the
time the majority of modules are deactivated and, therefore, do not
have to be considered by the supervisory process. Thus, there is no
overhead involved in trying to invoke modules which are obviously
inapplicable. The advantage over the pure agenda-based system is that
the amount of information that other modules need to have about any
given module is absolutely minimal.

The overall control algorithm consists of a supervisor, which se-
quentially polls every module that is not deactivated. If the module
determines that it is not applicable, it deactivates itself. If, on the other
hand, the module is applicable, it performs its actions and, if it com-
putes any new values for attributes, it in turn activates other inference
engines. Note that if an active engine determines that it can perform its
task, it does not turn itself off, because there may be more than one
subset of the hypothesis to which it may be applicable. It turns itself off
only after it has performed its task on all the applicable subsets of the
hypothesis.

We have shown in Mulgaonkar, Haralick, & Shapiro (1984) that the
order in which the engines are actually invoked does not affect the
result. This means that the simple sequential scheduling policy de-
scribed above is appropriate and no erroneous conclusions will be
reached.

9. CONTROL OF INFERENCE ENGINES USING ASSOCIATIVE
TABLES

As was shown in the previous sections, one aspect of effective control
is to be able to selectively enable and disable the inference modules. In
addition to this, the inference engines need the capability to determine,
with minimum computational overhead, whether they are in the “on”
state or the “off” state, and to find the subset of the data on the black-
board which they need to analyze if they are “on.” If they find a subset
of the data to which they are applicable, they must then determine if

280 MULGAONKAR, SHAPIRO, and HARALICK

that subset has been examined in the past. In this section we show that
the use of associative tables greatly simplifies this task.

Consider the actions that an inference module may be called upon to
perform. Since these actions all affect the global database, we may
consider the generic actions that can be used on any data structure.
These actions are:

1. Addition of new information
2. Deletion of old information
3. Updating and changing existing information.

In addition, an inference engine may determine that any information it
could add or update already existed in the database and, consequently,
would take no action. In general, these actions would be data-depen-
dent. That is, some combination of input conditions would be satisfied
by the global data; based on this, the inference actions would be
performed.

If the action of deleting information or updating existing information
changed the preconditions for the inference engine, there would be no
problem. Otherwise, the input conditions would still hold after the
application of the inference task. In this case, if the module were to be
polled again, it would still find the same conditions as before, and
recompute the previously computed values.

There are several ways in which this problem could be tackled. One
technique could be to construct all engines such that values never get
recomputed. This could be done by making sure that one of the input
conditions determines whether the output variables of the engine have
already been computed. Thus, the same engine, if called on to test the
blackboard, would not work with the same data. However, this is an
undesirable situation in the context in which this model of inference
engines was developed.

By our definition of consistency, we declare a hypothesis inconsis-
tent precisely when an inference engine recomputes the value for a
variable which was given a value by another engine, and finds that the
two values do not agree. It hinges on the fact that values get computed
more than once and, obviously, testing the output variable of the in-
ference engine is not the solution we seek.

Another possible solution could be to define some kind of a search
pattern in which an inference engine searches for the data on the black-
board for applicable input sets. Thus, it would never return to a partic-
ular input without having scanned the entire possible sets of inputs on
which it could perform its task.

This, too, is an undesirable situation, because for it to work success-
fully, we must have some way to ensure that once an engine has passed

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 281

a particular point in its scanning pattern, no changes are made to the
database which cause a new possible input set to be generated, which
lies in the part of the search pattern already completed by the inference
engine. Allowing the engines to repeat their search patterns just brings
us back to the previous problem.

The solution that we seek is one in which each engine could re-
member the exact input conditions of the sets of data that it had used in
its previous computations, and the next time it encountered the same
input set, it would ignore it. Note that in this technique the inference
engine may encounter the same input set each time it is invoked, so we
must rely on a rapid way in which the determination of whether it had
previously seen the input could be made.

Our solution to this problem involves the use of associative tables.
Associative tables, which associate with a key a prespecified value,
allow the convenience of storing arbitrary keys and rapidly accessing
the stored information indexed by the keys. Our implementation of
such tables makes use of hash functions which can take any data struc-
tures, such as lists, character strings, and indeed even other tables as
the key, and allow accesses with near linear expected time perfor-
mance. Once an engine has examined a particular input set, it stores
information in the table that “ENGINE x” has worked on “input data i,
input data j” Whenever the same data is encountered again, it can
determine the fact instantly.

The same tables are also used to store information about the current
status of the engine, namely, whether it has been signaled as a possible
candidate to be tried by some other inference engine, or if it is in a
quiescent state. This strategy allows the network model to work suc-
cessfully, because all the time-consuming bookkeeping tasks get re-
duced to rapid accesses into the associative memory. The supervisory
task does not even have to check if an engine is in the “on” or “off”
states, because now that task can be relegated to the inference engine
itself. The first task of the engine is to determine its state. If it is “off,” it
exits and allows the next engine in line to start off. If it is on, it searches
the blackboard for candidate input sets, and examines each one till it
finds one it has not seen. It then performs the relevant actions on the
input.

10. SEARCHING FOR THE MAXIMAL CONSISTENT
HYPOTHESIS

In the previous sections, we discussed a technique for encoding the
knowledge of perspective geometry and applied that knowledge to de-
termine the consistency of a hypothesis. We showed that the problem of

282 MULGAONKAR, SHAPIRO, and HARALICK

determining consistency of a hypothesis is a linear complexity task
which can be performed efficiently. Thus, the practicality of using
shape-from-perspective processes to infer scene structure is contingent
on the efficiency of algorithms for generating hypotheses to be tested.

The efficiency of any processing depends on the amount of world
knowledge that is brought to bear. Model-based vision systems, which
have geometric or structural models of the three-dimensional world,
have an advantage over nonmodel-based systems because the models
constrain the space of interpretations. Vision-based, object-identifica-
tion systems can test the more likely hypotheses before the unlikely
ones. For example, to identify objects in an office scene, the hypothesis
generator could check for “telephone” before “refrigerator.” However,
in such cases, it is hard to separate the contribution of the hypothesis
generation process from that of the hypothesis-testing process towards
the overall interpretive power of the system. For example, if some hy-
pothesis was not produced in the list of “consistent interpretations”
output by the system, it may not be clear if the knowledge embodied in
the consistency checking was powerful enough to reject the hypothesis,
or if the hypothesis was never generated.

To study the interpretive power of perspective geometry, we restrict
our attention in this paper to a hypothesis generation system that does
not use object models. Another motivation for studying such a system
is that there may be cases where object-level knowledge is simply not
available. Such bottom-up hypothesis generation techniques could also
be used to augment and extend partial top-down hypotheses which
may be model-driven. We show that although the search space of hy-
potheses is extremely large, it has a structure which can be utilized in
order to quickly converge to the desired point.

The space over which the search for the best hypotheses is per-
formed is the set of all possible subsets of relational tuples that can be
constructed from a set of 3-D entities. Recall that although the con-
sistency of hypotheses is determined by numeric values assigned to the
attributes of the tuples, the search is not performed over the infinite set
of real numbers. Instead, by using the inverse perspective equations
encoded as closed form inference engines, we compute the numeric
values based on the finite set of relational tuples. This reduces the
overall complexity of the search to an NP-complete problem. However,
a blind search through this exponential space is still prohibitively
expensive.

The key structure of the space comes from two sources. The first
deals with the nature of the consistency determination. If a hypothesis
is consistent as defined by the terminating computations of a group of
inference engines, all subsets of the hypothesis are also consistent. We

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 283

LEVEL 0
/ N\
LEVEL 1 1 .
LEVEL 2 12/ \1— _2/ __
7\ 7\ 7\ Z X
LEVEL3 123 12— 1-3 1-- _33 -»- __3 _>_
v v
Il ¢ ¢ s | s s s
b i } !

Figure 8.2. A Binary Tree Corresponding to a Three-Tuple Search Space.

123 and 23 are inconsistent: 12 and 13 are maximally consistent; and 1, 2, 3, and NUL
are subjects of maximally consistent sets. The subsets of the maximally consistent
hypotheses do not follow any reguiar pattern.

cannot force inconsistency into a set of relational tuples by removing
any elements from it. In addition, if a hypothesis is inconsistent, it
cannot be made consistent by adding new tuples. As long as the incon-
sistent core remains, the new superset of tuples would still result in a
failed terminating sequence of inferences.

The structure can be utilized during the search process by ensuring
that the search algorithm never considers parts of the space that cannot
contain the desired solution. Consider the search space organized as a
binary tree. Suppose there are n possible relational tuples. The tree
would then have n + 1 levels labeled 0 through n. The 2" leaf nodes
correspond to the possible hypotheses. At each internal node at level i,
the left subtree corresponds to the hypotheses in which tuple i is pres-
ent and the right subtree corresponds to the hypotheses without tuple i.
Figure 8.2 shows the binary tree corresponding to a three-tuple search
space. It can be seen that the subsets of the consistent nodes and the
supersets of the inconsistent nodes are not organized in any simply
denotable or regular fashion. Thus, it is not easy to automatically dis-
regard all subsets once a consistent solution is found.,

However, it can be proved that if the leftmost leaf node in any sub-
tree rooted at an internal node is a subset of some previously generated
solution, then all nodes in that subtree are subsets of the same solution.
Therefore the entire subtree can be pruned and ignored by the search
algorithm. Similarly, if the rightmost leaf node is not a subset of any
previous solution, then none of the possible solutions in the tree are

284 MULGAONKAR, SHAPIRO, and HARALICK

subsets. This tree pruning can be augmented by forward checking (Ha-
ralick & Elliott, 1979) applied at internal nodes in the tree.

The second source of knowledge which structures the search space
is the knowledge of the semantics of the spatial relations from which
the hypotheses are drawn. For example, if one of the spatial relations is
the parallel relation between pairs of lines, then it is meaningless to
construct tuples of the form (parallel PlaneA PlaneB)! when PlaneA
and PlaneB are planes. Secondly, the relations themselves may be sym-
metric, reflexive, or transitive. In such cases, hypotheses which do not
satisfy these conditions are automatically inconsistent. For example, if
a hypothesis consists of the following two tuples: {(parallel lineA
lineB) (parallel lineB lineC)}, but does not contain the tuple (parallel
lineA lineC), then it can be declared inconsistent by virtue of being
incomplete. This form of transitivity can be extended to include inter-
relation relationships. For example, if three lines A, B, and C, lie in a
common plane with line B perpendicular to both lines A and C, then
lines A and C must be parallel. In fact, such interrelationships between
the various spatial relationships can be used to automatically extend
partial hypotheses of the form {(parallel lineA lineB) (parallel lineB
lineC)} to include the implied relational tuple (parallel lineA lineC).

Such semantic consistency rules can be used to efficiently reduce
the search space by forcing logical completeness at all internal nodes of
the tree. For example, if at internal node i in the tree, we take the left
branch (include tuple i in the partial hypothesis), we also include all
the tuples implied by the selections at levels 0 through i — 1 and the
new tuple i. This allows us to make decisions about lower levels in the
tree well before we reach them, reducing the number of levels that we
actually have to search. For example, if we have already included a
relationship (parallel LineB LineC), we can automatically include the
logically implied tuple (parallel LineA LineC).

11. IMAGE PROCESSING EXAMPLES

The spatial-reasoning system described in the previous sections has
been implemented using a set of approximately 100 inference engines.
It can reason about the relationships between 3-D points, lines, circular
arcs, and planes. Its input consists of a digitized, perspective line draw-
ing produced with an unknown camera position and with a camera of
unknown focal length. The input can be augmented, if necessary, by

1 Note: For clarity, the place holders for the attributes have been omitted in this and
subsequent examples.

SPATIAL REASONING USING MODULAR INFERENCE ENGINES 285

supplying any of the unknowns, such as the absolute location of some
point in space, or some of the camera parameters. The inference en-
gines are coded in a modified Prolog language, and interpreted at ex-
ecution time. The modifications to the standard Prolog language con-
sist of extensions for handling new data structures, such as associative
tables and images, and to allow deterministic flow of control in areas
where a procedural approach (as opposed to a backtracking search) is
necessary.

The final output of the system is a listing of the best hypothesis along
with the computed values for the relevant numeric attributes, such as
coordinates of points, direction cosines of lines, normals to the planes,
and others. Absolute coordinates of points cannot be computed unless
the true location of some reference point is known. This is because
perspective projection involves an unknown scale change, that is, if all
dimensions in the scene are scaled by a constant, the image does not
change.

The system was tested on a variety of digitized line drawings as
reported in Mulgaonkar (1984). The drawings were obtained from a
book of perspective etchings by deVries (1968) containing a large
number of architectural indoor and outdoor scenes. The drawings con-
tain perspective projects of solids consisting of lines and circular arcs
shown in perspective. In addition, several projections were constructed
of synthetic 3-D objects of varying complexity (for example, see F igure
8.3) using a graphics system.

To aid in the interpretation of the results, the coordinates of points
and equations of the lines output by the reasoning system were fed into
a graphics package to generate a synthetic perspective view from a
viewpoint different than that of the original image. This involved the
manual identification of the 3-D coordinates of one point in the scene.
Figure 8.4a shows an input image of moderate complexity, obtained
from deVries (1968). The bold lines were selected as input to the rea-
soning system. Although all the lines could have been input, the
number was restricted to keep execution times manageable for the Pro-
log interpreter in use. The results of processing lines in the input for the
image are shown in Figure 8.4b. Similarly, Figure 8.5a shows another
3-D scene from deVries (1968), and its interpretation is shown in
Figure 8.5b.

12. CONCLUSION

In this chapter we have demonstrated a technique for organizing and
controlling inference engines so that the overhead consumed for per-

286 MULGAONKAR, SHAPIRO, and HARALICK

P8
% Arc 2
21 9

13 1]6 |8

Figure 8.3. An Artificial 3-D Scene Generated Using a Graphics Package.

forming their work is minimized. We showed that the network organi-
zation permits the engines to run in a weakly coupled mode where the
major part of the computational effort required for determining the
applicability of engines is left to each engine itself. It obtains a little
help from the other modules which determine if it “may” be applicable.
This allows easy updating of the knowledge contained in the system,
and yet retains the efficiency of a coupled system.

We also showed how the use of associative tables controls the struc-
ture of the inference engines and simplifies the task of determining an
input set of data for the engines to use.

287

SPATIAL REASONING USING MODULAR INFERENCE ENGINES

ST Gy

Wil ,\.',

/

(a) Input Scene
Bold lines were supplied as input to the system

Interpretation of an Indoor Scene.

Figure 8.4.

288 MULGAONKAR, SHAPIRO, and HARALICK

(b) Interpretation Generated by Spatial Reasoning
Coordinates of indicated point were supplied as a-priori information

REFERENCES

Barnard, S. T. (1982). Interpreting perspective images (Tech. Rep. No. 271).
Menlo Park, CA: A.L Center, SRI International.

Brooks, R. A. (1981). Symbolic reasoning among three dimensional models and
two dimensional images. Artificial Intelligence, 17, 285—348.

deVries, J. V. (1968). Perspective. New York: Dover Publications.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., & Reddy, D. R. (1980). The Hearsay-II
speech understanding system: Integrating knowledge to resolve uncer-
tainty. Computing Surveys, 12(2), 213-254.

Haralick, R. M. (1980). Using perspective transformations in scene analysis.
CGIP, 13, 191-221.

Haralick, R. M., & Elliott, G. (1979). Increasing tree search efficiency for con-
straint satisfaction problems. 6th International Joint Conference on Ar-
tificial Intelligence, Tokyo, Japan.

Horaud, P., & Bolles, R. C. (1986). 3DPO: A System for matching 3-D objects in
range data (pp. 359-370). Norwood, NJ: Ablex.

Horn, B. P. K. (1975). Shape from shading. New York: McGraw-Hill.

Horn, B. P. K. (1977). Understanding image intensities. Artificial Intelligence,
8, 201-231.

Ikeuchi, K. (1987). Generating an interpretation tree from a CAD model for 3D-
Object Recognition in bin-picking tasks. International Journal of Comput-
er Vision, 1(2), 145—-165.

Kanade, T. (1981). Recovery of three-dimensional shape of an object from a
single view. Artificial Intelligence, 17, 409—460.

Lenat, D. B., & Davis, R. (1982). Knowledge based systems in artificial intel-
ligence. New York: McGraw Hill.

McKeown, D. M., Harvey, W. A., & McDermott, J. (1984). Rule based interpreta-
tion of aerial imagery. Proceedings of the IEEE Workshop on Principles of
Knowledge Based Systems (pp. 145—157). Silver Springs, MD: IEEE Com-
puter Society Press.

SPATIAL REASONING USING MODULAR INFERENCE ENGINES

289

< =

(a) Input Scene
Bold lines were supplied as input to the system

(b) Interpretation Generated by Spatial Reasoning
Coordinates of indicated point were supplied as a priori information

Figure 8.5. Interpretation of an Outdoor Scene.

290 MULGAONKAR, SHAPIRO, and HARALICK

Mulgaonkar, P. G. (1984). Analyzing perspective line drawings using hypoth-
esis based reasoning. PhD Thesis, Virginia Polytechnic Institute and State
University, Blacksburg, VA.

Mulgaonkar, P. G., Haralick, R. M., & Shapiro, L. G. (1984). A computational
framework for hypothesis based reasoning and its application to comput-
er vision. First Conference on Artificial Intelligence Applications,
Denver, CO.

Mulgaonkar, P. G., Shapiro, L. G., & Haralick, R. M. (1986). Shape from perspec-
tive: A rule-based approach. Computer Vision, Graphics, and Image Pro-
cessing, 36, 298—320.

Mulgaonkar, P. G., Shapiro, L. G., & Haralick, R. M. (1984, March). Matching
sticks plates and blobs objects using geometric and relational constraints.
Image and Vision Computing, 1, 85-98.

Roberts, L. G. (1965). Machine perception of three-dimensional solids.
Cambridge, MA: MIT Press.

Witkin, A. P. (1981). Recovering surface shape and orientation from texture.
Artificial Intelligence, 17, 17-46.

