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This paper introduces a size invariant method to recognize complex two­
dimensional shapes using multiple generalized recursive erosion transforms. The 
method accomplishes the same kind of recognition that templates of each shape at 
multiple scales would do, but the method takes constant time per pixel regardless 
of the scale of the shape. We illustrate the technique on shapes having multiple 
randomly generated parts and randomly scaled and translated into a binary image 
having other shapes. The paper discusses the shape generation, image generation, 
image perturbation, recursive transforms, and recognition methodology. Results 
from the initial feasibility experiments show the methodology is able to detect each 
model's scale and position. 

1 Perspective 

By a two-dimensional shape we mean a connected area that distinguishes it­
self from its locally surrounding background. In this note we do not concern 
ourselves with the nature of the distinction. Here we are only concerned with 
the shape itself and how the techniques of recursive mathematical morphology 
can be used to describe and recognize a shape class. 

Our setting will be in the domain of binary images. A shape prototype 
description will be specified by a connected set of binary one pixels and a 
spatially surrounding set of binary zero pixels. The size of the prototype will 
be in the high range of the scales of interest. The width of the spatially 
surrounding set of binary zero pixels is considered to be one of the parameters 
of the shape prototype itself. The shape class associated with the prototype 
will be the set of all digital scalings of the prototype. Since we are in the 
domain of digital images, there will be a smallest scale and it will be the scale 
for which the thinnest part of the shape is at least two pixels wide. 

A shape prototype consists of primitive shape parts translated and rotated 
with respect to one a11other and constrained so that the resulting shape proto­
type is a connected set. The primitives used in the feasibility study reported 
here consist of circles, rectangles, triangles, sectors, lines, and parallelograms. ___ _._..____ 
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2 Recursive Erosion Transform 

The erosion of an image A by a structuring element B is the set of all translated 
origins of the structuring element B where B can be wholly placed in A. The 
definition of erosion is defined below 

The erosion of A by a structuring element B is denoted by A 8 B and is 
defined 

A e B = {X E En I nbEB A_b} 
As an example take the image and structuring element in Fig. 1 

Figure 1: On the left is the binary image and on the right is a cross-shaped structuring 
element. 

The positions where the cross-shaped structuring element can be wholly 
placed in the image can be seen in Fig. 2 and the resulted erosion is seen in 
Fig. 3. 

Figure 2: The structuring element can be wholly covered in the three locations shown. 

The erosion transform is found by eroding the image and each erosion 
result by the structuring element B over and over again (A 8 B 8 B ... ) until 
nothing is left in the result. The number of times a pixel 1 value remains at a 
coordinate in each erosion result is the value for that coordinate in the erosion 
transform. 

Rather than do the erosions over and over again and count the number of 
times a pixel appears in the result, recursive morphology simplifies the erosion 
transform into two passes. First the structuring element is broken into two 
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Figure 3: The resulting erosion. 

parts, that is before the origin in top-down, left-right scan order, called y, and 
that which is after, called z. 

The algorithm for finding the erosion transform is listed as follows. 

1. In left-right, top-bottom scan order, sweep through the input image. If 
a pixel value of 0, define the output pixel at that position to have the 
value 0. If a pixel has a value of 1 than do the following. 

• translate the structuring element y to the current position on the 
output image 

• find the values of the output image pixels for each of the locations 
in the translated structuring element y 

• select the minimum of the values and add 1 

• give the pixel at the current position on the output image this min­
imum value 

2. Call the resulting image G 

3. In a right-left, bottom-top scan order, sweep through the image G. 

• translate the structuring element z to the current position on the 
output image 

• find the values of the pixels of G for each of the locations in the 
translated structuring element and add 1 

• find the value of G at the current position 

• place in the current position of G the minimum value of all the 
values 

Fig. 4 shows the first pass and second pass result of the erosion transform 
using the image and structuring element in Fig. 1. 
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Figure 4: On the left is the first pass of the image in Fig. 1 using the cross structuring 
element and on the right is the second pass and final erosion transform result. 

3 Methodology 

The scale invariance recognition is based on the following idea: the erosiOn 
transform of any scale of a shape prototype will result in a scaled version 
of the original erosion transform. For example if we were to scale a shape 
prototype to half size, the erosion transform of the scaled shape will result 
in a same shaped erosion transform as the original but half the size and the 
maximum value of the erosion transform will be half that of the original. And 
proceeding away from the location of the maximum value, the values of the 
erosion transform will ramp down in the same way as in the original. The key 
to using the erosion transform for recognition is the fact the position of the 
scaled original maximum transform value from the center of the model is the 
scale of the maximum original transform value. 

For an example, Fig. 5 is a possible result of an erosion transform of two 
scaled models. The larger is the outline of the erosion transform of the model 
and the smaller is the outline of the erosion transform of the model scaled by 
.5. An X marks the maximum value position of both transforms. As can be 
seen the global maximum of the original transform is twice that of the scaled 
transform and the positions also have the same scale. 

Using structuring elements that span all directions results in different 
transforms and can provide information about each of the different shape 
classes. 

One problem with this methodology is the need for a preprocessing noise 
removal step. This is because any perturbation of the image will result in 
changes in the erosion transform. The changes could be very large, for example 
if the perturbation introduces a hole in the middle of a shape. Since the 
maximum values are mostly in the middle of the erosion transform, noise on 
the outside of the model will have just a slight effect on the positions and 
values. But if the maximum is on the edge of the model, it likely will be 
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Figure 5: In this figure the shape prototype is the larger of the two objects and its maximum 
ET value is marked with a cross. The center of the shape prototype is at the origin. The 
smaller shape is a .5 scaled version of the shape prototype with its center also at the origin. 
It can be seen that the result from scaling is that the max ET value in the scaled model ET 

is also scaled .5 and it's coordinates are also scaled by .5. 
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affected. Fig. 6 and Fig. 7 shows an example of this. In Fig. 7 it can be seen 
that the maximum erosion transform value is different resulting from just two 
added pixels. 

Figure 6: The figure on the left is the image from Fig 1. The central figure is the image from 
Fig. 1. with a pixel of noise added above and below. 

Figure 7: The figure on the left is the erosion of the image from Fig 1 without noise. On the 
right is the erosion transform of the image with added noise. 

To account for these possibilities, the algorithm was formed to include the 
case of this happening. It was decided that matching scales had to be within 
one of the scale candidate, and the position of the maximum had to be within 
five pixel places of the scaled maximum pixel position. 

3.1 Algorithm 

The algorithm for shape detection has an offline and an online part. The offline 
part consists of doing the following for each of the shape prototypes: 

1. Calculate the recursive erosion transform of the shape prototype using 
the first structuring element. 

2. Mask the first primitive with the model and select the maximum values. 

3. Run a connected components on the results of step 2 and select the 
coordinate that is the center of all the maximum pixel positions. 
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4. Record in the training data the center position of the masked maximum 
transform value relative to the center of the model along with the maxi­
mum value. 

5. Repeat steps 2 through 5 for every primitive in the model. 

6. Calculate the recursive erosion transform of the first model using all the 
other structuring elements and repeat steps 2 through 6. 

The offiine part produces the training data for the recognition stage. The 
traning data consists of the x and y coordinates of the central maximum pixel 
location relative to the center of the shape prototype and the maximum value 
of the erosion transform. 

The online recognition algorithm consists of the following steps. 

1. Starting with the image's erosion transform from the first structuring 
element, find the maximum value and select the first position in the 
image that has that maximum value in left-right top-down raster scan 
order. 

2. To find a scale candidate, divide the maximum value in the image erosion 
transform by the maximum value found in the erosition transform of the 
first shape prototype. 

3. Find the model's center candidate by subtracting the scaled coordinates 
of the maximum transform value in the shape prototype from the position 
of the maximum erosion transform value in the image. 

4. Now with a possible center and scale of the model, check to see if indeed 
the scaled shape prototype exists by going to each scaled position where 
the masked erosion transform value was at a maximum for each primitive 
and calculate the scale. If the scale for each position is the same as the 
candidate scale, then with respect to the structuring element, we can 
hypothesize that a scaled version of the shape prototype exits centered 
at the location. 

5. Keeping the center candidate and scale candidate, repeat step 5 using 
the image erosion transforms for the rest of the structuring elements 
and the training data of the first shape prototype with each respective 
structuring element. 

6. If there are a sufficient number of times for which we cannot reject the 
hypothesis that the shape matches we assert the hypothesis of a shape 

T 
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match and record its scale and position. Then we determine the bounding 
box for the scaled shape prototype and use it to mask out all those pixels 
in the bounding box. 

7. If there are not a sufficient number of times for which we cannot reject 
the hypothesis that the shape matches, steps 3 through 7 are repeated 
for the next shape prototype. 

8. Finally repeat the entire process on the remainder of the image. 

The algorithm is based on the fact that the maximum value in the image 
erosion transform must be a scale of the maximum value of the erosion trans­
form of one of the shape prototypes. This is so because of the characteristic of 
the erosion transform and the fact that the scaled shapes on the image do not 
touch. Knowing this we can divide the maximum value in the image erosion 
transform by the maximum value in each shape prototype's erosion transform 
to get candidates for scale. With scale we can now calculate the center of the 
scaled model since the position of the maximum value is just the scale of the 
position of the maximum value of the shape prototype. Then we check to see if 
the shape class does exist there by going out to each scaled maximum masked 
position and checking if it has the same scale there as the scale just calculated. 

4 Testing and Results 

Testing the feasibility of the method requires the generation of primitives, 
shape prototypes, and images of perturbed scaled and translated shape proto­
types. This is described in the following sections. 

4.1 Shape Generation 
A shape prototype is composed of a set of primitives. Each primitive is 

mildly constrained so that its digital image bears a reasonable resemblance to 
the continuous primitive ideal. The line primitives must be at least five pixel 
wide and at least five pixels long. The triangles and parallelograms must have 
vertex angles greater than 30 degrees and each side must be at least 30 pixels 
long. The circles and sectors must have a radius of at least 30 pixels long and 
the sector must have an angle greater than 30 degrees. Finally the sides of 
rectangles must be at least 30 pixels long. 

The shape prototype is constrained so that the set of its constituting prim­
itives form a connected set with the overlap constrained to between each pair of 
connecting primitives constrained to be less than 5%. Overlap between a pair 
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of connecting primitives is measured as the area of the union of the primitives 
divided by the sum of the areas of the primitives. 
4.2 Image Generation 

Image generation requires scaling the shape prototypes and randomly plac­
ing them in the image so that they do not overlap with any other shape already 
in the image. For this feasibility study, the image size is 512 by 512 and the 
scales are randomly generated between .33 and 1. 

4.3 Image Perturbation 

1. For each foreground pixel, f;, compute the pixel's distance from the 
nearest background pixel. Let this distance be d(f;). 

2. For each background pixel, b;, compute the pixd's distance from the 
nearest foreground pixel. Let this distance be d(b;). 

3. For each foreground pixel, compute the probability of switching to a 
background pixel, 

Generate a random number between 0 and 1 and flip the pixel to a 
background pixel (0) depending on whether the random number is lower 
or higher than the pixel-switching probability. 

4. For each background pixel, compute the probability of switching to a 
foreground pixel, 

P(1ld(b;), background, co, f3o, (3) = c0 + (30 e-f3d,(bi) 

Generate a random number between 0 and 1 and flip the pixel to a 
foreground pixel (1) depending on whether the random number is lower 
or higher than the pixel-switching probability. 

5. Perform a morphological closing of the resultant image with a disk struc­
turing element of diameter stElSize. This introduces a correlation amongst 
neighboring pixels. 

4-4 Feasibility Test 
It was decided that there would be four different models each 256 by 

256. Each model consisted of randomly generated primitives placed at random 
positions, making sure each was slightly overlapped to another. Than with 
four different models, four different images were generated randomly placing 
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the four different models in the image at randomly generated scales between 
.3 and 1. Training data was obtained from the models and images and later 
the software was run on each of the images. 

Fig 8 shows the four different models generated and Figures 9, 10, 11, and 
12 show the four generated images. 

Figure 8: The four randomly generated models for testing 

Fig. 13 shows the 14 different structuring elements. 
The erosion transform of model one and image one with the eleventh struc­

turing element is shown in Fig. 2. 
We ran two experiments in which each there were 14 different noise per­

turbations of each image. The results of the experiments are summarized in 
Tables 1-5. 

5 Further Work 

The reported study is only a feasibility study. To refine the method for oper­
ational use would require a proper statistical treatment of the estimation and 
scale and the way in which the matching takes place. We discuss this in the 
next subsection. Also, it would be reasonable to use the locally surrounding 
binary 0 pixels of each shape prototype in the same way that the binary 1 pix-
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Figure 9: The first generated image 

Figure 10: The second generated image 
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Figure 11: The third generated image 

Figure 12: The fourth generated image 



484 

.... .. 
4 

J - I 
7 

~ ... 
10 11 12 _. 

13 14 .- -. 
Figure 13: The 14 different structuring elements used for the erosion transforms 

Figure 14: Erosion transform of the first image by the eleventh structuring element \ • 
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Table 1: Recognition Results from Ideal Images 

Image 1 
Model Position (r,c) Scale 
Model 1 (127.36, 160.00) 0.31 
Model 2 (276.86, 74.71) 0.90 
Model 3 (321.24, 346.21) 0.31 
Model4 (102.93, 15.21) 0.70 

Image 2 
Model Position (r,c) Scale 
Modell (92.00, 307.46) 0.92 
Model 2 (32.58, 133.50) 0.55 
Model 3 (186.85, 86.92) 0.85 
Model4 no model 

Image 3 
Model Position (r,c) Scale 
Model 1 (91.86, 42.93) 0.77 
Model 2 (309.08, 19.15) 0.65 
Model 3 (183.00, 216.21) 0.85 
Model4 (13.00, 287.43) 0.45 

Image 4 
Model Position (r,c) Scale 
Modell (57 .23, 351.54) 0.40 
Model 2 (108.43, 75.86) 0.87 
Model 3 (328.00, 185.25) 0.46 
Model4 (313.71, 19.79) 0.45 
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Table 2: Recognition Results from Degraded Images 

Image 1 
Model Position (r,c) Scale 
Model 1 (127.00, 160.00) 0.31 
Model 2 (276.64, 74.50) 0.90 
Model 3 (321.33, 346.67) 0.30 
Model 4 (102.67, 15.60) 0.70 

Image 2 
Model Position· (r,c) Scale 
Model 1 (91.71, 306:71) 0.93 
Model 2 (32.29, 132.93) 0.55 
Model 3 (187.00, 86.50) 0.83 
Model4 no model 

Image 3 
Model Position (r,c) Scale 
Modell (92.14, 43.86) 0.76 
Model 2 (308.92, 18.92) 0.65 
Model 3 (183.14, 216.43) 0.85 
Model4 (13.08, 287.46) 0.45 

Image 4 
Model Position (r,c) Scale 
Modell (57.23, 351.62) 0.40 
Model 2 (108.36, 75.86) 0.87 
Model 3 (327.83, 185.16) 0.46 
Model4 (313.45, 19. 79) 0.45 
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Table 3: Ground Truth Image Data 

Image 1 
Model Position ( r ,c) Scale 
Model 1 (129, 161) 0.30 
Model 2 (276, 74) 0.90 
Model 3 (322, 347) 0.30 
Model 4 (103, 15) 0.70 

Image 2 
Model Position (r,c) Scale 
Model 1 (91, 306) 0.93 
Model 2 (33, 134) 0.54 
Model 3 (187,86) 0.83 
Model4 no model 

Image 3 
Model Position (r,c) Scale 
Modell (91, 44) 0.76 
Model 2 (310, 20) 0.64 
Model 3 (183, 216) 0.85 
Model4 (13, 287) 0.82 

Image 4 
Model Position (r,c) Scale 
Modell (58, 352) 0.39 
Model 2 (107, 75) 0.87 
Model 3 (329, 186) 0.45 
Model4 (314, 21) 0.44 
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Table 4: Shape Recognition Statistics for the Degraded Images 

Image 1 
Model Cor False Mis 

Det Alarm Det 
Model 1 14 0 0 
Model 2 14 0 0 
Model 3 14 0 0 
Model4 14 0 0 

Image 2 
Model Cor False Mis 

Det Alarm Det 
Modell 13 0 1 
Model 2 12 0 2 
Model 3 13 0 1 
Model4 no model 

Image 3 
Model Cor False Mis 

Det Alarm Det 
Modell 14 0 0 
Model 2 13 0 1 
Model 3 14 0 0 
Model4 14 0 0 

Image 4 
Model Cor False Mis 

Det Alarm Det 
Model 1 13 0 1 
Model 2 14 0 0 
Model 3 12 ·o 2 
Model 4 14 0 0 

--

t 
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Table 5: Shape Recognition Statistics for the Degraded Images 

I 1 rna e 
Models Cor False Mis 

Det Alarm Det 
Modell 10 0 4 
Model 2 14 0 0 
Model 3 3 0 11 
Model4 10 0 4 

Image 2 
Models Cor False Mis 

Det Alarm Det 
Modell 14 0 0 
Model 2 14 0 0 
Model 3 14 0 0 
Model 4 no model 

Image 3 
Models Cor False Mis 

Det Alarm Det 
Model 1 14 0 0 
Model 2 13 0 1 
Model 3 14 0 0 
Model 4 13 0 1 

Image 4 
Models Cor False Mis 

Det Alarm Det 
Model 1 13 0 1 
Model 2 14 0 0 
Model 3 12 0 2 
Model4 11 0 3 
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Figure 15: Erosion transform of the first shape prototype by the eleventh structuring element. 

els are used. Both these improvements would undoubtedly change the results 
reported from being close to perfect to being very close to perfect. 

5.1 Scale Estimation 

Let J.ll, ... , J.lN be a fixed ordering of the 3 x 1 mean position-maximum-value 
vectors and I\, ... , L,N be the covariances of a given shape prototype. The 
first two components of each J.l are the row column coordinates of a maxima of 
an erosion transform and the third component is the value of the maxima. The 
row column coordinates are specified with respect to the origin of the shape 
prototype. The ordering is determined by a fixed rule associated with the 
shape prototype and depends on the position of the maxima and from which 
structuring element the maxima comes about. 

Let x 1 , ... , XN be the same fixed ordering resulting from a noisy observa­
tion of a scaling of the shape prototype. Let s be the unknown scale parameter. 
We model the noisy observations the following way: 

Xn = SJ.ln + 1/Jn 

where 1/Jn has a Normal(O,'£n) distribution and 1/Jm is independent of 1/Jn for 
m =F n. 
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To estimate the value for s, we find that value which maximizes P(s I :z:1, ... , :z:N)· 
This is equivalent to obtaining an s that minimizes 

N 

L(:z:n- sJLp~- 1 (:z:n- sJL)- 2logP(s) 
n=l 

We take the prior probability P(s) to be Normal(JL, cr2 ). 

In this case, we seek the s that minimizes 

N 

L(:z:n- SJL)':E-1(:z:n- SJL) + (s- JL) 2 jcr2 

n=l 

Differentiating with respect to s, collecting terms together and solving for 
1 results in 

IV here 

6 Conclusion 

A+ JL/cr2 
s= 

· B + 1/cr2 

N 

A L JL':E-l:Z:n 

n=l 

N 

B LJL':E-lJL 
n=l 

The feasibility study has four steps consisting of shape prototype generation, 
image generation, image perturbation, and recognition. The insight of the en­
tire method was the use of the recursively computed erosion transform knowing 
that the erosion transform of a scaled model has a maximum erosion trans­
form value and position proportional to the maximum erosion transform and 
position of the original shape prototype. And that proportion is the scale. 
Testing this methodology resulted in correctly detected position and scales of 
four different shape prototypes randomly placed in 4 images. 
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