SEARCH, DEPTH-FIRST

State-space search methods are useful when a problem
can be formulated in terms of finding a solution path in a
directed graph from an initial node to a goal node. State-
space graphs are implicitly represented. They are gener-
ated on the fly with the aid of a successor-generator func-
tion; given a node of the graph, this function generates its
successors. Depth-first search is a name commonly used
for various search methods that perform search as follows.
The search begins by expanding the initial node, ie, by
generating its successors. At each later step, one of the
most recently generated nodes is expanded. (In some prob-
lems, heuristic information is used to order the successors
of an expanded node. This determines the order in which
these successors will be visited by the depth-first search
method.) If this most recently generated node does not
have any successors or if it can be determined that the
node will not lead to any solutions, then backtracking (qv)
is done, and a most recently generated node from the re-
maining as yet unexpanded nodes is selected for expan-
sion.

A depth-first search method can be used to find a solu-
tion in the search space by simply terminating the algo-
rithm when the first solution is found. It can also be used
to find a least-cost solution (by letting the algorithm run
until the whole search space is exhausted, and also by
keeping track of the best solution seen so far). Following
are three search methods that use the depth-first search
strategy.

1. Simple backtracking is a depth-first search method
that is used to find any one solution and that uses no
heuristics for ordering the successors of an expanded node.
Heuristics may be used to prune nodes of the search space
go that search can be avoided under these nodes.

2. Ordered depth-first search is a depth-first search
method that is used to find any one solution and that uses
heuristics for ordering the successors oi an expanded node.
Heuristics may also be used to prune nodes of the search
space so that search can be avoided under these nodes.

3. Depth-first branch-and-bound (DFBB) is a depth-
first search method that is used to find an optimal solu-
tion. These search methods use a lower bound function
(defined over the nodes of the search space) to prune those
nodes that cannot lead to a solution that is better than the
one already found. They also often use a heuristic to order
the successors of an expanded node.

There is a considerable confusion regarding the names
that are used by various researchers to label different
search techniques. For example, the names depth-first
branch-and-bound and backtracking are used by some re-
searchers to refer to the class of algorithms that here are
called ordered depth-first search.

If the search space to the left of the first goal node is
infinite (or very large), then search would never terminate
(or take a very long time). This problem can be corrected
by having a bound L on the depth of the space searched.
This kind of search is called depth-bounded depth-first
search. If there is no goal node at a depth L or earlier, then
the search would fail even if there is a goal node at a depth
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greater than L. In such cases the search will have to be
restarted with a larger depth bound.

Usually, a depth-first search procedure has lower stor-
age requirement than a best-first search procedure, If
every node has k successors, then the storage requirement
of a depth-first procedure for searching to a depth of n is
O(n X k). In best-first search, if the heuristic evaluation
function is bad, then the storage requirement can be as
much as O(k"). Furthermore, depth-first search has very
little overhead as compared to best-first search in which a
priority queue must be rearranged after every node ex-
pansion.
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SEGMENTATION

Image segmentation is the partition of an image into a set
of nonoverlapping regions whose union is the entire im-
age. The purpose of image segmentation is to decompose
the image into parts that are meaningful with respect to a
particular application. For example, in two-dimensional
part recognition, a segmentation might be performed to
separate the two-dimensional object from the background.
Figure 1a shows a gray-level image of an industrial part,
and Figure 1b shows its segmentation into object and
background. In this figure, the object is shown in white
and the background in black. In simple segmentations,
this article will use gray levels to illustrate the separate
regions. In more complex segmentation examples where
there are many regions, white lines on a black back-
ground will be used to show the separation of the image
into its parts.

It is very difficult to tell a computer program what
constitutes a meaningful segmentation. Instead, general
segmentation procedures tend to obey the following rules.

1. Regions of an image segmentation should be uni-
form and homogenous with respect to some charac-
teristic such as gray level or texture.

2. Region interiors should be simple and without many
small holes.

3. Adjacent regions of a segmentation should have sig-
nificantly different values with respect to the char-
acteristic on which they are uniform.

4. Boundaries of each segment should be simple, not
ragged, and must be spatially accurate.

Reprinted from Encyclopedia of Artificial Intelligence, Second Edition,
Copyright © 1992 by John Wiley & Sons, Inc.
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(a)

(b)

Figure 1. (a) A gray-level image of an industrial part and (b) a
segmentation of the image into object (white) and background
(black).

Achieving all these desired properties is difficult be-
cause strictly uniform and homogeneous regions are typi-
cally full of small holes and have ragged boundaries. In-
sisting that adjacent regions have large differences in
values can cause regions to merge and boundaries to be
lost.

Clustering in pattern recognition (gv) is the process of
partitioning a set of pattern vectors into subsets called
clusters (Young and Calvert, 1974). For example, if the
pattern vectors are pairs of real numbers illustrated by
the point plot of Figure 2, clustering consists of finding
subsets of points that are close to each other in Euclidean
two-space. As there is no full theory of clustering, there is
no full theory of image segmentation. Image segmenta-
tion techniques are basically ad hoc and differ precisely in
the way they emphasize one or more of the desired proper-
ties and in the way they balance and compromise one
desired property against another. The difference between
image segmentation and clustering is that in clustering,
the grouping is done in measurement space. In image seg-
mentation, the grouping is done on the spatial domain of
the image and there is an interplay in the clustering be-
tween the (possibly overlapping) groups in measurement
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Figure 2. A set of points in a Euclidean measurement space that
can be separated into three clusters of points, Each cluster con-
sists of points that are in some sense close to each other.

space and the mutually exclusive groups of the image seg-
mentation.

This article describes the main ideas behind the major
image segmentation techniques and gives example results
for a number of them. Additional image segmentation sur-
veys have been published (Zucker, 1976; Riseman and Ar-
bib, 1977; Kanade, 1980; Fu and Mui, 1981). This article
will view segmentation with respect to the gray-level
characteristic. Segmentation on the basis of some other
characteristic, such as texture, can be achieved by first
applying an operator that transforms local texture to a
texture feature value (see also TexTUrE). Texture segmen-
tation can then be accomplished by applying segmenta-
tion with respect to the texture pattern value characteris-
tic exactly as if it were a gray-level characteristic.

MEASUREMENT-SPACE GUIDED SPATIAL CLUSTERING

This technique for image segmentation uses the measure-
ment—space clustering process to define a partition in
measurement—space. Then each pixel is assigned the la-
bel of the cell in the measurement-space partition to
which it belongs. The image segments are defined as the
connected components of the pixels having the same label.

The segmentation process is, in general, an unsuper-
vised clustering, because no a priori knowledge about the
number and type of regions present in the image is avail-
able. The accuracy of the measurement—space clustering
image segmentation process depends directly on how well
the objects of interest on the image separate into distinct
measurement—space clusters. Typically, the process
works well in situations where there are a few kinds of
distinct objects having widely different gray-level intensi-
ties (or gray-level intensity vectors, for multiband images)
and these objects appear on a near uniform background.

Clustering procedures that use the pixel as a unit and
compare each pixel value with every other pixel value can
require excessively large computation time because of the
large number of pixels in an image. Iterative partition
rearrangement schemes must go through the image data
set many times and if done without sampling can also
take excessive computation time. Histogram mode seek-
ing, because it requires only one pass through the data,
probably involves the least computation time of the mea-
surement—space clustering techniques, and it is the ap-
proach discussed here.

Histogram mode seeking is a measurement—space clus-
tering process in which it is assumed that homogeneous
objects on the image manifest themselves as the clusters
in measurement—space. Image segmentation is accom-
plished by mapping the clusters back to the image domain
where the maximal connected components of the mapped
back clusters constitute the image segments. For images
that are single band images, calculation of this histogram
in an array is direct. The measurement—space clustering
can be accomplished by determining the valleys in this
histogram and declaring the clusters to be the interval of
values between valleys. A pixel whose value is in the ith
interval is labeled with index i and the segment it belongs
to is one of the connected components of all pixels whose
label is i. Thresholding techniques are examples of histo-
gram mode seeking with bimodal histograms.



Figure 3 illustrates an example image that is the right
kind of image for the measurement—space clustering im-
age segmentation process. It is an enlarged image of a
polished mineral ore section. The width of the field is
about 1 mm. The ore is from Ducktown, Tennessee, and
shows subhedral to enhedral pyrite porophyroblests
(white) in a matrix of pyrorhotite (gray). The black areas
are holes. Figure 4 shows the histogram of this image. The
valleys are no trouble to find. The first cluster is from the
left end to the first valley. The second cluster is from the
first valley to the second valley. The third cluster is from
the second valley to the right end. Assigning to each pixel
the cluster index of the cluster to which it belongs and
then assigning a unique gray level to each cluster label
vields the segmentation shown in Figure 5. This is a virtu-
ally perfect (meaningful) segmentation.

Figure 6 shows an example image that is not ideal for
measurement—space clustering image segmentation. Fig-
ure 7 shows its histogram, which has three modes and two
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Figure 3. Anenlarged raw mineral ore section. The bright areas
are grains of pyrite; the gray areas constitute a matrix of
pyrorhotite; the black areas are holes.
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Figure 4. The histogram of the image in Figure 3. The three
nonoverlapping modes correspond to the black holes, the
pyrorhotite, and the pyrite.
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Figure 5. The segmentation of the image of Figure 3, produced
by clustering the histogram of Figure 4.

Figure 6. An image similar in some respects to the image of
Figure 3. Because some of the boundaries between regions are
shadowed, homogeneous region segmentation may not produce
the desired segmentation.
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Figure 7. A histogram of the image of Figure 8.
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Figure 8. The segmentation of the image of Figure 6, produced
by clustering the histogram of Figure 7.

Figure 10. A section of the F-15 bulkhead.
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Figure 11. A histogram of the bulkhead image of Figure 10.

Figure 12. The segmentation of the bulkhead by a measure-
ment—space clustering into five clusters.

valleys, and Figure 8 shows the corresponding segmenta-
tion. Notice the multiple boundary area. It is apparent
that the boundary between the grain and background is in
fact shaded dark, and there are many such border regions
that show up as dark segments. In this case, it is not
desired that the edge borders be separate regions, and
although the segmentation procedure did exactly as it
should have done, the results are not what was desired.
This illustrates that segmentation into homogeneous re-
gions is not necessarily a good solution to a segmentation
problem.

The next example further illustrates the fallacies of
measurement—space clustering. Figure 9 is a diagram of
an F-15 bulkhead. Images of portions of the bulkhead,
which were used as test data for an experimental robot
guidance—inspection system, will be used as examples
throughout the rest of this article. Figure 10 illustrates an



image of a section of the F-15 bulkhead. It is clear that the
image has distinct parts such as webs and ribs. Figure 11
shows the histogram of this image. It has two well-sepa-
rated modes. The narrow one on the right, with a long left
tail, corresponds to specular reflection points. The main
mode has three valleys on its left side and two valleys on
its right side. Defining the depth of a valley to be the
probability difference between the valley bottom and the
lowest valley side and eliminating the two shallowest val-
leys produces the segmentation shown in Figure 12. The
problem in the segmentation is apparent. Because the
clustering was done in measurement space, there was no
requirement for good spatial continuation and the result-
ing boundaries are very noisy and busy. Separating the
main mode into its two most dominant submodes produces
the segmentation of Figure 13. Here the boundary noise is
less, the resulting regions more satisfactory, but the detail
provided is much less.

Ohlander and co-workers (1978) refine the clustering
idea in a recursive way. They begin by defining a mask
selecting all pixels on the image. Given any mask, a histo-
gram of the masked image is computed. Measurement—
space clustering enables the separation of one mode of the
histogram set from another mode. Pixels on the image are
then identified with the cluster to which they belong. If
there is only one measurement—space cluster, then the
mask is terminated. If there is more than one cluster, then
each connected component of all pixels with the same clus-
ter is, in turn, used to generate a mask that is placed on a
mask stack. During successive iterations the next mask in
the stack selects pixels in the histogram computation pro-
cess. Clustering is repeated for each new mask until the
stack is empty.

Figure 14 illustrates this process, which is called a re-
cursive histogram-directed spatial clustering. Figure 15
illustrates a recursive histogram-directed spatial cluster-
ing technique applied to the bulkhead image of Figure 10.
It produces a result with boundaries being somewhat busy
and many small regions in areas of specular reflectance.
Figure 16 illustrates the results of performing a morpho-
logical opening with a 3 x 3 square structuring element
on the segmentation of Figure 15. The tiny regions are

Figure 13. The segmentation of the bulkhead, induced by a mea-
surement—space clustering into three clusters.

SEGMENTATION 1477

~o Complete

~~_ histogram

%] of masked
% image
Cluster
A
- 2
~
\\
Pop
next
mask ;
Stack Only one cluster i :
Terminate current mask More than
Pop next mask one cluster

N

Image
Push
Push §

Connected
: (4

components,
%

P
>

Original mask
covers entire image

Figure 14. The recursive histogram-directed spatial clustering
scheme of Ohlander and co-workers (1978).

removed in this manner, but several important long, thin
regions are also lost.

For ordinary color images, Ohta and co-workers (1980)
suggest that histograms not be computed individually on
the red, green, and blue (RGB) color variables, but on a set
of variables closer to what the Karhunen-Loeve (principal
components) transform would suggest. They suggest (R +
G + B)/3, (R —B)/2, and (2G — R — B)/4. Figure 17
illustrates a color image. Figure 18 shows two segmenta-
tions of the color image: one by recursive histogram-

Figure 15. The results of the histogram-directed spatial cluster-
ing when applied to the bulkhead image.
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Figure 16. The results of performing a morphological opening
with a 8 X 3 square structuring element on the segmentation of
Figure 15.

directed spatial clustering using the R, G, and B bands
and the second by the same method, but using the trans-
formed bands suggested by Ohta and co-workers (1980).

Thresholding

If the image contains a bright object against a dark back-
ground and the measurement—space is one-dimensional,
measurement—space clustering amounts to determining a
threshold such that all points smaller than or equal to the
threshold are assigned to one cluster and the remaining
points are assigned to the second cluster. In the easiest
cases, a procedure to determine the threshold need only
examine the histogram and place the threshold in the
valley between the two modes. Unfortunately, it is not
always the case that the two modes are nicely separated
by a valley. To handle this kind of situation a variety of
techniques can be used to combine the spatial information
on the image with the gray-level intensity information to
help in threshold determination.

Chow and Kaneko (1972) suggest using a threshold
that depends on the histogram determined from the spa-
tially local area around the pixel to which the threshold
applies. Thus, for example, a neighborhood size of 33 x 33
or 65 X 65 can be used to compute the local histogram.
Chow and Kaneko avoided the local histogram computa-
tion for each pixel’s neighborhood by dividing the image
into mutually exclusive blocks, computing the histogram
for each block, and determining an appropriate threshold
for each histogram. This threshold value can be consid-
ered to apply to the center pixel of each block. To obtain
thresholds for the remaining pixels, they spatially inter-
polated the block center pixel thresholds to obtain a spa-
tially adaptive threshold for each pixel.

Weszka and co-workers (1974) suggest determining a
histogram for only those pixels having a high Laplacian
magnitude. They reason that there will be a shoulder of
the gray-level intensity function at each side of the bound-
ary. The shoulder has high Laplacian magnitude. A histo-

(a)

(b

Figure 18. Two segments of the color image. The left segmentation was achieved by recursive
histogram-directed spatial clustering using R, G, and B bands. The right segment was achieved by
the same method, but using the transformed bands (R + G + B)/3, (R — B)/2, and (2G — R ~ B)/4

suggested by Ohta and co-workers (1980).



gram of all shoulder pixels will be a histogram of all inte-
rior pixels just next to the interior border of the region. It
will not involve those pixels in between regions that help
make the histogram valley shallow. It will also have a
tendency to involve equal numbers of pixels from the ob-
ject and from the background. This makes the two histo-
gram modes about the same size. Thus the valley-seeking
method for threshold selection has a chance of working on
the new histogram.

Weszka and Rosenfeld (1978) describe one method for
segmenting white blobs against a dark background by a
threshold selection based on busyness. For any threshold,
busyness is the percentage of pixels having a neighbor
whose thresholded value is different from their own
thresholded value. A good threshold is that point near the
histogram valley between the two peaks that minimizes
the busyness.

Watanabe (1974) suggests choosing a threshold value
that maximizes the sum of gradients taken over all pixels
whose gray level equals the threshold value. Kohler
(1981) suggests a modification of the Watanabe idea. In-
stead of choosing a threshold that maximizes the sum of
gradient magnitudes taken over all pixels whose gray-
level intensity equals the threshold value, Kohler sug-
gests choosing that threshold that detects more high con-
trast edges and fewer low contrast edges than any other
threshold.

Kohler defines the set E(T') of edges detected by a
threshold T to be the set of all pairs of neighboring pixels
one of whose gray-level intensity is less than or equal to T
and one of whose gray level intensity is greater than T:

where pixels (i, j) and (k, [) are neighbors and
min{I G, j), Ik, D} = T < max{I (G, /), Ik, D}}

The total contrast C(T') of edges detected by threshold T'is
given by
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The average contrast of all edges detected by threshold T
is then given by C(T')/#E(T). The best threshold T, is
determined by that value that maximizes C(Tp)/#E(T5).
Milgram and Herman (1979) reason that pixels that
are in between regions probably have in between gray-
level intensities. If it is these pixels that are the cause of
the shallow valleys, then it should be possible to eliminate
their effect by only considering pixels having small gradi-
ents. They take this idea further and suggest that by ex-
amining clusters in the two-dimensional measurement
space consisting of gray-level intensity and gradient mag-
nitude, it is even possible to determine multiple thresh-
olds when more than one kind of object is present.
Panda and Rosenfeld (1978) suggest a related approach
for segmenting a white blob against a dark background.
Consider the histogram of gray levels for all pixels that
have small gradients. If a pixel has a small gradient, then
it is not likely for it to be an edge. If it is not an edge, then
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it is either a dark background pixel or a bright blob pixel.
Hence, the histogram of all pixels having small gradients
will be bimodal and for pixels with small gradients, the
valley between the two modes of the histogram is an ap-
propriate threshold point. Next consider the histogram of
gray levels for all pixels that have high gradients. If a
pixel has a high gradient, then it is likely for it to be an
edge. If it is an edge separating a bright blob against a
dark background and if the separating boundary is not
sharp but somewhat diffuse, then the histogram will be
unimodal, the mean being a good threshold separating the
dark background pixels from the bright blob pixels. Thus
Panda and Rosenfeld suggest determining two thresholds:
one for low gradient pixels and one for high gradient pix-
els, By this means they perform the clustering in the two-
dimensional measurement—space consisting of gray-level
intensity and gradient. A survey of threshold techniques
can be found in Weszka (1978).

Multidimensional Measurement—Space Clustering

A LANDSAT image comes from a satellite and consists of
seven separate images called bands. The bands are regis-
tered so that pixel (i, j) in one band corresponds to pixel
(i, j) in each of the other bands. Each band represents a
particular range of wavelengths. For multiband images
such as LANDSAT or Thematic Mapper, determining the
histogram in a multidimensional array is not feasible. For
example, in a six-band image where each band has inten-
gities between 0 and 99, the array would have to have
1008 = 10'2 locations. A large image might be 10,000 pix-
els per row by 10,000 rows. This only constitutes 10® pix-
els, a sample too small to estimate probabilities in a space
of 10'2 values were it not for some constraints of reality:
(1) there is typically a high correlation between the band-
to-band pixel values and (2) there is a large amount of
spatial redundancy in image data. Both these factors cre-
ate a situation in which the 108 pixels can be expected to
contain only between 10* and 10° distinct 6-tuples.
Based on this fact, the counting required for the histo-
gram is easily done by mapping the 6-tuples into array
indexes. The programming technique known as hashing,
which is described in most data structures texts, can be
used for this purpose.

Clustering using the multidimensional histogram is
more difficult than univariate histogram clustering, be-
cause peaks fall in different places in the different histo-
grams. Goldberg and Shlien (1977, 1978) threshold the
multidimensional histogram to select all N-tuples situ-
ated on the most prominent modes. Then they perform a
measurement—space connected components on these
N-tuples to collect together all the N-tuples in the top of
the most prominent modes. These measurement—space
connected sets form the cluster cores. The clusters are
defined as the set of all N-tuples closest to each cluster
core.

An alternate possibility (Narendra and Goldberg,
1977) is to locate peaks in the multidimensional measure-
ment space and region grow around them, constantly de-
scending from each peak. The region growing includes all
successive neighboring N-tuples whose probability is no
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higher than the N-tuple from which it is growing. Adja-
cent mountains meet in their common valleys.

Rather than accomplish the clustering in the full mea-
surement—space, it is possible to work in multiple lower
order projection spaces and then reflect these clusters
back to the full measurement—space. Suppose, for exam-
ple, that the clustering is done on a four-band image. If
the clustering done in bands 1 and 2 yields clusters ¢4, ¢g,
¢z and the clustering done in bands 3 and 4 yields clusters
¢4 and c¢s then each possible 4-tuple from a pixel can be
given a cluster label from the set {(¢1, cu), (¢1, c5), (c2, c4),
(cq, cs5), (c3, c4), (cs, c5)}. A 4-tuple (x;, xg, X3, x4) gets the
cluster label (¢g, ¢4) if (x1, x5) is in cluster ¢; and (x3, x4) is
in cluster c¢g4.

REGION GROWING

Single Linkage Region Growing

Single linkage region growing schemes regard each pixel
as a node in a graph. Neighboring pixels whose properties
are similar enough are joined by an arc. The image seg-
ments are maximal sets of pixels all belonging to the same
connected component. Figure 19 illustrates this idea with
a simple image and the corresponding graph with the con-
nected components circled. In this example, two pixels are
connected by an edge if their values differ by less than five
and they are 4-neighbors. Single linkage image segmenta-
tion schemes are attractive for their simplicity. They do,
however, have a problem with chaining, because it takes
only one arc leaking from one region to a neighboring one
to cause the regions to merge.

As illustrated in Figure 19, the simplest single linkage
scheme defines “similar enough” by pixel difference. Two
neighboring pixels are similar enough if the absolute
value of the difference between their gray-level intensity
values is small enough. Bryant (1979) defines similar
enough by normalizing the difference by the quantity
(square root of 2) times the root mean square value of
neighboring pixel differences taken over the entire image.
For the image of Figure 19, the normalization factor is
99.22. The random variable that is the difference of two
neighboring pixels normalized by the factor 1/99.22 has a
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Figure 19. A simple gray-level image and the graph resulting
from defining “similar enough” to be differing in gray level by
less than five and using the 4-neighborhood to determine con-
nected components.

normal distribution with mean 0 and standard deviation
99.22. A threshold can now be chosen in terms of the stan-
dard deviation instead of as an absolute value. For pixels
having vector values, the obvious generalization is to use
a vector norm of the pixel difference vector.

Hybrid Linkage Region Growing

Hybrid single linkage techniques are more powerful than
the simple single linkage technique. The hybrid tech-
niques seek to assign a property vector to each pixel where
the property vector depends on the K x K neighborhood of
the pixel. Pixels that are similar are so because their
neighborhoods in some special sense are similar. Similar-
ity is thus established as a function of neighboring pixel
values and this makes the technique better behaved on
noisy data.

One hybrid single linkage scheme relies on an edge
operator to establish whether two pixels are joined with
an arc. Here an edge operator is applied to the image
labeling each pixel as edge or nonedge. Neighboring pix-
els, neither of which are edges, are joined by an arc. The
initial segments are the connected components of the non-
edge labeled pixels. The edge pixels can either be left as-
signed edges and be considered as background or they can
be assigned to the spatially nearest region having a label.

The quality of this technique is highly dependent on
the edge operator used. Simple operators such as the
Roberts and Sobel operators may provide too much region
linkage, for a region cannot be declared as a segment un-
less it is completely surrounded by edge pixels. Haralick
and Dinstein (1975), however, do report some success us-
ing this technique on LANDSAT data. They perform a
dilation of the edge pixels in order to close gaps before
performing the connected components operator. Perkins
(1980) uses a similar technique.

Haralick (1982, 1984) discusses a very sensitive zero-
crossing of second directional derivative edge operator. In
this technique, each neighborhood is least squares fitted
with a cubic polynomial in two variables. The first and
second partial derivatives are easily determined from the
polynomial. The first partial derivatives at the center
pixel determine the gradient direction. With the direction
fixed to be the gradient direction, the second partials de-
termine the second directional derivative. If the gradient
is high enough and if in the gradient direction, the second
directional derivative has a negatively sloped zero-cross-
ing inside the pixel’s area, then an edge is declared in the
neighborhood’s center pixel.

Figure 20 shows the edges resulting from the second
directional derivative zero-crossing operator using a gra-
dient threshold of 4, a 9 X 9 neighborhood, and a zero-
crossing radius of 0.85. The edges are well placed and a
careful examination of pixels on perceived boundaries
that are not classified as edge pixels will indicate the step
edge pattern to be either nonexistent or weak. A con-
nected components of the nonedge pixels accomplishes the
initial segmentation. After the connected components op-
eration, the edge pixels are assigned to their spatially
closest component by a region filling operation. Figure 21
shows the boundaries from the region filled image. Obvi-



Figure 20. The second directional derivative zero-crossing oper-
ator using a gradient threshold of 4, a 9 x 9 neighborhood, and a
zero-crossing radius of 0.85 applied to the bulkhead image of
Figure 10.

ously, there are some regions that have been merged to-
gether. However, those boundaries that are present are
placed correctly and they are reasonably smooth. Lower-
ing the gradient threshold of the edge operator could pro-
duce an image with more edges and thereby reduce the
edge gap problem. But this solution does not really solve
the gap problem in general.

Yakimovsky (1976) assumes regions are normally dis-
tributed and uses a maximum likelihood test to determine
edges. Edges are declared to exist between pairs of contig-
uous and exclusive neighborhoods if the hypothesis that
their means are equal and their variances are equal has to
be rejected. For any pair of adjacent pixels with mutually
exclusive neighborhoods R and Ry having N, and Nj pix-
els, respectively, the maximum likelihood technique com-
putes the mean

X=%>X 3)
N; Xéﬁ
and the scatter
Si= Y X -X)? @)
XER,

Figure 21. A hybrid linkage region growing scheme in which
any pair of neighboring pixels, neither of which are edge pixels,
can link together. The resulting segmentation consists of the con-
nected components of the nonedge pixels and where edge pixels
are assigned to their nearest connected component. This result
was obtained from the edge image of Figure 20.
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The likelihood ratio test statistic T is given by

_ [SY(Ny + NP1+ M2

T'= SN, PSYN; P @

Edges are declared between any pair of adjacent pixels
when the T statistic from their neighborhoods is high
enough. As N; and N; get large, 2 log T is asymptotically
distributed as a chi-squared variate with 2 degrees of
freedom.

If it can be assumed that the variances of the two re-
gions are identical, then the statistic

= (N; + Np — 2)N1N, (}?1 = Xg)?‘
N+ N, S? + 82

F (8)

has an F distribution with 1 and N; + N; — 2 degrees of
freedom under the hypothesis that the means of the re-
gions are equal. For an F' value that is sufficiently large,
the hypothesis can be rejected and an edge declared to
exist between the regions.

Haralick (1981) suggests fitting a plane to the neigh-
borhood around the pixel, and testing the hypothesis that
the slope of the plane is zero. Edge pixels correspond to
pixels between neighborhoods in which the zero slope hy-
pothesis must be rejected. To determine a roof or V-shaped
edge, Haralick suggests fitting a plane to the neighbor-
hoods on either side of the pixel and testing the hypothesis
that the coefficients of fit, referenced to a common frame-
work, are identical.

Another hybrid technique first used by Levine and
Leemet (1976) is based on the Jarvis and Patrick (1973)
shared nearest neighbor idea. Using any kind of reason-
able notion for similarity, each pixel examines its K X K
neighborhood and makes a list of the N pixels in the
neighborhood most similar to it. Call this list the similar
neighbor list, where it is understood that a neighbor is
any pixel in the K x K neighborhood. An arc joins any
pair of immediately neighboring pixels if each pixel is in
the other’s shared neighbor list and if there are enough
pixels common to their shared neighbor lists, that is, if the
number of shared neighbors is high enough.

To make the shared neighbor technique work well,
each pixel can be associated with a property vector con-
sisting of its own gray-level intensity and a suitable aver-
age of the gray level intensity of pixels in its K X K neigh-
borhood. For example, (x, @) and (y, b) can denote the
property vectors for two pixels if x is the gray-level inten-
sity value, a is the average gray-level intensity value in
the neighborhood of the first pixel, y is the gray-level in-
tensity value, and b is the average gray-level intensity
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value in the neighborhood of the second pixel. Similarity
can be established by computing

S = wilx — ¥)2 + wylx — b2+ wy(y — a)? 9)

where wq, ws, and w; are nonnegative weights. Thus the
quantity S takes into account the difference between the
gray levels of the two pixels in question and the difference
between the gray level of each pixel and the average gray
level of the neighborhood of the other pixel. The weights
wy, Wwe, and w; can be learned from training data for a
particular class of images. The pixels are called similar
enough for small enough values of S.

Pong and co-workers (1984) suggest an approach to
segmentation based on the facet model of images. The
procedure starts with an initial segmentation of the image
into small regions. The initial segmentations used by
Pong group together pixels that have similar facet fitting
parameters, but any initial segmentation can be used. For
each region of the initial segmentation, a property vector,
which is a list of values of a set of predefined attributes, is
computed. The attributes consist of such properties of a
region as its area, its mean gray level, its elongation, and
so on. Each region with associated property vector is con-
sidered a unit. In a series of iterations, the property vector
of a region is replaced by a property vector that is a func-
tion of its neighboring regions. (The function that worked
best in Pong’s experiments replaced the property vector of
a region with the property vector of the best-fitting neigh-
borhood of that region.) Then adjacent regions having
simlar final property vectors are merged. This gives a new
segmentation that can then be used as input to the algo-
rithm. Thus a sequence of coarser and coarser segmenta-
tions are produced. Useful variations are to prohibit merg-
ing across strong edge boundaries or when the variance of
the combined region becomes too large. Figures 22, 23,
and 24 illustrate the results of the Pong approach on the
image of Figure 10 for one, two, and three iterations, re-
spectively. Figure 25 illustrates the result of removing
regions of size 25 or fewer pixels from the segmentation of
Figure 24.

Figure 22. One iteration of the Pong algorithm on the bulkhead
image of Figure 10.

Figure 25. The segmentation obtained by removing regions
smaller than size 25 from the segmentation of Figure 24,

Centroid Linkage Region Growing

In centroid linkage region growing, in contrast with sin-
gle linkage region growing, pairs of neighboring pixels
are not compared for similarity. Rather, the image is
scanned in some predetermined manner such as left-right
top-bottom. A pixel’s value is compared to the mean of an
already existing but not necessarily completed neighbor-



ing segment. If its value and the segment’s mean value
are close enough, then the pixel is added to the segment
and the segment’s mean is updated. If there is more than
one region that is close enough, then it is added to the
closest region. However, if the means of the two competing
regions are close enough, the two regions are merged and
the pixel is added to the merged region. If no neighboring
region has its mean close enough, then a new segment is
established having the given pixel's value as its first
member. Figure 26 illustrates the geometry of this
scheme.

Keeping track of the means annd scatters for all regions
as they are being determined does not require large
amounts of memory space. There cannot be more regions
active at one time than the number of pixels in a row of
the image. Hence, a hash table mechanism with the space
of a small multiple of the number of pixels in a row can
work well.

Another possibility is a single band region growing
technique using the T-test. Let R be a segment of N pixels
neighboring a pixel with gray-level intensity y. Define the
mean X and scatter S? by

1

X == I
N(,.;ER (r, 0 (10)
and
S2= % (Ir,c)-X)? (11
(r,c)ER

Under the assumption that all the pixels in R and the
test pixel y are independent and have identically distrib-
uted normals, the statistic

- [(N— DN

— 3
e xys?] (12)

has a Ty_; distribution. If T' is small enough y is added to
region R and the mean and scatter are updated using y.
The new mean and scatter are given by

Xoew < (NXgq + YN + 1) (13)
and

S?\ew «— Sgld + (J’ - Xnew)2 + N(Xnew - -fold)2 (14)

Figure 26. The region growing geometry for one-pass scan, left-
right, top-bottom region growing. Pixel i belongs to region R;
whose mean is X;, i = 1, 2, 3, and 4. Pixel y is added to a region R;
if by a T-test the difference between y and )?J is small enough. If
for two regions R; and R, the difference is small enough, and if
the difference between X; and X, ; is small enough, regions R; and
R; are merged and y is added to the merged region. If the differ-
ence between X, and X] is significantly different, then y is added
to the closest region.
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If T is too high the value y is not likely to have arisen
from the population of pixels in R. If y is different from all
of its neighboring regions then it begins its own region, A
slightly stricter linking criterion can require that not only
must y be close enough to the mean of the neighboring
regions, but that a neighboring pixel in that region must
have a close enough value to y. This combines a centroid
linkage and single linkage criterion. The next section dis-
cusses a more powerful combination technique, but first it
is necessary to develop the concept of “significantly high.”

To give a precise meaning to the notion of too high a
difference, an o-level statistical significance test is used.
The fraction « represents the probability that a T statistic
with N — 1 degrees of freedom will exceed the value
ty-1(e). If the observed T is larger than ty_i(e), then the
difference is declared to be significant. If the pixel and the
segment really come from the same population, the proba-
bility that the test provides an incorrect answer is o.

The significance level « is a user-provided parameter.
The value of £y_1(«) is higher for small degrees of freedom
and lower for larger degrees of freedom. Thus, for region
scatters considered to be equal, the larger a region is, the
closer a pixel’s value must be to the region’s mean to
merge into the region. This behavior tends to prevent al-
ready large regions from attracting to it many other addi-
tional pixels and tends to prevent the drift of the region
mean as the region gets larger.

Note that all regions initially begin as one pixel in size.
To avoid the problem of division by 0 (for S2 is necessarily
0 for one pixel regions as well as for regions having identi-
cally valued pixels) a small positive constant can be added
to S2. One convenient way of determining the constant is
to decide on a prior variance V > 0 and an initial segment
size N. The initial scatter for a new one-pixel region is
then given by NV and the new initial region size is given
by N. This mechanism keeps the degrees of freedom of the
T-statistic high enough so that a significant difference is
not the huge difference required for a T-statistic with a
small number of degrees of freedom. Figure 27 illustrates
a second image of the F-15 bulkhead. Figure 28 illustrates
the resulting segmentation of the bulkhead image for a
0.2% significance level test after all region smaller than
25 pixels have been removed.

Pavlidis (1972) suggests a more general version of this
idea. Given an initial segmentation where the regions are

Figure 27. A second image of the F-15 bulkhead.
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Figure 28. The one-pass centroid linkage segmentation of the
bulkhead image of Figure 27. A significance level of 0.2% was
used.

approximated by some functional fit guaranteed to have a
small enough error, pairs of neighboring regions can be
merged, if for each region the sum of the squares of the
differences between the fitted coefficients for this region
and the corresponding averaged coefficients, averaged
over both regions, is small enough. Pavlidis gets his ini-
tial segmentation by finding the best way to divide each
row of the image into segments with a sufficiently good fit.
He also describes a combinatorial tree search algorithm to
accomplish the merging that guarantees the best result.
Kettig and Landgrebe (1975) successively merge small
image blocks using a statistical test, They avoid much of
the problem of zero scatter by considering only cells con-
taining a 2 x 2 block of pixels.

Gupta and co-workers (1973) suggest using a 7-test
based on the absolute value of the difference between the
pixel and the nearest region as the measure of dissimilar-
ity. Kettig and Landgrebe (1975) discuss the multiband
situation leading to the F-test and report good success
with LANDSAT data.

Nagy and Tolaba (1972) just examine the absolute
value between the pixel’s value and the mean of a neigh-
boring region formed already. If this distance is small
enough, the pixel is added to the region. If there is more
than one region, then the pixel is added to that region
with the smallest distance.

The Levine and Shaheen scheme (1981) is simlar. The
difference is that Levine and Shaheen attempt to keep
regions more homogeneous and try to keep the region
scatter from getting too high. They do this by requiring
the differences to be more significant before a merge takes
place if the region scatter is high. For a user-specified
value 6, they define a test statistic T where

T = Iy - XnewJ - {1 - S/fnew)e (15)

If T < 0 for the neighboring region R in which |y — X] is
the smallest, then y is added to R. If T' > 0 for the neigh-
boring region in which |y — X| is the smallest, then y
begins a new region. It should be noted that there are
misprints in the formulas given for region scatter and
region scatter updating in the Levine and Shaheen (1981)
paper.

Brice and Fennema (1970) accomplish the region grow-
ing by partitioning the image into initial segments of pix-
els having identical intensity. They then sequentially
merge all pairs of adjacent regions if a significant fraction
of their common border has a small enough intensity dif-
ference across it.

Simple single-pass approaches that scan the image in a
left-right, top-down manner are, of course, unable to make
the left and right sides of a V-shaped region belong to the
same segment. To be more effective, the single pass must
be followed by some kind of connected components merg-
ing algorithm in which pairs of neighboring regions hav-
ing means that are close enough are combined into the
same segment. This is easily accomplished by using the
two-pass label propagation logic of the Lumia and co-
workers (1983) connected components algorithm.

After the top-bottom, left-right scan, each pixel has
already been assigned a region label. In the bottom-up,
right-left scan, the means and scatters of each region can
be recomputed and can be kept in a hash table. Whenever
a pair of pixels from different regions neighbor one an-
other, a T-test can check for the significance of the differ-
ence between the region means. If the means are not sig-
nificant, then they can be merged. A slightly stricter
criterion would insist not only that the region means be
similar, but also that the neighboring pixels from the dif-
ferent regions must be similar enough. Figure 29 shows
the resulting segmentation of the bulkhead image for a
0.2% significance level after one bottom-up, right-left
merging pass and after all regions smaller than 25 pixels
have been removed.

One potential problem with region growing schemes is
their inherent dependence on the order in which pixels
and regions are examined. A left-right, top-down scan
does not yield the same initial regions as a right-left, bot-
tom-up scan or for that matter a eolumn major scan. Usu-
ally, however, differences caused by scan order are minor.

Figure 29. The two-pass centroid segmentation of the bulkhead
image of Figure 27. A significance level of 0.2% was used on both
passes.



HYBRID LINKAGE COMBINATIONS

The previous section mentioned the simple combination of
centroid linkage and single linkage region growing. In
this section the more powerful hybrid linkage combina-
tion techniques are discussed.

The centroid linkage and the hybrid linkage can be
combined in a way that takes advantage of their relative
strengths. The strength of the single linkage is that
boundaries are placed in a gpatially accurate way. Its
weakness is that edge gaps result in excessive merging.
The strength of centroid linkage is its ability to place
boundaries in weak gradient areas. it can do this because
it does not depend on a large difference between the pixel
and its neighbor to declare a boundary. It depends on a
large difference between the pixel and the mean of the
neighboring region to declare a boundary.

The combined centroid hybrid linkage technique does
the obvious thing. Centroid linkage is only done for non-
edge pixels; that is, region growing is not permitted across
edge pixels. Thus if the parameters of centroid linkage
were set so that any difference, however large, between
pixel value and region mean was considered small enough
to permit merging, the two-pass hybrid combination tech-
nique would produce a connected components of the non-
edge pixels. As the difference criterion is made more
strict, the centroid linkage will produce boundaries in ad-
dition to those produced by the edges.

Figure 30 illustrates a one-pass scan combined centroid
and hydrid linkage segmentation scheme using a signifi-
cance level test of 0.2%. Edge pixels are assigned to their
closest labeled neighbor, and regions having fewer than
25 pixels are eliminated. Notice that the resulting seg-
mentation is much finer than that shown in Figures 28
and 29. Also the dominant boundaries are nicely curved
and smooth. Figure 31 illustrates the two-pass scan com-
bined centroid and hybrid linkage region growing scheme
using a significance level test of 0.2%. The regions are
somewhat simpler because of the merging done in the
second pass.

SPATIAL CLUSTERING

It is possible to determine the image segments by simulta-
neously combining clustering in measurement—space

Figure 30. One-pass combined centroid and hybrid linkage seg-
mentation of the bulkhead image of Figure 27. A significance
level of 0.2% was used.
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Figure 31. The two-pass combined centroid and hybrid linkage
segmentation of the bulkhead image of Figure 27. A significance
level of 0.2% was used on both passes.

with a spatial region growing. Such a technique is called
spatial clustering. In essence, spatial clustering schemes
combine the histogram mode seeking technique with a
region growing or a spatial linkage technique.

Haralick and Kelly (1969) suggest that segmentation
be done by first locating, in turn, all the peaks in the
measurement—space histogram, and then determining all
pixel locations having a measurement on the peak. Next,
beginning with a pixel corresponding to the highest peak
not yet processed, both spatial and measurement—space
region growing are simultaneously performed in the fol-
lowing manner. Initially, each segment is the pixel whose
value is on the current peak. Consider for possible inclu-
sion into this segment a neighbor of this pixel (in general,
the neighbors of the pixel that is being grown from) if the
neighbor’s value (an N-tuple for an N band image) is close
enough in measurement—space to the pixel’s value and if
its probability is not larger than the probaiblity of the
value of the pixel that is being grown from. Matsumoto
and co-workers (1981) discuss a variation of this idea. Mil-
gram (1979) defines a segment for a single band image to
be any connected component of pixels, all of whose values
lie in some interval I and whose border has a higher coin-
cidence with the border created by an edge operator than
for any other interval I. The technique has the advantage
over the Haralick and Kelly technique in that it does not
require the difficult measurement space exploring done in
climbing down a mountain. However, it must try many
different intervals for each segment. Extending it to effi-
cient computation in multiband images appears difficult.
However, Milgram does report good results of segmenting
white blobs against a black background. Milgram and
Kahl (1979) discuss embedding this technique into the
Ohlander and co-workers (1978) recursive control struc-
ture.

Minor and Sklansky (1981) make more active use of
the gradient edge image than Milgram, but restrict them-
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selves to the more constrained situation of small convex-
like segments. They begin with an edge image in which
each edge pixel contains the direction of the edge. The
orientation is so that the higher valued gray level is to the
right of the edge. Then each edge sends out for a limited
distance a message to nearby pixels and in a direction
orthogonal to the edge direction. The message indicates
what is the sender’s edge direction. Pixels that pick up
these messages from enough different directions must be
interior to a segment.

The spoke filter of Minor and Sklansky counts the
number of distinet directions appearing in each 3 x 3
neighborhood. If the count is high enough they mark the
center pixel as belonging to an interior of a region. Then
the connected components of all marked pixels is ob-
tained. The gradient-guided segmentation is then com-
pleted by performing a region growing of the components.
The region growing must stop at the high gradient pixels,
thereby ensuring that no undesired boundary placements
are made.

Burt and co-workers (1981) describe a spatial cluster-
ing scheme that is a spatial pyramid constrained
ISODATA kind of clustering. The bottom layer of the pyr-
amid is the original image. Each successive higher layer
of the pyramid is an image having half the number of
pixels per row and half the number of rows of the image
below it. Initial links between layers are established by
linking each parent pixel to the spatially corresponding
4 x 4 block of child pixels. Each pair of adjacent parent
pixels has 8 child pixels in common. Each child pixel is
linked to a 2 x 2 block of parent pixels. The iterations
proceed by assigning to each parent pixel the average of
its child pixels. Then each child pixel compares its value
with each of its parent’s values and links itself to its clos-
est parent. Each parent’s new value is the average of the
children to which it is linked, ete. The iterations converge
reasonably quickly for the same reason the ISODATA it-
erations converge. If the top layer of the pyramidisa 2 x 2
block of great grandparents, then these are at most 4 seg-
ments that are the respective great grandchildren of these
4 great grandparents. Pietikainen and Rosenfeld (1981)
extend this technique to segment an image using textural
features.

SPLIT AND MERGE

A splitting method for segmentation begins with the en-
tire image as the initial segment. Then it successively
splits each of its current segments into quarters if the
segment is not homogeneous enough; that is, if the differ-
ence between the largest and smallest gray-level intensi-
ties is large. A merging method starts with an initial seg-
mentation and successively merges regions that are
similar enough.

Splitting algorithms were first suggested by Robertson
(1973) and Klinger (1973). Kettig and Landgrebe (1975)
try to split all nonuniform 2 X 2 neighborhoods before
beginning the region merging. Fukada (1980) suggests
successively splitting a region into quarters until the sam-
ple variance is small enough. Efficiency of the split and

merge method can be increased by arbitrarily partitioning
the image into square regions of a user selected size and
then splitting these further if they are not homogeneous.

Because segments are successively divided into quar-
ters, the boundaries produced by the split technique tend
to be squarish and slightly artificial. Sometimes adjacent
quarters coming from adjacent split segments need to be
Jjoined rather than remain separate. Horowitz and Pavli-
dis (1976) suggest the split-and-merge strategy to take
care of this problem. They begin with an initial segmenta-
tion achieved by splitting into rectangular blocks of a pre-
specified size. The image is represented by a segmentation
tree, which is a quadtree data structure (a tree whose
nonleaf nodes each have four children). The entire image
is represented by.the root node. The children of the root
are the regions obtained by splitting the root into four
equal pieces, and so on. A segmentation is represented by
a cutset, a minimal set of nodes separating the root from
all of the leaves. In the tree structure, the merging process
consists of removing four nodes from the cutset and re-
placing them with their parent. Splitting consists of re-
moving a node from the cutset and replacing it with its
four children. The two processes are mutually exclusive;
all of the merging operations are followed by all of the
splitting operations. The splitting and merging in the tree
structure is followed by a final grouping procedure that
can merge adjacent unrelated blocks found in the final
cutset. Figure 32 illustrates the result of a Horowitz and
Pavlidis type split-and-merge segmentation of the bulk-
head image. Muerle and Allen (1968) suggest merging a
pair of adjacent regions if a statistical test determines
that their gray-level intensity distributions are similar
enough. They recommend the Kolmogorov-Smirnév test,

Chen and Pavlidis (1980) suggest using statistical tests
for uniformity rather than a simple examination of the
difference between the largest and smallest gray-level in-
tensities in the region under consideration for splitting.
The uniformity test requires that there be no significant
difference between the mean of the region and each of its

Figure 32. A split-and-merge segmentation of the bulkhead im-
age of Figure 10,



quarters. The Chen and Pavlidis tests assume that the
variances are equal and known.

Let each quarter have K pixels, X;; be the jth pixel in
the ith region, X; be the mean of the ith quarter and X.. be
the grand mean of all the pixels in the four quarters. Then
in order for a region to be considered homogeneous, Chen
and Pavlidis require that

|1X; - X.|=e i=12234 (16)
where ¢ is a given threshold parameter.

The F-test for testing the hypothesis that the mean and
variances of the quarters are identical is given here. This
is the optimal test when the randomness can be modeled
as arising from additive Gaussian-distributed variates.
The value of variance is not assumed known. Under the
assumption that the regions are independent and have
identically distributed normals, the optimal test is given
by the statistic F* which is defined by

4
K Y (Xi. - X3
F=—rps— an
> (Xp — X)Y4K - 1)
k=1
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It has a Fi3 yx-1) distribution. If F is too high the region is
declared not uniform.

The data structures required to do a split-and-merge on
images larger than 512 x 512 are extremely large. Execu-
tion of the algorithm on virtual memory computers results
in so much paging that the dominant activity may be
paging rather than segmentation. Browning and Tani-
moto (1982) give a description of a space-efficient version
of the split-and-merge scheme that can handle large im-
ages, using only a small amount of main memory.

RULE-BASED SEGMENTATION

The rules behind each of the methods discussed so far are
encoded in the procedures of the method. Thus it is not
easy to try different concepts without complete repro-
gramming. Nazif and Levine (1984) solve this problem
with a rule-based expert system for segmentation. The
knowledge in the system is not application domain spe-
cific, but includes general-purpose, scene-independent
knowledge about images and grouping criteria.

The Nazif and Levine system contains a set of pro-
cesses, the initializer, the line analyzer, the region ana-
lyzer, the area analyzer, the focus of attention, and the
scheduler, plus two associate memories, the short-term
memory (STM) and the long-term memory (LTM). The
short-term memory holds the input image, the segmenta-
tion data, and the output. The long-term memory contains
the model representing the system knowledge about low
level segmentation and control strategies. A system pro-
cess matches rules in the LTM against the data stored in
the STM. When a match occurs, the rule fires, and an
action, usually involving data modification, is performed.

The model stored in the LTM has three levels of rules.
At level 1 are knowledge rules that encode information
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about the properties of regions, lines, and areas in the
form of situation—action pairs. The specific actions include
splitting a region; merging two regions; adding, deleting,
or extending a line; merging two lines; and creating or
modifying a focus of attention area. Knowledge rules are
classified by their actions. At level 2 are the control rules
that are divided into two categories: focus-of-attention
rules and inference rules. Focus-of-attention rules find the
next data entry to be considered: a region, a line, or an
entire area. These rules control the focus-of-attention
strategy. The inference rules are metarules in that their
actions do not modify the data in the STM. Instead, they
alter the matching order of different knowledge rule sets.
Thus they control which process will be activated next. At
level 3, the highest rule level, are strategy rules that se-
lect the set of control rules that executes the most appro-
priate control strategy for a given set of data.

The conditions of the rules in the rule base are made up
of (1) a symbolic qualifier depicting a logical operation to
be performed on the data, (2) a symbol denoting the data
entry on which the condition is to be matched, (3) a fea-
ture of this data entry, (4) an optional NOT qualifier, and
(6) an optional DIFFERENCE qualifier that applies the
operation to differences in feature values. Table 1 shows
the different types of data entries allowed. Table 2 shows
the different kinds of features, and Table 3 shows the
possible actions that can be associated with a rule. Table 4
illustrates several rules from the system.

The Nazif and Levine approach to segmentation is use-
ful because it is general, but allows more specific strate-
gies to be incorporated without changing the code. Other
rule-based segmentation systems tend to use high level
knowledge models of the expected scene instead of general
rules. The work of McKeown takes this approach for aer-
ial images of airport scenes.

MOTION-BASED SEGMENTATION

In timie-varying image analysis the data are a sequence of
images instead of a single image. One paradigm under
which such a sequence can arise is with a stationary cam-
era viewing a scene containing moving objects. In each
frame of the sequence after the first frame, the moving
objects appear in different positions of the image than in

Table 1. Allowable Data-Entry Types in the Nazif and
Levine Rule-Based Segmentation System

Data Entry Symbol
Current region REG
Current line LINE
Current area AREA
Region adjacent to current region REGA
Region to the left of current line REGL
Region to the right of current line REGR
Line near the current line LINEN
Line in front of current line LINEF
Line behind current line LINEB
Line parallel to current line LINEP
Line infersecting current region LINEI
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Table 2. The Different Kinds of Features That Can Be Associated with the Condition

Part of a Rule

Numerical Descriptive Features
Feature 1 Feature 2 Feature 3
Variance 1 Variance 2 Variance 3
Intensity Intensity variance Gradient
Gradient variance X-centroid Y-centroid
Minimum X Minimum Y Maximum X
Maximum Y Starting X Starting Y
Ending X Ending Y Starting direction
Ending direction Average direction Length
Start-End distance Size Perimeter
Histogram bimodality Circularity Aspect ratio

Uniformity 1
Region contrast 1
Line contrast 1
Line connectivity
Number of areas

Uniformity 2
Region contrast 2
Line contrast 2
Number of regions

Uniformity 3
Region contrast 3
Line contrast 3
Number of lines

Numerical Spatial Features

Number of adjacent regions
Number of intersecting regions
Distance to line in front
Distance to line behind
Distance to parallel line
Adjacency of left region
Number of lines in front
Number of parallel lines
Number of regions to the right

Adjacency values

Line content between regions
Nearest point on line in front
Nearest point of line behind
Number of parallel points
Adjacency of right region
Number of lines behind
Number of regions to the left

Logical Features

Histogram is bimodal
Line is open

Line is loop

Line start is open
Area is smooth

Area is bounded

One region to the left

Region is bisected by line
Line is closed

Line end is open

Line is clockwise

Area is textured

Area is new

One region to the right

Same region to the left and right of line
Same region left of line 1 and line 2
Same region right of line 1 and line 2

Same region to the left of line 1 and right of line 2
Same region to the right of line 1 and left of line 2
Two lines are touching (8-connected)

Areas are absent

Lines are absent

Process was regions
Process was areas

Process was generate areas

Regions are absent
System is starting
Process was lines
Process was focus
Process was active

the previous frame. Thus the motion of the objects creates
a change in the images that can be used to help locate the
objects and thus to segment the images.

Jain and co-workers (1979) used differencing opera-
tions to identify areas containing moving objects. The im-
ages of the moving objects were obtained by focusing the
segmentation processes on these restricted areas. In this
way, motion was used as a cue to the segmentation pro-
cess. Thompson (1980) developed a method for partition-
ing a scene into regions corresponding to surfaces with
distinct velocities. He first computed velocity estimates
for each point of the scene and then performed the seg-

mentation by a region-merging procedure that combined
regions based on similarities in both intensity and motion.

Jain (1984) handled the more complex problem of seg-
menting dynamic scenes using a moving camera. He used
the known location of the focus of expansion to transform
the original frame sequence into another camera-centered
sequence. The ego-motion polar transform (EMP) works
as follows.

Suppose that A is a point in three space having coordi-
nates (x, y, 2), and the camera at time 0 is located at (xg,
Yo, 20). During the time interval between frames, the cam-
era undergoes displacement (dxy, dyp, d2p), and the point
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Table 3. The Different Kinds of Actions That Can Be Associated with a Rule

Area Analyzer Actions

Create smooth area

Create texture area

Create bounded area
Relabel area to smooth
Relabel area to bounded

Add to smooth area
Add to texture area
Add to bounded area

Save smooth area
Save texture area
Save bounded area
Relabel area to texture

Delete area

Region Analyzer Actions

Slit a region by histogram
Split region at lines

Merge two regions

Line Analyzer Actions

Extend line forward
Join lines forward
Insert line forward
Merge lines forward
Delete line

Extend line backward
Join lines backward
Insert line backward
Merge lines backward

Focus of Attention Actions

Region with highest adjacency
Region with lowest adjacency
Region with higher label
Region to the left of line
Closest line in front

Closest parallel line

Longest line that is near
Weakest line that is near
Next scanned line

Defocus (focus on whole image)
Clear region list

Freeze area

Next smooth area

Next bounded area

Largest adjacent region
Smallest adjacent region
Next scanned region
Region to the right of line
Closest line behind
Shortest line that is near
Strongest line that is near
Line with higher label
Line intersecting region
Focus on areas

Clear line list

Next area (any)

Next texture area

Supervisor Actions

Initialize regions
Match region rules

Initialize lines
Match line rules
Match focus rules Start

Generate areas
Match area rules
Stop

A undergoes displacement (dx, dy, dz). When the projec-
tion plane is at 2z = 1, the focus of expansion is at (dx,/dzo,
dyo/dzo). The projection A’ of point A after the displace-
ments is at (X, Y) in the image plane where

=(x+dx—-x0—dx0)
(Z+d2—2'0—d20)

X

and

y = &+ dy—y — dy)
(Z‘l'dZ—Z()—ng)

The point A’ is converted into its polar coordinates (r, 6)

with the focus of expansion being the origin in the image
plane. The polar coordinates are given by

8= tanil(

dzoly + dy — yo) — dyolz + dz — Zu))
dzo(x + dx — xo) — dxolz + dz — 2p)

and
r= (X — dxp)? + (Y — dyp)®t

In (r, 8) space, the segmentation is simplified. Assume
that the transformed picture is represented as a two-di-
mensional image have 6 along the vertical axis and r
along the horizontal axis. If the camera continues its mo-
tion in the same direction, then the focus of expansion
remains the same, and § remains constant. Thus the ra-
dial motion of the stationary point A’ in the image plane
due to the motion of the camera is converted to horizontal
motion in (r, ) space. If the camera has only a transla-
tional component to its motion, then all the regions that
show only horizontal velocity in the (r, §) space can be
classified as due to stationary surfaces. The regions hav-
ing a vertical velocity component are due to nonstationary
surfaces. The segmentation algorithm first separates the
stationary and nonstationary components on the basis of
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Table 4. Several Examples of Rules from the Nazif and
Levine System

A Region Merging Rule

. The REGION SIZE is VERY LOW
. The ADJACENCY with another REGION is HIGH
. The DIFFERENCE in REGION FEATURE 1 is
NOT HIGH
4. The DIFFERENCE in REGION FEATURE 2 is
NOT HIGH
5. The DIFFERENCE in REGION FEATURE 3 is
NOT HIGH
THEN: 1. MERGE the two REGIONS

IF:

w o=

A Region-Splitting Rule

. The REGION SIZE is NOT LOW

. The REGION AVERAGE GRADIENT is HIGH

. The REGION HISTOGRAM is BIMODAL

. SPLIT the REGION according to the HISTOGRAM

IF:

= 00 B

THEN:

A Line-Merging Rule

. The LINE END point is OPEN
. The LINE GRADIENT is NOT VERY LOW
. The DISTANCE to the LINE IN FRONT is NOT
VERY HIGH
4. The two LINES have the SAME REGION to the
LEFT
5. The two LINES have the SAME REGION to the
RIGHT
THEN: 1. JOIN the LINES by FORWARD expansion

IF:

(LI I

A Control Rule

IF: 1. The LINE GRADIENT is HIGH
2. The LINE LENGTH is HIGH
3. SAME REGION LEFT and RIGHT of the LINE
THEN: 1. GET the REGION to the LEFT of the LINE

their velocity components in (r, §) space. The stationary
components are then further segmented into distinct sur-
faces by using the motion to assign relative depths to the
surfaces.

SUMMARY

The place of segmentation in vision algorithms has been
surveyed as well as common techniques of measurement—
space clustering, single linkage, hybrid linkage, region
growing, spatial clustering, and split and merge used in
image segmentation. The single linkage region growing
schemes are the simplest and most prone to the unwanted
region merge errors. The hybrid and centroid region grow-
ing schemes are better in this regard. The split-and-merge
technique is not as subject to the unwanted region merge
error. However, it suffers from large memory usage and
excessively blocky region boundaries. The measurement—
space guided spatial clustering tends to avoid both the
region merge errors and the blocky boundary problems
because of its primary reliance on measurement space.
But the regions produced are not smoothly bounded, and
they often have holes, giving the effect of salt-and-pepper
noise. The spatial clustering schemes may be better in

this regard, but they have not been well enough tested.
The hybrid linkage schemes appear to offer the best com-
promise between having smooth boundaries and few un-
wanted region merges. When the data form a time se-
quence of images, instead of a single image, motion-based
segmentation techniques can be used. All the techniques
can be made to be more powerful if they are based on some
kind of statistical test for equality of means and more
flexible if part of a rule-based system.

Not discussed as part of image segmentation is the fact
that it might be appropriate for some segments to remain
apart or to be merged not on the basis of the gray-level
distributions, but on the basis of the object sections that
they represent. The use of this kind of semantic informa-
tion in the image segmentation process is essential for the
higher level image understanding work. The work of
McKeown describes a system that uses domain-specific
knowledge in this manner.
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SELF-REPLICATION

In machine self-reproduction, an instruction-obeying de-
vice (such as a general-purpose computer) is augmented
with physical manipulation capability (as in an industrial
robot), supplied with raw materials, and programmed to
produce a duplicate of itself. A theoretical model of this
process was proposed by von Neumann (1951) in which
the initial machine resides in an environment of spare
parts (switching, sensing, cutting, fusing elements, etc).
The parent machine plucks parts at random from its sur-
roundings, identifies them, and following stored instruc-
tions, assembles the parts into a duplicate of itself.

This informally described kinematic model was super-
seded by von Neumann’s (1951, 1966) cell-space model
(Burks, 1970; Thatcher, 1970). [Conway’s “Game of Life”
is an example of an extremely simple cell-space system
(Gardner, 1983; Berlekamp and co-workers, 1982).] In von
Neumann’s cell-space model machine reproduction takes
place in an indefinitely extended, two-dimensional rectan-
gular array, each square of which contains an identical
automaton in direct communication with its four cardinal-
direction neighbors. Each cell automaton is capable of be-
ing in any one of 29 different states. These states deter-
mine the way in which a cell automaton interacts with its
neighbors. Depending on its state and the state of its
neighbors, a cell automaton can transmit, switch, or store
information or can undergo a change of state. Configura-
tions of cell automata can be designed to form higher or-
der information-processing devices, such as pulsers (units
that when stimulated emit a stream of pulses) and decod-
ers (units activated only on receipt of particular patterns
of pulses). These and other higher order units can be com-
bined to form a self-reproducing machine consisting of a
general-purpose computer with an indefinitely expand-
able memory unit and a constructor (a device containing
banks of pulsers that can emit signals that cause a cell
automaton to assume any one of the 29 states).

The self-reproducing process proceeds as follows: the
parent machine, reading instructions from memory, first
directs the constructor to produce trains of pulses that
transform cell automata at the periphery of the original
machine, so that a constructing-arm pathway of newly
activated cells is created and extended out into an undif-
ferentiated region of the cell space. Then the parent ma-
chine, making use of a stored description of itself, directs
the arm to move and to emit pulses so as to produce a
configuration of cells that is identical to that of the origi-
nal machine (although as yet lacking the memory con-
tents of the original). The parent machine then reads its
memory a second time and loads a copy of the contents
into the memory of the offspring machine, turns on the
new machine, and withdraws the constructing arm. This
completes the self-reproduction.
~ This process of self-reproduction thus has two principal

phases: first, the memory unit contents are read and inter-
preted as instructions for construction; next, the memory
is read a second time in order to load a copy into the new
memory. This action parallels the biological process of
reading nucleic acids twice, once to carry out protein syn-
thesis and again to replicate the genetic message.

Theoretical research since von Neumann has taken
several directions. Alternative (usually simpler) cell
spaces have been shown capable of supporting the repro-
ductive process (Codd, 1968; Banks, 1970). Hybrid cellu-
lar-kinematic systems have been devised that make ma-
chine movement a more direct process (Arbib, 1966) (in
the original von Neumann cell space, a machine move-
ment is implemented by erasing a configuration of cells in
one location and recreating it in another).

Other hybrid systems emphasize machine capacity for
identifying system componentry (Laing, 1975). In such
systems a machine may initially possess less than com-
plete knowledge of itself but may still be able to reproduce
itself because the deficiency can be made up by self-inspec-
tion (Laing, 1977). This also means that a machine can
undertake partial self-repair: the machine compares its
present configuration (obtained through self-inspection)
with what its configuration should be (as contained in a
stored description of itself) and uses its constructor to re-
duce the discrepancy. This strategy can be generalized to
enable robotic machines to exhibit intentional goal seek-
ing and evolution (Burks, 1984).

In a machine evolutionary process successive offspring
machines cannot be mere exact duplicates of parents but
must in some respect come to be both different and supe-
rior, One approach to machine evolution is to mimic the
natural evolutionary processes of random variation of
type and subsequent selection of better adapted types, but
Myhill (1974) has shown that an indefinitely continued
sequence of reproducing machines, each offspring superior
to its parent, can be produced in an entirely deterministic
fashion.

Machines that accept inputs and produce outputs can
be viewed as implementing mathematical functions. In
self-reproduction machines read or otherwise refer to or
act on themselves to produce their outputs. Recursive-
function theory is the abstract and general study of such
self-reference computations and is thus an important tool
for the precise investigation of self-reproducing systems.
For example, the results and techniques of recursive-func-
tion theory were employed in the Myhill result cited above
and also in establishing the conditions under which a re-
producing machine system will eventually have a sterile
descendant, will continue to produce descendants indefi-
nitely in a periodic manner, or will produce descendants
indefinitely but aperiodically (Case, 1974).

The processes by which artificial machines can exhibit
various forms of reproduction, self-inspection, repair, and
evolution can serve as explanatory models of similar pro-
cesses in natural biological systems as well as contribut-
ing to the development of a broad theoretical biology of
the possible organisms of possible universes.

Although complete physical artificial-machine self-re-
production has not yet been achieved, automation in
which computer-controlled machines carry out the manu-
facture of other machines (including computing machines)
has been moving steadily in that direction. Full exploita-
tion of the concept will take advantage of the exponential
nature of the reproductive process. Environmental con-
cerns and the cost of energy and raw materials severely
constrain Earth-based manufacturing of such an explo-



