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SCENE MATCHING METHODS

Robert M. Haralick

Department of Electrical Engineering, Virginia Poly-
technic Institute & State University, Blacksburg, VA

ABSTRACT. In this chapter we illustrate how scene labeling and
image matching problems are ones of finding homomorphisms between
relations. Then we define a generalization of this problem which
we call the consistent labeling problem. We discuss a tree search
method which can be used to determine consistent labelings and how
lookahead operators can be used to reduce the number of operations
in the tree search.

I. INTRODUCTION

One of the important problems in scene analysis is the comparing

of two scenes or a scene with a prototype scene. The purpose of
the comparison is to answer questions about the similarity of the
scenes. The problem is a structural one and it is related to the
character matching problem discussed in Ullman's chapter of this
book. In this chapter we give some examples of the problem, trans—

late the problem into its general form, and give an algorithm for
solving it.

We show that the mathematical form of the problem is one of find-
ing homomorphisms from one relation to another. We show that the
relation homomorphism problem is a consistent labeling problem.
Finally, we illustrate how a tree search with a lookahead discrete
relaxation operator (see Davis' chapter in this book) can solve
the consistent labeling problem and, therefore, the relation homo-
morphism problem.

IT. IMAGE MATCHING

By image matching we mean how we can tell two images are of the
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same kind of thing. For this to happen, all parts of one image
must have similar parts in the cther and the relationships between
parts in cne must be the same as the relationshlp between the
associated parts in the other.

We will illustrate how this problem can be posed as a relation
homomorphism problem. Suppose we have a segmented image, and we
are able to characterize each segment in terms of certain basic
attributes, for example, shape discriminators. Using these attri~-
butes, we could assign a shape value to each of the segments. To
define a N-ary relation from these values, we can group related
segments together, N at a time, and form the corresponding set of
N~tuples of their values. Then we append to the N-tuple an (N+1)-
component which is the name or label of the group of related seg-
ments whose shape values are the first N components. One possible
kind of label on the (N+1)st component is a counter index. We can
assign the integer label "1" to all N-tuples arising from a group
of segments the first time the N-tuple 1s encountered. The label
"k" can be assigned the kth time the same kind of N-tuple is
encountered,

One eriterion by which segments can be considered related is spa-
tial connectivity or nearness. Two segments are eligible to be
included in the same related group when their interaction lengths
overlap {when they are close enough). To make things simple in
our examples, we will use interaction lengths of zero. Thus, two
segments will be related only when they are touching.

As a specific example, one might consider a missile launching com-
plex as described in terms of its constituent image "phonemes"
These might include rallroad spurs, roads, power lines, buildings,
radar antennas, support vehicles, ete. In terms of the stylized
examples which we will presernit for purposes of simplicity and
generality, such specific components are represented by cilrcles,
squares, triangles, etc.; however, it should be kept in mind that
these "'geometrical objects'" are generic prototypes and always
represent actual image components, shapes, attributes, subattri-
butes, etc.

The example in Figure 1 illustrates an image which has four basic
kinds of figures: squares, triangles, circles, and arrows. A
quadruple whose first three components are these shapes taken in
the order square, triangle, circle, and arrow will be considered

to belong to the relation defined by the image if all three shapes
touch each other in a pairwise manner. In general, we may use the
criterion: consider any N-tuple if enough of its components inter-
act in a palrwise or K-wise manner. The fourth component of the
quadruple is a label which just counts the number of distinect

times that the shapes its first three components represent occur

in a related manner in the image.
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In Figure 1, there are four drawings. Each drawing has two tri-
angles, one circle, one square, and one arrow. Using the relation
idea, there are two pairs of drawings whose arrangements are iso-
morphic by the identity function. The drawings themselves, how-
ever, have their parts placed differently in absolute position and
orientation. This isomorphism becomes clear upon examination of
Figure 2 which shows the possible arrangements for the drawings.
The drawings on the left each define the relationm labeled A.
Hence, they are isomorphic. The drawings on the right each define
the relation labeled B. Hence, they are isomorphic.

Matching can mean matching in the sense of isomorphism or can mean
matching in the looser sense of similarity. In the next section,
we define the general concept of similarity in terms of relation
homomorphisms and in the following sections we continue the image
matching example using the relation homomorphism concept.

Figure 1 illustrates four drawings, each of which has two tri-
angles, one square, one circle, and one arrow. Using the rela-

tion idea, there are 2 pairs of drawings whose arrangements are
isomorphic,
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Relation A Relation B

Aty Oaty
AOT.) (O0AO))

Figure 2 illustrates the quadruples for the relations defined by
the drawings of Figure 1. The two drawings on the left in Figure
1 define Relation A. The two drawings on the right in Figure 1
define Relation B. The quadruple ((3,4,t%,2) means that the draw-
ing has a piece that consists of a square, triangle, and arrow
pairwise touching each other and the label two designates that
this is the second such piece in the drawing.

1

IITI. THE RELATIONAL HOMOMORPHISM PROBLEM

For an N-ary relation, R, R.CTAN, and a function f£:A - B from set
A to set B, we define the composition of R with f, Ref, as the

relation B' C 8" where ¥ = L LI
(a;,...,2y) in Rwith f(a) =b,, 1 =1,...,N}. LetT (,ZAN and

s C BN be two N-ary relations. A function f:A -+ B which satisfis
Tof C § is called a relational homomorphism. Given two arbitrar:
N-ary relations the relational homomorphism problem is the probli
of determining all relational homomorphisms between them. The
image matching problem and the scene labeling problem are exampls
of relational homomorphism problems. Automata homomorphisms,
graph homomorphisms, and graph colorings are other examples of
relational homomorphism problems.

bN) 3 B | there exists

Example: Let A = {w,v,0,1} and R be a ternary relation defined
the set A; RC A x A x A. Suppose R is given by:

vv0
wv(
vwl
wwl
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Let B = {a,b,c,d4,0,1} and h:A > B be defined by:

—h

Hod g
[ . VY

Then Reh has the triples:

ddl
adl
da0
aal

Let S be a ternary relation defined on the set B; S S B x B x B,
Suppose § is given by the triplets:

aal
ba0
cal
daQ
adl
bdl
edl
ddl

Since Reh € 8, h is a homomorphism from R into S. Since h is a
one-one function, S contains a copy of R. The function h is
called a homomorphism.

Let f:A -+ B be defined by:

HoMD ot
HOg g <9

Then Sef has the triplets:
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Notice that S°f € R, making f a homomorphism of S into R. Since

it is the case that Sef = R, R is a homomorphic image of S and f
is said to be onto R.

Let T be the ternary relation defined on B consisting of the fol-
lowing triplets:

aal
bal
ab0
bb0

Let g:A + B be defined by:

o g
O =P oo

Then Reg = T. This makes g a one-one onto homomorphism. One-one
onto homomorphisms are called isomorphisms. Two relations which
are isomorphic are exactly the same except for the name of the
symbols used. To convert one relation to the other, we need just
translate all symbols in the first relation through the isomor-
phism and we will obtain the second relation.

IV. HOMOMORPHISMS FOR IMAGE MATCHING

In this section, we wish to continue the image matching problem
first with isomorphic images and then with homomorphic images.
Our isomorphism example will be more complicated here than in
Section II, where it was the simple identity function.

Our example is illustrated in Figure 3 which has four drawings.
Each drawing has two squares, one circle, one hexagon, and one
triangle. Taking the component order as square, hexagon, tri-
angle, and circle and using the relation concept, there are two
pairs of drawings in Figure 3 whose corresponding relations are
isomorphic. Also the relation for each drawing in Figure 3 is
isomorphic to the relation for one of the drawings in Figure 1.
The isomorphism, however, is not the identity function: a square
stays square, a hexagon becomes a triangle, a triangle becomes an
arrow, and a circle remains a circle,

More complicated still is the case where the correspondence between
one drawing and another is by a homomorphism which does not
establish a one-one correspondence. Such a case is illustrated

in Figure 4 which depicts two drawings. Taking the component
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order as hexagon, circle, triangle, arrow, and square and using

the name or label 1 for all triplets except the triplet (arrow,
triangle, square) which gets the label 2, we may use the relation
concept to establish the correspondence between one of the drawings
(the one on the right) in Figure 4 and two of the drawings in
Figure 1 (the ones on the left). The correspondence is a homo-
morphism and finding it, although easy, should begin to give the
reader some idea of the combinatorial problems involved. The
drawings on the left of Figure 4 is homomorphic to neither of the
drawings in Figure 1.

The problem of finding homomorphisms is truly ome of establishing
the correspondence using relationships. Figure 5 shows the qua-
druples in the relation for the right-hand drawing of Figure 4
and the relation for a left-hand drawing of Figure 1. The homo-
morphism between the relations appears in the central bottom part
of Figure 5.

5 R
& F

Figure 3 illustrates four drawings each of which has two squares,
one circle, one hexagon, and one triangle. Using the relation
concept, there are 2 pairs of drawings whose relatious are iso-
morphic. The relations defined by each drawing here is isomorphic
to the rvelations defined by one of the drawings in Figure 1.
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O 10, (Ov § )

[T v, (v.O.1
(v

Relation for Right-Hand
Drawing of Figure 4

<
O
=

Relation for Left-Hand
Drawing for Figure 1

(Y v
v O

1
T v
O O

Figure 5 illustrates the relatio
in Figure 4 and the relation def
Figure 1. Below the relation is

n defined by one of the drawings
ined by one of the drawings in
the homomorphism.
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V. HOMOMORPHISMS FOR SCENE LABELING

Suppose a scene has been divided into segments § = {sl,..,sK}. A
low level feature extractor with decision rule using gray tone,
color shape, and texture of each segment assigns some possible
description from a set of D descriptions to each segment. This
operation defines a segment-description relation F € S x D. The
problem with this low-level assignment is that each segment may
be associated with multiple descriptions. The desired labeling
of the scene would have each segment described unambiguously.

We would, therefore, like to use some a priori information to
reduce the ambiguity.

A similar situation arises in the line labeling problems of Waltz
(1977). Here, S is the set of line segments found in a scene and
D is a set containing labels that can be associated with any line.
The labels in D could be, for example, comvex, concave, occluding
left, occluding right (see Figure 6). The segment~description
relation F, determined from low level processes, associates with
each line in S one or more labels from D. The desired line
labeling would be some subset of F that associates each line with
only one label.

One way of reducing the possibly ambiguous description a line or
segment initially has is to use constraints from a higher level
world model. Such a model can specify labeling constraints for
each group of related segments or lines. To employ such a model,
related (ordered) sets of N segments or lines must be determined.
Segments can be related on the basis of their relative spatial
positions. Lines can be related on the basis of the junctions
they form. Then for each kind of relationship the model can spe~
cify a constraint which the labels of each kind of related seg-
ments or lines must satisfy.

For instance, pairs of segments in § could be related if they
mutually touch each other. There could be different kinds of
touching such as to the left, to the right, above, below, in
front of, in back of, supported by, and contained in. Suppose
L is the set of such relationship labels. Then the set of spa-
tially related segments or lines could be specified by the rela-
tion AS $ x S x L, where (s,t,i) ¢ A if and only if label i des-
cribes fhe way segment s relates to segment t, In the general
case, the relationsghips in L can describe the way N segments or
lines are related so that the relation A is a labeled N-ary rela-

tion: A C SN x L.

The world model contains constraining information. For example,
pairs of segments whose relationship label is i can be constrained
by the world model to have associated with them only certain
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allowable description pairs. In this case the world model is
specified as a relation CC D x D x L, where (dl,dz,i) € C if and
only if it is legal for a pair of segments Sl and s2 having rela-
tion i to have respective descriptions dl and dz. In general, th

relation C is a labeled N-ary relation, C © DN x L which includes
in it all labeled N-tuples of compatible descriptions for an
ordered set of N related segments. ‘

To summarize the information we have available:

1. FC S x D, the assignments of descriptions given by a low
level operatiom;

2. AC SN x L, the labeled sets of related N-tuples of segments;

N
3. . 6Gp % L, the N-ary relational labeling constraints speci-
fied by the world model.

The scene labeling problem is to use F, A, and C to determine a
new labeling relation G which contains fewer ambiguous descrip-

tions than F and which is consistent with the constraints speci-
fied by the world model.

To express this problem in terms of relation homomorphisms, exten
the relation F to the relation F', F' € (sU L) x (DU L), by:

F' = {(s,d) | (s,d) e F or 8 =4d ¢ L}

F' has the same mapping that F does plus the addition of the iden
tity mapping on L. To keep F' essentially the same as F, we will
assume that 5, L, and D are mutually execlusive.
Consider the relation A.QnSN x L as an (M+l)-ary relation on
(8 U L) since it is certainly true that A C (s LJL)N+1. Likewise
congider the relation C E-DN x L as an (N+l)~ary relation on

N+1
(bUL); CE€ (DUL) 3

Our problem is to find all functions G: (S U L) - (DU L) satig-
fying:

(1) G&F'
(2) A.GCC
Note that this discussion of scene labeling is more general than

that of Rogenfeld, Hummel, and Zucker (1976) who consider only
binary relational comnstraints.




Occluding
Right Edge

Occluding
Right Edge

Key:

231

convex edge
concave edge
boundary edge with the

face of the object to
the right of the arrow

Figure 6 illustrates four possible labels for the edges of an

object with trihedral vertices.
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VI. The CONSISTENT LABELING PROBLEM

In this section we formulate a general network constraint analysi
problem which we call the labeling problem. The labeling problem
is a generalization of specific problems from each of several dif
ferent specialty areas. Some of these specific problems include
the subgraph isomorphism problem (Ullman, 1976), the graph homomo
phism problem (Harary, 1969), the automata homomorphism problem
(Ginzberg, 1968), the graph coloring problem (Harary, 1969), the
relational homomorphism problem (Haralick and Kartus, 1978), the
packing problem (Deutsch, 1966), the scene labeling problem
(Barrow and Tenenbaum, 1976), the shape matching problem (Davis,
1972), the Latin square puzzle (Whitehead, 1976), constraint
satisfaction problems (Fike, 1970), and propositional theorem
proving (Kowalski, 1975). The generalized problem involves a set

names, a set of labels which are the po-sible names for the units
and a compatibility model containing ordered groups of units whic
mutually constrain one another and ordered groups of unit-label
pairs which are cempatible. The compatibility model is sometines
called a world modei. The problem is to find a label for each
unit such that the resulting set of unit-label pairs is consister
with the comstraints of the world model.

Before we can fully state the labeling problem, we need some con-
cepts and definitions. Let U = {1,...,M} be a set of M units anc
let L be a set of labels. A function f:U » L is called a labelir
of U. The labeling problem is to use the world model to find a
particular kind of labeling called a consisteant labeling for all
M units in U.

The problem of labeling is that not all of the labelings are con-
sistent because some of the units are a priori known to mutually

constrain one another. 1f an N-tuple of units (ul,...,uN) are
known to mutually comstrain one another, then not all labelings
are permitted or legal for units (ul,...,uN). The compatibility

model tells us which units mutually constrain one another N at a
time and which labelings are permitted or legal for those units
which do constrain one another. One way of representing this

compatibility model is by a quadruple (U,L,T,R) where TS UN is
the get of all N-tuples of units which mutually constrain one

another and the constraint relation RE (U x L)N is the set of a
2N-tuples (ul,ﬁl,...,uw,ﬂu) where (Kl,...,ﬁN} is a permitted or

legal labeling of units (u ,uN). We call T the unit constra

1
relation and R the unit-label comstraint relation.
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A labeling f:U + L 1s a consistent labeling with respect to the
compatibility model (V,L,T,R) if and only if {ulf""uN) eT

implies (ul,f(ul},.‘.,uw,f(uN)) € R; that is, for each (ul,,,uN)
€ T, the labeling (f(ul),~--,f(UN)} is a permitted or legal
labeling of units (ul,...,uﬂ). When U and L are understood, such

a labeling is called a (T,R)-consistent labeling. The consistent
labeling problem is to find all consistent labelings with respect
to the compatibility model (U,L,T,R). We denote the set of all
(T,R)-consistent labelings by L(T,R).

In the following theorem we prove that the relational homomorphism
problem can be expressed as a consistent labeling problem. Hence,
all relational homomorphism problems can be solved by solving the

consistent labeling problem.

Theorem 1

The relational homomorphism problem can be expressed as a consis-
tent labeling problem.

Proof

Let U = {1,...,M} be a set of units, TGUN, and S G—LN. Define
N _ N
RC (Ux L) byR-= {{ul’ﬂl""’u§’£N} e (Ux L) | (ul,...,uN) (>
T and (ﬂl,...,ﬂN) £ S . Let £ be a function from U to L. We
will show that the labeling f is consistent with respect to the
compatibility model (U,L,T,R) if and only if Tef C §.
Suppose f is a (T,R)-consistent labeling. Let (El,...,ﬁN) g Tof,
Then there exists (ul,...,uN) € T such that ﬂn = f(un), n=1,
«.+sN, But since £ is a consistent labeling, {ul,f(ul),...,uN,
f{uN)) € R, Now by definition of R, (f(ul),...,f(uN)) £ S,
Hence, (fl,...,ﬂw) € S and we obtain Tef & S,

Suppose Tof € §. Let (ul,...,um} € T. Since Tef €S and f is a
function defined everywhere on U, (f(ul),...,f(uﬁ)) e 5. ©Now by
definition of R, (ul,...,uN) € T and (f(ul),...,f(uN)) € 8 imply
(ul,f(ul),..‘,uN,f(uN}) € R. Hence, f is a (T,R)-consistent

labeling.
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y1I. FINDING CONSISTENT LABELINGS

i1ity model (U,L,T,R), where T & {§N and R &

elings in the set L LTS B
we first investigate the

Given the compatib

(U x L)N, the problem is to find all lab

To motivate 2 procedure for doing this,
cases where it is easy to compute it, Then we will look for way:

to operate on the model, reducing it to a set of simpler models
for which it is easier to find consistent labelings. To help us
do this, we need two additional concepts: projection and block.

We define the projection R of R by:

4R = {(u,8) e Ux L | for some (ul,ﬁl,...,u L) e R, (u,d) =
N’ N

(un,ﬂn) for some n}

And for any N-tuple (ul,.-.,uN) of units we denote the block of

(nl,...,uN) by R(ul,...,uﬂ) and it is defined by:

N
R(ul,...,uﬂ) = {(ﬁl,...,ﬂu) e L i (ul,ﬁl,...,uN,KN) e R}.
relation 7R is 2 function and

Proposition 1 proves that if the
uN) # &, then 7R is a {(T,R)-co

(ul,...,uN) g T implies R(ul,...,

sistent labeling. Furthermore, since £ £ L(T,R) implies £ _ TR
if ¥R is a function, then £ = wR. This implies L(T,R) is the

singleton set (7R}. Hence, our simple procedure for finding cc
sistent labelings will in part depend on determining the projec

tion TR.

Proposition 1
Let TC UN and R (U ¥ 3%,
...,uN) ¢ T implies R(ul,...,uN) # 0.

Suppose TR is a function and (u1

Then 7R is a (T,R)-con-
sistent labeling.

Proof

Since R(ul,...,uN) # &, there exists

Let (ui,...,um) g Ty
EN} ¢ R. By definition of »

ll,...,i such that (ul,zl,...,uﬂ,
(un,ﬂn) ¢ "R, n=1,...,N. Since 4R is a functiom, it is sin
valued. Hence, Kﬁ = nR(un), a=1,.,.,N. Now, (ul,f,l,,..,uN
¢ R and £n = ﬂR(un) implies (ul,ﬁR(ul),...,uw,ﬂR(uﬁ)} ¢ R. B

definition of (T,R)-consistent labeling, 7R is a (T,R)-consis

labeling.

This fact suggests a search procedure in which the set L(T,R)
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consistent labelings is successively partitioned by reducing R
until the resultant R either has no consistent labelings or R is
the consistent labeling. Such a search procedure can have two
components, One part can reduce an R at any stage by removing
from R those easy to find unit-label N-tuples which contribute to
no consistent labelings. We call this part the look-ahead part,
Another part can divide R into two relations such thar the consis-
tent labelings for the pair of relations constitute a partition for
the consistent labelings of the original relation. We call this
part the tree search part.

VII.1 Tree Search

The tree search is based on the idea that the easiest way to find
the labelings in L(T,R), is to successively break that problem in
two parts each time finding an Rl:‘:-"_ R and Rzg R so that the

labelings in L(T,Rl) and L(T,Rz) are easier to find, do not dupli-
cate one another, and exhaust the labelings in L(T,R). This sue-
cessive decomposition leads to a tree search as shown in Figure 7.
One way of doing this is to break one of the blocks of R into two
pieces and define Rl to be R with one piece of the broken block
and R, to be R with the other piece of the brokenm block. More
precisely, let a (wl,...,wN) € T be given to designate a block.
Let {Pl,Pz} be a partition of the block R(wl,...,wﬁ). Define new
relations Rl and R2 by

B, = {{ul, Zl,...,um,iN) eR | (u ,...,uN) & (wl,...,wN) implies
(El,...,iﬁ) € Pi}, i=1 and 2.

From Proposition 2, we know that Rl,RZSQ R implies L(T,Rl)
L(T,Rz)EE L(T,R). Proposition 3 (part 1) proves that the labelings
in L{T,R) and L(T,Rz) exhaust the labelings in L(T,R); hence,
L(T,Rl)U L(T,R)) = L{T,R). Furthermore, the fact that {P).P,}

is a partition of R(wl,...,ww) forces L(T,Rl)/1 L(T,Rz) = 4.
Therefore, we obtain that (L(T,Rl), L(T,R )} is a partition of
L{T,R). Because Rl,R2 are each smaller than R, we have reduced

the original problem to two smaller problems of the same type.

Proposition 2
RE&€ S implies L(T,R) & L(T,S)
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T = {(1,3), (1,4), (2,3), (3,4), (4,5))
R = ¢R
13 23 45

aa aa aa
ab ab bb

14 34
2a ab
ab ba
Ry Divide using {(1,3) R,
13 23 45 i3 23 45
aa aa aa ab aa aa
ab bb ab bb
14 34 14 34
aa ab aa ab
ab ba ab a
sﬂll 9R,
13 23 45 13 23 45
aa aa aa ab ab aa
bh bb
14 34 14 34
aa ab aa ba
ab ab
2 2
$7Ry 4 Ry
13 23 45 13 23 45
aa aa bb ab ab aa
14 34 14 34
ab ab aa ba
1 a 1 a
Z a 2 a
3 a Consistent Labelings 3 b
4 b 4 a
5 b 5 a

Figure 7 illustrates a tree search and lookahead to find the
consistent labeling from a simple compatibility model.
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Proof

Let £ € L(T,R). Let (ujs.oouy) € T Since £ € L(T,R) and
(ul,...,uN) e T, (ul,f(ul),...,un,f(uu)) € R. But R& 8. Hence,
(ul,f(ul),...,uN,f(uN)) € 8. Now by definition of L(T,8), f €
Lgrisy,

Proposition 3

Let T¢ U and RS (U x L)Y, Let (yseeeowy) € T Let {B,P,}
be a partition of the block R(wl,...,wu). Define:

R, = {(ul,fl,...,uN,ﬂN) € R | {ul,...,uu) & (wl,...,wN) implies
(ﬂl,...,ﬂ ) E Pi}’ i= 1 or 2.
Then

@ LT,y = L(T,R)) U L(T,R,)
@) Lr)A LT,R) = ¢

Proof

(1) Let £ & L(T,R). Since (wl,...,wN) € T and £ e L(T,R),
(W',f(wl),f..,w ,f(wN}} € R. By definition of Rl and RZ’
(wl,f(wl),...wN,f(wN)) € Rl or RZ' Let (ul,...,uN) e T. Since
f g L{(T,R), (ul’f(ul)""’uﬂ’f(uN)) e R. Either (ul,...,uN) =
(wl,...,wN) or not. If (ul""’uN) = (wl,...,wN), we have by
assumption either (ul,f(ul),...,uﬁ,f(uﬂ}) £ Rl or RZ' If
(ul""’uN) # (wl,...,wN}, then by definition of R, and R,,
{ul,f(ul),...,uN,f{uN)) e R and (ul,...,uN) # (wl,...,wN) imply
(ul,f(ul),...,uNf(UN)) £ Rl or Rz. Hence, (ul,...,uN) e T implies
{ul,f(ul),...,uﬁ,f(uN)) € Ry or (ul,...,uN) e T implies (ul,f(ul),
..,uN,f(uN}) € RZ‘ By definition of consistent labeling, f ¢
L(T,R}_) V) L(T,Rz).

(2) Suppose f ¢ L(T,Rl)(\ L(T,Rz). Since (wl,...,wN) e T, £ ¢
L(T,R.), and f ¢ L(T,R,), we must have (Wl’f(wl)""‘wﬂf(wN}) e Ry
and (wl,f(wl),...,wm,f(wN}} ¢ Ry. This implies that (f(wl},...,

f(wN)) € Pl(\ P2. But this is impossible, since {Pl,Pz} is a parti-
tion of R(wl,...,wN). Hence, L(T,Rl)f1 L(T,Rz) = 4.
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VII.2 Lookahead

The idea behind the lookahead is to locate any N-tuples of unit-
label pairs in R which do not contribute to consistent labelings.
Some such N-tuples are easy to find. Others are difficult. By
looking ahead for the easy ones and removing them, we tend to gua
antee that no matter what N-tuple in T is used to divide R into
Rl and R2, 4t some node in the tree search we will not discover

that the sets L{T,Rl) and L{T’RZ) are empty. This single idea ca

be quite powerful because the efficiency of the tree search
depends, 1in part, on which N-tuple in T is used to do the divisio
At any step, choosing the "right" N-tuple could show that L(T,Rl)

and I(T,Rz) are empty. Discovering this early in the tree search

will make the tree search more efficient since a large subtree
will be eliminated. Constantly choosing the "wrong" N-tuple (a
situation which Mackworth (1977) shows leads to thrashing behavio
might mean that it is not until the bottom of the tree search thar
we discover that L(T,Rl) and L(T’RZ) are empty and that we may ha

to rediscover that there are no consistent labelings again and
again all for the same reason: that there is some N-tuple in T
such that from where we are (near the top of the tree) there is
no way it can participate in a consistent labeling, Ullman (1965
seems to have been one of the earliest users of this idea.

The lookahead operator defined here is in the class of discrete
relaxation operators although it is different from those defined
in Davis' chapter in this book. To help us define the lookahead
operator ¢, we need to define the idea of restriction. If T& UN
and V& U, we define the restriction of T by V as:

T]v = {(ul,...,uN} e T ] u o€ V, n =1,...,N}

If RE (U x I..}N and V& U, we define the restriction of R by V as:
R‘V = {(ul,ﬂl,...,uN,ﬂn) e R | u, BV 6% dewwe, N

Proposition 4 proves that £, a consistent labeling with respect tc
(U,L,T,R), implies ffv is a consistent labeling with respect to
(V,L,TIV,R|V) where VC U,

The lookahead operator ¢ throws out of R all those N-tuples of

unit-label pairs which cannot be extended to consistent labelings
through each N-tuple in T, It is defined by:

PR = {(ul,ﬂl,...,uN,ZN) £ R I (Wl,...,WN) ¢ T implies that there

exists a consistent labeling f with
respect to the compatibility model
(V,L,TIV,RIV) where
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1

v {ul,...,uN,wl,...,WN}

Theorem 2 proves that L(T,R) = L(T,$R) from which it follows by
induction that [(T,R) = L{T,$®R).

Proposition 4

Suppose V& U, Then f, a consistent labeling with respect to
(U,L,T,R), implies that f!v is a consistent labeling with respect

to (V,L,7],.R[.).

Proof

Suppose VE U and f ig a consistent labeling with respect to
(U,L,T,R). Let (Vl""’vN) € va. Certainly (v ,...,VN) e T.

Since f is a consistent labeling with respect to (U,L,T,R),
(Vl’f(vl)""’vN’f(vN)) € R, But (vl,..,,vﬁ) € T]v implies

v € V, n=1,...,N. Hence, (vl,f(vl),...,vN,f(vN)) € R‘v and
Ey ) f[v(vn), n=1,...,N. Therefore, (vl,ffv(vl),,.

<3V
ffv(vn)) € R[V.

Theorem 2
L(T,R) = L(T,4R).

Proof

By definition of ¢R, ¢R < R. By Proposition 2, $RC R implies

Ler,¢r) € L(1,R).

Suppose f & L(T,R). Let (ul,...,uN) € T. Then (ul,f(ul),...,

uN,f{uN)) € R since f ¢ L(T,R). We need to show that (ul,f(ul),
.,uN,f(uN)) € $R. So let (Wl""’wﬁ) € T. Define V = {ul,‘..,

uN’Wl""’WN}‘ By proposition 4, f is a consistent labeling with

respect to the compatibility model (U,L,T,R) implies that f'V is

a consistent labeling with respect to (V,L,T[V.Riv). Thus, by

definition of ¢, (ul,flv{ul),...,uN,f]V(uN)) € R. Since uu eV,

0= 1ii00,N, flv(un) = f(un). Hence, (ul,f(ul),...,uw,f(uN))

R, Then by definition of L(r, ), f ¢ L(T, R).

To help make this discussion concrete, we give the example of

Figure 8 which shows a tree search from beginning to end. The
The compatibility model consists of the unit set U = {1,2,3,4,5},




240

label set L = {a,b}, unit constraint relation T = (1,3, @,s),
(2,3), (3,4), (4,5)}, and unit-label constraint relation R =
[(1,8’3,3), (l,a’a’b)j (1’314,6)’ {1,&,4,b}’ (2’63333')’ (zia‘,BSb)’
(3,a,4,b), (3,b,4,8), (4,a,5,a), (4,b,5,b)}. For this R, 4R = R
so that the lookahead does not help at the top of the tree. The
tree consists of one division using the block R(L,3) = {{a,a),
(a,b)}. This division forms the relations Rl and RZ' After
applying two iterations of the lookahead operator to R1 and Rz,

we reach a fixed point and the projectioms n¢2Rl and n¢ZR are

2
consistent labelings.

VIII. LOOKAHEAD OPERATORS

Waltz (1972), Montanari (1974), Mackworth (1977), and Haralick
and Kartus (1978) all give examples of some lookahead operators.
In this section we describe a lookahead operator of the basic
type and power sued by the above researchers. Haralick and
Shapiro (1979) have a detailed discussion of this kind of 2 para-
meter lookahead operator. It is defined by:

$epk = {(ul,ﬁl,...,un,ﬂn) e R | for every combination Jprevesdg
) T

of 1,...,N and for every uK+l""’up

€ U there exists £&+l""’£é € L such

that f defined by f(u, ) = £, , k = 1,
Jk Jy
..+,K and f(ug} = E;, p = K+l,...,P
is a (T,R)-consistent labeling
Figure 9 shows a tree search employing this lookahead operator.

Notice that it requires ome more iteration to reach a fixed
point. For binary compatibility models, ¢23 operator will be

weaker than the ¢ operator of the previous section.

IX. COMPLEXITY ANALYSIS

Each iteration of ¢ requires checking each N-tuple of R to see if
it can be extended to a consistent labeling. Thus, each N-tuple
of R must be extended by each N-tuple of T. Then a brute force

procedure would generate at most #LN labelings to be checked.
At most, each such check requires determining whether for each
N-tuple in T, the corresponding N-tuple of unit-label pairs is in

R. Therefore, each iteration of ¢ requires at most #R #T #L° #T
operations,

The greatest number of nodes in any branch can be log2 #iR. This
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R = ¢23R

13 14 45
aa ab aa
ab aa bb

23 34
aa ab

BDivide (1,3)

13 14 4 45
aa ab aa ab aa aa
aa bb ab bb
23 34 23 34
aa ab aa ab
ab ba ab ba
298 ta3%y
13 14 435 13 14 45
aa aa aa ab aa aa
ab hb ab bb
23 34 23 34
aa ab ab ab
ba ba
2 2
933% 238y
13 14 45 13 14 45
aa az aa ab aa aa
ab bb ab bb
23 34 23 34
az ab ab ba
3 3
4238 $23R
13 14 45 13 14 45
aa ab bb aa aa aa
23 34 2 34
aa ab aa ba

Figure 8 illustrates a simple tree search using the ¢23 operator

on the relations R and T from Figure 7.
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represents the most number of times ¢ reaches a fixed point down

a branch. In addition, there cannot be a combined total of any
more than #R more iterations in the branch, since each iteration
of ¢ not reaching a fixed point takes at least one N-tuple of
unit~label pairs out of R. Hence, the number of iterations in any
branch is at most (log2 fflR + #R). :

We define the complexity, o, of a consistent labeling problem to be
the ratio of the number of branches the tree search has divided

by the number of consistent labelings. Hence, the total number

of operations is:

all + #LCT,R) 1R + log, #R] #R #1 41N 41

Of course, the NP-completeness of the problem implies that in the
worst case we expect o to be exponential in the number of units.
However, practical problems seem to have parameter values for
which o must be low-order polynomials in number of units. This
behavior in practice is similar to the behavior of other algorithms
that solve NP-complete problems. For example, the simplex algo-
rithm for linear programming hardly ever exhibits the worst case
behavior in practice.

X. CONCLUSION

In this paper we have illustrated how a segmented scene can be
translated into a relational structure and how scene matching can
be accomplished by finding homomorphisms from ome relation to
another.

We have described the consistent labeling problem and shown how
solving it solves the homomorphism problem. Finally, we described
a procedure involving tree search and lookahead operators for
solving the consistent labeling problem.

REFERENCES
1. Barrow, H.G. and J.M. Tenenbaum. MSSYS: A System for Rea-

soning about Scenes, SRI AI Technical Report No. 121, Stanford
Research Institute, Menlo Park, California, 1976.

2. Davis, L.S. Shape Matching Using Relaxation Techniques,
TR~480, Computer Science Center, University of Maryland,
September 1976.

3. Deutsch, J.P.A. "A Short Cut for Certain Combinatorial Pro-
blems," British Joint Computer Conference, 1966.

4. Fike, R.E. "REF-ARF: A System for Solving Problems Stated
as Procedures,” Artificial Intelligence, Vol. 1, 1970, pp.
27-120.




10.

11,

12,

13,

14.

155

16.

243

Ginzberg, A. Algebraic Theory of Automata, Academic Press,
New York, 1968.

Haralick, R.M. and J. Kartus. “Arrangements, Homomorphisms,
and Discrete Relaxation,” IEEE Transactions on Systems, Man
and Cybernetics, Vol. SMC-8, No. 8, August 1978,

Haralick, R.M. and L.G. Shapiro. "The Consistent Labeling
Problem, Parts I & II," IEEE Transactions om Pattern Analysid
and Machine Intelligence, Vol. 1, No. 2, April 1979, (Part

IT will appear in a later issue).

Harary, F, Graph Theory, Addison-Wesley Publishing Company,
Massachusetts, 1969,

Kowalski, R. "A Proof Procedure Using Connection Graphs,"
Journal of the Association for Computing Machinery, Vol. 22,
No. 4, October 1975, pp. 572-595.

Mackworth, A. "Consistency in Networks of Relations," Arti-
ficial Inteiligence 8, 1977, pp. 99-118.

Montanari, U. "Networks of Constraints: Fundamental Proper-
ties and Applications to Picture Processing,' Information
Science 7, 1974, pp. 95~132.

Rosenfeld, A., R.A. Hummel, and S.W. Zucker. '"Scene Labeling
by Relaxation Operations," IEEE Transactions .on Systems, Man
and Cybernetics, Vol. SMC-6, No. 7, June 1976, pp. 420-433.

Ullman, J.R. "An Algorithm for Subgraph Homomorphisms,"
Journal of the Association for Computing Machinery, Vol. 23,
No. 1, January 1976, pp. 31-42.

Waltz, D.L. Generating Semantic Descriptions from Drawings

of Scenes with Shadows, MIT Technical Report A1271, November
1972,

Whitehead, E.G., Jr. Combinatorial Algorithms, Courant Insti-
tute of Mathematical Sciences, New York University, 1972,

Ullman, J.R. "“Parallel Recognition of Idealized Line Charac—
ters,” Kybernetik, Vol. 2, No. 5, June 1965, pp. 221-226.




