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ABSTRACT

A number of scene analysis tasks can be
understoed and solved from a point of view
which we call the theory of arrangements. An
arrangement is a set of one or more labeled
N-ary relations. The theory of arrangements
suggests that the solution to scme seemingly
different high and low level scene analysis
tasks can be found by the construction of a
homomorphism from one arrangement to ancther,
if such a homomorphism exists. TIn this paper
we discuss the arrangement concept and its
application to scene analysis. Then we illu-
strate how a general discrete constraint
ralaxation metnod ean be used to sonstruct
homomorphisms from one arrangement to another.

1. Introduction

Scene analysis and image understanding tasks
encompass everything from low level preprocessing
and image enhancement operations through boundary
delineation, feature extraction for color, texture
and shape, to labeling objects in an image and
interpreting their relationships. It is often the
case that each kind of scene analysis task is
explored independently from the tasks which pre-
ceed it and the tasks which follow it. In part,
this is due to the enormous complexity of the
problem and the lack of any unified conceptuzl
view by which the whole problem can be understood.

Since the technical language of analysis is
the language of mathematics, the conceptual prob-
lem is really a mathematical one. If there were a
consistent way of expressing the high-level and
low-level operations and their compogitlons, we
could begin to ask what we are really deoing in
scene analysis, what we are trying to optimize,
and why it is that a particular sequence of com-—
positions of image operations produces a best
result. Without a conceptual view and a corre-
sponding notational system, scene analysis and
image understanding will be forever a plecemeal
problem.

It is the purpose of this paper to explore in
a unified approach (1) the way in which the dif-
ferent levels of scene analysis depend on one
another and {2) the way in which world model
information can be integrated into the processing
on any given level. We will show that a data
structure, which we call an arrangement, is often
a suitable data structure for representing infor-
mation about a ascene at any given level of
processing, as well as representing world model
information. Furthermore, we suggest that the
way in which world model information can be
integrated into any level of processing requires
the establishment of a homomorphism between the
world model information and the image informatiom.

II. Scene Analysis

Scene analysis consists of a sequence of
information extraction tasks. The initial tasks
work on the raw image which can be considered as
a low-level, nolsy data source. The later tasks
work on successively higher level data sources,
finally producing a concise description of the
scene. At each level of processing, information
from a world model may be available to help guide
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the interpretations being produced.

The basic units being processed at each level
are different. In the early stages the units
might be groups of pixels with their associated
gray tones or colors. Early processing can con-
sist of textural feature extraction, edge
detection, or small homogeneous region delineation.
The basic characteristic of the early processing
1s its almost exclusive reliance on local
properties to perform detection or produce de-
scriptions. This is illustrated in Figure 1 which
shows a local property extractor moving across
the image examining a row of 4 pixels at a time.

TREERE R S W AN v
L3 B TR A

LY Y Y W . Y L .
1 A\ LRIV
TV V8 8 % NN NN

e

Figure 1 illustrates a local property extractor
moving across the image and generating a property
value for each row of 4 pixels.

The basic characteristics of the later stages
of processing are their use of larger units; their
emphasis on integrating, in some consistent
fashion, the piecemeal informaticn produced by the
earlier processing; and thelr greater reliance on
world model information to help guide the inter-
pretation of the global scene. If, for example,
an early stage of processing detects and labelsg
edges according to type, a later stage of pro-
cessing might use the labeled edges as the basic
units and employ « world model to help make the
edge labeling more complete and consistent.

0Often, a stage of local processing will be
followed by a stage of giobal processing guided
by world model Information. It is this pair of
processing steps which we want to discuss in
greater detail In order to characterize its
general form.

Te do this, we first illustrate a low-level
processing example: boundary delineation. The
first step in boundary delineation is micro-edge
property extraction. Any pixel can be labeled as
a micro-edge if it has on either side of it
parallel, elongated, homogenecus areas of signifi-
cantly differert sverage gray tomes. The label
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micro-edge consists of a quadruple whose compon-—
ents are the amgular orientation, the elongation,
and the average gray tones of each of the two
homogeneous areas. Figure 2 illustrates a simple
set of micro-edge property masks. Each micro-edge
can be in one of eight orientations and have one
of twe possible elongations: straight and corner.
Each homogenecus region consists of a conntected
set of pixels with a corresponding average gray
tone. Its homogeneity can be measured by some
criterion such as the variance of its gray tones.
Since it i1s not guaranteed that each pixel will

be asscciated with any micro-edges, a pixel may
have associated with it none, one, or more than
one micro-edge label. We consider that the local
processing stage assigns each pixel the label ''no
udpn'! plus some possible micro-edge labels.

[l ]
A
1 45° g 135
Z 27
LI [
180 Fri 2n° 35
Straight Edges
/1/1 [ A [ ]
- / [ ] —! “..__ *
O B 0 A
o 45° e 135
. % %
_ o /..«
] = b i (-1
wm 11 an :
2% * b L
- // T
7
180° 225° 21° 3150

Carner Edges

Figure 2 illustrates a simple set of masks which a
local processing operation might use to detect
stralght or corner edges oriented at 8 possible
angular directions., The striped resolution cells
indicate that it is cn the darker side of the edge.
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The problem with the local labeling process is
that the labels may not be unique and there may be
incompatibilities of labels from one group of units
to another. The world medel information helps
guide the next stage of processing by constraining
labels of related groups of units to be compatible.
By eliminating the incompatibilities, the ambiguity
aof the labeling can be reduced.

Hence, the next level of processing uses world
model information. Tt groups neighboring pixels if
they are labeled with micro-edge shapes and
orientations which make smooth transitions from
one to the other. For example, the world model
may permit a straight micro-edge oriented hori-
zontally to be connected to other neighboring
straight micro-edges when such edges are orien-
ted no further than 45° from the horizontal.

Also it may be connected to a corner micro-edge,
if the corner micro-edge is to its left and eori-
ented at 180%. A world model for this level can
be a list showing the pairs of micro-edges which
join to form a smooth transitiom. Such a list is
given in Table 1. Robinson (1977) uses a similar
constraint. More complex world models could have
a greater variety of elongations, orientations,
and include probabilities or conditional proba-
bilities for each allowed pair of micro-edge
connections.

Type of Spatial Relationships
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Table 1 1ists the allowable connectiocns betwesn micro-
edges as apecifiad in an exdaple warld model. There are
four relationship types: vertical, horirontal, left
diagonal, and right dtageonal. Under each relationship
type is a list of the aicTo-edge paire which can ba
smoothly connected when they ate in tha fiven relationship.
The pair (s0,c90)} under [#1w] specifies thac straight
mlcro-edge oriented at O to the left of corner wicro—
edge oriented ar 90° is allowable. Under any of the four
types of mpacial relationships, any micro-edga can be next
to a pixel labeled no edge.

The grouping at this level of processing has
the following effect: those micro-eges which
cannot be grouped with some other micro-edges
lose their status as micro-edges and become pixels
labeled no edge. Each micro-edge which can be
grouped withmme other micro-edge is allowed to
retain its label. 1In this manner micro-edges are
allowed to reinforce one another. If the rein-

forcement is done iteratively until there are no
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more changes, and all effects have had a chance to
propagate from each part of the image across the

entire image, then the vresulting micro-edge image
is fully consistent with the world model informa-

tion and the number of pixels falsely labeled as
micro-edges is reduced.

Thus the firat two processing levels in boun—
dary delineation comsist of a local property ex-
traction stage fellowed by a processing stage
that uses world model information. The local
property extraction processing at each pixel of
the image does not influence the property extrac-
tion at any other pixel of the image. The world
model processing locates those pixels labeled as
micro-edges that are not compatible with anything
around them and changes their labels. This status
change can affect the pixel's neighbors, its neigh-
bors neighbors, and so on until the whole image has
been affected. Because such processing propagates
changes throughout the image, each pixel change can
affect every other pixel, and we say the processing
is global.

ITI. Scene Analysis and Homomorphisms

In the last section we described how the local
property extraction step which groups units to-~
gether, defining larger units, and giving each of
the larger units one or more labels is followed by
a global processing step which determines the re-
lationships among the larger units. The global
processing step specifies these relatiomships in
a structure which we will define to be a arrange-
ment {(a labeled N-ary relation). Then the world
model constraints are imposed to force the labels
assigned to rhe larger units by the previcus pro-
cess to be mutually cempatible. The world model
constraint itself is an arrangement and in this
section we will show that the imposing of its con-—
straints amounts to determining a homomorphism
from the first arrangement to the world model con-
straint arrangement which is consistent with the
labels assigned by the lower processing level,

We illustrate this idea with the help of a
gimple abstract example. Let us suppose that our
initial units are pixels and that some of the
plxels in an image are named Py O Pyg and q, to

dq- To do local processing, each group of re-

lated pixels must be examined. To keep our
example simple, we will only concern ourselves
with the related groups of pixels in the set

Py to Py and q; to aq- As Figure 3 illustrates,

there are four groups of related pixels:

{p_ | n=1,...,7%, {p

Each of these four groups are given names indi-
cated by the shapes associated with these groups
in Figure 3. The values the local property
extractor associates with each unit group comes
from the label set {a,b,c,d,e}. The labels for
each unit group appear inside the shape which
names the groups. Thus, the labels a and b are
associated with the unit group {pn | n=1,...,7}.

Relative to our earlier boundary delineation

example, a group of related units is any set of
pixels in one of the spatial configurations of the
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micro-edges masks shown in Figure 2. The label set
consists of the label no edge and the various dif-
ferent kinds of micro-edges distinguished by their
type and angular orientation. Note that in the
boundary delineation example, the name of each
group of related units is the pixel in the output
image into which the property extractor places the
labels associated with the unit groups. Hence,
different unit groups may have the same name,

b,c,d

)

Groups
of Related
Units
Property £xtraction
Values Associated
with Groups
p? pnl
Py | Py Ps | Py . ’E
Units | Ps palpv Ipm P
Property Extraction
Values Associated Groups
with Groups of Related
Untits
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Figure 3 shows related units being grouped to-
gether and a local property extraction operation
associating labels from the set (a,b,c,d,e} with
each of the unit groups.

The world model in the global processing step
names the relationships among sets of unit groups.
For a two-dimensional world model, relationships
between pairs of unit groups are named. For the
boundary delineation example, there are four spa-
tial relationships which are named in the top of
Table 1. In general, the specifying of relatiom-
ships between unit groups can be illustrated as in
Figure 4. Then such a world model specifies the
allowable or meaningful property extraction label
pairs that can exist for each kind of unit group
relationship pair. For the boundary delineation
example, these are the constraints listed in Table
1. The specifying of the kind of constraint a two
dimensional world model can impose on the labels
asgociated with unit groups is illustrated im
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Figure 3. The arrow from label a to label ¢ for
relationship x means that if a pair (G,H) of unit
groups is related by relatiomship x, then it is
allowable or meaningful for group G to have label
a and group H to have label ¢. However, since
there are no arrows from label a teo labels b, d,
'or e, if the unit group G only has label a, the
unit group H cannot have the labels b, d,

or €.
g

X
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Figure 4 shows the names x or y a two-dimensionn?
world model may give to pairs of unit groups. We
call this velation the unit constraint relation.
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Flgure 5 shows for each different unit pair rel.-

tionship the constraints a world model can impose
on the labels of unit groups. An arrow from lapel
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a to label c under relationship type x means that
if a pair (G,H) of unit groups is related by rela-
tionship %, then it is allowable or meaningful for
group G to have label a and group H to have label
c. We will call this relation the label constraint
relation.

To make our data structures take a uniform
appearance, we show in Figure 6 the binary relation
produced by the property extraction step illustra-
ted in Figure 3. The constraint imposed by the
world medel can readily be understood by first
examining Figures 4 and 6. Figure 4 indicates that
a pair of unit groups, say (G,H), has the relation—
ship x. Figure 6 indicates that unit group G can
have label a and unit group H can have label d.
Therefore, there 1s an induced relationship x on
the label pair (a,d). The induced relatienship is
obtained ‘as the composition of the relations in
Fipures 4 and 6.

: -
O,
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J L ©
Figure 6 shows the binary relation produced by the
property extraction step which assigns labels to

units. This binary relation carries the same in-
formation as that shown in Figure 3.

The composition is domne in the following way.
If one group has labels a and b and is related by
relationship type x to another unit having labels
b and d, then links (a,b), (a,d), (b,b), and (b,d)
are added to a graph for relationship x, The re-
sults of such a composition are shown in Figure 7.

Hotice that there are links which are not ia the

world model constraint relation of Figure 5. Such
links, e.g., {a,b), for relationship type x,
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indicate that there is some group having label a
which is related by relationship x to a group
having label b and chat this pair of labels is
not compatible with the world model. Upon elimi-
nating all incompatible pairs of labels, the
labeling of Figure Ba resuits.

®

© ©

X b

Figure 7 shows the composition of the relation of
Figure 4 with the labeling relation of Figure 6.
Notice that there are links shown here which are
not shown in the relation of Figure 5, the worlid
model constraints. Such links, like {(a,b) for
relationships type x, indicate that there is some
group having label a which is related by relation-
ship x to a group having label b and that this
pair of labels is not compatible with the warld
model.
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Figure 8 shows the compatitle pairs of lables of
Figure 7 after removing those not in Figure 5.

Certainly those pairs of labels in Figure 7
which are not in Figure 5 are not compatible and
we may eliminate them. The resulting relation
of compatible labels is shown in Figure 8. This

204

relation may be used to help disambiguate labels
assigned by the local processor to unit groups
G, H, I, and J.

Suppose group G can keep label a. Since H is
related to G by relationship x, then H can only
keep label ¢ because the only label that can re-
late to label a by relationship x is ¢ (See
Figure B8). Wow if H keeps the label ¢, since I
relates to H by relationship x, then I can only
have labels a or d. But the local processor
assigned labels b or d to I. Hence I must take
the label 4.

Now consider the fact that G relates toc I by
relationship y. G has the label a and T has the
label d. Figure 8 indicates that label a does
not relate to label d by relationship y. Hence,
unit group G cannot take the label a.

Suppose that unit group G keeps the label b.
Then since H is related to G by relationship x and
the only label that can relate to label b by rela-
tionship x is label b (see Figure 8), H must take
label b. Also, unit group I must take label b.
Now I is related to G by velationship y. Since
the lahel b can relate to itself by relationship
v, everything is still all right. Unit groups I
and J are related by relationship y. Since label
b can relate to labels ¢ or e by relaticmship vy,
unit group J can keep both its labels ¢ and e.

By this process of tracing compatible labels
around, it is possible to reduce the ambiguity of
the initial labeling done by the local processing
stage. For our example, the resulting labeling is
shown in Figure %a. 1In general, the result is not
single-valued as can be seen from this exampie.

Figure 9b shows the relation which is the com-
position of the unit constraint relation (Figure
4) with the labeling of Figure 9a. Notice that all
links in Figure 9b are links in the label con-
straint relation of Figure 5. Whenever the com-
position of one relation with a second results in
a relation which is contained in a third relatien,
we call the second relation a homomorphism from
the first relation to the third relation. Thus
the labeling of Figure 9a is a homomorphism from
che unit constraint relation to the label
constraint relatiom.

In the next sections we will develop the pre-
cise mathematical idea of arrangement homomorphism,
describe how a variety of scene analysis tasks can
be posed as problems in finding arrangement homo-
morphisms, and describe a general method for
tracing compatible labels around in order to elimi-
nate the incompatible labels,

Robert M. Haralick
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Figure 9a shows the unit labeling compatible with
the world model constraints and unit group rela-
tionships. This labeling contains two
homomorphisms from the unit constraint relation
of Figure 4 te the label constraint relation of
Figure 5.

Figure 9b shows the composition of the relation
of Figure & with the label assignment of Figure
9a. Notice that all iinks in Figure 9b are also
in Figure 5. This indicates that the labeling
of Figure 9a contains homomorphisms.

Scene Analysis, Arrangements, and Homomorphisms

Iv. The Arrangement

In this section we give the definition for
arrangements and arrangement homomorphisms. The
definitions bhere are a generalization of that given
by Haralick and Kartus (1976).

Let A be the set of elements whose arrangement
is being described. Each group of related elements
from A is given a label from the label set L. Let
R be the labeled N-ary relation which consists of
labeled N-tuples of elements from A, Then a
simple order-N arrangement is a triple (R,A,L)

where R < AN x L. When the sets A and L are under-
stocd, the relation R is called an arrangement for
short.

A general arrangement is a set of simple
arrangements, each simple arrangement being of
different order, being defined on the same set, and
having the same label set. If there are K simple
arrangements in the arrangement A, then we write

A= {Rl,Rz,...,RK; A,L} where
M
RocAkxl, k=1,...K

Let A = (Ry,...,Ry; A,L} be a general arrange-
ment and H g A x B.

The composition of arrangement A with H
results in an arrangement B which we define as

AcH = B={51’SZ""’SK; B,L},Nwhere

§ = {(bl,bz,...,ka,l) € B k x L | for some
(al,az,...,aNk,E) £ Rk’ (an,bn) £ H,
n = 1,...,Nk}= R oH, k=1,...,K.

An arrangement A = {Rl,...,RK; AL} is
contained in an arrangement D = {Tl""’TK; A,L}
1f and only if

Rk c Tk’ k=1,...,K.
In this case we write A< D,

Two arrangements A = (Rl,...,RK; A,L} and
B = {Sl,...,SN; B,M} are comparable if the number

of relations in each arrangement is the same (K=N),
the label sets are the same (M=<L), and the relation
Rk has %he rame order asNthe relation Sk

(Reza¥xlands <8 kx1).
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Let A = {Rl,...,RK; A,L} and B =
{Sl,...,SK; B,L} be two comparable arrangements.

Let Ht A -+ B. The function H is a homomorphism
from arrangement A to arrangement B if and only if
AoH < B.

V. Examples

In this section we show how some boundary
delineation tasks, scene labeling tasks, and image
understanding tasks can be described within the
mathematical framework of simple arrangements.

V.1l Boundary Delineation

The local processing operation for boundary
delineation is usually some kind of gradient opera-
tor. We will assume that the gradient operator
agssoclates with each neighborhood of resclution
cells a set of possible edge labels, Each such a
set of labels includes the label no edge. The
first part of the boundary delineation problem is
to use some higher level world model informatiom
te retain in each neighborhood as many of the
labels assigned by the local processing operation
as possible and at the same time make sure that
incompatible labeling situations are removed. The
second part of the boundary delineation problem is
to use the micro-edges retained hy first part and
fill in all likely gaps in the borders. Both parts
have a similar mathematical description.

Let R be the set of resolution cells of the

image and let § g RN be the group of spatially
related resclution cells. We call $ the set of
neighborhoods of the image. In a simple case, N
could equal 9 and S could be the set of all 3 x 3
neighborhoods. In our example in Sectiom II,

N 13 49 and 3 is the set of all 7 x 7 neighbor-
hoods. Let L be the set of the names for some of
the possible relationships which groups of neigh-
borhoods can be in. In our example in Section II,
K is 2 and L has the names horizontal, vertical,
left diagonal, and right diagomal. Let E be the
set of poasible micro-edge labels. In our example
in Sectiom II, E contains the labels no edge,
straight edge at angular crientation 6, and corner
edge at orlentation 6 where 6 can be a multiple of

45°,

The local processing step associates edge
labels with neighborhoods. For the first part of
boundary delineation, the association is determined
by some sort of a compass gradient operator on the
original image. When a gradient at a particular
orientation is high enough, the label micro-edge
at the particular angular orientatiom is instan-
tiated. For the second part of boundary
delineation, the assocciation is determined by some
kind of neighborhood operator in the class of
reglon growing operators operating on the edge
image created in the first part of the boundary
delineation operation. In either case, the local
processing cperation determines a binary relatiocn
G = 5 x E which pairs neighborhoods to edges.

The world model consists of a pair of arrange-
ments (T,C) where T g SK x L is the unit constraint

arrangement and C & EK x L is the label constraint
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arrangement. These relations are the general form
for the unit constraint and label constraint rela-
tion used in cur abstract example in Section III
(Figure 4 and Figure 5 ). T indicates for each
relationship type in L the ordered group of meigh~
borhoods which have the relation. C indicates for
each relatlonship type in L the ordered groups of
micro-edge labels which are compatible when
situated in neighborhoods of the given relation-
ship type.

Each step in boundary delineation then corre-
sponds to finding a mapping H: 5§ + E, H <G,
satisfying the homomorphism condition TeH < C,
Hence the problems of boundary delineation can be
posed as a problem of finding a homomorphism H,
contained in G, from the arrangement (T,5,L) to
the arrangement (C,E,L).

V.2 Scene Labelin

Suppose a scene has been divided into segments
s = {sl,...,sK}. A low level feature extractor

with decision rule using gray tone, color, shape,
and texture of each segment assigns some possible
description from a set D of descriptions to each
segment. This operation defines a relation

G = 35 x D. The problem with this low-level assign-
ment 1s that each segment may be associated with
multiple descriptions. The desired labeling of
the scene would have each segment described
unambiguously.

A similar situation arises in the line labeling
problem of Waltz (1972), Here, $ is the set of
line segments found in a4 scene and D is a set
containing labels that can be associated with any
line. The labels in D could be, for example,
convex, concave, dccluding left, occluding right.
The relation F, determined from low level pro-
cesses, associates with each line in S one or more
labels from D. The desired line labeling would be
some subset of F that associates each line with
only.one label.

One way of reducing the possibly ambiguous
description a line or segment initially has is to
use constraints from a higher level world model.
Such a model specifies the relevant relationships
between groups of related segments of lines and
specifiea the associated labeling constraints. To
employ such a model, related (ordered) sets of N
segments or lines must be determined. Segments
can be related on the basis of their relative
spatial positions. Lines can be related on the
basis of the junctions they form. Then for each
kind of relationship the model can specify a con-
straint which the labels of each kind of related
segments or lines must satisfy,

For instance, pairs of segments in S could be
rtelated if they mutually touch each other. There
could be different kinds of touching such as to the
left, to the right, above, below, in front of, in
back of, supported by, and contained in. Suppose
L is the set of such relationship labels. Then the
set of spatilally related segments or lines could be
specified by the relation A S x § x L, where
(s,t,1) ¢ A if and only if label i describes the
way segment 3 relates to segment t. In the
general case, the relationships in L can describe

Robert M. Haralick



the way N segments or lines are related so that
the relation A is a labeled W-ary relation:

A g SN x L and is, therefore, a simple arrangement,

The world model also contalns labeling con~
straints. TFor example, pairs of segments whose
relationship label is i can be constrained by the
world model to have associated with them only cer-
tain allowable description pairs. In this case the
world model label constraint is an arrangement
CeDxDx L, where (dl’dZ’i) g C if and only if

it is legal for a pair of segments s, and s

1 p.
having relaticn i to have respective descriptions
dl and d2' In general, the relation ¢ is a labeled

N-ary relation, Cg DN x L which inecludes in it all
labeled N-tuples of compatible descriptions for an
ordered set of N related segments.

To summarize the information we have available:

(1) G6g S x D, the assignments of descriptions
given by a low level operationm;

(2} The world model (A,C) where
A C:SN x L 18 the labeled sets of related

N-tuples of segments and C EiDN x L is the
N-ary relational labeling constraints.

The scene labeling problem is to use F,A, and
C to determine a new labeling relation H which con-
tains fewer ambiguous descriptions than G and which
is consistent with the constraints specified by the
world model. In essence we want

(1) H: 8+D, Hg6

(2) AeH g C

Notice that (A,S,L) 1s a simple arrangement,
{C,D,L} is a simple arrangement, and H is a binary
relation which successfully translates the struc-
ture aof arrangement (A,S,L) intec the structure of
arrangement {C,D,L). The binary relation H is the
homomorphism from arrangement {A,S,L} into arrange-—
ment (C,D,L) which is contained in G.

Our discussion of scene labeling is more gen—
eral than that of Rosenfeld, Hummel, and Zucker
(1976) who consider only binary relational label-
ing constraints. We consider N-ary relational
labeling constraints; any ordered set of N seg-
ments can have a N-ary relation labeling
congtraint. For the particular binary case (N=2},
if we define a unique label for each pair of seg-
ments, then the treatment given here exactly
corresponds to that in Resenfeld, Hummel, and
Zucker.

V.3 Image Understanding

We will illustrate the arrangement concept in
image understanding by considering a few highly
stylized problems. This example iz taken from
Haralick and Kartus (1976). Suppose we have a seg-
ment in terms of certain basic attributes, for
example, shape discriminators. Using these attri-
butes, we could assign a shape label to each of the
segments. To define an arrangement from these
labels, we can group related segments together, N
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at a time, and form the corresponding set of N-
tuples of their labels.

Depending on the particular segmentation task,
the order of the segments in the groups may or may
not be important. For example, it may be reason-
able in some kind of image understanding problems
to order the segments in a left-right top-bottom
manner. On the other hand, if the order of the
segments in the group is not important, an arbi-
trary fixed order based on the segments shape can
be used.

The label given to each N-tuple can be the name
we might give to a group of related segments whose
shapes are the components of the given N-tuple.
Another possibility is to use the interpretation
label as a counter. We can assign the integer
label "1" to all N-tuples arising from a group of
segments the first time the N-tuple is encountered.
The label "Kk" can be assigned the kth time the same
kind of N-tuple is encountered.

One criterion by which segments can be con-
sidered related is spatial connectivity or near-
ness. Two segments are eligible to be included in
the same related group when their interaction
lengths overlap. To make things simple in our
examples we will use interaction lengths of zero.
Thus, two segments are related only when they are
touching. 7Tn the stylized examples we give, seg-
ments are represented by circles, squares, tri-
angles, etc.

Arrangements can be used to establish the
likeness of two images when one Image is essen-
tially the same as the other, but the order or
placement of the image parts is different. 1In thig
case template matching the images will not work.
Often geometric transformations of rotation, mag-
nification, translation, skew will alsc not work.
The example shown In Figure 10 illustrates one way
of handling this problem using the noticn of con-
nectedness and simple order-3 arrangements. Suppose
the image has five basic kinds of figures: squares,
triangles, circles, arrows, and hexagons. A quad-
ruple whose first three components are these shapes
taken in the order square, triangle, circles,
hexagons, and arrows will be considered to belong
to the arrangement of the image if all three shapes
touch each other in a pairwise manner. In general,
we may use the criterion consider any N-tuple if
enough of its components interact in a pairwise or
K-wise manner. A label of 1 or 2 will also he
associated with each triple of shapes to make the
quadruple; in this example such a label will just
count the number of times that the triplet it is
associated with occurs. In Figure 10, there are
four drawings. Each drawing has two triangles,
one circle, cne square, and one arrow. Using the
order-3 arrangement concept, there are two pairs of
drawings whose arrangements are isomorphic by the
identity function. The drawings themselves, how-
ever, have their parts placed differently in
absolute position and orientation. This isomor-
phism becomes clear upon examination of Figure 11
which shows the arrangements for the drawings. The
drawings on the left are isomorphic to the arrange-
ment labeled A. The drawings on the right are
isomorphic to the arrangement labeled B.
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Figure 1¢ illustrates four drawings, each of which
has two triangles, one square, one circle, and one
arrow. Using the order-3 arrangements concept,
there are 2 pairs of drawings whose arrangements

are isomorphic.

Arrongement B

(O.A T ]
AOT) (Oa )
AOT) (OAO)

Figure 11 illustrates the quadruples in the order-
3 arrangements for the drawings of Figure 10. The
two drawings on the left in Figure 10 are isomor-
phic to Arrangement A and the two drawings on the
right in Figure 7 are isomorphic to Arrangement B.
The quadruple (CLA,+,2) means that the drawing has
a plece that consists of a square, triangle, and
arrow pairwise touching each ether and the label
two designates that this is the second such piece
in the drawing.

Arrangement A

aaty

The situation becomes slightly more complica-
ted when the function that establishes the lsomor-
phism i1s not the identity function. This is
11lustrated in Figure 12 which also has four
drawings. Each drawing has two squares, one
circle, one hexagon, and one triangle. Taking the
order as square, hexagon, triangle, and circle, and
using the order-3 arrangement concept, there are
two pairs of drawings in Figure 12 whose arrange-
ments are iscmorphic. Also the arrangement for
each drawing in Figure 12 is isomorphic to the
arrangement for one of the drawings in Figure 10.
The isomorphism, however, is not the identity
function: a square stays square, a hexagon becomes
a triangle, a triangle becomes an arrow, and a
circle remains a circle.
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Figure 12 illustrates four drawings each of which
has two squares, one circle, one hexagon, and one
triangle. Using the order-3 arrangement concept,
there are 2 pairs of drawings whose arrangements
are isomorphic. The arrangement for each drawing

is isomorphic to the arrangement for cne of the
drawings in Figure 10.

More complicated still is the case where the
correspondence between one drawing and another is
by an arrangement homomorphism which does not
establish a one=-one correspondence. Such a case
ig illustrated in Figure 10 which depicts two
drawings. Taking the order as hexagon, circle,
triangle, arrow, and square and using the name or
label 1 for all triplets except the triplet
{arrow, triangle, square) which gets the name 2,
we may use the arrangement concept to establish the
correspondence between one of the drawings {the
one on the right) in Figure 13 and two of the draw-
ings in Figure 10 (the ones on the left}. The
correspondence is a homomorphism and finding it,
although easy, should begin to pgive the reader
some idea of the combinatorial problems involwved.
The drawing on the left of Figure 13 is homomor-
phic to neither of the drawings in Figure 10.

Figure 13 illustrates two drawings. Using the
arrangement concept, labels of 1 or 2 can be
assigned to each triplet to make one of the draw-
ings in Figure 10 a homomorphic image of one of
these drawings.

The problem of finding homomorphisms is truly
one of establishing the correspondence using rela-—
tionships. Figure 14 shows the gquadruples in the
arrangement for the right-hand drawing of Figure 13
and the arrangement for the left-hand drawing of
Figure 10. The homomorphism which establishes the
relationship between the arrangements appears in
the central bottom part of Figure 14.
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Arrangement for Left-hand
Drawing for Figure 15..

(O, §.00.)
v

O VL

Arrangement for Right-hand
Brawing of Figure 13.

7
O
i
Y
[]

O=0<(]

Homomorphism

Figure 14 illustrates the arrangement for one of
the drawings in Figure 13 and the arrangement for
one of the drawings in Figure 10, Below the
arrangement is the homomorphism,

VI. Discrete Relaxation

In the last few sections we have illustrated
how a variety of scene analysis problems can be
posed as problems of finding homomorphisms EFrom
one arrangement to anether, 1In this section we
describe a discrete relaxation algorithm which can
be used to help determine all the homomorphisms
from one arrangement to another. The form of the
discrete relaxation algorithm given here is a
generalization to N dimensions of Waltz filtering
(Waltz, 1972) and the discrete scene labeling
relaxation (Rosenfeld, Hummel, and Zucker, 1976)
and network comsistency relation (Mackworth, 1977).

Let (R,A,L) and (S,B,L} be two order-N simple
arrangements, Let TD & A x B be a given constraint

which must contain any homomorphisms we are inter-
ested in finding. By definition a function

H: A > B is a homomorphism from arrangement
(R,A,L) to arrangement {S,A,L} if and only if

Re € 5. We would like to find all such functions
H satisfying the constraint U g Ty-

To motivate the algorithm, consider that each
labeled N-tuple of R must be translated through H
to some labeled N-tuple in N. Since H is con-
tained in T0 we might begin by pairing each

labeled N-tuple in R to those labeled N-tuples in
§ it can be translated to through any palrs in TO.
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Sa, for example, if R has the labeled triple
{a,b,c,2) and Ty = {(a,2), (a,B}, (b,8), (c,B),

(c,a)} then the list of triples (u,B,8,%),
(a,B,ya,2), (B,8,B,2}, and (B8,B,a,%) are all the
possible labeled triplets to which T0 can trans-

late the labeled triplet (a,b,c,f). Suppose of
these four labeled triplets only (a,B,8,%2) and
(B,8,a,%) are in S. Then the pairing establishes
the correspondence of (a,b,c,%) to (a,8,8,%2) and
(B,B,a,L}.

This correspondence of labeled N-tuples in R
to labeled N-tuples in 5 carries information which
can eliminate pairs in T0 which cannot possibly

contribute to any homomorphism. It can do so in
the follewing way. If the pair (a,b) is to be in
some homomorphism, then each labeled N-tuple in R
which has a component with the value a must be able
to be associated with some labeled N-tuple of §
having the corresponding component with value b.
The assoclation of labeled N-tuples of 5 with
labeled N-tuples of R is carried by the composi-
tion through T0 as described in the previous

paragraph.

The discrete relaxation process iterates first
using a T to establish a labeled N-tuple te label-
ed N-tuple correspondence and then using this cor-
respondence to determine a smaller T which can be
used to establish the labeled N-tuple correspon-
dence for the next iteration. At each iteration
T, which is assumed finite, becomes smallexr. The
iterations finally reach a fixed point since T is
bounded below by the empty set., If a homomorphism
H satisfying the constraint H g;lb exists and is

unique, then H will be the fixed point of the

iterations, 1If more than one homomorphism exists,
then the fixed point will not be single-valued and
will contain all homomorphisms satisfying the con-
straint H ¢ TO' In the next section we will dis-

cuss a combination of a tree search and discrete
relaxation process to divide a multi-valued rela-
tion intc its component homomorphisms. In the
remainder of this section we give a precise mathe-
matical description of the discrete relaxation and
illustrate its use on the abstract simple example
we worked in an intrutive manner in Section ITI.

To begin we will need some notational conven-
tions. Let R;ANx L, Se;Bm % L, and TOQA x B,

The iterations define Tl’TZ""’TK each relation
being a restrictien of the previous one. We will

suppose that Tk is defined. The first part of the

iteration goes through each labeled N-tuple of R
and asscciates it with each labeled N-tuple of § it
can by composition through T . We will want ta

have a way of describing such an assoclation. So

let (al,...,aN,ﬂ) be a labeled N-tuple of R and
let G(al,...,aN,E; S’Tk) be the set of all labeled

N-tuples in S which can be reached by the compo-
sition of (al,...,aN,R) through the relation T,

1
Glagsesaag, s 8,1 ) = ((by,.oby,2) €8 |
(an’bn) € Tk’ n=1,...,§}.
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We know that a pair (a,b) ¢ Tk is not a con-

tributer in any homomorphism if for some labeled
N-tuple (al,...,aN.i) in R having a component with

value a and label 2, we camnot find in
G(al....,aN,E; S,Tk) a labeled N-tuple having a

corresponding component with value b. To write
this easily we need a notation which lets us sel-
ect from any set of labeled N-tuples all thoge N-
tuples with a given label and which for a speci-
fied component have a particular value. S¢ 1f we
degire to select from R theose N-tuples having
label % and value a for component n we need only
write Rn(a,l) which we define by

Rn(a,ﬂ) = ((al,az,...,aN,R) e R | a = an}

The next step in the iteration process is to
select a value a for component n and select a
label 2. Then go through each labeied N-tuple in
Rn(a,ﬂ). Suppose (al,...,aN,R) € Rn(a,E). The

labeled N-tuples of S which correspond to
(al,...,aN,Z) can be found in G(al,...,aN,E; S,Tk).

The pair (a,b) = Tk can be a pair which partici-

pates in some homomorphism only 1f there is some
labeled N-tupie in G(al,...,aN,E; S’Tk) having its

nth component with value b. There is some labeled

N-tuple in G(al,...,aN,i; S’Tk) havings its at

component with value b if and only if the projec-—
tion of G(al....,aN,E; S’Tk) anto its nth coordin~

ate contains the element b.

We clearly need a notation for projection. For

any Q& CN x L we define the projection to the ntl—ll

coordinate by

Q= {c ¢ C | for some (cl,...,cN,l) e Q,
c = c}
n

Hence the set of values which exist in the nth com—

ponent for the labeled N-tuples in G(al,...,aN,E;
S,Tk) can be written as nnG(al,...,aN,E; S,Tk).

If the pair (a,b) has a possibility in partici-
pating in some hemomorphism, then for each label ¢,
for each component n, and for each labeled N-tuple
(al,...,aN,E) in Rn(a,k), there must exist someth
labeied N-tuple in G(al,...,aN,ﬁ; S,Tk) whase n

component has value b. Hence,

N
b e ffh\ M /’\\ ﬂnG(al,..

tel, n=1 (al,..

.,aN,R; S,Tk)
.,aN,ﬁ)ERn(a,i)

The discrete relaxation defines the restriction
Tipr bY

Teay = (@0 Ty |

N
b e /ﬁ\ /‘\

teL. n=l (al,...

P nnG(al,...

,aN,E)eRn(a,R)

NS S’Tk)}
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The fellowing theorem proves that if H T,

and H {s a homomorphism from R to 5, then He Tk-i—l'

Hence, those pairs which were in Tk but not in

Tk+1 do not participate in any homomorphism.

Thecorem: Let Rg AN xL, §Sg ]3N x L, and

HE Tc A x B. If Hi A~ B satisfies RoH < 8,
then Hg ¢(T) where

#(T) = {(a,b) e T |

b e M /ﬂ\

Lel n=i (al,...

VA T G, aay s S,T))
,aN,E}ERn(a,E)

Proof: Suppose {a,b) ¢ H. Since H =T is given

we need only show that

be /N fEL\ N wnG(al,...,aN,i; 5,T).
Lel np=1 (al,...,aN,E)ERn(a,i)

So let felL and n ¢ {1,...,N} be given.

There are two cases: either Rn(a,l) = ¢ or

Rn(a,l) # ¢. If Rn(a,k) = ¢, then the result is

immediate since intersections over empty collec—
tions are always full, If Rn(a,ﬂ} # ¢, let

(al,...,aN,k) £ Rn(a,z). By definition of Rn(a,l).
we must have an = a.

Since H is a function, it is defined everywhere

and there exists bl,....bN € B such that
(an,bn) ¢ H, n = 1,...,N. Since a =a and

(a,b) ¢ H, we may take bn =b.

By definition of G(al,...
G(al,...,aN,i; §,T) = {(b*,...,
(an,b:) eH, n=1,...,N}. Now (al,...,aN,l) e R
and (an,bn) eH, n=1,..,,§ imply

sag, ki 5,T),
bk,2} € 8 |

(bl,...,bN,E) ¢ ReH. By assumption, ReH & S.
Hence, (bl,...,bN,ﬁ) £ § and we must have
(bl,...,bN,R) £ G(al,...,aN,i; $,T). Then

b = bn £ ﬂnG(al,...,aN,l; $,T). Therefore,

N
b e Kﬂ\ fﬁ\

Lel n=1 (al...

M "nG(al""'aN’l; $,T)
.,aN,i)ERn(a,E)

The next proposition proves that if H is a
fixed point of the iteraticn process, then H
single-valued implies that RoHg §. This means
that 1f a function H is z fixed point of the itera-
tion process. then H is a homomorphism.

N

Proposition: Let Rg A x L, S BN x L, and

HE A x B, If

Robert M. Haralick



H={(a,b) € H |

b e f’ﬁ\ /JL\ f’\\ nnG(al,...

Lel  n=1 (al,...,aN,L)aRn(a,l)

’aN;f-; S,T)},

then H single-valued impiies RoH ¢ S.

Proof: Let (bl,...,bN, ) £ ReH. Then for some
(al,...,aN,E) e R, (an,bn) e H, n=1,...,N.
By definition of H,

N
b e /Y M 6tal, .. el 0; 8,1, ke, N

2el. n=1 (ai,...,aﬁ,l)ERn(ak,ﬁ)

Now for each %el, and neN bk E wnG(al,...,aN,g; 5,H)

k=1,...,8. 7In particular,
bk 3 va(al,...,aN,i; 5,H), k=1,...,N. But H

single-valued implies that for each (ai,...,aﬁ,ﬂ)

there exists a unique
(b',....bﬁ,z) £ G(ai,...,a&,l; S,H}, Hence,

(bl,...,bN,z) £ G(al,...,aN,l; 8,H) and by defi-
nition of G(al,...,aN,z; S,H) this implies that
(bl,...,bN,E) £ S.

To provide an example of the relaxation pro-
cess, Figure 15 puts in list form the unit
constraint arrangement and label constraint
arrangement of the world model for the abstract

example in Section II. The fnitial T0 is shown in

Figure 16 where the reader can follow the steps of
the iterations. The fixed point is reached in 3
iterations.

GHx AAxX @ay
GIy acx aby
IHx bbx by
LIy cbx bey
ccx bey

cdx cby

dex ceoy

ddx dey

dex ddy

edx eby

eex edy

eey

UNTT CONSTRAINT
ARRANGEMENT

LABELING CORSTRAINT
ARRANGEMENT

Figure 15 lists the triples in the unit con-
straint relation and the labeling constraint
relation for the abstract example of Section II.
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I
G ab
H bad
1 bd
J ce

¥-Tuple Association

GHx acx bbx
Gly aby bby
THx bbx
Iy bey bey
JIy I eby eby
ty

G ab

K b

T b

J ce

N=-Tuple Aasociatfon

GHx bbx
GIy aby bby
Iix hbx
Ty bey bey
Jiy cby eby
T

G b

H b

I B

J ce

1
w

bl

o

1 2
G b G b b
H b H b b
I b I b b
I ce J ¢ e

Figure 16 shows how in three iterations the
initial labeling T0 can be reduced. The two

homomorphisms Hl and HZ’ which T3 contains, are

shown to the right of T3.

The application of the discrete relaxation to
general arrangements is simple. Let

{Rl,Rz,...,RK; A,L} and {8),8,,...,5,; B,L} be
two comparable arrangements. Let TO = A x B be

given. Let the discrete relaxation operite begin-

ning with T0 and using relations R1 and Sl' Call
the resulting relation T1 and let the discrete

relaxation operate with T1 using relations R2 and
SZ' After the Kth relation has finished, use the

resulting relation T in a discrete relaxation for
relation R1 and Sl and continue cycling through in

this manner until relation T does not change for a
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whole cycle. The limiting relation T will then
contain all homomorphisms from the first arrange~
ment to the second that TO does .

VII. Tree Search

Should the discrete relaxation not reduce the
initial relation T far enough and 1t is desfired to
obtain a unique assignment of labels to units, a
tree search must be done to determine all the ho-—
momorphisms T has. The tree search can proceed as
follows. Find the first unit which has more than
one label. Successively instantiate each of these
possible labels to the unit, thereby branching the
tree cut. Each Iinstantiation produces a T rela-
tion which is a restricted version of the previous
level's relation.

Each restricted relation can be put through
the discrete relaxation procedure yielding two
possible outcomes. Either the fixed point rela-
tion is not defined everywhere, in which case that
branch of the tree search terminates, or the fixed
point relaticn 1s defined everywhere, in which
case the branch may continue. If the fixed point
relation is defined everywhere, then either the
relation is single-valued or multi-valued. If the
relation is single-valued, it is a homomorphism.
If it is multi-valued, then we can again find a
unit which has more than one label and successively
instantiate these possibleé labels to the unit and
continue to branch the tree out.

VIII. Generalizations: Probabilistic Models

The world model discussed in this paper has
been the discrete model. These labeled N-tuples
in the unit constraint relation or label constraint
relation had no weights or probabilities associated
with them. One natural generalization of this
model is to have a weight function defined on each
of the constraint relations. The discrete relaxa-
tion, then becomes a probabilistic relaxation,
which could be similar to that defined by Rosenfeld
et al (1976), Davis and Rosenfeld (1976), or Hanson
and Riseman (1977). Each of these researchers have
reported some success with such procedures.

The problem with the probabilistic relaxation
1s that it is not yet known if, in fact, the
normalized weights used have probability inter-
pretations. Unlike the discrete relaxation which
has been shown to preserve homomorphisms, it is
not known what the various forms of probabilistic
relaxation preserve or optimize. It appears to
be a difficult theoretical problem on which more
work needs to be done.

IX. Conclusion

In this paper we have introduced the concept
of an arrangement as a set of labeled N-ary rela-
tions of different orders. We discussed some
general scene analysis processes and have illus-
trated how some of these processes can be viewed
as determining or identifying homomorphisms which
are constrained by local processing results on the
scene data. The homomorphisms are between the
unit censtraint arrangement and the label con-
straint arrangement defined by world model.
Finally, we have discussed how discrete relaxation,
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followed by a tree search, can determine homomor-
phisms from one arrangement to another.

It is our hope that by illustrating the
underlying mathematical unity of a diverse set of
scene analysis processes, some generality and
power can be gained in formulating the total scene
analysis problem.
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