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Abstract. Binary morphological dilation and erosion with long line structuring elements is com-
putationally expensive when performed by the conventional methods of taking the unions and
intersections of all translates of the input binary image with the structuring element. Thus, the
overall computational complexity is & function of the product of the image size and that of the
structuring element. This paper discusses one-pass constant time recursive algorithms for perform-
ing dilation and erosion of a binary image of a given aize, with a line structuring clement oriented
in a given direction rcgardless of its length. The input binary image is scanned along a digital line
generated in the specified orientation. Starting from every 1-pixel in the image directed distances
of pixels are measured along the digital line and the pixel values are replaced with the computed
values producing a grey scale image called the transform image. This is then thresholded with the
desired length of the structuring element. When the resulting image is appropriately translated
to account for the true origin of the structuring element, the result is the desired dilation/crosion.
The timing of the recursive algorithm is evaluated with respect to the conventional morphological
algorithm. It is shown to achieve a speedup of 5, on an average, over all orientations of the line
structuring clement of length 150 pixels when using a salt and pepper image of size 240 x 256 with
the probability of a pixel being a 1-pixel set to 0.25,
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1. Introduction

Mathematical morphology, an algebraic system, provides a set of operators that
when acting upon complex shapes are able to decompose them into their meaningful
parts and separate them from the extraneous parts. Therefore, such an algebraic
system with its operators and their combinations allows the underlying shapes to be
identified and optimally reconstructed from their noisy, distorted forms.

The theory of mathematical morphology(Serra, 1982)(Haralick et al., 1987) has
been developed by many researchers. Mathematical morphology is described in the
language of sets. Sets in mathematical morphology represent the shapes that appear
in binary or static gray scale images. Sets in Euclidean 2-space denote the foreground
regions in binary images. Sets in 3-space may denote time-varying images, static
gray-scale images or binary solids. Further, sets in higher dimensional spaces may
include additional information such as color or multiple perspective imagery. There
are two basic operations, dilation and erosion. These are closely related to the
Minkowski addition and subtraction in Euclidean space using translations, unions
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and intersections. Morphological algorithms can be developed that incorporate var-
ious compositions of dilation and erosion operations in order to extract shapes from
the imagery. Morphological methods have excelled in image analysis techniques
because of its sound mathematical basis and nonlinear nature. .

Binary morphological dilation and erosion with long line structuring elements is
computationally expensive when performed by the conventional methods of taking
the unions and intersections of all translates of the input binary image with the
structuring element. Thus, the overall computational complexity is a function of
the product of the image size and that of the structuring element. In (Chen and
Haralick, 1995) Chen and Haralick describe two-pass constant time algorithms for
obtaining binary erosions and dilations recursively using arbitrary structuring ele-
ments. However, they do not handle the additional efficiencies which arise in the
case of line structuring elements oriented in arbitrary directions.

This paper discusses one-pass constant time recursive algorithms for performing
the dilation and erosion of a binary image of a given size, with line structuring
elements oriented in arbitrary directions regardless of their length. The input binary
image is scanned along a digital line generated in the specified orientation. Starting
from every 1l-pixel in the image directed distances of pixels are measured along the
digital line and the pixel values are replaced with the computed values producing
a grey scale image called the transform image. This is then thresholded with the
desired length of the structuring element. When the resulting image is appropriately
translated to account for the true origin of the structuring element, the result is
the desired dilation/erosion. The timing of the recursive algorithm is evaluated
with respect to the conventional morphological algorithm. It is shown to achieve a
speedup of 5, on an average, over all orientations of a line structuring element of
length 150 pixels when using a salt and pepper image of size 240 x 256 with the
probability of a pixel being a 1-pixel set to 0.25.

The paper is organized as follows: Section 2 reviews some general definitions
and properties of conventional and recursive mathematical morphological operations.
Section 3 states some definitions related to lines in discrete space. Section 4 describes
in detail the recursive dilation algorithm. Section 5 describes in detail the recursive
erosion algorithm. Section 6 discusses the protocol we used for testing. Section 7
concludes the paper by discussing experimental results.

2. Definitions and Notation

This section provides some background in Mathematical Morphology using set the-
oretic notation (Serra, 1982)(Haralick et al., 1987). Let Z = {z]0 < z < o} be the
set of integers. Let 4, B, C, and K be sets in Z2 and let the O be the origin of Z?,
ie,0€ 22,

A. REVIEW OF MATHEMATICAL MORPHOLOGY

Definition 2.1 The Translation of the set A io the point t € Z? is defined as,
Ay ={z|z=a+1t for everya € A}.

Definition 2.2 The Reflection of the set K is denoted by K and is defined by,
K ={-z|z € K}.
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Definition 2.3 Binary Dilation of a set 4 by a structuring element K is denoted by
A® K and is defined 05, AQK ={2 € 2%z =a+b, for someac A and b€ K}.

Geometrically, the dilation can be interpreted as the translation of A by all the
points in K and then taking the union, i.e., A@ K = (H{A4:]b € K.

Definition 2.4 Binary Erosion of aset A bya structuring element K is denoted by
AO K and is defined 05, AOK ={z € Z%|z + b A for every b€ K}.

Geometrically, the erosion can be interpreted as the translation of A by all the points
in K and then taking the intersection, e, AD K =({Aslbe K}.

B. Review of Recursive Operators
Recursive operations on binary images are accomplished using a particular scan order
of pixels in the image. This scan order can be specified using scanning functions.

Definition 2.5 A Scanning Fuction S is defined as a one-to-one mapping from a
finite set I = {(z1,22) € Z}0 < 2, < n1,0 < 23 < ng} to the set {1,2,...,mm,}.
Ifpel, qel and S(p) < S(q), then the output value at P s compuled before the
output value at q.

Definition 2.6 A Recursive Operator on a binary image is an operator whose out-
put depends not only on the input pizels in the domain of its kernel, but also on the
values of the previously compuled pizels, with respect to o given scanning function
S.

Definition 2.7 A Sequentially Computable recursive operator is a recursive oper-
ator with respect to a given scanning function S in the finite set I € 2% such that
whenever an output-value ¢ € I is computed, it only depends on input pizel values
and those oulput pizel values atp€ I satisfying 5(p) < S{q).

3. Digital Line Structuring Elements

This section provides definitions related to digital line structuring elements. The
following definition states the definition of a continuous line passing through the
origin and oriented at an angle 6.

Definition 3.1 4 line in the continuous domain, oriented ai an angle 8 measured
counter-clockwise with respect to the X-azis in the X-Y coordinate system and pass-
ing through the origin O € R? is denoted by Ly and is defined as, Ly = {(z,y) €
R*|z cosf + ysinf = 0}, '

In ‘the row-column (r-c) coordinate system, let the r-axis coincide with the X-
axis and the c-axis coincide with the Y-axis of the X-Y coordinate system. Then
in general a digital line closest to a continuous line of some angular orientation 6 is
defined as follows.
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Definition 3.2 A digitel line Dy C Z? closest to o continuous line at some orien-
tation 8 is denoted by Dy end is defined as,

1
Dy = {(r,c) € Z*| for some 8, |rcosf + csinf| < 5}

The following states a general definition of discretization operation D on a set
A C R? which maps the set 4 into Z°.

Definition 3.3 Let 4 = {(z,y) € Rz} be a given set in R?. The Discretization
Operation D : R? — Z? is defined as,

D(A) = {(r,c) € 2% | (z,y) € A, r = [z] and c = [3]} (1)
where [o] is the rounding off to the nearest inieger.

In the following discussion, without loss of generality, we take all lines to be
passing through the origin.

The following proposition establishes a way of computing a digital line Dy C Z2
from a given continuous line Ly C R? oriented at an angle 8 € [0, 7] using the
definition 3.3. '

Proposition 3.1 Let Ly C R? be a line in R? (as in definition 3.1) oriented at angle
8 € [0,7]. Then a Digital Line Dy C Z? is obiained by appying the discretization
operation D from definition 3.9 to Ly and is given by,

Dy = D(Lg) (2)

The following describes a way of computing a digital line D, 5 of length n > 1
from D;.

Proposition 3.2 Let n be positive integer such that n > 1. Then a digital line
Dng C Z?2 of length n pizels closest to the given continuous line Ly C R? oriented
at an angle 8, where Z, = {1,...,n} is given by,

D.s = {('r', c) € Z:I(r, c) € Da} (3)

From now on Dy will be used to denote a digital line closest to the continuous
line Ly C R? oriented at an angle 8, obtained from the discretization D(Lg) of Ly,
and D, s will be used to denote a digital line of length n > 1 obtained by restricting
.Dg to Zﬁ .

The following definition formalizes the angular separation between two given
orientations. The definition of angular separation is'-necessary when we define the
error between the orientation of a continuous line Ly C R? and that of a digital line
D.s C 2%

Definition 3.4 Angular Distance between or Angular Separation between two ori-
entations 81,682 € [0, 7], denoted by dg(1,02), is defined as,

ds(61,62) = min (|6 — 2], |7+ 8, — 62])
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The following defines the orientation of a digital line D,, 5 C Z? that is closest to
and obtained by the discretization of the continuous line Lg C R?, where L; goes
through the origin as defined in the definition 3.1.

Definition 3.5 The Angular Orientation of a digital line D, 4 is denoted by 9(Dhn,s)
and is defined as,
max ¢

(7,¢)€ED M.

©(Dn,s) = arctan (4)

max r
(ric)€Dn,0

The following defines the orientation error between the continuous line Ly C R?
and its length-n discretization Dn 5. C Z2 with the aid of the definition (3.4).

Definition 3.6 Given a line Ly C R? oriented ot angle § and passing through the
origin, and Dp g C Z? the digital line closest to Ly, the Orientation Error between of
Lg and Dy, 4 is denoted by AO(Ly, n) and is defined as, AO(Lg,n) = ds(O(Dn), 8).

The following proposition states that as the length n of the digital line increases,
the orientation error between the line Ly C R? and the digital line D,y C Z?
decreases.

Proposition 3.3 Given a line Ly C R?, as the length n of the corresponding digital
line (the size of the domain Z3 ) increcses, the orientation error AO(Lg, n) decreases,
that is, AO(Ls,n) > AO(Lg,n+ 1) where n > 1.

The following proposition states a way of determining the minimum length n of
D, s C Z2, given the line L, C R? and the orientation error Af, allowed between
Lg and D, 4.

Proposition 3.4 Given the orientation 6 of the line Ly € R? and the orientation
error Af between Ly and D, g € Z2, the value of n can be found as the smallest n
satisfying the relation AO(Ls,n) < Af.

In practice, the smallest value of = is found as follows. A lockup table for
A®©(Lg,n) is created in an off-line procedure using the equations (5). For each
length n of the digital line, the angle § of the line Ly is varied over the range (0, 7
to obtain the minimum orientation errors for the variations in the orientation of the
digital line of length n. Then the maximum of these minimum errors is calculated
as the orientation error for a given # and n. Algorithmically, this can be stated as
follows with the following notation. n: Length of the digital line in pixels, i: Number
of columns, and, j: Number of rows. Also when j =0, arctan(;;) = 90 is used.
Construction of the lookup table:

The lookup table for determining the minimum length of the digital line is con-
structed using the following algorithm using the equations (5):
— For each length n = 1,..., N of the digital line,

= For each 6 in the range [0, 7],
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* vary i the number of columns, and/or j the number of rows,
* Find the minimum orientation errors at each variation of ¢ and/or 7.
= Find the maximum of the minimum orientation errors.
Therefore each entry in the table shows the orientation error for a given # and n.

( . i gLHLE
- - =Y 3%
Fatinadpilr = mestan(z)] n=1,.. N
3 ; il < T
max min 16— arctan(i_){ n4_<16 = 2N
t=loani=0,..,1 = djeeny
A8 Lasn) = : 0 s iy 2<0<E ()
. - — S o g 4
i:r:.!llfffnjg)l,l.z.]:,i!g (180 ar(:tan(j))! n= 1...,N
1 g
1 — — G 4
\ Ji?f.fniz%l;ln,g'a (180 arCta'n(j))l n= 1,---1N

The user specified orientation error value js compared with the error values in the
lookup table and the value of n corresponding to the closest error value is taken as
the smallest length required to represent the digital line with the specified orientation
error.

Figures 1, 2 and 3 show a few examples of the digital lines for n = 2,3,5 and for
varying values of § € [0, 2l

R sm

(a) 0° (b) 45° (c) 90° (d) 135°

Fig. 1. D, specificd with A@(Lg,n)=0.
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Fig. 2. A few of the possible configurations for Dy g when (a)~(c) the number of columns js varied
with the number of rows held constant at 3, and (d)—(e) the number of rows is varied with the
number of columns held constant at 3.

4. The Recursive Dilation Transform

The dilation transform of a binary image is based on the successive morphological
dilations of the image. Given a binary image I C Z? and the set 4 C I of foreground
or one pixels in 1, the dilation transform with respect to the digital line structuring
element D, s is a grey scale image where the grey level of each pixel z € Z2? is
the generalized distance of z to the set A, i.e., the generalized distance of z to the
foreground or one pixels according to a given scanning function S. That is they
depict the smallest positive integers n, such that z € 4 Dy 6. If no such n exists,
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Fig. 3. A few of the possible configurations for Dg g when (a)=(e) the number of columns is
varied with the number of rows held constant at 5, and (f)—(i) the number of rows is varied with
the number of columns held constant at 5.

where = & A® Dy, 4 for all n, then the dilation transform at z € Z? is designated as
zero. The support for dilation is the entire Z?, because the dilation is extensive.

Definition 4.1 Let I C Z? be the binary image and A C I be the set of foreground
or one pizels in I. Let Dp o C Z? be the digital line struciuring element containing
the origin O € Dy g at its lop end. The dilation transform of the set A is denoted

by

_ [ min{n|lz € A® Dps} ifVn,z€c A® Dn g
FolA, Dr)(z) = { ; e (6)

The following proposition states that the dilation of the set A by a line structuring
element of length n with its origin at its top end, can be obtained by a simple
thresholding step.

Proposition 4.1 Let | be a positive integer. If A C Z? is set and D, 4 is a digital
line struciuring element containing the origin O € D, ¢ at ils top end, and By =
{z € Z2%|0 < F4(A,Dn4) <1}, then A® Dy s = By.

The following proposition establishes that since the thresholding step results in a
dilation with a line structuring element with the origin at its top end, a translation
is necessary to account for the true origin of the actual line structuring element.

Proposition 4.2 Let Dy gy C Z? be the digital line struciuring element of length !
pizels obtained from the same Ly C R? as Dny. Let z € Dyy denote the origin
of the structuring element D; g, then, By = {z + z|c € B;,z € Dy 3} is the desired
recursive dilation result.
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4.1. THE DiLATION TRANSFORM ALGORITHM

In (Rosenfeld and Pfaltz, 1968), Rosenfeld and Pfaltz described a two-pass recursive
algorithm to compute the city-block and chess-board distance transform of a binary
image. They calculate the global distances in the image by propagating the local
distances, i.e., the distances between the neighbouring pixels. As a generalization,
Bertrand (Bertrand and Wang, 1988),(Wang and Bertrand, 1992) and Haralick (Har-
alick and Shapiro, 1992) described a two-pass recursive algorithm to compute the
generalized distance transform.

The recursive dilation transform algorithm descibed here computes the dilation
transform in a single-pass over the image as follows: The minimum length digital
line structuring element computed as in section 3 is used to scan the the image in
the left-to-right and top-to-bottom sequence if 0° < 6 £90° and in the right-to-left
and top-to-bottom sequence if 90 < 8 < 180° assuming its origin to be at the top
end. For each one pixel encountered, the transform values are propagated along
the digital line in the top-to-bottom fashion till the border of the image is reached.
Then, the digital line is moved to the next one pixel in the image and the transform
is computed. This procedure is followed for all the one pixels in the image.

The following defines the nature of the scanning function over the image used
while scanning the pixels in the image, by the digital line structuring element, while
obtaining the dilation transform.

Definition 4.2 Let I C Z? denote the binary image. The Scanning function S over
the image I is denoted by S(I) and is established as,

Sy = lefi-to-right and top-to-bottom scan if 0 < 6 < = (7
T | right-to-left and top-to-bottom scan if3<8<nr )

The following definition establishes the nature of the scanning function over the
digital line structuring element. This scanning function is used to propagate trans-
form values to the pixels in the image along the structuring element starting from a
given pixel in the image in obtaining the dilation transform.

Definition 4.3 Let D, g C Z? denote o digital line structuring element. The Scan-
ning function S over Dy o is denoted by 5(Dnp) and is established as,

S(Dn,g) = top-to-botiom along the digiial line for 0 <8<« (8)

The following proposition establishes the dilation transform property for line
structuring elements. It indicates that the dilation transform at any pixel is one
plus the nonzero dilation transform value computed at its immediately preceding
pixel in the image according to the scanning function over the digital line structuring
element.

Proposition 4.3 If A C Z? is a set, Dng C 2% is digital line structuring element
containing the origin at its top end. Ifz € Z2 and C = {z — 1|Fa(A, Dpg)(z — 1) > 0}
is the singleton sel containing the nonzero immediate predecessor of = eccording to
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S5(Dn,s), then

1 ifze A
min{Fq(A, Dn5)(z), 9

{Fu( A, Dap)(z ~ 1)z - 1€ CY+1} ifag 4, C %40
0 fzgd, C=¢

Fd(A: Dﬂ'a)(ﬂt) =

The above proposition 4.3 leads to the following recursive algorithm for the com-
putation of the dilation transform.

4.1.1. Algorithm Description
Let A C Z? be a set (of foreground pixels in the input image), and let D, , C Z?
be the line structuring element with the origin O € D, s at its top end. Let the
scanning functions be chosen as in propositions (4.2) and (4.3).
Algorithm: Recursive Dilation Transform
1. Perform the following filtering on each pixel z in the input image (Proposi-
tion 4.3):
— ifz € A, then Fy(4, Dy p)(z) = 1.
— ifz € A, then,

F4(A, Dr,0)(2) = mia {Fa(4, Dno)(z), {Fs(A, Drg)(z — )|z =1 € C} + 1}

The following section discusses the process of obtaining the dilation of the input
image A by the structuring element D, s from the dilation transform image of A.

4.2. THE RECURSIVE DILATION

This section describes the process of obtaining the dilation from the dilation trans-
form. According to the proposition (4.1) the dilation transform is thresholded by the
length of the actual structuring element. The binary image resulting from thresh-
olding process represents a dilation with a line structuring element with its origin
at its top end. According to the proposition (4.2) the binary image is translated
to account for the true location of the structuring element origin. The following
sub-section provides an illustration for the recursive dilation algorithm.

4.3. AN ILLUSTRATION FOR RECURSIVE DILATION ALGORITHM

This section provides an illustration to make clear the workings of the recursive
dilation algorithm.

We use the image A depicted in figure 4 as the input image to the algorithm. The
digital line Dg 30- used in obtaining the dilation transform and the actual line struc-
turing element D 30 are also shown in figure 4. The threshold value is therefore,
[ = 5. Let the origin of Ds 30 be located at z = (2,1). The Scanning functions are
chosen as described in the propositions (4.2) and (4.3). After thresholding the dila-
tion transform image shown in figure 5 by ! and translating the result of thresholding
by z, we obtain the dilation of the input binary image with the structuring element
of length 5 with the origin at (2,1). The result of recursive dilation algorithm is
shown in figure 6. In the next section we describe the recursive erosion transform.
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Fig. 4. Input Binary Image 4, and the actual Line Structuring Element Dy and the line
structuring clement D, 5 used in obtaining the dilation transform with 6 = 30% [=5andm=09.
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F4(A, Dg 30-)

Fig. 5. Resulting dilation transform of image A shown in figure 4 using the structuring element
Dg 30+ also shown in figure 4.

5. The Recursive Erosion Transform

The recursive erosion transform is based on the successive morphological erosions of
the binary image. It is a generalization of the distance transform commonly known
in the literature (Rosenfeld and Pfaltz, 1968).

Given a binary image I C Z?, and the set A C I of all the one pixels or the fore-
ground pixels, the erosion transform of A with respect to the digital line structuring
element D, ; C Z? is a grey scale image where the grey level of each pixel z € A
is the generalized distance of z to the image background, i.e., the largest positive
integer n such that z € A© D, 5. The generalized distance at a pixel z indicates the
maximum number of consecutive erosions of A by Dy, 4 such that z is still contained

11
I 1
| 11

A @ Ds 300

Fig. 6. Final output of the recursive dilation algorithm. This is the dilation of the image A by &
digital linc structuring element of length 5 and oriented at 30? from the row axia.
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in the eroded image foreground. The support for erosion is the foreground set A.
The following definition 5.1 defines the erosion transform of 4 by the structuring
element D, 4.

Definition 5.1 Let I C Z? be a binary image and A C I be the set of foreground
or one pizels in I. Let Dp g C Z2 be the digital line siructuring element containing
the origin O € Dy, 4 at ils top end. The dilation trensform of the set A with respect
to Dn g 13 denoted by F.(A, D, g) and is defined as,

Fo(4, Dng)(z) = { masfrle A6 Dug} o e 4 -

The following proposition establishes that the erosion of the set A by a line struc-
turing element of length [ containing the origin O at its top end, can be accomplished
by a simple thresholding step.

Proposition 5.1 Let | be o positive integer. If A C Z? is o set and D, is a
line siructuring element containing the origin O € Dy5 ai ils top end, and B =
{z € A|F.(A,Dp)(z) > 1}, then AS Dy4 = B,.

According to the proposition 5.1 the erosion obtained is with respect to the
line structuring element with the origin at its top end (at the bottom end of the
reflected structuring-element). Therefore, a translation by the negative points of
the structuring element is necessary to account for the true origin of the structuring
element. The following proposition establishes the process of translation.

Proposition 5.2 Let Dy g C 22 be the digita,l. line structuring element and z € Dy 4
denote the origin of the line structuring element Dy g, then,

B.={z—z[z€Bj,z€ D1}
is the desired erosion result.
The following section describes the erosion transform algorithm.

5.1. THE EROSION TRANSFORM ALGORITHM

The recursive erosion transform algorithm descibed here computes the erosion trans-
form in a single-pass over the image as follows: The minimum length digital line
structuring element computed as in section 3 is used to scan the the image in the
right-to-left and bottom-to-top sequence if 0° < § < 90° and in the left-to-right and
bottom-to-top sequence if 90 < 6 < 180° assuming its origin to be at the bottom
of the reflected digital line structuring element. For each one pixel encountered, the
transform values are propagated along the digital line in the bottom-to-top fashion
till the border of the image is reached. Then, the digital line is moved to the next
one pixel in the image and the transform is computed. This procedure is followed
for all the one pixels in the image.

The following definition establishes the nature of the scanning function over the
image used while scanning the pixels in the image by the digital line structuring
element while obtaining the erosion transform.
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Definition 5.2 Let I C Z? denote a binary tmage. The scanning function § over
the image I is denoted by S(I) and is established as,

right-to-left and bottom-to-top scan f0<E< 3
s(1) = . /9 (11)
left-to-right and bottom-to-top scan if T <9<
The following definition establishes the nature of the scanning function over the
digital line structuring element. This scanning function is used to propagate trans-
form values to the pixels in the image along the structuring element starting from a
given pixel in the image in obtaining the erosion transform.

Definition 5.3 Let D, 5 denote a digital line siructuring element. The scanning
function S over D, ¢ is denoted by S(Dpg), and is established as,

S(Dn;g) = bottam-to-top clong the digital line for 0 <O < = (12)

The following proposition establishes the erosion transform property for line
structuring elements. It indicates that the erosion transform at any pixel is one
plus the erosion transform value computed at its immediately preceding pixel in the
image according to the scanning function chosen over the digital line structuring
element.

Proposition 5.3 Let A C Z? is ¢ set, D,y C Z? is a digital line structuring
element containing the origin O € D,y at its top end. Ifz € Z% ond C =
{z — 1|F.(A, Dns) > 0} is the singleton set containing the immediate predecessor
of = according to the scanning function S(D,g) over the digital line sirucluring
element, then,

U; tf:l‘. g Al

max {F.(4, Dn s)(z), s
{F.(A, Dng)(z - )]z~ 1€ C}+1}; Fo €4, C# )

max {1, Fo(4, Dng)(z)}; ifz €A, C=¢.

Fo(4, Dnp)(=) =

5.1.1. Algorithm Description
Let A C Z? be a set (of foreground pixels in the input image), and let D, 3 C Z? be
a digital line structuring element with the origin O € D, ¢ at its top end. Let the
scanning functions be chosen as described in propositions (5.2) and (5.3).
Algorithm: Recursive Erosion Transform
1. Perform the following filtering on each pixel z in the input image (Proposi-
tion 5.3): .
—Ifz ¢ A, then F.(4,Dn)(z) =0
— Ifz € A, then :

F.(A4, Dng)(z) = max{F.(4, Dps)(2), {F.(4, Das)(z - 1)z —1 € C}+ 1}

The following section describes the process of obtaining the erosion of image A4
by the structuring element D, s from the erosion transform of the image A.
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5.2. THE REcuRsiveE ErosioN

This section describes the process of obtaining the erosion from the erosion trans-
form. According to the proposition (5.1) the erosion transform is thresholded by
the length of the true structuring element. The resulting binary image represents an
erosion of input image with a line structuring element with its origin at its top end.
According to the proposition (5.2) the result of thresholding is translated to account
for the true location of the structuring element origin. The following sub-section
provides an illustration for the resursive erosion algorithm.

5.3. AN ILLUSTRATION FOR RECURSIVE EROSION ALGORITHM

This section provides an illustration to clarify the workings of the recursive erosion
algorithm. :

We use the image A depicted in figure 4 as input to the algorithm. The digital
line Dg 30- used in obtaining the erosion transform and the actual line structuring
element Ds 30~ is also shown in figure 4. The threshold value is I = 5. Let the
origin of Ds 30- be located at z = (2,1). Therefore, the translation required is z.
Scanning function is chosen as in the propositions (5.2) and (5.3) to obtain the
erosion transform. After thresholding the erosion transform image shown in figure 7
by ! and translating the result of thresholding by z, we obtain the erosion of the
input binary image with the structuring element of length 5 with the origin at (2, 1).
The result of erosion is shown in figure 8. ’
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Fig. 7. Erosion Transform of image A shown in figure 4 obtained using the reflection of the
structuring element Dg 300 also shown in figure 4.

A G Ds 300

Fig. 8. Resultant image after the transiation operation; this is the final erosion using symmetrical
line structuring element of length 5 oricnted at 30° from the row axis.
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6. Testing Protocol

The following steps are carried out in the timing evaluation of the recursive dilation
and erosion algorithms for lines.

1. Input binary images are generated as follows: Salt and Pepper images with
maximum value in the image = 1; minimum value in the image = 0 are generated
with varying fraction of 1-pixels. It can be observed that the execution time is
a function of number of one pixels or the foreground pixels in the image.

2. Then the recursive dilation and erosion algorithms are run on these images with
structuring elements in different orientations with differing lengths for each ori-
entation. Hence, the total number of tests = number of images x number of
orientations x number of lengths.

3. Conventional dilation and erosion algorithms performed by the unions and in-
tersections of the input binary image with the structuring element, are run on
the same set of input binary images using the same set of actual digital line
structuring structuring elements (for example, in the discussions in the previous
sections the actual digital line structuring element is Ds 30.).

4. Execution times were noted for both the recursive and the conventional morpho-
logical algorithms and are plotted against the length of the structuring elements
on the X-axis.

5. It was expected that the curves obtained for the recursive algorithms to be flat
depicting a constant execution time and those for the conventional morphology
to be linearly increasing with the lengths of the structuring elements.

6. The average and the worsi-case execution times are also calculated and plotted.

7. Experimental Results

Several experiments were carried out according to the protocol described in section 6
to compare the time taken by the algorithm discussed in this paper and that taken
by the conventional method of obtaining dilation and erosion.

The results were plotted with lengths of the structuring elements as independent
variable on the X-axis and the execution times as dependent variables on the Y-axis.

Results for dilation and erosion algorithms are given in figure. 9. Plots for 0°
and 90° are shown along with those for average and worst-case execution times.
In obtaining these plots, salt and pepper images of size 240 x 256 pixels with the
probability of a pixel being a 1-pixel set to 0.25, generated synthetically, are used.
The codes for conventional as well as recursive dilation and erosion were run on
SUN Sparc-2 machines with the programs compiled with Optimize flag on. From
the graphs it becomes evident that the recursive algorithm works at constant time
ignoring (1) the effect of image size increase with the size of the structuring element,
due to the required buffering for border pixels and (2) the inaccuracies in measuring
the CPU time consumed in running the algorithm. These curves show only the times
taken to run the algorithm and thus do not include the I/O time, the time taken
to generate the structuring element, and buffering for border pixels. It can be seen
that on an average, over all orientations of a line structuring element of length 150,
the recursive algorithm shows a speedup of approximately 5 over the conventional
algorithm using a salt and pepper image of size 240 x 256 with the probability of a
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pixel being a 1-pixel set to 0.25. It can be seen from the graphs that on average a
speedup of 5 is obtained with recursive algorithm over the conventional algorithm
for digital line structuring elements of length 150 pixels over all orientations.

8. Conclusions and Future Work

In this paper, recursive algorithms for binary dilation and erosion using digital line
structuring elements are discussed. It is shown to take constant time irrespective
of the length of the structuring element for its various orientations, for a given size
of the binary image. We showed that our algorithm achieved a speedup of about
5 for salt-pepper images of size 240 x 256 with the probability of pixel being a one
pixel set to 0.25, over the conventional morphological operations based on unions
and intersections when a digital line structuring element of length 150 pixels is used.

In the future, we would like to extend these recursive algorithms to arbitrarily
shaped structuring elements, since they can be obtained by the union of translations
of parallel digital line structuring elements.
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