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INTRODUCTION

BASIC PATTERN
RECOGNITION CONCEPTS

Pallcrn recognition as used here refers to the
automatic machine determination of salient
patterns in remotely sensed image data. From the
pattern-recognition perspective, the world to be
sensed is composed of units defined by the sensor.
For digital imaging sensors, as a first approxima-
tion, the units can be thought of as small non-
overlapping arcas on the ground: one such area
for each picture element (pixel) in the image. The
sensor makes an ordered set of measurements on
each unit sensed. The ordered set of measure-
ments is called a measurement vector or mea-
surement pattern. Each value measured in this set
is a number proportional to the energy received by
the sensor in some band of the electromagnetic
spectrum al some specified observation time. The
basic pattern-recognition problem is first to auto-
matically and consistently determine the informa-
tion class or category of each distinct region on
the ground using the set of sensor measurement-
patterns and second Lo estimate the error rate for
the automatically determined assignments.
Specific examples of pattern recognition for
remote sensing applications include determining

1) tree-species composition in a forest

2) hot spots of incipient forest fires

3) natural vegetation cover-types

4) crop types

5) state of health or stressed vegetation

6) percent of sedimentation in a river or luke
7) percent of pollutant in a river or lake

8) geological formation and rock types

9) lineament patlerns
10) degree of mineralization
11) number of small objects in a smooth back-

ground

12) urban land-use patterns

The automation of these tusks requires a corre-
sponding variety of methods and technigues vary-
ing from simple to highly complex. It is the pur-
pose of this chapter to describe the most com-
monly used techniques.

LITERATURE DEALING WITH PATTERN
RECOGNITION CONCEPTS

Books describing the principles of pattern rec-
ognition have been written by Sebestyen (1962),
Nilsson (1965), Arkadev and Braverman (1966),
Fu (1968), Kanal (Ed.) (1968), Watanabe (Ed.)
1969), Mendel and Fu (1970}, Fu (Ed.) (1971),
Andrews (1972), Fukunaga (1972), Meisel (1972),
Patrick (1972), Watanabe (Ed.) (1972), Chen
(1973), Duda and Hart (1973), Ullman (1973), Tou
and Gonzalez (1974), Batchelor (1974), Young and
Calvert (1974), Fu and Whinston (Ed.) (1977), and
Batchelor (1978). Some of these books have been
reviewed and the reader might be interested in
consulting the reviews listed in Table 18-1 before
attempting to read any of these books.

Shorter reports and review articles include
those by Nagy (1968), Ho and Aggrawala (1968),
Fu, Landgrebe, and Phillips (1969), Casy and
Nagy (1971), Nagy (1972), Kanal (1972), and
Kanal {1974). Reprints of important pattern-
recognition articles can be found in Sklansky
(1973) and Aggrawala (1977). The May 1979 issue
of the IEEE Proceedings was a special issue on
pattern recognition and image processing. Journal
papers on paltern recognition appear in the IEEE
Transaction on Computers, IEEE Transactions
on Systems, Man and Cybernetics, and IEEE
Transaction on Pattern Analysis and Machine
Intelligence. The Pattern Recognition Society
publishes a journal called Pattern Recognition.
Conference papers appear in the International
Joint Conference on Pattern Recognition, The
Pattern Recognition and Image Processing
Conference, The Purdue Symposium on Ma-
chine Processing of Remotely Sensed Data,
and the Environmental Research Institute of
Michigan Remote Sensing of Environment Con-
ferences.

SUMMARY RELATIVE TO PATTERN
RECOGNITION CONCEPTS

To aulomate paltern recognition, we must de-
fine the classes of entities of interest, that is, the
kinds of objects between which we must discrimi-
nate: we must choose instruments or Sensors
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TABLE 18-1

Listing of Various Books on Pattern Recognition Where They Have Been Reviewed

AUTHORI(S)

TITLE

WHERE REVIEWED

Harry Andrews

Richard Duda

& Peter Hart

King-Sun Fu

Keinosuke
Fukunaga

William Meiscel

Edward Putrick

Julius Tou and
Rafuel Gonzales

Jullian Ullmunn

Satosi Watanabe
(Ed.}

Introduction to Mathematical
Techniques in Pattern Recog-
nition; Prenuce Hall, New
Jersey. 1972, 504 pages.

Patiern Classification & Scene

Analysis: Wiley, New York, 1973,

482 pages

Syntactic Methods in Pattern
Recognition: Academic Press.
New York, 1974, 397 pages.

Introduction to Statistical
Pattern Recognition: Academic

Press. Ncw York. 1972, 382 pages.

Computer-Oriented Approuches o
Pattern Recognition; Academic

Press. New York. 1972, 262 pages.

Fundamentals of Pattern
Recognition: Prentice Hall,
New Jersey, 1972, 528 pages.

Pattern Recognition Principles.
Addison-Wesley: Mass. 1974,
377 pages.

Pattern Recognition Techniques:
Cranc-Russak, New York. 1973,
412 pages.

Methodologies of Pattern
Recognition: Academic Press.
New York. 1969, 579 puges.

IEEE Information Theory
vol. IT-19, no. 6, November.
1973, p. 831

IEEE Computer Transaclions.
vol. C-23, no. 2, February,
1974, p. 223

[EEE Information Theory.,

vol. IT-19. no. 6. November.
1973, p. 827-819.

w

[EEE Systems Man Cybernetics,
vol. SMC-6, no. 8, August,
1976, p. 590.

IEEE Systems Man Cybernetics.
vol. SMC-4. no. 2, March,
1974, p. 238.

IEEE Information Theory.
vol. IT-19, no. 6. November
1973, pp. 829-830.

IEEE Systems Man Cybernetics,
vol. SMC-3, no. 2, March, 1973,
p. 209.

[EEE Computer Transactions.
vol. C-23. no. 1. January,
1974, p. 112.

[EEE Computer Transactions,
vol. C-22. no. 4. April. 1973,
p. 429.

IEEE Information Theory.
vol. IT-19. no. 6. November. =
1973, pp. 832833,

IEEE Systems Man Cybernetics,
vol, SMC-3, no. 5. September.
1973, p. 528.

IEEE Information Theory.
vol, IT-19. no. 6. November.
1973, pp. 830-831.

IELE Systems Man Cybernetivcs.
vol. SMC-6. no. 4. April. 1976,
pp. 332-331.

1EEE Information Theory.
vol. IT-22. no. §, September.
1976. pp. 632-633.

IEEE Computer Transactions,
vol. C-23, no. 2. February,
1974, pp. 220-222

IEEE Information Theory.
vol. IT-20. no. 3. May. 1974,
p. 400,

SEFE Infuormation Theory.
vol 1T-17. no. §, September.
1971. pp. 633 634,
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which can measure the environment in which the
objects occur: and we must provide a meth-
odology permitting the recognition of an object in
the class of objects of interest from those not in
the class of objects of interest. Using this meth-
odology we also must construct a decision rule
which will decide what kind of object a particular
object is, on the basis of the measurements made
from the observed small-area ground patches.

Defining the class of objects of interest might
seem Lo be easy since il is an intrinsic part of the
automation need. We will see, however, that it is
not so easy since the sensor may not gather suffi-
cient information to allow the discrimination to
take pluce. In these cases we may be forced to
define our classes as the more discriminable ones
even though they may be of less interest to us. To
help us do this we need to employ a clustering
process which tells us what the naturally distin-
guishable classes arc given the sensor’s data.

Choosing the measuring instruments or sensors
and designing a way to preprocess—Lo stan-
dardize, to normalize, and to extract the relevant
information in its simplest form from the
measurements—so that objects of interest can be
simply recognized from those of non-interest (and
so that each class or calegory of objects of interest
has a particularly simple description in terms of
the preprocessed measurements) are among the
most difficult problems in pattern recognition.
These problems are called feature-extraction- or
preprocessing-problems and are concerned with
presenting in some standard form only the
simplest and most important information to the
decision rule.

Finally. the problem in constructing a decision
rule we call the pattern-discrimination problem. It
is based on a probability model and it allows us to
estimate the error rates of the automatic decision
process.

Most pattern recognition of remotely sensed
image data is done by processing each pixel’s in-
formation separately or independently. This
means thal a category assignment is made to each
pixel purely on the basis of its own information.
Processing proceeds on a pixel-by-pixel basis over
the entire image.

When the pixel’s information consists only of
the sensor measurement-pattern obtained from
one observation lime. the measurement patlern is
called a multispectral feature-vector and the kind
of pattern recognition is called multispectral
pattern-recognition. When items of spectral in-
formation from more than one observation time
for the same ground area are stacked in the same
measurement-pattern vector. this kind of pattern
recognition is called multispectral-multitemporal
pattern-recognition. When the measurement pat-
tern for each pixel contains spectral information
from its associated ground area as well as from
neighboring ground areas, or when the decision
rule which makes calegory assignments uses the
information from a pixel and some of its
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neighboring pixels, the pattern recognition is
called spatial pattern recognition, or spatiul-
spectral pattern recognition.

PRINCIPLES OF SPECTRAL
DISCRIMINATION

In order to understand the pattern-discrim-
ination methodology consider a simplified ex-
ample. Suppose that there are three types of
surface-cover material: vegetation, soil, and
water. Suppose further that each of these has a
unique spectral response which does not vary
with season, atmospheric haze. sun-angle ete. Let
these be the responses shown in Figure 18-1. Now
select two wavelengths A, and A, for a remote sen-
sor to make some measurements. Then, for each
surface-cover category, use wavelengths A, and A,
to determine its spectral measurement patlern.
Plot these in measurement space as shown in Fig-
ure 18-2. Since they obviously plot in areas that
are nicely separated from each other we would
expect no difficulty in designing a decision rule to
recognize these categories. Any time a new mea-
surement pattern needs to be assigned to a cate-
gory we see if it lies as the point in measurement
space associated with vegetation, or soil, or
water. If it does, we assign it to the corresponding
category. If it doesn't we assign it to an unknown
calegory.

In reality, the spectral response patterns from
these surface categories as well as others vary due
to natural random variations, syslematic seasonal
causes, atmospheric haze, etc. There is not a
unique measurement pattern associated with each
category. Rather, associated with each category is
a probability distribution indicating, for any mea-
surement pattern, the relative frequency of occur-
rence that may arise from a ground area of the
given category.

If, using some training data. we plotted five ob-
servations of each of three vegetation categories,
viz. soybeun. corn and wheat, we might obtain the
measurement-space plot of Figure 18-3. To assign
a new measurement pattern, v, (o one of the
classes is now not such an easy problem. In es-
sence we must use our training observations to
estimate for each new measurement pattern v, the
probability that soybeans. corn or wheal is its true
category. If we can do that we can associate with
each measurement that category having the high-
est conditional probability given the measure-
ment. In effect, this association partitions mea-
surement space as shown in Figure 18-4. Since our
new measurement pattern is in the part of mea-
surement space associated with soybeans the de-
cision rule assigns it to the soybean class,

The procedure by which the measurement
spuce of Figure 18-3 was partitioned is simple.
Use the training data for each class to determine
the class sample-mean. Then partition the mea-
surement space so that each class has associated
with it all the measurement patterns closest to its
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Fig. 18-1. Typical relative response curves for different materials, illustrating the possibility of discrimination by
comparison of the curves at different wavelengths, Source: Landgrebe (1972b).
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Fig. 18-2. The categories vegetation. soil. and water have distinct responses on wavelengths Al and A2, Shown
in this figure are these categories plotled in a measurement space whose axes are their Al and A2 responses.
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Fig. 18-3. A given material will not always have the exactly same response in a group of samples, but each material
tends to cluster together. A typical two-dimensional sampling of three materials is shown. Source: Landgrebe (1972).

sample mean, Unfortunately, without a probabil- It is the purpose, therefore, of the next sections
ity model we cannot say that this procedure is the to develop a probabilistic-decision theoretic-
one that yields the lowest error rate or maximizes model for pattern discrimination which suggests
any utility function. However, there is a probabil-  techniques for decision-rule construction having
ity model under which this is the appropriate thing  certain optimal properties which we can measure
to do. in terms of utility or economic consequences.
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+

Re.ponse, 1

Fig. 18, Division of two-dimensional sampling space into domains assigned to ditferent materials. In this case the
unknown point u is considered 1o be soybean because ol its location in the sumpling space. Source: Landgrebe
(1972).
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ECONOMIC CONSEQUENCES
OF DECISIONS

For each pattern d belonging to D, deD, a deci-
sion rule f assigns a category .1llernd[ive * from
the set of category alternatives ¢ =
The assignmenl may be detcrm:mstu. or prob-
abilistic. In any case, we assume that the assign-
ment by the decision rule of category alternative ¢
to a pattern d measured from a unit i carries eco-
nomic consequences. These economic conse-
quences are determined by the people who need
to automate the discrimination ability of the
trained human observer. The consequences are
generally good when the chosen category alterna-
tive ¢ is. in fact, the true category identification of
the unit #. The consequences are generally bad
when the category alternative ¢ is not the true
category identification of the unit . Because such
identification decisions must be made, and be-
cause they cause consequences when they are
made, we may view the goal of decision-rule con-
struction as the construction of a decision rule
which in some sense maximizes the good conse-
quences.

To speak of maximizing good consequences
implies that we must have some numerical mea-
sure indicating the economic gain or loss of the
consequence when the decision rule assigns cate-
gory ¢ to a unit # with measurement ¢ when the
true category identification of unit « is category ¢”.
Let e{¢”,c') be the net worth or economic gain of
such a consequence. In general, e(e',¢') will be
positive signifying a gain for a correct identifica-
tion, and efc'.¢’), fori # j, will be negative, sig-
nifying a loss for an incorrect identification.

[n determining a decision rule, we must choose
a criterion of optimality by which we can judge the
worth of the decision rule on the basis of the vari-
ous economic gains or losses of the consequences
(¢',¢’). The optimality criterion defines how to
judge how well the decision rule balances, in
terms of these gains and losses, the possible con-
sequences of its decision. The most often-used
criterion is one which defines the best decision
rule to be one which maximizes the expected gain
under certain given conditions. Such a rule is
called a Bayes decision rule.

Let us consider the economic gains of the pos-
sible consequences given that a unit 1 has mea-
surements . These gains are illustrated simply in
Figure 18-5. Suppose the decision rule assigns a
unit « having measurements o to category ¢'. This
assignment. at best, however, is only an educated
guess: the true category identification for unit u
can actually be any one of ¢'.¢?, ,c*. In Figure
18-5 the decision-rule assignment of ¢' corre-
sponds to a selection of the i column. The true
category identification of unit « corresponds to a
selection of some row. This row, intersected with
the i"* column. yields an entry which is the eco-
nomic gain consequence.

The question of concern is how often will the
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under various aliernatives conditioned on the measure-
ment « being made of a unit K. Given that the observed
measurement is «, the probability that nuture chooses
calegory ¢, corresponding to the j™ row, is Pyc¢?). The
decision rule will chouse some category ¢, corre-
sponding to the K* column, The result of nature choos-
ing category ' and the decision rule choosing category
¢ is the economic consequence (¢!, %),

true category identification of a unit i be category
¢ when the unit 1 has measurement «. We denote
by P,(c’) the probability of the true category
identification of a unit « being in category ¢’ given
that the unit « has measurements . It is these
conditional probabilities which can be estimated
from the training data or ground-observation data.

The decision rule has no information regarding
the true category identification of any unit. It only
knows that the unit gives rise to a pattern d and
that it has uvailable estimates of the conditional
probabilities £,(c*}, & = 1,2, ..., K. The decision
rule must assign the unit to a category. say ¢'. This
corresponds to a section of the i column. For this
course of action a number of different conse-
quences can occur, If the true category identifica-
tion is ¢!, then the gain of the consequence (¢'.¢')
is e(e'et). If the true category identification is ¢*,
then the gain of the consequence {¢2.c'Yis e ¢ '),
In general, if the true category identification is ¢,
then the gain of the consequence (¢'.¢')is e (¢’.c')
The next section discusses a decision-rule
construction-procedure which maximizes the ex-
pected gain.

THE BAYES DECISION RULE MAXIMIZES
EXPECTED GAIN

Let fute) denote the probability that the deci-
sion rule assigns the category ¢ (o the unit. given
that the unit has pattern measurement d. Since.
for any pattern J. there is no reason to suppose
any interaction or collaboration between nature,
(which may be thought of as choosing the true
category identification) and the pattern dis-
criminalor. (which may be thought of as employ-
ing the decision rule to assign calegories) we may
assume that nature and the pattern discrimination
are statistically independent. Thus, the probabil-
ity that the unit has measurements  and the deci-
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sion rule assigned the category ¢* to the unit and
the true category identification for the unit is ¢’
may be written as f, (¢* )P, (¢' )P (d). Therefore, the
expected gain for the decision rule f may be ex-
pressed by

ele!, MU ule FIP e P

h A
Ele:f] = l l \_
felr

(18-1)

To see how 1o find the decision rule which
maximizes the expecled gain, we rewrite the ex-
pression for E[e;f ] as

N puh \ /,,(m S ele! cFIP ().

.‘gl# l. IR

Efef] =
(18-2)

P (), being the probability of measuring pattern J
for a unit. is non-negative. Hence E [e;f] will be
maximized (maximum taken over all /) if and only
if for each el the expected gain given o using [ is
maximized; that is,

A h
E[_e}n’.j'-l = N fiket) N
k=1 i=1
el WP yle?) is maximized. (18-3)
Since Y&, fule*) = 1 and fi(c¥) = 0, k =
1.2,..., K. it is easy to see that the maximum
of the above expression is
K.
Q=120 KN el oOPel) (1844
=1

and the decision rule f will certainly achieve this
maximum if

where A is any index such that

fdeny=1{1i=
0,0 #A

R A
l elel e WP ley \_
2l

i=1

(o WPle i = 1.2, 00K, (18-5)
In this case the optimal decision rule can be de-
terministic if the index & is unique or it can be
either deterministic or probabilistic if & is not
unique. Any optimal decision rule is called a
Bayes rule.

For example. suppose there are three categories
' ¢, and ¢* with conditional probabilities and
economic gains for the various alternatives and
consequences as shown in Figure 18-6. The opti-
mal decision rule will assign the unit « to category
¥ since the average gain for row 3 is 5/6 which is
larger than the average gain for row | which is
=1y or for row 2 which is !2.
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Fig. 18-6. 1llustrates the economic gains for an example
problem where the pattern measurements d are made on
a unit and there are three possible calegories.

BAYES DECISION RULES AND
CATEGORY PRIOR PROBABILITIES

It is often the case that the conditional prob-
abilities P(c/d ) are not known but that the condi-
tional probabilities P(d/c) of the measurements,
given the categories, are known. Fortunately,
there is a well known relationship between P(c/d)
and P(d/c) which involves the prior probabilities
of P(d) and P(c) of the measurements and
calegories, respectively.

By the definition of conditional probability, we
may express P,{(c) by

PADPO)
Pld)

Pulc) = (18-6)

so that the average gain obtained by the use of
decision rule f may be rewritten as

h K
Ele] = X NN flehete! e WP (dPied).
delr k=1 Jj=1
(18-7)

E{e.f] is maximized if and only if for each deD,
the gain conditioned on d,

l\

A
Ky l ele?,

Eleld:f] = CEIP (P

i .r(i
k=1 =1

{18-8)

is maximized. The maximum value of Efefd;f} is

A
N eten e (P

(18-9)
=1
where A is some index for which
A K
\_ cLehP WPty e N
=1 =1
e P P, i =102, L K IB-1)

An optimal deterministic decision rule f may
therefore be defined by



e =10 =4
Jate) = (]): #i | where & is any index such that
h‘

l el ot W’ A WPle) l

=1

eleh e )P (WPle?),i= 1,2, ... K. (I8-11)
Note the strong dependence which f has on the
category probability P(c). Because of this, any
time we define an optimal Bayes decision rule. we
must state that it is optimal only relative to the
category prior-probability function P(c).

MAXIMIN DECISION RULE

Figure 18-7 illustrates the expected gain of a
Bayes decision rule in a two-category classifica-
tion problem with the identity gain function.
Selecting a value of prior probability. the corre-
sponding value of expected gain is the highest ex-
pected gain achievable by any decision rule.
Therefore, use of any decision rule which is not a
Bayes rule is guaranteed to perform below the
curve. In particular, if a Bayes rule is used in a
new situation where the encountered prior proba-
bility function differs from the one employed in
the design, then the Bayes rule is not optimal in
the new situation.

Recognizing this, a conservative decision-rule
designer will attempt to construct a decision rule
which maximizes the smallest gain achieved by
the decision rule under some encountered prior
probability function. It turns out that the expected
gain for a decision rule which maximizes the
smallest gain as the encountered prior probability
function varies has a value equal to the smallest
possible Bayes gain (the lowest point on the curve

ected gain
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of Figure I8-7). This value is the same regardless
of the actually encountered prior probability
functions. This kind of decision rule is called a
maximin decision rule since it maximizes the
minimum expected gain. In general. it is not a
deterministic decision rule and designing a maxi-
min decision rule is equivalent to solving a large
linear-programming problem.

THE GAUSSIAN ASSUMPTION

The conditional probability P.(d) of the data-
measurement vector o given the category ¢ plays
an essential role in decision rule determination.
P{d) could be stored as a table. However, be-
cause of the large number of possible data vee-
tors, P.(d) is often represented as a parametric
function, the parameters being the category mean
measurement g, and its covariance matrix 3, . The
simplest probability density-function having these
parameters is the Gaussian one which is de-
fined by

Pid) = ——=- vavd per X hd o un

(2
(18-1)

where N is the dimension of the measurement
vector d.

In the case of identity-gain function ¢ and equal
probabilities for the prior P(c) for each category
¢, the Bayes decision rule assigns measurement d
to that category ¢ minimizing

log [ +4d = )" X' (d — ) 1813

This kind of decision rule is sometimes called
quadratic or piecewise quadratic because the de-

9 +25 .5

.75 '

LoT Cides ¢y

Fig. 18-7. ilustrates how the expected gain of a Bayes decision rule can vary with a change in prior probubility
for class ¢, in some two class example problem. Notice that as the prior probability tor class ¢, becomes 1. the
prior certainty reflects itself in an a posteriori certainty which makes the expected gain high. When the prior
probubility for cluss ¢, becomes 0. the prior probability for class ¢, becomes [ and the situation is similar. For cluss
¢, prior probabilitics between 1 and 0. the prior situation is less certain and the expected gain must be fess than the
end cases. The shape of the function is guaranteed to be convex,
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cision boundaries they form in measurement
space are piecewise hyperquadratic boundaries.
In case the covariance matrices for all cat-
egories are equal, the Bayes decision rule re-
duces to assigning the measurement « Lo that cat-
egory ¢ minimizing the Mahalanobis distance

d-p) ¥'d - p) 18-14
between the measurement vector 4 and the cate-
gory mean vector u, for category c. This decision

does simplify to a linear decision rule. Assign
measurement o to that category ¢ maximizing

gt
('S - (MT#) (18-15)

By precomputing the terms in parentheses, the
number of multiply and add operations for this
decision rule is only N + 1 per category, a signifi-
cant saving over the quadratic rule, especially
when the dimensionality N is large.

FEATURE SELECTION

Multitemporal multispectral remotely sensed
imagery can produce a ten- or twenty-dimensional
data vector for each pixel. The data have inherent
redundancies and processing all of the data or
storing all of them may not be cost effective.
Feature-selection procedures are used to select
those dimensions most suitable for processing.

There are two kinds of feature selections de-
pending on whether the classes and their statistics
are known or not known. If they are not known,
the best feature-selection procedure is called prin-
cipal components. [f they are known, the
easiest-lo-use feature selection is based on Bhat-
tacharyya distance.

PRINCIPAL COMPONENTS

Principal components is a standard statistical
technique for selecting that subspace of given di-
mension in which the most data variance lies. If
Nyo....xy are the sample data vectors, u the
sample-mean vector, and Y the sample co-
variance-matrix, the best X dimensions in which
o project the data would be that K-dimensional
subspace spanned by the K eigenvectors of ¥
having the largest eigenvalue. Thus if T is a matrix
whose K rows are these eigenvectors, the K prin-
cipal components of x, ..., x¢is Tx,, ... Txy.
each Tx, being a A'-dimensional vector.

BHATTACHARYYA DISTANCE

The Bhattacharyya distance is a measure of the
separability between two classes. For two
Gaussian classes having means and covariances
. Xand g, X respectively, the Bhattacharyya
distance is given hy
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'L( = J'(""
3 HyT M

i
2 JE 122 e (18-16)

To use this distance measure for selecting the
best K features from the original N dimensions on
an L-class problem, the Bhattacharyya distance
needs to be calculated between each of the
L(L — 1)/2 pairs of classes for each of the () pos-
sible ways of choosing K features from N dimen-
sions. The K dimensions which are best are those
K dimensions whose sum of the Bhattacharyya
distances between the L (L —1)/2 pairs of classes is
highest. The Bhattacharyya distance between a
pair of classes for a selection of K dimensions out
of N dimensions is calculated using the mean and
covariance matrix in the selected X dimensions.

SYNTACTIC PATTERN RECOGNITION
APPLIED TO REMOTE
SENSING PROBLEMS

GENERAL APPROACH

The approach of using hierarchical structures
and grammar rules to describe the structures of
pattern has recently received increasing attention
(Fu, 1974). This approach is often called the
structural or syntactic approach to distinguish it
from the decision-theoretic or statistical ap-
proach, Practical applications include the de-
scription of chromosome images, the recognition
of characters, spoken digits, electrocardiograms,
and two-dimensional matehmatical expressions,
the identification of bubble chamber- and spark
chamber-events, and the recognition of fingerprint
patterns (Fu, 1978). In the syntactic approach,
each pattern is described in terms of its parts, i.e.,
subpatterns. Each subpattern can again be de-
scribed in terms of its parts. The simplest subpat-
terns are called the pattern primitives, and they
constitute the basic symbols (the set of terminals)
of the pattern language. The description of each
primitive can be either deterministic or statistical
and the recognition of primitives is often based on
the decision-theoretic approach. Each class of
patterns is now described by a set of sentences
consisting of the primitives, and it can be gener-
aled by a pattern grammar. With the above de-
scription, it might be said that in the syntactic
approach we often use the decision-theoretic ap-
proach for primitive recognition: however, the
emphasis will be on the use of syntactic rules to
describe the structure of patterns (the composi-
tions rules of the primitives and subpatierns).

Multispectral signals measured by Landsat over
Marion County (Indianapolis), Indiana were
analyzed using clustering analysis. Fourteen
clusters were found and the data from the urban
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Fig. 18-8. Photograph of Marion County imagery from digital display.

area within the scene were accordingly classified
using a Bayes classifier. The result of the Bayes
classifier (Figure 18-8) provides the basic pattern
primitives. Some manual preprocessing based on
these dependencies was used to improve the accu-
racy of the classification. A hierarchical graph
model for these relationships can be constructed
as shown in Figure 18-9. Obviously, there are spa-
tial dependencies among the various classes.

The hierarchical graph model shown in Figure
18-9, was constructed directly from observations
of the classified data and of aerial photographs of
the corresponding region. For simplicity. there
are some relationships between the entities in the
figure which have not been included: for example,
the fact that the SCENE is made up of the
EARTH and CLOUD PAIRs (i.e.. clouds and
shadows). The CLOUD PAIRs obscure the
EARTH, so a relation (2 for “"obscures™ could be
shown linking CLOUD PAIRs to EARTH. Also.
if a pair of entities are related, then their de-
scendants are also related. However. these rela-
tions are shown only at the level at which they
first occur. The form of this diagram is the same as
the derivation diagram for a web grammar.

This scene consists, at the highest level, of the
EARTH obscured by CLOUD PAIRs. Each
CLOUD PAIR consists of a CLOUD and a
SHADOW. related by a distance-and-angle R. A
CLOUD consists mostly of points classified as
clouds (blank) but also points classilied as con-
crete (X) and as suburban (S). This confusion
seems Lo arise because both concrete and clouds
are highly reflective. The suburban class is a

mixture of concrete and grass. A SHADOW tends
Lo consist mostly of points classified as shadows
(%) bul also points classified as commercial (C)
and inner city (I). The confusion here seems to
occur because the commercial and inner-city
classes consist largely of asphalt rooftops with
low reflectance. ) 4
The EARTH consists of URBAN and RURAL
areas. The RURAL area consists of open grassy
(0) and wooded (W) areas. The URBAN area
consists of the DOWNTOWN area, surrounded
by the INNER CITY area. with nearby SUBUR-
BAN areas and a system of HIGHWAYS. The
DOWNTOWN area is characterized by the fact it
contains the largest concentration of commercial
land use. The INNER CITY area surrounds the
DOWNTOWN and contains a high concentration
of inner city points. The SUBURBAN and
HIGHWAY areas are both near the DOWN-
TOWN and contain mostly suburban-classi-
fied points. They are distinguished by the
fact that HIGHWAYS occur in linear patterns.
This model is now used to guide the analysis of the
picture. In essence this analysis is an attempt to
verify the model and to make it more specific.
Each subentity of the picture and cach relation-
ship can now be elaborated and tested separately.

RECOGNITION OF CLOUDS
AND SHADOWS
As pointed out in the previous section. clouds
and shadows are characterized by the fact that a
cloud is a bright area which has associated with it
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CLOUD PAIR

Fig. 18-9. A hierarchical graph model of the scene in Fig. 18-8.

a congruent dark area (the shadow) at a certain
specific distance und orientation. It is found that
the bright areas are generally classified by the
pointwise classifier as clouds, but sometimes Lhey
are mistakenly classified as concrete or suburban.
The dark areas are usually classified as shadows
but sometimes as commercial or inner city.
Examples can be observed in Figure 18-8.

If the relationship R between clouds and
shadows is not known from some other source
such as sun angle and height of clouds, the
analysis process must determine R by some
type of cross-correlation operation. For one-
dimensional patterns, this process of finding sim-
ilar patterns that are un arbitrary number of sym-
bols away in the pattern can be modelled by a
conlext-sensitive string operation. This is almost
certainly also a context-sensitivie problem in a
web system for two-dimensional patterns such as
clouds and shadows, If the relation R is known
from other sources the processing is simplified.
Shape matching of a cloud and ils partner shadow
can be performed to confirm that they actually are
pairs. This process is similar to the one-
dimensional problem of being able to recognize all
strings of the form wi® (where wf is w reversed).
This is known to be a context-free operation in &
string system.

Finally. an even simpler type of recognition
would be to check a finite radius around a given
cloud point. If there are more cloud points, this
verifies the clussification of the original point.

Then an equivalent area at a distance given by the
relation R can be searched. This process is illus-
trated in Figure 18-10. Since the radius r of the
area searched is finite, the process is essentially
finite state.

In the case of the clouds and shadows the
simplest possible algorithm was tested first. The
picture is scanned left-to-right and top-to-bottom.
Whenever a shadow point is encountered, the
translater searches a finite window at a distance
and angle away given by relation R. If a cloud
point is found, the pair qualifies as a cloud-
shadow pair and neighboring *, X, and S points
within the window around the cloud are also in-
terpreted as cloud points. Likewise if the pattern
qualifies as a pair, neighboring C and 1 points

Fig. 18-10. Finite State Recognition of Clouds.
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within a similar window centered at the original
shadow point are classified as shadow points.

A grammar depicting this analysis is shown in
Figure 18-11. Rules (1)—(4) generate cloud and
shadow points that are not part of a pair. These
points will be regarded as noise, not as true clouds
and shadows. Rule (5) shows that a cloud-shadow
pair (CP) can occur anywhere in the picture (the
relation "a’’ represents “‘arbitrary’” relation-
ships). Rule (6) shows that a cloud-shadow pair
consists of a cloud and a shadow separated by the
relation R. Rules (7)—(10) show how a cloud can
occur. The corresponding rules for a shadow are
similar and are not shown. Rules (7) and (8) show
that any cloud must contain at least one * point.
Rule (9) shows that once one * point is detected,
then any point labelled *, X or S occurring within
the window (i.e., within the relation w) is classi-
fied as a cloud point. Rule (10) terminates the
search when the entire window has been scanned.

This grammar models the essential features of
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Fiy. 18-1/ The Cloud Shadow Grammar.
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the recognition algorithm and therefere is good for
illustration, but it is not complete in detail. Some
complexities are buried in the relation w which
models the window. A grammar which modelled
this window in detail would contain a sequence of
counting states that stimulate the scanning of the
window. This more detailed grammar would con-
tain a few more nonterminals and rules but would
not better illustrate the complexity of the recogni-
tion process. As long as the window is of finite
size, a regulur-linear grammar can be found.
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