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i INTRODUCT ION

In this paper we review a variety of neighborhood operators in
a way which emphasizes their common form. These operators are use-
ful for image segmentation tasks as well as for the construction of
primitives involved in structural image analysis. The common form
of the operators suggests the possibility of a large scale integra-
tion hardware implementation in the VLSI device technology.

Neighborhood operators can be classified according to type of
domain, type of neighborhood, and whether or not they are recursive.
The two types of domains consist of numeric or symbolic data. Oper-
ators having a numeric domain are usually defined in terms of arith-
metic operations such as addition, subtraction, computing minimums
or maximums, etc, Operators having a symbolic domain are defined in
terms of Boolean operations such as AND, OR, NOT, or table look-up
operations.

There are two basic neighborhoods a simple operator may use:
a 4-connected neighborhood and an 8-comnected neighborhood. As
illustrated in Figure 1, the 4-connected neighborhood about a pixel
consists of the pixel and its north, south, east, and west neigh-
bors. The 8-connected neighborhood about a pixel consists of all
the pixels in a 3x3 window whose center is the given pixel.

Recursive neighborhood operators are those which use the same
image memory for their input and output. In this way an output
from a previously used nearby neighborhood influences the output
from its current neighborhood. Non-recursive neighborhood opera-
tors are those which use independent image memory for input and
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Fig. 1. Illustration of the indexing of the pixels in 4-connected
and 8-connected neighborhood of Xg.

output. Previous outputs cannot influence current outputs. Rosen-
feld and Pfaltz (1966) call recursive operators sequential and non-
recursive operators parallel.

2. REGION GROWING OPERATOR

The region growing operator just described is non-recursive and
has a symbolic domain. It changes all pixels whose label is the
background label to the non-background label of its neighboring
pixels. It is based on a two—argument primitive function h which
is a projection operator whose output is either its first argument
or its second argument depending on their values. If the first ar—
gument is the special symbol "g" for background, then the output of
the function is its second argument. Otherwise, the output is the
first argument. Hence:

d if c =g
h(c,d) = (L

The region growing operator uses the primitive function h in
the following way. For the operator in the 4-connected mode, let
ag = xgs Define ap = h(ap-1,%pn), n = 1,...,4. Then the output
symbol y is defined by y = a4. For the operator in the 8-comnnected
mode, let ag = xg. Define ap = h(ap_1,x,), n=1,...,8. Then the
output symbol y is defined by y = ag. :

A more sophisticated region growing operator grows background
border pixels to the region label a majority of its neighbors have.
In the 8-connected mode such an operator sets a, = h(xo,xn), n =
1,...,8 and defines the output symbol y by y = ¢ where #{n|a, = c}
> #{n|an = ¢'} for all c'.
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3 NEAREST NEIGHBOR SETS

Given a symbolic image with background pixels labeled "g'" and
each connected set of non-background pixels labeled with a unique
label, it is possible to label each background pixel with the label
of its closest non-background neighboring pixel. Just iteratively
grow the non-background labels into the background labels using the
8-neighborhood if the max distance 1is desired, using the 4-neighbor-
hood if city block is desired, using the 4-neighborhood and 8&-neigh-
borhood alternately in the ratio of VY2 for Euclidean distances.

4, . REGION SHRINKING OPERATORS

The region shrinking operator is non-recursive and has a sym—
bolic data domain. It changes the label on all border pixels to
the background label. The region shrinking operator defined here
can change the connectivity of a region and can even entirely delete
a region upon repeated application. It is based on a two-argument
primitive function h which can recognize whether or not its argu-
ments are identical. If the arguments are the same, h outputs the
value of the argument. If the arguments differ, h outputs the

special symbol "g'" for background. Hence:
P g g

¢ if c¢c =d
h(c,d) = (2)
g if ¢ #d

The region shrinking operator uses the primitive function h in
the following way. For the operator in the 4—connected mode, let
ag = xg. Define aj = h(a,_1,%xy), 0 = 1,...,4. Then the output
symbol v is defined by y = a4. For the operator in the 8-connected
mode, let ap = Xq. Define a, = h(an_l,xn), n=1,...,8 Then the
output symbol y is defined by y = age

A more sophisticated region shrinking operator shrinks border
pixels only if they are connected to enough pixels of unlike regions.
In the &—connected mode it sets ap = h(xgp,xp), n = ly.4.58 and de-
fines the output symbel y by:

g if {#{nla_ =g} > k
y = " (3)
X, otherwise
As mentioned in the section on nearest neighbor sets, to ob-
tain a region shrinking (region growing) which is close to a Euclid-
ean distance region shrinking (growing), the 4-neighborhood and the
8§-neighborhood must be used alternately approximating as closely as
possible the ratio V2/1 (Rosenfeld and Pfaltz, 1968). A ratio of




14 HARALICK

4/3 can be obtained by the sequence 4:3 = <4,8,4,8,4,8,4> and a

ratio of 3/2 can be obtained by the sequence 3:2 = <4,8,4,8,4>. Al-
ternating these two sequences will give a ratio of 7/5 just smaller
than 2. Using one 4:3 sequence followed by two 3:2 sequences gives

a ratio of 10/7, just over v2. Alternating between <4:3,3:2,3:2> and
<4:3,3:2> gives a ratio of 17/12 which differs from v2 by less than
2.5x10_3, an approximation which should be good enough for most pur-
poses.

The choice of 4-neighborhood or 8-neighborhood for the current
iteration which best approximates the Euclidean distance can be de-
termined dynamically. Let N4 be the number of uses of the 4-neigh-
borhood so far and N8 be the number of the 8-neighborhood so far.
If |N4-2(N8+1)| < |N4+1-2N8|, then use the 8-neighborhood for the
current iteration; else use the 4-neighborhood,

D MARK INTERIOR BORDER PIXELS

The mark interior/border pixels operator is non-recursive and
has a symbolic data domain. It marks all interior pixels with the
label "i," standing for interior, and all border pixels with the
label "b," standing for border. It is based on two primitive func-
tions. One is a two-argument primitive function h very similar to
that used in the region shrinking operator. The other one is a
one-argument primitive function f. The two argument primitive
function h can recognize whether or not its arguments are identical.
For identical arguments it outputs the argument. For non-identical
arguments it outputs the special symbol "b" standing for border.
The one-argument primitive function f can recognize whether or not
its argument is the special symbol "b." If it is it outputs b.

If not it outputs the special symbol "i" standing for interior.
Hence:

c if ¢ =4d
hie,d)

(4)
b if c #4d

b if ¢ =b
)

(5)
i if ¢ 4 d

The mark interior/border pixel operator uses the primitive
function h in the following way. For the operator in the 4-con-
nected mode, let ap = xg. Define a, = Wil 1 58 Fu B ™ Tyuee e
Then the output symbol y is defined by y = f(as). For the operator
in the 8-connected mode, let ag = x3. Define a, = han_q4%q) 5
n=1,...,8. Then the output symbol y is defined by vy = f(ag).
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6. CONNECTIVITY NUMBER OPERATOR

The connectivity number operator is a non-recursive operator
which has a symbolic data domain., Its purpose is to classify the
way a pixel is connected to its like neighbors. As shown in Figure
2, there are six values of connectivity, 5 values for border pixels
and 1 value for interior pixels. The border pixels consist of iso-
lated pixels, edge pixels, connected pixels, branching pixels,
crossing pixels, and interior pixels. The connectivity number oper-—
ator associates with each pixel a symbol called the comnectivity
number of the pixel. The symbol, although a number, has no arith-
metic number properties. The number designates which of the six
values of connectivity a pixel has with its like neighbors.

ERERY # 48999 0
# 2
® 2
ERERBBES 1242222
hd # 2 2
# * 2 1
EREE 1211
sERs 1551
BERE = 1551 0
RERR 1111
Binary Image Labeling of the '#?
Pixels
0 Isolated
1 Edge
2 Connecting
Key: 3 Branching
y Crossing
5 Interior

Fig. 2. Illustration of a connectivity number labeling of a binary
image.

6.1 Yokoi Connectivity Number

The definition we give here of connectivity number is based on
a slight generalization of the definitions suggested by Yokodi,
Toriwaki, and Fukumura (1975). This is not the only definition of
connectivity number. Another definition given by Rutovitz (1966)
is based on the number of transitions from one symbol to another as
one travels around the 8-neighborhood of a pixel. The operator, as
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defined here, uses an 8-connected neighborhood and can be defined
for either 4-connectivity or 8-connectivity,

For 4-connectivity, a pixel is an interior pixel if its value
and that of each of its 4-connected neighbors is the same. In this
case its 4—connectivity takes the index value 5. Otherwise, the
4-connectivity of a pixel is given by the number of times a 4-con-
nected neighbor has the same value but the corresponding 3 pixel
corner neighborhood does not. These corner neighbors are illus-—
trated in Figure 3.

For 8-connectivity, a pixel is an interior pixel if its value
and that of each of its 8-connected neighbors is the same. Other-
wise the 8-connectivity of a pixel is given by the number of times
a 4-—connected neighbor has a different wvalue and at least one pixel
in the corresponding 3 pixel neighborhood corner has the same value.

The connectivity operator requires two primitive functions: a
function h which can determine whether a 3-pixel corner neighbor-
hood is connected in a particular way and a functiom f which ba-
sically counts the number of arguments which have a particular
value.

For 4-connectivity, the function h of four arguments is de-
fined by:

q if b=cand (d # b or e # b)
h(b,c,d,e) =¢r if b = c and (d = b and e = b) (6)

the function f of four arguments is defined by:

) 5 if al = a2 = a3 =a, =71
f(a s8,,8,,4 ) T (7)
178928519, ~ - )
n where n = #{ak|ak = g}, otherwise

The connectivity operator using 4-connectivity is then defined in
the feollowing way. Let

a; = h(X,X;,X,X,)
a, = h(X;sX,,%5,X,)
a, = h(XO’XB’X8’X4)
a, = h(X,X,, X, X))

Define the connectivity number v by y = f(al,az,a3,a4).
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Fig. 3. TIllustration of the corner neighborhood corresponding to

each of the East, North, West, and South neighbors of the center

pixel.

For 8-connectivity, the function h is slightly different.
is defined by

w
foz|
(o'W
—
[« 9
1

qif b # ¢ b or e = b)
h(b,c,d,e) =sr if b = c and (d = b and e = b)
g if b# c and (d # b and e # b)

Then, as before, the connectivity number y is defined by y =
f(al,az,aB,a4).

It

(8)
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6.2 Rutovitz Connectivity Number

The definition we give here of the Rutovitz connectivity num-
ber, sometimes called a crossing number, is based on a slight gen-
eralization of the definitions suggested by Rutovitz (1966). The
Rutovitz connectivity number simply counts the number of transi-
tions from symbols which are different than that of the center pixel
to symbols which are the same as that of the center pixel as one
travels around the 8-neighborhood of a pixel.

The Rutovitz connectivity number requires a three argument
primitive function h defined by

1 if (a =b and a # ¢) or (a# b and a = ¢c)
h(a,b,c) = (9
0 otherwise

Then set
a; = h(XO,Xl,X6)
Hy, h(XO,X6,X2)
| ay = h(Xg,X),X)
a, = h(XO,X7,X3)
ag = h(XO’XB’XS)
a6 = h(XO’XS’X4)
a7 = h(XO,X4,X5)
By = h(XO,XS,Xl)

The output value y is then given by

y= 2, a (10)

n=1 o

7. CONNECTED SHRINK OPERATOR

The connected shrink operator is a recursive operator having a
symbolic data domain, It is similar in certain respects to the con-
nectivity number operator and the region shrinking operator. In-
stead of labeling all border pixels with background symbol "g," the
connected shrink operator only labels those border pixels which can
be deleted from a connected region without disconnecting the region.
Since it is applied recursively, pixels which are interior during
one position of the scan may appear as border pixels at another
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position of the scan and eventually may be deleted by this operator.
After one complete scan of the image, the set of pixels which get
labeled as background is a strong function of the way in which the
image is scanned with the operator. For example, as illustrated in
Figure 4, a top-down left-right scan will delete all edge pixels
which are not right boundary edge pixels.

The theoretical basis of the connected shrink operator was ex-
plored by Rosenfeld and Pfaltz (1966), Rosenfeld (1970), and Stefa-
nelli and Rosenfeld (1971). Basically, a pixel's label is changed
to "g," for background, if upon deleting it from the region it be-
longs to, the region remains connected. The operator definition
given here is due to Yokoi, Toriwaki, and Fukumura (1975). The
operator uses an 8-connected neighborhood and can be defined for
deleting either 4-deletable or 8-deletable pixels. It requires two
primitive functions: a function h which can determine whether the
3-pixel corner of a neighborhood is connected and a function g which
basically counts the number of arguments having certain values.

In the 4—connectivity mode, the 4-argument primitive function
h is defined:

1 if b=cand (d # b or e # b)
h(b,c,d,e) = (11)
0 otherwise

In the 8-connectivity mode, the 4- argument primitive function
h is defined by:

1 if ¢ # band (d = b or e = b)
h{b,c,d,e) = (12)
0 otherwise

The 5-argument primitive function f is defined by:
s s 58] 5 g if exactly one of al,az,aB,a4 =1 15
19 2’ 3! 4!

x otherwise

Using the indexing convention of Tigure 3, the comnected shrink
operator is defined by letting:

a; = h(XD,Xl,X6,X2)
a, = h(XO’XZ’X7’X3)
a, = h(X;Xg,Xg,X,)
By = Bl¥ps X, X X0d

The output symbol y is defined by y = f(al,az,aB,aa,xG).
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Fig. 4. Illustration of the connected shrink operator applied in a
top~down left-right scan using 4-connectivity.

. The earliest discussion of connectivity in digital pictures
can be found in Rosenfeld (1971). Rutovitz (1966) preceded Rosen-—
feld in the use of crossing numbers but did not use connectivity in
his development. Related algorithms and discussion of connectivity
can be found in Levialdi (1972) who introduced a parallel or non-—
recursive shrinking algorithm for the purpose of counting the number
of components in a binary image. This iterative algorithm does not
employ the l-deletability of the Yokoi et al. method; it uses a
2x2 window, rather than a 3x3 window in the shrinking process, but
requires the detection of an isolated element during the iterative
process so that it may be counted before it is made to disappear by
the process. A three-dimensional extension to this non-recursive
algorithm can be found in Arcelli and Levialdi (1972). Lobregt,
Verbeek, and Groen (1980) discuss a recursive operator for three-
dimensional shrinking.

The first discussions of thinning appeared in Hilditch (1969),
and Deutsch (1969). These initial insights were later expanded by
Fraser (1970), Stefanelli and Rosenfeld (1971), Deutsch (1972),
Rosenfeld (1975), and Rosenfeld and Davis (1976). A brief compari-
son of thinning techniques can be found in Tamura (1978) who sug-
gests that a smoother 8-connected thinning results if 8-deletable
pixels are removed from thinning 4-connected curves, Tamura also
notes that the thinning of Rosenfeld and Davis (1976) is very sensi-
tive to contour noise when used in the 4-conmnected mode.
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8. PATR RELATIONSHIP OPERATOR

The pair relationship operator is a non-recursive and has a
symbolic data domain. It is a general operator which labels a pixel
on the basis of whether that pixel stands in the specified rela-
tionship with some neighborhood pixzel. An example of a pair rela-
tionship operator is one which relabels with a specified label all
border pixels which are next to an interior pixel and either can
relabel all other pixels with another specified label or leave their
labels alone. Tormally, a pair relationship operator marks a pixel
with the specified label "p" if the pixel has a specified label "1"
and neighbors enough pixels having specified label "m." All other
pixels it either marks with another specified label or leaves their
original labels unmodified.

The pair relationship operator employs two primitive functions.
The two-argument function h is able to recognize if its first argu-
ment has the value of its second argument. It is defined by:

1 if a=m
h{a,m) = (14)

0 otherwise

Tor the &-connected mode, the output value y is defined by:

4
qith(X,m)<90rX0#l
n=1 B
y = (159
4
p if iéi h(Xn,m) > 8 and XU =1,

where g can either be a specified output label or the label XS'

For the 8-comnected mode, the output y is defined by:

8
q if Egi h(Xn,m) < 8 or XO #1
y = (16)
8
p if ggi h(Xn,m) > 8 and XO =1

where q can either be a specified output or the label XS'
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9. THINNING OPERATOR

The thinning operator suggested here is defined as a composi-
tion of three operators: the mark interior/border operator, the
pair relationship operator, and the marked pixel connected shrink
operator. It works by marking all border pixels which are next to
interior pixels and then deleting (or shrinking) any marked pixel
which is deletable. The result of successively applying the thin-
ning operator on a symbolic image is that all regions are symmetri-
cally shrunk down until there are no interior pixels left. What
remains is their centerlines as shown in Figure 5. This operator
has the nice property that the centerline is connected in exactly
the same geometric and topologic way the original figure is connec-
ted. For other similar operators which thin without changing geome-
try or topology, see Davis and Rosenfeld (1975) or Stefanelli and
Rosenfeld (1971) or Arcelli and Sanniti di Baja (1978). To imple-—
ment the operator as the composition of three operators, the mark
interior/border operator examines the original symbolic image to
produce an interior/border image. The interior border image is ex-—
amined by the pair relationship operator which produces an image
whose pixels are marked if on the original image they were border
pixels and were next to interior pixels. The marked pixel image
and the original symbolic image constitute the input to the marked
pixel connected shrink operator which is exactly like the connected
shrink operator except it only shrinks pixels which are deletable
and which are marked.

RERERR

SERBEE BRER

I XX EEX X #* ¥

¥ BuBE # %

# L X1 & (2]

# ® # #

(a) (b)

input image thinned output

image

Fig. 5. 1Illustration of the result of one application of the
thinning operator using the 4-connectivity deletability
condition.
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10. DISTANCE TRANSFORMATION OPERATOR

The distance transformation operator has an implementation as
a recursive or as a non-recursive operator, It requires a binary
image whose border pixels are labeled with 0 and whose interior
pixels are labeled with "i." The purpose of the distance transforma-
tion operator is to produce a numeric image whose pixels are labeled
with the distance each of them is to its closest border pixel. Dis-
tance between two pixels can be defined by the length of the shortest
4-connected path or 8-comnected path between them.

As a non-recursive operator, the distance transform can be
achieved by successive application of the pair relationship opera-
tor. 1In the first application the pair relationship labels all
pixels whose label is '"i" and which are next to a pixel whose label
is "0" with the label "1." All other pixels keep their labels. In
the nth application, the pair relationship operator labels all pixels
whose label is "i" and which are next to a pixel whose label is
"-1" with the label "n." When no pixel has the label "i," an appli-
cation of the pair relationship operator changes no pixel values and
the resulting image is the distance transform image. This implemen-—
tation is related to the one given by Rosenfeld (1968).

Another way of implementing this operator non-recursively is by
the use of the primitive function defined by:
/ .

1 if a, =i, n=0,...,N

min {b|for some a_ < N, a #i, b=a +1}
n n n
h(ao,...,aN) =4 17)

if B = i and there exists n such that a, +# i

ay if ay # i
“

In the 8-connected mode the output y is defined by y =
h(x(Q,X]s.+.5%g). In the 4-connected mode, the output symbol y is
defined by y = h(xo,xl,xz,x3,x4). See Rosenfeld and Pfaltz (1966).

Another way (Rosenfeld and Pfaltz, 1966) of implementing the
distance transform involves the application of two recursive opera-
tors, the first operator being applied in a left-right top-bottom
scan and the second operator being applied in a right-left bottom-—
top scan. Both operators are based on similar primitive functions.
For the first operator the primitive function h is defined by:
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0 i1f ay = 0

h(al,...,aN) = (18)

i — b i
min {al, ,aN} 1 otherwise

In the 8-connected mode, the output symbol y of the first
operator is defined by:

y = h(x2,x7,x3,xo}.
In the 4-connected mode, the output symbol y is defined by:
¥ = h(xz,x?),xo)

For the second operator, the primitive function is simply the
minimum function. In the 8-connected mode, the output symbol y of
the second operator is defined by:

y = min{xo,xl,x4}
In the second 4-connected mode, the output symbol y is defined by:

y = min{XO’x1’X4}

11. CONTACT DISTANCES

Contact distances are related to the radius of fusion defined
by Rosenfeld and Pfaltz (1968). The radius of fusion for a pixel
is the smallest integer n such that after region growing n itera-
tions and region shrinking n + 1 iterations, the pixels retain a
non-background label. The radius of fusion concept has the diffi-
culty that using 4-neighborhoods; for example, it is possible for a
pair of pixels or a triangle of pixels never to fuse. Its radius
of fusion is, therefore, not defined. Defining it by some large
number in these cases is artificial.

Contact distance gives a measure of the distance to a pixel's
nearest labeled neighbor and it is always defined. To label every
pixel with the distance its associated nearest labeled pixel has
with its own closest nearest labeled pixel, begin with the original
image having some isolated pixels with unique labels and the remain-
der pixels having the background label. Exactly as done to deter-
mine the nearest neighbor sets, perform a region growing to label
every pixel with the label of its nearest labeled neighbor. One
iteration of a shrink operation on this image can label all border
pixels (pixels which have a neighbor with a different label) with
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the label 0. Use this image as the input to the distance transfor-
mation operator which labels every pixel with its distance to the
nearest border. Then mask this distance transformation image with
the original image, labeling all pixels with the background label
except those pixels having a non-background label on the original
image. Pixels having a non-background label on the original image
get labeled with the distances associated with their spatial posi-
tion on the distance transformation image. Finally, region grow the
masked image until there are no more pixels with a background label.
The resulting image has each pixel labeled with the distance its
associated nearest labeled neighbor pixel has with its own nearest
labeled pixel.

12, NON-MINIMA-MAXIMA OPERATOR

The non-minima-maxima operator is a non-recursive operator
that takes a numeric input image and produces a symbolic output
image in which each pixel is labeled with an index 0, 1, 2, or 3
indicating whether the pixel is a non-maximum, non-minimum, interior
to a connected set of equal-valued pixels, or part of a transition
region (a region having some neighboring pixels greater than and
othérs less than its own value). A pixel whose value is the mini-
mum of its neighborhood and having one neighboring pixel with a
value greater than itself may be a minimum or transition pixel but
it is certainly a non-maximum pixel. Figure 6 illustrates how a
pixel can be its neighborhood maximum, yet not be part of any rela-
tive maximum,

The non-minima-maxima operator is based on the primitive func-

tion min and max. For the 4-connected case, let ag = bO = XO and
define
a = min {an_l,XO} n=1,2,3,4 (19)
, = max {bn_l,XO} n=1,2,3,4
The output index 1 is defined by
0 (flat) if a, = XO = b4
L 1 (non-maximum) if 84 = XO < b4 .
2 (non-minimum) if 3, < XO = b4
3 (transition) if a, < XO < b4
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Fig. 6. Illustration of how a pixel can be its neighborhood maxi-

mum yet not be a part of any relative maximum.
hood, the central 3 is a maximum, yet the flat
is a transition region.

For the 8-connected case, let ag = bO =X
A = min {an_l,XO} e S SN
bn = max {bn—l’XO} n = —
The output index 1 is defined by

0 (flat) if a8 = XO = b8
- 1 (non-maximum) if ag = XO < b8

2 (non-minimum) if ag < XO = b8

25 ; & .
3 (transition) if ag XO b8

13. RELATIVE EXTREMA OPERATOR

The extrema operators consist of the rela
and relative minimum operator. They are recur
have a numeric data domain., They require an i
to be accessed but is not changed and an outpu
cessively modified. Initially, the output ima
input image. The operator must be successivel

In its 8-neighbor-
of 3's it belongs to

0 and define

(21)

(22)

tive maximum operator
sive operators which
nput image which needs
t image which is suc-
ge is a copy of the

y applied in a top-
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down left-right scan and then a bottom-up right-left scan until no
changes are made. Each pixel on the output image contains the value
of the highest extrema which can reach it by a monotonic path.
Pixels on the output image which have the same value as those on

the input image are the relative extrema pixels,

The way the relative maxima operator works is as follows.
Values are gathered from those pixels on the output image which cor-
responds to pixels on the input image which neighbor the given pixel
and which have input values greater than or equal to the input
values of the given pixel. The maximum of these gathered values
are propagated to the given output pixel, The relative minima oper-
ator works in an analogous fashion., Figure 7 illustrates the pixel
designations for the normal and reverse scans.

The relative maxima operator uses two primitive functions h
and max. The four argument function h selects the maximum of its
last two arguments if its second argument is greater than or equal
to its first argument. Otherwise, it selects the third argument.
Hence,

max {d,e} if ¢ > b
" h(b,c,d,e) = (23)
d if ¢ < b

The primitive function max selects the maximum of its arguments.
In the 8-connected mode, the relative maxima operator lets

By = l0 and an = h (XO,Xn an—l’ln)’ =1,2,3, and 4

The output value 1 is defined by 1 = a,.

In the 4-connected mode, the operator is

ag = 10 and a = h(XO’Xn’an—l’ln)’ n=1,2,3, and 4.

The output value 1 is defined by 1 = ay-

The relative minima operator is defined similar to the relative
maxima operator with the max function replaced by the min function
and all inequalities changed. Hence, for the relative minima opera-
tor, h is defined by:

min {d,e} if ¢ < b
h(b,c,d,e) = (24)
d if ¢ > b
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(b) Right-left bottom top scans

Fig. 7. Illustration of the pixel designations for the recursive
operators which require forward and reverse scan and a numeric
image, and which recursively produce an ocutput image.

In the 8-connected mode, the relative minima operator lets ap =
lg and ap = h(Xg,Xp,ap-1,15), n = 1,2,3, and 4,

The output value 1 is defined by 1 = a,-

In the 4-connected mode, the operator lets ag = 1lg and

an = h(XZ’X4’an—l’ln)’ n=1and 2,

An alternative kind of relative extrema operator can be de-
fined using the symbolic image created by the non minima-maxima
operator in combination with the original numeric image. Such an
operator is a recursive operator and is based on the fact that by
appropriate label propagation, all flat regions can be relabeled
as transition, minima, or maximum regions and that the pixels origi-
nally labeled as non-minima or non-maxima can be relabeled as trans-—
ition regions or true relative minima or maxima.

The initial output image is taken to be the image created by
the minima-maxima operator. Recursive propagation of the labels
from one pixel to its neighbor on the output image is performed
only if the two labels are not the same and the corresponding two
gray tones on the original numeric image are equal.
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Let any two neighboring pixels be x and vy having respective
labels Ly and Ly on the output image. As shown in Figure 8, we have
three cases to examine when Ly # Ly and x = y:

(a) Either Ly or Ly is a flat (0) and the other one is not
(1,2,3). In this case, we propagate the non-zero label into the
zero label, thereby eliminating pixels marked as flats.

(b) Either Ly is a minimum (1) and L. is a maximum (2) or
vice versa. In this case, since a region constant in tonme cannot
simultaneously be a minimum and a maximum, mark both pixels as
transitions (3).

(c¢) Either Ly or Ly is a transition (3). 1In this case, since
a region which is constant in tone and has one pixel marked as
transition must be a transition region, mark the non-transition re-
gion pixel as a transition region, thereby propagating the transi-
tion label.

This propagation rule requires one 4—argument primitive func-—
tion h defined by:

-
aif x#y
3 (transition) if x = y and
(a=13) or (b =3) or
(a=1andb=20) or
(a=0and b =1)
h(x,y,a,b) =€2 (flat) if x = y and (a = 2 and b = 2) (25)
1 (non-minima) if x = y and
(a=1and b= 2) or
(a=2and b= 1)
or (a=1and b= 1)
0 (non-maxima) if x = y and
(a=0and b =0) or
(a=0and b =2)

or (a= 2 and b = 0)

Values of pixels in the original numeric input image are de-
noted by Xp. Values of pixels in the non-minima-maxima labeled
image are denoted by 1,. For the operator using 4-connectedness
and the standard 3x3 neighborhood designations, let

and define

a = h(XO,Xn,an_l,ln), n=1,2,3, and 4.
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Fig. 8. Illustration of the propagation table for the recursive
relative extrema operator. The table gives the propagation label C
for any pair, a,b of labels of neighboring pixels.

The output 1 is a,-

Tor the operator using 8-connectedness, let

and define

a = h(X.,X ), n=1,...,8.
n 0

n’an—l’ln

The output 1 is ag.
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Propagation can also be achieved by using the forward and re-
verse scan technique. 1In this case, the left-right top-bottom scan
is alternated with the right-left bottom-top scan. Using the pixel
designations in Figure 3 for the operator using 4 -connectedness,
let

and define

a = h(XO,X 1), n=1,2,3, and 4,

a
n’ n-1? n)

Thé output 1 is aa.

14. CONNECTED COMPONENTS OPERATOR

The connected components operator is recursive and has a sym-
bolic data domain. 1Its purpose is to assign with a unique label
all pixels belonging to the same maximally connected component,
There are a variety of ways of determining connected components in-—
cluding some two-pass algorithms which may require memory for large
internal tables. Discussion of such connected component operators
can be found in Rosenfeld and Pfaltz (1966). The connected com-
ponents operator described here requires only a small amount of
memory and must repeatedly scan the image until it makes no changes.
It also differs from other neighborhood operators in that it re-
quires an internal state which must be remembered and which can
change or stay the same after each application of the operator. It
also is an operator that can be applied by alternating between top-
down, left-right scans (forward scans) and bottom-up, right-left
scans (reverse scans). Figure 7 illustrates the positioning of the
pixels for the 2x3 windows in each of these types of scans.

We will assume that the symbolic input image has each pixel
labeled with a label from a set L. Corresponding to each label m
6 L is a set S of possible labels for the individual connected
components of all regions whose pixels are labeled "1." For nota-
tional convenience we will write Sp(k) to denote the kth label from
the set Sp. For each label m, the connected components operator
must assign a unique label to all maximally connected sets whose
pixels originally had the label m.

We assume that for each label m 6 L S, = ¢, that Sp ns, =49
when m # n, and that each of the Sy sets is linearly ordered. The
memory required by the operator is a function f which for each
m 6 L specifies a label from the set S,. The specified label from
Sm is the next label which can be used to label a connected region
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of type "m," that is, a connected region whose pixels have the in-
put label "m."

The connected components operator works by propagating labels,
Let d be the label in a pixel and let c be the label in one of its
neighboring pixels. Under certain conditions the label ¢ replaces
the label d. There are five cases governing this process. The case
and action are listed in Figure 9. Notice that for propagation con-
dition (2), the next not yet used label from 54 must be generated.
This requires that the operator have access to a function f(m) which
is an index to the next not yet used label from Sp.

The operator is based on a 2-argument primitive function h
which propagates labels in one of two ways as indicated by the case
analysis. If a pixel and its neighbor have a label from the same
set Sp, then h propagates the minimum of the labels, If a pixel
has not been labeled, then h propagates a label if appropriate,
from a neighboring pixel 1. If the neighboring pixel also has not
been labeled it starts a new label. The function h is defined by:

c ifd 6L, c6S5,
next unused label for region type d
ifdeL, cés,

h(c,d) = (26)
d if d 6 S for somem € L and ¢ 6 S
; m m
min{c,d}
if d Gms and c GmS for some m € L

The operator works the following way. If for some m, X €& Sp»
then set ag = X3 and leave f(m) unchanged. If X3 € L, set ag =
Sx(m(Xo)) and m(Xg), set m(Xg) + 1.

For 4-connectedness, define a, = h(Xp-1,ap-1), n = 1 and 2.
The output label is given by aj.

For 8-connectedness define a, = B (X 5801 = 15243, and. &,
The output label is given by ay.
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Fig. 9. The care analysis of what label gets propagated into pixel
d by the connected components operator.

15. REACHABILITY OPERATOR

The reachability operators consist of the descending reach-
ability operator and the ascending reachability operator. The oper-
ators are recursive and require a numeric input and a symbolic image
used for both input and output. Initially the symbolic image has
all relative extrema pixels marked with unique labels (relative
maxima for the descending reachability case and relative minima for
the ascending reachability case). The unique labeling of extrema
can be obtained by the connected components operator operating on
the relative extrema image. Pixels which are not relative extrema
must be labeled with the background symbol "g." The reachability
operator, like the connected component operator, must be iteratively
and alternately applied in a top-down, left-right scan followed by
a bottom-up, right-left scan until no change is produced. The re-
sulting output image has each pixel labeled with the unique label
of the relative extrema region that can reach it by a monotonic path
if it can only be reached by one extrema, If more than one extrema
can reach it by a monotonic path, then the pixel is labeled '"c'" for
common region,

The operator works by successively propagating labels from all
neighboring pixels which can reach the given pixel by monotonic
paths. In case of conflicts, the label "c" is propagated. Figure
7 illustrates the pixel designations for the reachability operator.
To do this, the descending reachability operator employs the four-
argument primitive function h. Its first two arguments are labels
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from the output image and its last two arguments are pixel values
from the input image. It is defined by:

a if (b =g or a=">) and x <y
bif a=g and x < ¥y
h(a,b,x,y) = (27)
cif a# gand b# gand a # b and x < ¥
aif x >y

The operator uses the primitive function h in the 8-connected mode
by letting ag = lg and defining ay = h(ay_1, 1,,Xg,¥X,). n = 1,2,3,
and 4. The output label 1 is defined by 1 = ay.

The 4-connected mode sets ag = lg and defines ay = h{ap-1,1p,
X0,%p), n = 1 and 2. The output label 1 is defined by 1 = aj.

The ascending reachability operator is defined just as the de-
scending reachability operator except that the inequalities are
changed. Hence, for the ascending reachability operator, the primi-
tive function h is defined by:

aif (b =g or a=>b) and x > ¥y
bif a =g and x > y
h(a,b,x,y) = (28)
cif a4 gand b# gand a# b and x > ¥y
a if x < y

16. CONCLUSION

We have reviewed a variety of neighborhood operators from the
point of view of the basic primitive functions whose composition
generates the required operator. Many of the primitive functions
can be implemented as table-lookup functions. The remainder can be
implemented with only a small amount of sequential calculation
using the standard logical, comparison, or arithmetic functions on
a VLSI processor. This suggests the timely appropriateness of con-
gsidering VLSI implementations of neighborhood operators for image
processing.
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