MULTI- COMPUTER PARALLEL ARCHITECTURES FOR SOLVING
COMBINATORIAL PROBLEMS 1

W. M. MbCormack2

F. Gail Gray
Joseph G. Tront
Robert M. Haralick

Glenn S. Fowler

Department of Computer Science
and
Department of Electrical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

I. INTRODUCTION

Combinatorial problem solving underlies numerous impor-
tant problems in areas such as operations research, non-par-
ametric statistics, graph theory, computer science, and
artificial intelligence. Examples of specific combinatorial
problems include, but are not limited to, various resource
allocation problems, the traveling salesman problem, the
relation homomorphism problem, the graph clique problem, the
graph vertex cover problem, the graph independent set prob-
lem, the consistent labeling problem, and propositional
logic problems [Hillier & Lieberman, 1979; Knuth, 1973;
Kung, 1980; Lee, 1980]. These problems have the common fea-
ture that all known algorithms to solve them take, 1in the
worst case, exponential time as problem size increases.

1This work was supported in part by the Office of Naval
Research under Grant N00014-80-C-0689.

2The order of the authors was randomly chosen.

ILTICOMPUTERS AND IMAGE PROCESSING Copyright © 1982 by Academic Press, Inc.
431 All tights of reproduction in any form reserved.

QORITHMS AND PROGRAMS
ISBN 0-12-564480-9

432 W. M. McCormack et al,

They belong to the problem class NP.

This paper describes a technique for the design of par-
allel computer architectures which most efficiently, or for
the least cost, or for the smallest time to completion, exe-
cute parallel algorithms for solving these problems. The
techniques we examine take into account the interaction
between each Specific algorithm and the parallel computer
architecture. The class of architectures we consider are
those which have inherent distributed control and whose con-
nection structure is regular,

Combinatorial problems require solutions which do
searching. In a very natural way, the algorithm for search-
ing keeps track of what part of the search space has been
examined so far and what part of the search is yet to be
examined. The mechanism which represents the division bet-
ween that which has been searched so far and that which is
yet to be searched can also be used to partition the space
which is yet to be searched into two or more mutually exclu-
sive pieces. This is precisely the mechanism which can let
a combinatorial problem be solved 1in an asynchronous paral-
lel computer.

To help in describing the parallel combinatorial search,
We associate with the Space yet to be searched the term "the
current problem". The representation mechanism which can
represent a partition of the space yet to be searched can,
therefore, divide the current problem into mutually exclu-
sive subproblems.

Now suppose that one processor in a parallel computer is
given a combinatorial problem, In order to get other pro-
cessors involved, the processor divides the problem into
mutually exclusive subproblems and gives one subproblem to
each of the neighboring processors, keeping one subproblem
itself. At any moment in time each of the processors in the
parallel computer network may be busy solving a subproblem
or may be idle after having finished the subproblem on which
it was working. At suitable occasions in the processing, a
busy processor may notice that one of its neighbors is idle.
On such an occasion the busy processor divides its current
problem into two subproblems, hands one off to the idle

Multi-Computer Parallel Architectures for Solving Combinatorial Problems 433

neighbor and keeps one itself.
The key points of this description are
(1) the capability of problem division

(2) the ability of every processor to solve the entire
problem alone, if it had to

(3) the capability of a busy processor to transfer a
subproblem to an idle neighbor.

The parallel computer architecture research issue is:
to determine that way of problem subdivision which maximizes
computation efficiency for each way of arranging a given
number of processors and their bus communication links.

To precisely define this research issue requires

(1) that we have a systematic parametric way of des-
cribing processor/bus arrangements and

(2) that we have alternative problem subdivision tech-
niques.

For the purpose of describing processor/bus arrangements, we
use a labeled bipartite graph. The nodes are either labeled
as being a processor or as being a bus. A 1link between a
pair of nodes means that the processor node is connected to
the bus node. We do not consider all possible such graphs
but restrict our attention to regular ones. Regular means
that the 1local neighborhood of any processor node 1is the
same as that of any other processor node and the local
neighborhood of any bus node 1is the same as that of any
other bus node. As a consequence, each processor is con-
nected to the same number of buses and each bus is connected
to the same number of processors.

It may not be readily apparent why different problem
subdivision techniques would influence computational effici-
ency. After all, the entire space needs to be searched one
way or another. However, subdivision has an integral rela-
tion to efficiency. Processors which are not busy problem
solving can be either idle or transferring subproblems. Too
much time spent transferring subproblems will negatively
affect efficiency. Excessive transferring of subproblems
can occur because the subproblems chosen for transfer are

too small. A good problem subdivision mechanism transfers
large enough problems to minimize the number of times

434 W. M. McCormack et al.

subproblems are transferred, but transfers enough subprob-
lems to minimize the number of idle processors. The key
variable of problem subdivision is, therefore, the expected
number of operations it takes to solve the subproblem.
This, of course, is a direct function of the size of the
search space for the subproblem, the basic search algorithm,
and the type of combinatorial problem being solved.

This paper addresses the interaction between the pro=-
cessor/bus graph and problem size subdivision transfer
mechanism. Once the relationships are determined and
expressed mathematically, the parallel computer architecture
design problem becomes 1less of an art and more of a mathe-
matical optimization. In addition, this paper examines the
effects of interconnection graph regularity on the physical
implementation of the system. The problem of finding a
mathematical basis for a system partitioning which produces
a cost-effective VLSI implementation is examined.

Our ultimate goal is to allow computer engineers to
begin with the combinatorial problems of interest and deter-
mine via a mathematical optimization, the optimal parallel
computer architecture to solve the problems assuming that
the associated combinatorial algorithms, number of proces-
sors, number of buses, and costs are given.

II. PROCESSOR-BUS MODEL

In this section we discuss a processor-bus model which
can be wused to model all known regular parallel architec-
tures [Anderson & Jensen, 1975; Benes, 1964 ;Batcher, 1968;
Despain & Patterson, 1979; Finkel & Solomon, 1980; Goke &
Gipouski, 1974; Rogerson, 1979; Siegel & McMillan & Mueller,
1979; Stone, 1971; Sullivan and Bashkow, 1977; Thompson,
1978; Wulf & Bell, 1972]. The model does not currently
include the general interconnection and shuffle type net-
works.

The graphical basis for the model is a connected regular
bipartite graph. A graph is bipartite if its nodes can be
partitioned into two disjoint subsets in such a way that all
edges connect a node in one subset with a node in the second
subset. A graph is connected if there is a path between
every pair of nodes in the graph. A bipartite graph is
regular if every node in the first set has the same degree
and every node in the second set has the same degree, One
subset of nodes represents the processor nodes and one

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

subset represents the communication nodes in the parallel
processing system. Every edge in the graph then connects a
processing node to a communication node.

At this time we are not certain exactly how to compare
the costs of various parallel architectures. Certainly the
number of processors (n_) and the number of communication
nodes (n_) will affect tRe costs. It is generally believed
that desfgn and manufacturing costs can be reduced by build-
ing the global architecture using a systematic interconnec-
tion of identical modules. If the modules must be identi-
cal, then each module must have the same number of
neighboring modules. In graphical terms, this means that
the bipartite graph must be regular, Let d_ be the degree
of the processor nodes. This parameter defPnes the number
of buses which the processor may directly access. Let d_be
the degree of the communication nodes (buses). This parame-
ter defines the number of processors that a communication
node must service. If d >2, then either the communication
nodes or the attached p?ocessors must possess arbitration
logic to determine which processors have current access to
the bus.

Any regular bipartite graph can be used to design a par-
allel computer structure by assigning the nodes in one set
to be processors and the nodes in the other set to be commu-
nication links (or buses). Notice that theoretically either
set of the bipartite graph could be the processor set.
Therefore, each unlabeled bipartite graph would represent
two distinetly different computer architectures depending
upon which set is considered to be the processors and which
set 1s considered to be the buses,

In systems for which dc=2’ (i.e., each communiations
link is reserved for transferring information between two
specific processors), it is customary to model the system as
a simple graph in which each processor is represented by a
node and each communications link by an edge. For example,
the Boolean n-cube (shown in Fig. 1) has been studied by
many investigators.

Our model would require that each edge in Fig. 1 be
replaced by a communication node and two edges as shown in
Fig. 2. Figure 2 clearly conveys the alternative node
assignments. We may make the dark nodes processors and the
light nodes buses, producing the Boolean 3-cube or we may
make the 1light nodes processors and the dark nodes buses

[Armstrong & Gray, 19801]. In this case, each processor has
access to two buses and each bus services three processors.

435

436 W. M. McCormack et al.

This second architecture cannot be adequately represented by
a graph in which each node is a processor and each edge a
communiations link. If one considers the graph constructed
by replacing every edge of the standard drawing of the Boo-
lean 3-cube, by a vertex and connecting two vertices if and
only if their corresponding edges were connected to a common
vertex in the original graph, then the fact that communica-
tion among the three processors is restricted to a common
bus is obscured by the resulting triangle structure which
implies three independent communication paths.

Figure 1
Common Representation
of Boolean 3-cube
processor Array

Figure 2
Bi-partite Graph
Representation of
Boolean 3-cube
Processor Array

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

The notation B(n_, d , n, d) will be used to denote a
regular bipartite gPaphp which crepresents an architecture
with n processors (each connected to d communication
nodes) and n_ communication nodes (each servgcing d proces-
sors). The” Boolean 3-cube will then be represented by a
graph B(8,3,12,2). In general, the_ Boolean n-cube will be
represented by a graph B(2n, n, n2n-1, 2). Reversing the
assignment of nodes to processors and buses produces the
B(12, 2, 8, 3) graph of Fig. 2. This graph is called the

p-cube by some investigators.

Other common architectures also have representations aS
bipartite graphs. For example, a planar array of size x
congected in the Von Neumann manner is modeled as 2a
B(x“,4,2x°,2) graph, the Moore connection results in a B(x §
8, 4x~, 2) graph, the common bus architecture (or star) with
x processors is a B(x,1,1,x) graph, and a ring architecture
with x processors is a B(x,2,x,2) graph. All existing
architectures with regular local neighborhood interconnec-
tions can be modeled as a E(np,dp,n ,dc).

In addition to modeling existing architectures, we want
to be able to generate new architectures. For example, all
hardware architectures B(n_ , d , n_,d) with the same four
parameters will probably hBve Bimil&r Sosts. Planarity con-
siderations will have an effect of course, but we are not
certain exactly how to quantify that cost. Neglecting pla-
narity effects for now, we assume that two graphs with the
same parameters will have similar costs. Several interest-
ing questions arise immediately. How many bipartite graphs
are there with a given set of parameters and how do we gen-
erate them? Assuming we can generate all or at least many
graphs with a given set of parameters, are there other graph
properties that will relate to performance evaluation?

c

We are currently doing simulations on similar graphs to
determine whether any differences in performance occur and
what the magnitude of these differences might be. The
results to date are described in section IV. We plan to use
simulation data to look for graphical properties that are
useful in the prediction of performance. Certainly, graphs
that are isomorphic must have similar cost and performance;
however determining whether two graphs are isomorphic cannot
be done in polynomial time. This problem is known to be
equivalent to the problem of computing the automorphism par-
tition for a given graph. We have been trying to develop
efficient calculations for the automorphism partition of a

graph because this partition has other performance implica-
tions.

437

438 W. M. McCormack et al.

For a given regular bipartite graph, all vertices will
not necessarily be equivalent relative to algorithm perfor-
mance. In particular, nodes that are more central (have
more near neighbors) will perform differently than nodes
that are more remote (have fewer near neighbors). The auto-
morphism partition classifies vertices into similar perform-
ing sets. We have some simulation results that indicate the
performance differences.

Another natural question asks whether a coarser parti-
tion than the automorphism partition might be used to clas-
sify performance. If so, this partition could be easier to
compute. We have been experimenting with several such clas-
sification schemes based on distance properties. Regular
bipartite graphs are said to be distance-1 regular since all
vertices have the same number of similar vertices distance-1
away. If in a distance-1 regular graph, vertices also have
the same number of vertices distance-2 away, the graph is
distance-2 regular. Similarly, a graph is distance-K regu-
lar if it is distance(K-1) regular and all vertices have the
same number of vertices distance -K away. We suspect that
the question of how to optimally overlay masks to mass pro-
duce large chips is related to distance-K regularity as
well. We are beginning to perform simulation experiments to
collect data in an attempt to relate system performance to
distance properties.

III. TREE SEARCHING IN MULTIPROCESSOR SYSTEMS

A. Introduction to Tree Searching

In order to make effective use of a multiple asynchro-
nous processor system for any problem, a major concern is
how to distribute the work among the processors with a mini-
mum of interprocessor communication. Kung [Kung,1980]
defines module granularity as the maximal amount of computa=-
tional time a module can process without having to communi-
cate. Large module granularity is better because it reduces
the contention for the buses and reduces the amount of time
a processor 1is either idle or sending or receiving work.
Also, large granularity is usually better because of the
typically fixed overhead associated with the synchronization
of the multiple processors.

In the combinatorial tree search problems we are consid-

ering, module granularity as defined by Kung is not as mean-
ingful because each processor could in fact solve the entire

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

problem by itself without communicating to anybody. For our
problem a more appropriate definition of module granularity
might be the expected amount of processing time or the mini-
num amount of processing time before a processor splits its
problem into two subproblems, one of which is given to an
idle neighboring processor and one of which is kept itself.

When a processor has finished searching that portion of
the tree required to solve its subproblem, it must wait for
new work to be transferred from another processor. The
amount of time a processor must wait before transmission
begins and until transmission is completed is time wasted in
the parallel environment that would not be lost in a single
processor system. Thus, one must expect improvement in the
time to completion to solve a problem in the multiple pro-
cessor environment to be less than proportional to the num-
ber of processors. The factors that can affect the perfor-
mance by either reducing the average transmission time or
reducing the required number of transmissions include choice
of algorithm, choice of search strategy, and choice of sub-
problems that busy processors transfer to idle processors.

B. Choice of Algorithm

In the single processor case, various algorithms have
been proposed and studied to efficiently solve problems
requiring tree searches. These usually involve investing an
additional amount of computation at one node in the tree in
order to prune the tree early and avoid needless backtrack-
ing. In work on constraint satisfaction [Haralicck &
Elliott, 1980], the forward checking pruning algorithm was
found to perform the best of the six tested and backtracking
the worst.

For the same reasons, it seems clear that pruning the
tree early should be carried over to a multiple processor
system to reduce the amount of computation necessary to
solve the problem. There are other reasons as well. Fai-
lure to prune the tree early may later result in transfers
to idle processors of problems which will be very quickly
completed. Since a transfer ties up, to some extent, both
the sending and receiving processor, time is lost doing the
communication and the processor receiving the problem would
shortly become idle.

We would, therefore, expect that in the multiple proces-
sor environment the forward checking pruning algorithm for
constraint satisfaction would work much better than

439

W. M. McCormack et al.

backtracking. However, in the uniprocessor environment Har-
alick and Elliott also showed that too much look ahead com-
putation at a node in the search could actually increase the
problem completion time. It is also not clear why the best
algorithm for the single processor case would be the best
for the multiple processor system. Doing additional test-
ing, as some of the other algorithms do, may be better in
the multiple processor case because it may eliminate more
nodes in the tree earlier and result in less communication
overhead and delay. Thus, it may be best to do as much
testing early in order to eliminate future transfers in con-
trast to the single processor case where only some extra
testing has been found to be worthwhile.

A second consideration in the selection of a search
algorithm is the amount of information that must be trans-
ferred to an idle processor to specify a subproblem and any
associated lookahead information already obtained pertinent
to the subproblem. In most cases this is proportional (or
inversely proportional) to the complexity of the problem
remaining to be solved. Thus the transmission time will be
a function of the problem complexity. Backtracking requires
very little information to be passed while, for forward
checking, a table of labels yet to be eliminated must be

sent.

C. Search Strategy

Search strategy is a second factor of importance to the
multiple processor environment. When a problem involves
finding all solutions, like the consistent labeling problemn,
the entire tree must be searched. Thus, 1in a uniprocessor
system the particular order in which the search is con-
ducted, i.e., depth first or breadth first, has no effect.
In a multiple processor system, however, this is a critical
factor because it directly affects the complexity of the
problems remaining in the tree to be solved and available to
be sent to idle processors from busy processors.

A depth first search will leave high complexity problems
to be solved later (that is, problems near the root of the
tree). This would seem to be desirable in the multiple pro-
cessor environment because passing such a problem to an idle
processor would increase the length of time the processor
could work before going idle and thereby reduce the need for
communication. On the other hand, a breadth first search
would tend to produce ' problems of approximately the same
size. Since the problem is not completed until all

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

processors are finished, the breadth first strategy might be
preferable if it results in all processors finishing at
about the same time. It might be that the best approach
could be some combination of the two; for example, one might
follow a depth first strategy for a certain number of lev-
els, then go breadth first to a certain depth, and then con-
tinue depth first again.

D. Problem Passing Strategy

A factor closely related to the search strategy occurs
when a processor has a number of problems of various com-

plexities to send to an idle processor. The optimization
question is how many should be sent and of what complex-
ity(ies). Further complicating this is a situation where

the processor is aware of more than one idle processor. In
such a situation, how should the available work be divided
and still leave a significant amount for the sending proces-

sor?

Further complicating this question is the fact that the
overhead involved in synchronizing the various processors
and transmitting problems to idle ones will eventually reach
a point where it will be more than the amount of work left
be done. An analogous situation exists in sorting; fast
versions of QUICKSORT eventually resort to a simple sort
when the amount remaining to be sorted is small [Knuth,

19731.

In this case, it would appear that a point will eventu-
ally be reached where it is more effective for a processor
to simply complete the problem itself rather than transmit
parts of it to others. Determination of this point will
depend on the depth in the tree of the problem to be solved
and the amount of information that must be passed (which
depends on the lookahead algorithm being used).

E. Processor Intercommunication

One decision that has to be made is how the need to
transfer work is recognized. Specifically, does a processor
which has no further work interrupt a busy processor, or
does a processor with extra work poll its neighboring pro-
cessors to see if they are idle.

The advantage of interrupts is that as soon as a proces-
sor needs work, it can notify another processor instead of

441

442

waiting to be polled. This assumes, however, that a proces-
sor would service the interrupt immediately instead of wait-
ing until it had finished its current work. Furthermore,
when a processor goes idle, it cannot know which of its
neighbors to interrupt. This is related to handling multi-
ple servers with a single queue which performs better than
using one queue per server. Using polling, an idle proces-
sor can be sent work by any available neighboring processor
instead of being forced to choose and interrupt one. In
addition, although an interrupted processor may be working
or transmitting (a logical and necessary condition) when
interrupted, it may not have a problem to pass when it is
time to pass work to the interrupting processor. In fact,
the interrupted processor could itself go idle. For these
reasons the simulation we discuss in section IV uses poll-
ing. Whenever a processor completes a node in the tree, and
as long as it has work it could transfer, it checks each
neighboring CPU and the connecting bus. If both are idle, a
transfer is made;

IV. SIMULATION EXPERIMENTS

In order to better understand the behavior of the
tightly coupled asynchronous parallel computer, we have
conducted simulation experiments using the consistent
labeling constraint satisfaction problem. The program
SIMULA [Birtwistle, Myhrhaug & Nygaard, 1973] was used to
perform these experiments. Let U and L_be finite sets with
the same cardinality. Let R€ (U x L) with #R/#(UxL)“ =
0.65. We use the simulated parallel computer to find all
functions f: U =L satisfying that for all (u,v) € UxU,
(u,f(u),v, £(v))eR.

The goals of the experiments were to investigate the
effect of problem size (the cardinality of U and L), the
algorithm, the problem passing strategy, and the number of
processors. In the set of experiments we describe here,
each processor is connected via buses to six other proces-
sors in a regular manner, Specifically processor i is con-
nected to processor i-1, i+1, i-7, i+7, i-11, and processor
i+11, all taken modulo the number of processors.

In the above regular architecture we varied the number
of processors and measured for each execution of the same
problem the average number of processors working. (where
working means working on the problem and not sending or
receiving problems or being idle). We compared the forward

W. M. McCormack et al.

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

checking and backtracking algorithms for various problem
passing and tree searching strategies.

Our results indicate the following using the forward
checking algorithm with #U=#L. As we increased problem com=-
plexity, by increasing the cardinality of U and L, and while
keeping the number of processors constant, the average num-
ber of working processors got closer and closer to the num-
ber of processors. This indicated that for small problem
sizes the problem at a depth of three or four in the tree
soon became so easy to solve that it was not passed to pro-
cessors far away from the processor having the original
problem. A greater processor interconnection could solve
this but at a greater parallel computer cost.

In [Haralick & Elliott, 1980], the superiority of for-
ward checking to backtracking is clearly shown with respect
to the number of checks needed to solve a problem. This
superiority grows as the size of the problem increases. For
example, when the problem size is #U=#L=12, then backtrack-
ing requires 7.5 times as many checks, but by size 24 it is
over 14 times as many. Table I shows a comparison of these
two algorithms for a small problem (size =12) and 25 proces-
sors. Because forward checking requires fewer tests, the
time the problem was completed is, as expected, much less.
The magnitude of the difference 1is reduced because, on the
average, more processors are working with backtracking. The
problem is too small for forward checking to keep all pro-
cessors busy.

Also of significance is the disparity in the number of
problems transferred. Since forward checking, by looking
ahead, eliminates impossible solutions earlier, there are
fewer problems to be transferred. This reduces the depen-
dency of the problem on the processor interconnection scheme
and reduces overhead associated with transferring work.
Similar results were obtained in testing the two algorithms
on other small problems. Tests were limited because the
backtracking experiments took considerably longer to run;
for example, in the case above, backtracking took over
thirty times longer.

443

W. M. McCormack e al.

TABLE I. Comparison of the backtracking algorithm to the
forward checking algorithm with 25 processors
and #U=#L=12

Time Done #Problem Sent Ave. # working

Backtracking 140298 1666 23.998
Forward checking 37710 252 19.058

In addition to the number of processors or algorithm
used, we tested other factors to study their effect. For
example, when a processor has a choice of subproblems to
transfer to another, intuitively the problem requiring the
most work to finish should be transferred because the second
processor will be longer which reduces overall communication
time. In one test to confirm this, the subproblem requiring
the least work instead of the most was always transferred.
It took 70% longer to complete the problem and there was a
250% increase in the number of subproblems transferred.
There was a corresponding drop in the average number of
working processors.

Given. that it is better to pass more complex problems,
we conducted tests to compare doing the tree search breadth
first or depth first. The results clearly show the advan-
tage of a depth first search. The average completion time
was typically at least 25% less and one fourth as many prob-
lems were transferred. Usually the differences were even
greater. This improvement is achieved because depth first
leaves larger problems available to transfer; thus proces-
sors sent work can work longer before becoming idle again.

A final issue in problem passing is whether or not very
low complexity subproblems should be transferred at all.
Table II shows the effect of not passing to other processors
problems at or below a particular depth in the tree, using
the forward checking algorithm.

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

TABLE II. The Effect of Not Sending Problems below depth d.

Expected # of

consisdency
checks to com-
Depth Time #Prob. Ave. Ave. plete problem
d done sent working sleeping at this depth
3 144568 121 34.7 64.1 166.0
4 86059 671 56.7 32.3 81.7
5 85652 1730 56.3 16.5 39.6
6 89213 2238 53.3 13.8 22.2
7 93269 2426 51.4 15.0 15.0

There are 100 processors and #U=#L=16 with the forward
checking algorithm, depth first search, and always passing
the biggest problem.

For comparison the expected number of tests necessary to
complete a problem at that depth, based on [Haralick &
Elliott,1980] is included. The results clearly show that
restricting problem passing for small problems can improve
the performance of the system. Of course, too great a res-
triction will degrade performance because not all processors
will be busy. It is not clear how the optimum value should
be determined; although further comparisons or analytical
and simulation results should provide insight.

V. EFFECTS OF REGULARITY ON SYSTEM IMPLEMENTATION

Advances in integrated circuit technology have 1led to
VLSI circuits which have ten times the number of devices
possible in LSI circuits [Foster & Kung, 1980; Mead & Con-
way, 1980]. This increase in the number of possible devices
on a chip makes it more feasible to implement multiprocessor
or multicomputer architectures [Sieworek & Thomas & Schar-
fetter, 1978]. The most significant of the recent advances
in IC technology has been in the area of X-ray lithography.
Laboratory circuits fabricated using X-ray lithography have
been shown to be two orders of magnitude better than those
built using optical techniques. X-ray lithography has also
been shown to be ten times better than electron lithography

and is in addition less expensive. Thus, depending on the

445

W. M. McCormack et al.

circuit complexity, it may be possible to put as many as ten
computing systems on a single chip.

Maintaining high speeds in a multiproces-
sor/multicomputer system is one of the prime reasons that it
is necessay to use a higher density IC technology like VLSI
rather than using multiple LSI chips. The inter-chip capa-
citance encountered in multiple LSI chip systems would prove
to be extremely detrimental in a system where the number of
processors is greater than ten.

In order to take the best advantage of VLSI technology
and in order to be cost effective, it is necessary to design
multiprocessor/multicomputer systems to be as geometrically
regular as possible [Mead & Rem, 1979]. Regularity improves
the ease with which a system may be designed and also leads
to higher chip yield. Additionally, regularity in the hard-
ware makes the system easier to expand, allowing the basic
design to be useable in a broader set of applications.

Many different types of regularity can be incorporated
in multiprocessor/ multicomputer interconnection networks.
These types of regularity range from the global level, wher-
ein the entire architechture is completely regular, (e.g.,
the Von Neumann or Moore array) to networks wherein the
regularity is quite local(e. g. snowflake architectures).
In a network which is globally regular, each element in the
network will have an identical structure in terms of its
capabilities and its interconnection facilities. Local or
sub-global regularity implies that there may be more than
one type of network element, each having different capabili-
ties or interconnection facilities.

The degree of regularity is linked to the robustness of
the interconnection network as well as to the overall system
performance and cost constraints. Tradeoffs are therefore
possible, which will produce the design of a system that
meets the basic design objectives and is physically realiza-
ble.

Realization of a VLSI implementation of a large parallel
processing system mandates much interplay between the system
architects and the integrated circuit designers. A syste-
matic approach to the problem is to divide the overall net-
work up into small hardware subsections. This subsection
division is best made at regularity boundaries. The ideal

situation would be to have each hardware subsection identi-
cal to every other hardware subsection.

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

In the case where the subsections are not identical, the
implementation details of one subsection should not strongly
influence the details of other subsections, Some interac-
tion between subsections may occur, especially if an entire
system is to be implemented on a single chip. Examples of
typical interaction include layout area overlap, crossing
wires, and power consumption restriction. To maintain the
integrity of a modular approach to the implementation, these
interactions should be minimized as much as possible,

Once the individual subsections have been identified and
their implementation details specified, the IC designer must
decide on the type and number of subsection which can be
placed on a single chip, This decision is of course highly
dependent upon the limitation of the IC technology being
used. Not only must the needed chip area and power dissipa-

tion be considered, but also, and most importantly, the
amount of information which will need to be conveyed off-
chip must be taken into account. (The need for finding an

efficient means of transferring sufficient information
to/from a VLSI circuit is a difficult problem which will
require solutions different from those used with today's LSI

technology.)

As an example of the types of subsection placement that
might be found in a system, consider the Von Neumann array
of computers, One VLSI realization might be as a two chip-
type set. The first chip-type might be one which has five
computers and their four associated interconnecting bus con-
trollers on a single chip. The second chip-type would then
consist of a single computer and four bus controllers, The
Von Neumann interconnection would be formed by appropriately
wiring each of the two different chip-types to form the com-
plete array. See Fig. 3

Certain problems are obvious in this example, Probably
the foremost is that the first chip-type will need to have
the facility for connecting to twelve off chip buses. Alt-
hough this may seem to be an unrealistic burden to have been
placed on a single chip, it may be that the design objec-
tives necessitated a more powerful computer in the array
positions occupied by the second chip-type. Assuming that
the more powerful computer takes up more semiconductor real
estate, the tradeoff by the IC designer may be justifiable.

47

W. M. McCormack e al.

It can be seen in the above example that the regularity
of the system contributes heavily to the ability to make
subsection realization positioning tradeoffs at IC design
time. In addition, system regularity generally reduces the
problem of programming a large parallel processing system
and greatly improves the overall understandability of the
architecture.

450 W. M. McCormack et al.

REFERENCES

Anderson, G. A., and E., D. Jensen, "Computer Interconnection
Structures: Taxonomy, Characteristics, and Examples,"

Computing Surveys, Vol. 7, Dec. 1975, pp. 197-213.

Armstrong, J. R. and F. G. Gray, "Some Fault Tolerant Pro-
perties of the Boolean n-Cube," Proceedings of the

1980 Conference on Information Sciences and Systems,
Princeton, NJ, March 26-28, 1980, pp. 541-544,

Benes, V. E., "Optimal Rearrangeable Multistage Connecting

Networks," Bell System Technical Journal, July 1964,
pp. 1641-1656.

Batcher, K. E., "Sorting Networks and Their Applications,"
Spring Joint Computer Conference, 1968, pp. 307-314.

Birtwistle, G. M., Dahl, 0. J., B. Myhrhaug, and K. Nygaard,
SIMULA Begin, Auerbach Publishers Inc. Philadelphia,

PA, 1973.

Despain, A. M. and D. A. Patterson, "X-Tree: A Tree Struc-
tured Multi-processor Computer Architecture," 5th

Annual Symposium on Computer Architetura,architecture,
1978, pp. 144-151.

Finkel, R. A. and M. A. Solomon, "Processor Interconnection

Strategies,"” JIEEE Transactions on (Computers, Vol.
C-29, May 1980, pp. 360-370.

Foster, M.J. and H.T. Kung, "The Design of Special Purpose
VLSI Chips", Computer, Jan. 1980.

Goke, R. L. and B. S. Lipovski, "Banyan Networks for Parti-

tioning Multiprocessor Systems," Proceedings of First
CLonference on Computer Architecture, 1974, pp. 21-28.

Haralick, Robert M. and G. Elliott, "Increasing Tree Search
Efficiency for Constraint Satisfaction Problems",

Artificial Intelligence, Vol. 14, 1980, pp. 263-313

Hillier, F. S. and G. S. Lieberman, Operations Research,
Holden Day, Inec., San Francisco, 1979.

Knuth, D. E. The Art of Computer Programming, Sorting and
Searching, Addison-Wesley Publishing, Reading, MA,

1973.

Multi-Computer Parallel Architectures for Solving Combinatorial Problems

Kung, H. T., "The Structure of Parallel Algorithms," in

Advances in Computers, Vol. 19, edited by M, D.

Yovits, Academic Press, 1980.

Lee, R. B., "Empirical Results on the Speed, Redundancy, and
and Quality of Parallel Computations,n Proceedings of

1980 International Conference on Parallel Processing,
1980.

Mead, C. A. and M. Rem, "Cost and Performance of VLSI Com-
puting Structures," IEEE J. Solid State Circuits,
se-14(2), pp. 455-462, 1979.

Mead, C. A. and L. A. Conway, Antroduction to VLSI Systems,
Addison-Wesley, Reading, Mass. 1980.

Mirza, J. H., "Performance Evaluation of Pipeline Architec-

tures," Proceedings of 1980 International Conference
on Parallel Processing, 1980.

Rogerson, P.C. Fault Tolerant Networks of Microprocessors,
Master Thesis, Virginia Polytechnic Institute and
State University, March 1979.

Siegel, H. J., R. J. McMillan and P, T. Mueller, Jr., "A
Survey of Interconnection Methods for Reconfigurable
Parallel Processing Systems, " National Computer Con-

ference, June 1979. Siewiorek, D. P., D. E. Thomas
and D. L. Scharfetter, "The Use of LSI Modular in

JComputer Structures: Trends and Limitations", Compu-
ter, July 1978.

Stone, H. S., "Parallel Processing with the Perfect Shuf-

fle," AEEE Iransactions on Computers, Vol. C-20, Feb.
1971, pp. 153-161.

Sullivan and Bashkov, "A Large Scale, Homogenous, Fully Dis-
tributed Parallel Machine, " Ezggggﬂ;ggg,gg_lgzg Compu-

iﬁn.AEQBI&QQ&HZQ.QQEEQBQBQQ, 1977, pp. 105=124,

Thompson, C. 0., "Generalized Connection Networks for Paral-
lel Processor Intercommunication," IEEE s
on Computers, Vol. C-27, Dec. 1978, pp. 1119-1125.

Wulf W. A., and C. G. Bell, "C.mmp- A multi-mini—processor,"

mlmmmmm&m, 1972, pp. 765=TT7.

451

