Chapter 12

Model-Based Morphology:
The Opening Spectrum

R. M. Haralick, E. R. Dougherty, P. L. Katz

12.1 Introduction

Filtering by morphological operations is particularly suited for removal of
clutter and noise objects which have been introduced into noiseless binary images.
The morphological filtering is designed to exploit differences in the spatial nature
(shape, size, orientation) of the objects (connected components) in the ideal
noiseless images as compared to the noise/clutter objects.

Since the typical noise models (union, intersection set difference, ete.) for
binary images are not additive, and the morphological processing is strongly
nonlinear, optimal filtering results conventionally available for linear processing in
the presence of additive noise are not directly applicable to morphological filtering
of binary images.

In this paper we describe a morphological filtering analog to the classic Wiener
filter, a preliminary account having been given in [1]. The discussion begins
in Section 2 with a review of the Wiener filter and its extension to a Binary
Wiener filter; in these the underlying model entails decomposing the signal and
additive noise into spectral elements in terms of an orthogonal basis set. Classic
Wiener optimal estimation weights the respective spectral elements in the noisy
signal according to the expected values of signal and noise energy across the
spectrum. Section 3 extracts the essence of the algebraic structure underlying
the derivation of the Wiener filter, doing so in a way that retains the concepts
of energy and spectral decomposition, but eliminates the assumptions of noise
additivity, orthogonal bases, and even the concept of inner product. The stage is
thus set for the subsequent morphological filtering results where those assumptions
do not apply. Section 4 derives an optimal morphological filter for binary images
composed of the union (not sum) of the signal and noise connected components.
The spectral decomposition of signal and noise is in terms of an ordered basis of
connected components where the ordering is based on the morphological opening
operation. (Such a basis is, in a certain sense, a “nested” collection of sets.) Thus
the underlying model is based upon that ordered basis (which provides prototypes
of signal and noise objects scattered throughout the binary image) and upon a
morphological spectrum derived from openings. Section 5 expands the results of
Section 4 beyond allowing signal and noise objects to be taken from a single ordered
basis (e.g. an ordered set of discs). In Section 5, the collection of prototypes can
include any number of coordinated ordered bases (e.g. an ordered set of discs, as

well as an ordered set of squares, as well as several ordered sets of lines each at
different orientations.)

Whereas in the first five section we restrict ourselves to finite-component
spectral representation, in Section 6 we treat the continuous case for a single
ordered basis. Section 7 extends these results to multiple ordered bases. In
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Section 8 we compare the opening-spectrum filter discussed herein to mean-square
morphological-filter estimation.

12.2 The Wiener Filter

Regarding the discrete Wiener filter, let b,,...,b, be an orthonormal basis.
The model for the ideal random signal f is that f = Zf___i anb, where Ela,] =
0,V[an] = o}, and Elepmas] = 0,m # n. The variances a?n are taken to

be known. The model for the random noise g is that ¢ = Zf=l Bnbn, where
Elf,] = 0,Vig] = cr'*g’n, and E[Bnfn] = 0,m # n. Noise and signal are
uncorrelated so that Efa, 8] = 0.

The observed noisy signal is f + g = Z’::l(an + Bn)bn. The Wiener filtering
problem is to determine weights wy, ..., wN to make the estimate f of f, f =

E;.N—_-; wn{en + Bn)b, minimize E{p(f, f)], where p is a metric. In the case of
Euclidean distance for the metric p, E[p(f, f)] = E[|\|f - fI|*].

Now,
) N N
1f = AP =11 anbn = D walen + Ba)ball?
n=1 n=1
N (1)
= Z [wﬂ(an + ﬂn) - Cfn]2
n=1
And

N
E [”.f - f”2] = Z E[(wn(an + ﬁn) - an)g}
n=1
N (2)
= z wﬁ(ﬂ':‘;n + 0"‘;“) - 21.,:2,,0'?n + cr}n
n=1

Hence, the minimizing weights are given by

2
72
fn
wn= L ®
a‘fn + cr.qn
One can also define a binary Wiener filter, with weights restricted to 0 or 1.
To determine the minimizing weights, we need just examine

2 .
2, 2 2 a 2 _ | o}, ifw, =20
w"(a"’*”g")_gw""’"”’“_{aﬁn if w, = 1 )

Hence, under the constraint that the w, € {0, 1}, the minimizing weights are given
by
e 2 2
Wy = {0 if T fe < Tgn (5)
1 otherwise

In this case the estimate f = Y nes(@n + Bn)bn, where S = {n|w, = 1}. Thus the
optimal binary Wiener filter retains that part of the spectrum where the expected
signal energy exceeds the expected noise energy, and discards the rest.
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12.3 Optimal Filtering in the Generalized Case

This section restates the binary Wiener filter results, retaining the classic
algebraic structure under far less restrictive assumptions than those of Section 2.
The new assumptions will in fact be consistent with the morphological filter we
will develop in Section 4. Specifically we now relax the assumptions of additive
noise, vector normis, inner products, and orthonormal bases, replacing them with
more general assumptions on the nature of noise inclusion, distance, energy, and
spectral decomposition, and the relationships between them.

Let f be any binary image in a set B of binary images and ¥ be a mapping (a
spectral decomposition) taking f into the N-tuple (fy, .. ., fn);thatisy : B — BV,
(In the case of the Wiener filter, the N-tuple (f1,..., fv) is (@11, .. S anby). Here.
we incorporate into each f,, both the scalar and the basis elements.) Let 4! be
the inverse mapping re-assembling (f, .. -» fw) back into f; thatis ¢y~ : BN . B.
The identity operator can be expressed as ¢1y~! and ¥~ 4%, For any two binary
images f and g in B let there be defined a binary operation <> such that f<>gis
also a binary image in B. When g is the noise, f <> g corresponds to the observed
noisy binary image. We require that <> and 1 satisfy the relationship

Y <>g)=(fi<>g1,-.., fn <> gn). (6)

Let p be the function evaluating the closeness of one image to another. Hence
p: B x B — [0,00). The function p must satisfy p(f h) = nN=1 p(fn, hn) where
$(f) = (fr,..., fn) and (h) = (hy, ..., hy).

For any binary image g, we let # represent the operator which quantifies
the energy in the binary image ¢; # : B — [0,00). The operator # must satisfy
#g= nN=1 #9n, for spectral decomposition ¥(g) = (91,.--. 9n). Finally, there is
a relationship between p and # : The distance between the binary image and the
ideal image is just the energy in the noise image; p(f <> g, f) = #g.

Let w, € {0,1},n = 1,.... N be binary weights and let the filtered binary

image have a representation (wn(f1 <> 91), ..., wun(fw <> gn)) where
_fa<>gy fw,=1
wn(fn <> gn) = {¢ ifw,, =0 (7)

and ¢ is the binary image satisfying f <> ¢ = f. The filtered binary image f itself
can then be written as

f:ﬁ)_l(w](fl <> g1h s wn(fv, <> gn)) . (8)

In essence the effect of the filtering is obtained by nulling spectral content of the
observed noisy binary image.

The optimal filter parameters wy, are chosen to minimize

Elp(f, f)]

Il

N N
E [Z p(fn,fn)} = > Elp(wn(fa <> gn), fu)]

n=1 n=1

N
i #gn ifwn = ]_-1

Il

0]
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Hence, the best value for wy, is given by

{o if E[#fn] < El#g9n) (10)

otherwise.

Then the index set S corresponding to the spectral content that will be included
in the optimal filter output can be defined by S = {n|E[#fn] > El#4ga]}.

12.4 Optimal Binary Morphological Filter

To apply the foregoing algebraic filtering paradigm to mathematical morphol-
ogy, we need to define the ideal random image model, the random noise model, the
relationship of the observed image to the ideal random image and random noise,
the formulation of representation operator i from morphological operators, the
energy measure #, and the closeness measure p. We begin with the representation
operator ¥, which will be formulated relative to morphological opening, where the
opening of binary image A by structuring element KX is defined by

AoK =| J{K.: K. C A} (11)

where subscripts having names like £ or y designate a translation of the set
subscripted and where we assume all images are compact subsets of k-dimensional
Euclidean space RX. (See Haralick, Sternberg, and Zhuang (3], Dougherty and
Giardina [4,5], or Serra [2] for the fundamental properties of the morphological
opening.)

The representation operator i will be defined in a manner akin to the
morphological granulometric pattern spectrum. To set up our definition for ¥
in a way which relates to the ideal random image and noise models, we note that
the opening operator has the following property: If A = U{=1 A;, where each A; is
a connected component of A, and X is a connected structuring element, then

I I
AoK =(|JA)o K = J(4io K). (12)

i=1 i=1

This property, that the opening of a union of connected components is the
union of the openings, will be essential throughout our development. It is this
property which motivates the following definition: Two sets A and B are said to
not interfere with one another if and only if X, a connected component of AU B,
implies that X is a connected component of A or of B but not both. It immediately
follows that if A and B do not interfere with one another and K is a connected
structuring element, then

(AUB)oK = (Ao K)U (B o K). (13)

The opening-spectrum operator 1 will be defined in terms of a set of openings.
This set of openings will be based on the structuring elements in a naturally ordered
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morphological basis. We define a collection K of structuring elements to be an
opening spectrum basis if and only if K € K implies K is connected and X, L e K
implies KoL = K or KoL = ¢. A opening-spectrum basis £ = {K(1),..., K (M)}
is naturally ordered if and only if K(1) = {0} and

Kliye B = {f(i) jfz (14)

A simple example of an ordered opening-spectrum basis is a set of squares of
increasing size, beginning with a square of one pixel.

Now we can define the operator ¢ which produces a opening-spectrum with
respect to a naturally ordered opening-spectrum basis £ = {K(1),..., K(M)}. ¥
is defined by ¥(A) = (Ay,..., Aar) where

An=AoK(m)— Ao K(m+1) (15)

form=1,....,M—1,Ay = Ao K(M), and K(1) = {0}. An, is that part of A
which is open under K (m) but not open under K(m + 1), except for Apr which is
A opened by K(M). Aps is the remainder. K (1) = {0} assures that A; contains
everything in A that does not fit any of the larger K(M)’s. It follows from this
definition that for ¢ # j, A; N A; = ¢. This happens because

AinA; =[AoK(i)— Ao K(i+ 1)]n[Ao K(j) — Ao K(j+1)]
=[Ao K@ NAoK(H]N[Ac K(i+ 1)U Ao K(j+ 1)
=[A o K(max{z, j})]N{Ao K(min{i + 1,7+ 1})]
= ¢ since max{s,j} > min{i+1,j+1} foranyi#j, i,j <M

(16)

For the special case j = M and for ¢ < M, the derivation is

AiNApy =[Ao K(3) — Ao K(i+ 1)]N Ao K(M)
=([Ao K@) N[Ac K(M))N[Ac K(E+ 1)
= Ao K(M)N[Ao K(i+1)]° since Ao K(i) 2 Ao K(M)
=¢ since Ao K(i1+1) 2D Ao I{(A)

(17)

It is easy to see that from the opening spectrum, (Ay,...,Aar), the original
shape A4 can be exactly reconstructed since U:Lx Am = A. This can be seen
directly. Consider

M

An=[AoK(1)-Ao K(2
gl [40 k(1) (2)]u (18)

U[do N(M —1)— Ao K(M)]U Ao K(M)

Since K (i) o K(j) = K(i) for i > j, Ao K(j) D Ao K(i) for i > j. (19)
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Hence the sets Ao K(1), Ao K(2),...,Ao0 K(M) are ordered in the sense that
AoK(1)D Ao K(2)D...D Ao K(M) (20)
From this it follows that for any m > 2,
[AoK(m—1)— Ao K(m)]JUAo K(m)= Ao K(m —1) (21)

Now by working from the right end of the union representation, taking two terms
at a time, the entire union is seen to collapse to 4o K(1) = 4.

1! can then be defined by ¥=*(A4y,...,Apx) = Ui,f=l Am. The existence
of ¥~} implies that the representation is unique in the sense that two different
opening spectra must be associated with two different shapes and two dilZferent
shapes must be associated with two different opening spectra. It implies, as well,
that the representation is complete.

Next we discuss the spatial random process generation mechanism which
produces binary image realizations. A spatial random process producing a set

A Is a non-interfering spatial Poisson process with respect to an ordered opening-
spectrum basis X if and only if:

o For some Z, a Poisson distributed random number (with Poisson density
parameter A,), which is the total connected component count of a binary
image realization A;

e For some multinomial distributed numbers Ly,...,Las with Zle =2
(with respective multinomial probabilities py,...,pa), which split the Z
connected components into M subsets containing objects of the same type;

e For some randomly chosen translations zmj,m=1,...,M; j=1,...,Lm;

o A= U‘:Ll U;‘;"l K(m)z,,;, where the translated structuring elements do not
interfere, i.e.,

. o _ ) K(@)s,; ifi=mandj=n
K(z),,‘.,. ﬂh (M)zn = {cﬁ otherwise. (22)

From this definition of a non-interfering random process, it follows that

M Lo
U UI\'(m),m o K(X)

m=1j=1
M Lp
U U [K(m)a,., o K] (23)
m=]j=1
M Ln

U U K(m)z,,,

m=aj=1

1l

Ao K{(})

Moreover, if ¥(A) = (A),..., Axar), then

L
A = || Bl (24)

J=1
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form = 1,..., M. We interpret these results in the following manner: If A is opened
by the Ath basis structuring element, all components originating from “smaller”
(lower-numbered) basis structuring elements are removed; the opening spectrum
of A (with respect to the basis from which it was built) sorts A according to the
index number of the underlying basis structuring elements, and leaves nothing out.

We consider both the ideal random image and the noise image to be generated
by non-interfering random spatial processes. The observed noisy image is the
union of the ideal image with a noise/clutter image. This motivates a definition of
non-interfering spatial processes which here plays the role of the zero correlation
between the coefficients ol the image process and the coefficients of the noise process
in the Wiener filter case. A random process generating realization D and a random
process generating realization £ are said to be non-interfering random processes if
and only if D and E are always non-interfering sets for each realization.

We can now define an observed noisy image. Let A be a realization of a
non-interfering spatial process (with respect to an ordered opening-spectrum basis
K) producing images of interest and let N be a realization of a non-interfering
spatial process (with respect to the same K) producing noise/clutter. We suppose
that these processes do not interfere with one another. The observed noisy
realization is defined as AU N. Let ¢(A) = (A1,..., Am), ¥(N) = (N1,...,Nar),
and Y(AUN) = (By,..., Bar). Then By, = Am U Ny, We reason as follows.

Bn=(AUN)o K(m)—(AUN)o K(m+1), (25)
form=1,...,M —1, and
Bpr = (AUN)o K(M). (26)
Because the processes do not interfere with one another,

Bm =[Ao K(m)UNo K(m)]—[Ao K(m+1)UN o K(m+ 1)]
=[Ao K(m)— Ao K(m+1)JU[N o K(m)— No K(m+1)]

=AnUN, (27)
and By = Ao K(m) U B o K(m)
= Ap | JNus
Thus we have just seen that
Y(AUN) = (A UNy,..., Ay U Ny). (28)

The filtered image A will be based on selecting the most appropriate compo-

nents from the opening-spectrum of A U N. Letting S be the set of components
selected, we estimate A by A where

A= J(AmUNR) or A= | Bm. (29)
meS meS
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Thus by choosing the form of the estimation analogously to that of the binary
Wiener filter, the estimation problem becomes one of choosing an appropriate
index set S.

To determine S, we must first state our error criterion. For any two sets A and
A, we define the closeness (non-overlap) of A to A by p(4, A) = #[(A— A)U(A—A4)]
where # is the set counting measure (pixel count, area). Our error criterion is then

Elp(4, D) = E{#{(A~ A)u(d- 4)]}. (30)

To see how to choose S to minimize £ {#[(A — A)U(A - A)}}, first note
that

M M
A-A= ] An- J(AnUNm) = | 4m
m=1l

mesS m=1

mes (31)
M M
A-A= ] AnUNm— | 4n= | Nm.
meS m=1 meS

Hence,
p(A,A) = #[(A- AU (4- 4)]
=#(A—- A)+ #(A- A)

M
=# |J Am+# |J ¥m

3
:‘-z;, meS ( 2)
M
=3 #Am+ D #Nm
el el

The two summations above are respectively the area of the ideal image left out,
plus the noise and clutter area left in. The individual terms decompose that area
by spectral content.

Now, since each spectral component is built of translates of the same basis
structuring elements, and since non-interference implies mutual exclusivity,

Lm
#An = # | K(m)z,,

i=1

g (33)
=Y #K(n)s,, = Lu#K(m)
=i
so that
E[#Am] = #I{{nl)pm’\A-A (34)

where pp, is the multinomial probability for the ideal image process, A4 is the
Poisson density parameter of the ideal image process, and 4 is the area of the image
spatial domain. Likewise, E[#N,] = #K (m)gmAn.A, where g, is the multinomial
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probability for the noise process and Ay is the Poisson density parameter of the

noise process.

To determine the index set S, we then have

E{#l4-AuA-a)}=r [f {#Am m¢5}

#Nm meS
m=1
X5 (35)
_ { E[#An] m¢s
s E[#N,] mesS
Hence, the best S is defined by
S = {m|E[#Nn] < E[#An]}, (36)
or equivalently for the statistical assumptions made,
S={m|gmAn < pmAa}. (37)

A spectral component is retained according to the relative expectations of that
component’s “leave-out” of ideal image vs. “leave-in” of noise and clutter.

Figure 1 illustrates the concept of the filter. A is the ideal binary image; B is
the observed noisy image. There are four structuring elements K(1), K(2), K(3),
and K(4) which constitute an ordered basis. The four component images are given
. Bl=BoK(l)- BoK(2)
B2 = BoK(2) - Bo K(3)
B3 = Bo K(3)~ Bo K(4)
B4 = Bo K(4)

Notice that all the binary-one pixels in Bl are noise. So the index set S,
which selects which components constitute the filtered image, will not contain the
index 1. The component images B2 and B3 contain more ideal image than noise
so indices 2 and 3 are in S. Finally, the component image B4 has more noise than

ideal image. Hence index 4 is not in S. The filtered image A is then defined by
A= B2U B3.

12.5 Extension to Generalized (Tau-)Openings

The results we have just obtained can be extended to where the opening
operation is changed to a generalized opening operation. Recall that in the previous
section, each basic structuring element was just a set K. In the generalized opening
operation, each basic structuring element is a collection @ of sets. The generalized
opening of an image [ with Q is then defined by:

IOQ:UIQL’. (38)

L'eqQ
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S={23)

OEEE}EEIEDEI
=

Figure 1 Figurc 1 illustrates the filtering process. A is the ideal image; B is the
observed noisy image. Using structuring elements K(1), K(2), K(3), and K(4) as
the ordered basis produces component images Bl, B2, B3, and B4. Compoﬂf—‘f}t
images B2 and B3 have more ideal image than noise, so the filtered image A 1
B2u B3.
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Regarding such generalized openings, Matheron [6] calls a filter ¥ a tau-
opening if it satisfies four properties: it must be (1) anti-extensive, ¥{A) C A;
(2) translation invariant, ¥(A;) = [¥(A)]s; (3) increasing, A C B implies
¥(A) C ¥(B); and (4) idempotent, ¥\ = ¥. The basic Matheron representation
for tau-openings is that ¥ is a tau-opening if and only if there exists a collection Q
such that U is defined by eq. (38). Moreover, @ is a base for Inv[¥], the invariant
class of ¥; that is, the invariants for ¥ are unions of translations of elements in Q.
For an elementary opening A o K, (K) is the base. The Matheron representation
is discussed by Dougherty and Giardina [4,5], the gray-scale exension is given in
[5], and both Serra (7] and Ronse and Heijmans [8] give lattice extensions.

The generalization is important because of the way it extends the underlying
signal and noise spatial random process generation mechanism. For example, if
the structuring clements were all line segments, the structuring element collection
Q@ could consist of multiple orientation of line segments of the same length. The
corresponding spatial random process would place non-interfering line segments at
different orientations on the image. Or, the spatial random process could place
non-interfering line segments, disks, or squares, on the image. For each size, the
corresponding structuring element collection could he: line segments of the given
size at a variety of orientations, a disk of the given size, and a square of the given
size.

To see how the generalized opening can be used, we illustrate the case
for which each structuring element collection contains exactly two structuring
elements. Let K = {K(1),...,K(M)} and J = {J(1),...,J(M)} be naturally
ordered opening bases. Define the callection @ by @ = {Q(1),...,Q(M)} where
Q(m) = {K(m),J(m)},m = 1,..., M. To make the ordering of the collection K
and the collection J compatible, we require that

K(i) o J(j) = J({E) o K(j) = ¢ (39)

for j > 1. Q is called a generalized opening basts.

Now, using the generalized opening operator, consider

K@) o Q(j) = K(i) o K(j) U K (i) 0 J(j)

_ { KG) i> ] (40)
T ¢ otherwise
Likewise,
J(i) 0 Q(j) = J(i) o K(j) U J (i) 0 J(j)
_ {J(i} i>j (41)
¢ otherwise

Suppose that a realization A for a non-interfering process can be written as

M LY M L

A= J UEme.,, |U|U UJmy., (42)

m=1j=1 m=} j=1
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where the sets in the collection

LB ity 5 1 T2 L cog DS 08 = Ly i P (43)
are naturally non-interfering. Then
ar LY M Lj
Ao = | U UK, U U U J(m)ya; | cQ)
m=lj=1 m=1j=1
a LE M L]
= U U [K(m)z,.; 0 Q ]U U U (M)z,.; o Q(A)] (44)
m=1j=1 m=1j=1
M LT M L
= U Ume, U U U I,
m=Aj=1 m=Aj=1

Moreover, applying the spectrum definition of eq. (15) to the generalized opening
Q yields
Ap=AoQ(m)— Ao Q(m+1)

M LY M L
U U K ”)f’nU U U J(n)yn;
n=m j=1 n=mj=1
M LY M L (45)
U U K(n)x”. U U U J(n)y,;
n=m+1 j=1 n=m+1j=1

L¥ &5
= |J Km)e,; U I(m)y.,
i=1 j=1

From this it is clear that the representation operator 1 based on @ has an
inverse and A = 2’,{,_1 . Furthermore, A; UAJ = ¢ and #A = f:=l #A,
This fulfills the required conditions described in Section 3. Furthermore, results
for @ containing collections of pairs of structuring elements are immediately

generalizable to collections having any number of structuring elements.

To extend the optimal index set S given by eq. (28) to the situation where Q@
contains pairs, Q(m) = {I{(m),J(m)}, we need only recognize that there are
now four noninterferring processes to consider: (1) a signal process involving
{K(m)} with Poisson parameter Aasx and multinomial probabilities pxm, (2) a
signal process involving {J(m)} with Poisson parameter A4, and multinomial
probabilities pym, (3) a noise process involving {&(m)} with Poisson parameter
Ang and multinomial probabilities g¢g,,, and (4) a noise process involving {J(m)}
with Poisson parameter Ay and multinomial probabilities q;,,. Since eq. (35) still
applies, eq. (45) applied to both signal and noise yields

Elp(A, A)) = Z A#RK(M)Aaxprm + Aasprml+
m¢S

}: AFK(m)ANK qKm + ANIqrm]
meS

(46)
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Thus, the best S is defined by

S={m:ANktgm+ ANITm < AAKPEm + AATDIm (47)

Extension to more than two-structuring-element opening bases is straightforward.

12.6 Continuous Opening Spectra

In the present section we extend the preceding notions to the case of continu-
ously parameterized openings, and in doing so relate the preset spectral theory to
the granulometric theory of Matheron [6]. Because Euclidean granulometric theory
does not apply to discrete space, it is at once recognized that the theory of the
preceding sections is not rendered superfluous by the Euclidean approach: specifi-
cally, the theory of discrete opening spectra applies to both discrete and Euclidean
space, whereas the continuous-spectra approach only applies to Euclidean space.

Matheron (6] defines a granulometry to be a family of binary-image operators
(%), > 0, for which ¥, is antiextensive and monotonically increasing, ¥, ¥, =
U Uy = Umax(e,r) forallt,r > 0, and ¥y is the identity. Heret is a generalized scale
parameter. Ile further defines a Euclidean granulometry to be a granulometry for
which ¥, is translation invariant and W,(A) = t¥,(A/t) for t > 0. If K is a convex,
compact set, then the parameterized opening ¥;(A) = A o tK is an Euclidean
granulometry. Moreover, a deep theorem of Matheron [6] states that, for compact
K, AotK is a granulometry if and only if K is convex. In particular, tK orK = tK
whenever ¢ > r if and only if I is convex [clearly 1K o rK = @ for t < r].

For continuous parameter t > 0, X = {K(¢)} will be called for an ordered
opening basis if and only if K(t) o K(r) = K(t) for r < t and K(¢) o K(r) = @ for
r > t. One way, but certainly not the only way, to generate such a class K is to
consider a compact, conex set X, and define K(t) =K.

The spectrum operator ¥ can be adapted to the continuous setting by defining
$(A4) = [A(t))izo, where

Aty = Ao K(t)— | ] Ao K(r) (48)
r>t

Fort # 1/, A(t) N A(t') = 0. To sce this, suppose without loss of generality that
t' > t. Then

A)NA() =[Ao K(t) 0 Ao K(t)]N

{ {U Ao 1\'(;-)} U {U Ao A’(r)] }

r>t r>t!

(49)

= Ao K(t')n [U Ao K(r)]

r>t

which is null since the latter union includes 4 o K(t').
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In the present continuous setting we must adopt a more general view of the
non-interfering spatial process. To do so we generalize the random grain model
employed by Sand and Dougherty [9] in their analysis of the statistical distributions
for granulometric pattern-spectrum moments. Specifically, we assume that to form
a realization A, a component number Z is selected from a Poisson distribution

with mean p4, parameters iq,%s,...,lz are independently selected from some
distribution T4 possessing density fa(t), translations z;, z2,..., rz are randomly
chosen, and
z
A= L] Eitade, (50)
m=1

where the components are non-interfering. There are several salient points regard-
ing this more general model:

1. It reduces to the former discrete model if the parameter class is finite.
2. Equation (22) holds.
3. Equation (23) holds, its new form being

z
Ao K(A) = | K(tm)zn (51)

m=A

-9

. Equation (24) holds, its new form being

A0l =] U lale, i ts = 1) (52)

If we assume that noise realization N derives from a similar non-interfering
process with Poisson mean ppy and ¢ selected from a distribution Il possessing
density fn(t), then ¥(A U N) = [A(t) U N(t)]. The estimate A for A is given by
eq. (29) with ¢ in place of m; however, in the present context S is a subset of
[0,00) and is not a discrete set. The estimation problem is to find S for which
E[p(A, A)] is minimzed, with # now denoting area.

Similarly to eq. (32), it can be shown that

p(AA) = > #A(tm)+ D #N(t) (53)

tmES €S

Because the component counts for both signal and noise are random, E[p(A4, A)]
does not easily reduce; however, if we make the simplifying assumption that the
component counts are fixed, say at the respective means 4 and up, we then obtain

E(p(A, A)] = pa /5 KA+ fs #K (1) frdt (54)

To see the manner in which we arrive at eq. (54), let A denote the first summand
in eq. (54) and let

P {S%A(tm), if tm & S (55)

otherwise
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Then
EAl= S ElAm] = 2aElA1] = 4 /5 FKOVads (56)

The second summand in eq. (54) is handled similarly. The best S is given by
S={t:unfn(t) < pafa(?)} _ (57)

Note the similarity to the discrete solution given in eq. (37).

12.7 Extension of Continuous Spectra to Tau-Openings

Generalization of the continuous theory to tau-openings with Q) =
{K(t), J(t)} proceeds along similar lines to the generalization in the discrete case,
under the assumption that K (t) o J(t') = J(t) o K(t') =9 for t' > t. For instance,
eq. (44) and (45) become

zZ W
AoQ(N) = | K(tm)en | U T(th)z (58)
m=A k=X
Alt) = B Um)en t tm = tHLH{I ()0, 1t = 8} (59)
m k

where Z and W are the respective Poisson variables for {K(¢)} and {J(?)},
possessing respective means p 4, and g4, and it is assumed that the corresponding
parameter sequences derive from the respective densities f4, and f4,. General-
ization to more than two structuring-element sequences is immediate.

Like the signal, the noise too can be generated by both {K (1)} and {J(¢)} with
the K(t) and J(t) Poisson variables possessing means un, and pp,, respectively,
and the corresponding parameter sequences possessing probability densities fyg
and fy,, respectively. Then the error equation takes the form

E[p(A’ ‘a‘)] = HAg '/s #‘r{(f)ffix(t)dt +Ha; [S‘ #J(t)fAJ(t)dt
(-] (< (60)
i /5 LK) fn, (Odt + un, [5 HI(0) v, (D)t

The preceding equation extends to any finite number of structuring-element
sequences. In particular, if any of the Poisson means are zero, then the equation
reduces to one in which the signal and noise are generated by different primitive

shapes, which shows that our model allows signal and noise to be generated by
different primitives.

As in the single-opening situation, there is a close connection between the
present theory and the Matlieron theory for Euclidean granulometries. Matheron
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[6] calls a class of images K a generator of a Euclidean granulometry {¥,} if the
invariant class of ¥, consists of unions of translations of scalar multiples t K.t > 1,
of elements ¥ € K. If it happens that the images of K are convex, then

Ty(A) = | J{Aotk : K €K} (61)

is a granulometry with generator K. Now suppose K = {K, a,..., Kp} is finite
and tK o t'K; = 0 for t >t and ¢ # j. If for any K in K we define K;(t) = tKj,
then {XK;(¢)} is a basis in our present spectral sense. Assuming each realization
A of the spatial process is formed in the usual way from this basis, the spectral
component A(t) takes the form

= ¥ ,(4) - | ¥, (4) (62)

r>t

Note that it has been demonstrated in [6] that ¥, (A) < ¥,(A) for r > ¢, and that
the invariant class of U, is a subset of the invariant class of ¥,.

12.8 Interpretation of the Optimal Estimator A in the context of Optimal
Morphological Estimation

Morphological dilation and erosion operations are translation invariant and
increasing. This motivates calling mappings which are increasing and translation
invariant morphological filters. A general framework for the characterization of
statistically optimal morphological filters has been developed by Dougherty [10, 11,
12, 13, 14]. An interesting question is how do we treat the problem of optimally
estimating one random variable by a morphological funciton of a finite number
of observations? Included in the discussions [10, 11] is the manner in which we
apply constraints to the filter, so that the optimal estimator is a particular type of
morphological filter, say tau-opening or linear operator. A key class of increasing,
translation invariant mappings are the alternating sequential filters of Sternberg
[15] and Lougheed [16] (see Serra [17]), and an optimization criterion for these
has been developed by Schonfeld and Goutsias [18, 19]. In the present section, we
wish to briefly investigate the relationship between the optimal filter based on the
opening spectrum and the general problem of morphological estimation.

Returning again to the Wiener filter, the weights w, of eq (3) provide the
estimate f of f relative to an orthonormal basis b1, by, .. ., by, with the summation
over this basis serving as the inversion back to the spatial domain. In the general
algebriac paradigm of Section 3, f is found from the weighted represe-:ation by
applying ¥~!. \When applying optimal estimation relative to the morpnological
representation in terms of K, equation (29) provides the required inversion. An
interesting and hmportant question can be posed: Does the estimator A possess
a morphological representation? That is, can we write A = Q(A U N), where
{1 is a “morphological operation?” If by “morphological operation” we mean an



MobeL-Basep MorpHoLoGY: THE Orenive SpEcTRUM 371

increasing, translation invariant mapping, then A possesses no such representation.
Indeed from the manner in which S is chosen, it can be seen that if A U N’ is
obtained from AU N by replacing a noise component K(m); of N by a noise
component K(m'), where m’ > m,m € S,m’ ¢ S, and K(m’), properly contains
K(m)z, then AU N is a proper subset of AU N’, but, according to eq. (25), the
filtered version of AU N’ is a proper subset of the filtered version of A U N. Thus,
the optimal fitler determined by eq. (29) is not necessarily increasing (although it
might be).

Whether we take the weak definition of a morphological filter adopted in [5,
10], that of being increasing and translation invariant, or the strong definition
adopted by Serra [7], which includes idempotence (without assuming translation
invariance because the definition lies in the context of lattice theory), the mapping
§2(A) defined by eq. (29) is not necessarily a morphological filter. Consequently,
even though the measure E’[p(A,fl)} can be interpreted as mean-square error in
the binary setting, the operator Q is not necessarily expressable in terms of the
Matheron expansion as an union of erosions, and it is precisely this expansion in
which the mean-square optimization theory of [10] is framed.

Nevertheless, the estimation operator is translation invariant and can be
expressed “morphologically,” where here we mean that it can be expressed using
ordinary morphological operations in conjunction with set-theoretic operations.
The desired expression is immediate from the definition of the spectrum operator
¥, and is imply eq. (25) applied to S. Rewritten, eq. (29) takes the form

A= | J(AUN) o K(m~1)= (AUN)o K(m) (63)
meS

12.9 Conclusion

For the problem of filtering corrupted binary images of the form 4 U N,
we have chosen an appropriate morphological opening spectral decomposition,
as well as distance and energy measures resulting in an appropriate measure of
estimation error. Based upon these choices (which are quite different from the
analogous choices for the additive noise/linear filter problem, and which eliminate
the requirement for orthogonality or an inner product space) we have derived
optimal filtering results analogous to conventional Weiner filtering results based
on image and noise energy contents in each spectral bin.

The assumptions on the image and noise models in order for the results to
be valid are presently fairly strong. The image and noise connected components
are modeled as translated copies of objects from a single ordered opening basis
set (Sections 4 and 6) or a collection of such basis sets (Sections 5 and 7). In
addition there is a non-interference (non-overlap) condition so that all objects

remain distinct and no objects are created that fail to arise directly from basis
sets.
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These conditions guarantee sufficiency. However, they are actually stronger
than need be. They were sufficient to guarantee that (AU B)o K = AU B and
#(AUB) = #A+#B. 1t is easy to create instances in which (AUB)o K = AUB
and A and B are not non-interfering sets. If A and B are not exclusive then
#(AUB) < #A + #B. So if the sets overlap, the quantities we have been
computing will be strict upper bounds. However, in this case, the overlapping can
be regarded as a random process and instead of computing #(AUB) a composition
of E[#(AU B)] = k(##A + #B) for an appropriate 0 < k < 1 can be made. Along
these lines, the possibility of generalizing the results is quite strong.

In addition, in order to better handle irregular or ill-defined noise sets, as
well as ideal (noise free) images comprised of families of objects for which no
simple ordered opening basis is obvious, we are working on extending our results
to instances where the assumptions on image and noise objects are relaxed. In
particular, extension to the case where the objects are in some sense well-sorted
by one or more bases is being sought in derivations and experiments.
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