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5.1 INTRODUCTION

For many decades it has been recognized, or conjectured, that the notion
of entropy defines a kind of measure on the space of probability distribu-
tions, such that those of high entropy are in some sense favored over others,
all other things being equal. The basis for this was stated first in a variety
of intuitive forms: that distributions of higher entropy represent more
“disorder,” that they are “smoother,” “more probable,” *less predictable,”
that they “assume less™ and hence ‘“‘are more natural’’ according to Shan-
non’s interpretation of entropy as an information measure, etc.

While each of these points of view doubtless reflects an element of truth,
none seems explicit enough to lend itself to a quantitative demonstration
of the kind we are accustomed to having in other fields of applied mathe-
matics. Accordingly, many approaching this field are disconcerted by what
they sense as a kind of vagueness, the underlying theory lacking a solid
Content.

* Visiting Professor, People’s Republic of China.

157

Copyright 1987 by Academic Press, Inc
All rights of reproduction in any form reserved



158 Xinhua Zhuang et g]

This has not prevented the fruitful exploitation of this property of entropy,
The maximum entropy (ME) principle, briefly speaking, is: when we make
inferences based on incomplete information, we should draw them from
that probability distribution that has the maximum entropy allowed by the
information we do have. Jaynes [1,2] has been a foremost proponent of
maximum entropy prior distributions consistent with known information,

Essentially all of the known results of statistical mechanics, equilibrium
and nonequilibrium, are derivable consequences of this principle. In image
restoration and spectrum analysis, the maximum entropy principle takes
into account cogent information about multiplicities that orthodox statistics
misses because of its failure to admit prior probabilities.

Perhaps Frieden [3] was the first one to correctly pose one type of
maximum entropy image restoration problem. In his statistical model, the
image space is divided into n resolution cells (or n events). The frequency
of occurrence of the ith event is identified with

Pi =fn/2ﬁ,

where f; represents the gray tone intensity in the ith cell. Thus, the entropy
is defined as

H(Pl,---;Pn)z _Z pilog p,.
i=1

Apart from Frieden’s statistical model, the maximization of H(f,, ..., f.),

H(fy,....f) ==Y filog s, (5.1-1)

i=1
does have a smoothing influence on the restored image f, i=1,...,n,
assuming the sum of gray levels Yi..fi =t is a known constant. To show
the smoothing influence we show that as fi and f; approach each other while
t stays the same, H(f,,..., f,) will increase. Assume that f; > f;; thus for
the two pixels to approach each other in value while 7 continues to be the
same, we may introduce the following changes:

Vi=-e Vf=c¢ (5.1-2)

as & > 0. After these changes, we can calculate the new summation in Eqg.
(5.1-1) denoted by H":

H'=H(f,....f.) + filog f; + f log £,
~(fi — &) log(fi — &) = (f; + &) log(f, + ¢)
=y e gl WECHIE)
>H(fy, ..., f), (5.1-3)
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where we have used the approximate formula
log(l+ x) =x, |x] « 1.

Besides maximizing H(fi,...,f,), many other image restoration pro-
cedures exert a smoothing influence on the solution. In fact, various linear
techniques can be used to improve the resolution of a blurred image of an
object. However, the linear techniques often induce erroneous detail such
as oscillations or “‘ringing” around sharp changes in intensity in the image.
That is a particular problem with images of complex objects since the
superposition of many oscillations can give spurious detail with unpredict-
able shapes and intensities. Therefore, a “safe” inversion technique is
required—one giving restorations free from ringing, such that confidence
can be placed in the reality of all extra details revealed by the restoration
method. Naturally, interest has centered on nonlinear techniques which
incorporate constraints to reduce the artifacts generated in the restoration.
Of the nonlinear techniques, maximum entropy is a fundamental method
for the solution of the inversion problems in image restoration. A variety
of iterative algorithms have been proposed to obtain the maximum entropy
splution.

The computing times required by most of the these algorithms
are, however, much higher than those required by linear methods, and
this has often procluded their use on images containing more than
64 x 64 pixels. Therefore, designing more efficient algorithms becomes
crucial.

Section 5.2 introduces Frieden’s statistical model for an “object” in optical
image formation and a maximum entropy image restoration algorithm which
requires solving m + 1 nonlinear equations with m + 1 unknowns, where
m represents the number of observed data values.

Section 5.3 introduces Burch et al/[4] algorithm, which requires solving
a optimization problem in (n + 1)-dimensional space.

In Section 5.4 we present our own technique [5]. This is a differential
equation approach to the ME restoration problem. The problem is reduced
to solving a system of differential equations with easily obtained initial
conditions. Instead of doing an (n + 1)-dimensional search as required by
most ME techniques, a one-dimensional search along a well-defined path
in the (n + 1)-dimensional space is performed. The search path is defined
by the Cauchy problem of differential equations. Results are shown for
cases with strong deblurring and for cases with high noise levels. Our results
are compared with those produced by competing ME techniques. The aspect
of computational cost is also discussed.

Section 5.5 is the conclusion.

Iz
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5.2 FRIEDEN’S APPROACH [3]

Frieden’s approach is based on a statistical model for an “object” in
optical image formation. The object is defined as -an unknown Spatiaj
radiance distribution f = flx), i=1,...,n, which produces an image
irradiance distribution d;=d(y;),j=1,..., m, which is collected as data,
The connection between f and d is given by

d; = Z Aifite,  j=1,...,m, (5.2-1)
i=1

where ¢; = e(y;) denotes noise. Here, the object is imagined to be composed
of discrete, mathematical “grains” of small intensity A which are distributed
over the object scene. The scene is subdivided into cells centered on a
subdivision of points {x,}, i = L,..., n, and the unknown object is assumed
to have g; grains in cell i Thus S(x;) = A- g;. Let p, represent the probability
of a grain locating in cell i. Then if a large number of grains are distributed
over the object, by the law of large numbers

Pi= gi/gT)

where g is the total number of grains in the object; g is assumed known
by conservation of energy from the image data.
The entropy, from information theory, is defined as

H(Pls"'!pn)é_-ipilogpi
= S (&) o f &
Y L
Sl
Z(Zf e
- Z?:lﬂlogf; (" )
e ] 4. 5.2-2)
AR 02 (

Since the total spatial radiances T fi(=A goisa constant, the principle

of maximum entropy then becomes: maximize

H(fi,....f,) ==Y flogf, (5.2-3)

i=1
subject to two constraints: Eq. (5.2-1) and Y fi=1 where t=A - grisa
constant. Since Eq. (5.2-1) contains the noise term, a weighted sum of the
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image entropy and the observation noise entropy is maximized in Frieden’s
approach.

The noise component may take either positive or negative values. Hence,
the definition of noise entropy requires some care. The difficulty is overcome
by applying additional a priori knowledge to the problem by assuming that
a constant B is known such that

B = max(—¢g)). (5.2-4)

In practice, B may be roughly estimated by setting it equal to 2o, where o
is the standard deviation of the noise. According to Frieden, the quality of
the restoration does not depend critically on B precisely satisfying Eq.
(5.2-4); however, the results are best when Eq. (5.2-4) is indeed satisfied.
We may now define a new nonnegative sequence

e;=¢+B=0 (5.2-5)
and the noise entropy as
H,=-) e}logel (5.2-6)
j=1
The restoration problem is solved by maximizing the weight sum
H(fl)"'v.f;)-i-pHE’ (5-2'7)
where the constant p is used to emphasize one of H(f,,...,f.) and H,

with respect to the other. Frieden recommends a value of p = 20 as about
optimum for a wide range of object and noise situations.

Maximization of Eq. (5.2-7) is carried out subject to satisfying the follow-
ing two equalities:

d =) Aifi+e B, (5.2-8)
i=1
Y=t (5.2-9)
i=1
The maximization can be carried out with Lagrange multipliers. We find
the m + n unknowns f; (i = l,...,n), e (j=1,..., m) that maximize the
functional

KéH(fl,...,ﬂ,)-l-pHe
+Z)‘)(Z Ajiﬂ‘Le}_B*dj) +N(Zﬂ—1), (5.2-10)
1=1 i=1 i=1

Where A, j=1,...,m, and # and m + 1 Lagrange multipliers.
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Let f", and ¢, denotg the optimum values of f; and e, Clearly, letting

fé[f.,...,J;JT,?é[fl,..‘,fn]’:e%[e.,...,emJ”,andéé[él,...,am]f
we should have

oK /of ;-7 =0, (5.2-11)
0K /o€l s = 0. (5.2-12)
Performing these differentiations, we obtain
j=1
and
& = exp(—1+ A;/p). (5.2-14)
These solutions must satisfy the constraints given by Eqs. (5.2-8) and (5.2-9):
L Adi+té-B=d, j=1....m (5.2-15)
i=}
and
fi=1 (5.2-16)

i=1

The restored f; is obtained by first substituting Eqs. (5.2-13) and (5.2-14)
in Egs. (5.2-15) and (5.2-16). The resulting m + 1 equations are solved for
the m + 1 unknowns Ay j=1,...,m, and u. These equations are highly
nonlinear but, according to Frieden, are always solvable by an (m+
1}-dimensional Newton-Raphson method, provided B is large enough.

5.3 BURCH, GULL, AND SKILLING’S APPROACH [4]

Again let the required restored image have pixel values represented by
nonnegative numbers f;, ..., f, and the observed image data be given by

d=) Aufi+te, j=1,....m, (5.3-1)
i=1

where the e/s represent independent zero mean, o} variance noise terms.
Burch et al, attack the problem in a different way. They define

(Z Aif - dj) ; (5.3-2)

i=1

=15 1
QUise s f) =5 —

j=1%j
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Instead of the m constraint equations such as Eq. (5.3-1) Burch et al use
a single chi-squared, y?, statistic

Qfi,.... i) =m/2 (5.3-3)

The motivation for this constraint comes about from the central limit
theorem [6], which states

1 & el
lim—) —4=1. (5.3-4)
ml M i
Thus, provided that m is large, we would expect the true values of f,,..., [,

to satisfy Eq. (5.3-3). This approach avoids a mathematically unwieldy
proliferation of Lagrange multipliers and allows the development of an
iterative technique applicable to large images. Instead of the functional K
in Eq. (5.2-10), the following functional is maximized subject to
Q(f;,---,f.) = m/2 in Burch et al’s approach:

J=-LJ !og(jj) —AQUfr, -+ Ju)s (5.3-5)

where A is a predetermined parameter and e the natural exponent. Expand-
ing (5.3-5), we obtain

J==Y fillogfi=AQ(fi,.... ) + (1 +1log A) Y f;

i=1 i=1

=H(fi,.... ) =AQ(fr,....f)+(1+1log A) Y. f;  (5.3-6)

=1

=H(fi..ooa )= AQUs ) ¥ 1 2 Sy (53-7)

where w = (1+logA). If ff,...,f¥ maximize Eq. (5.3-7) subject to
Q(fi,....f,)=m/2,thenf}¥, ..., f¥would maximize H(f,, ..., f,) subject
to two constraints:

Qfi,.-s o) =m/2

and

2=

Noticing that

H(f,, ...\ f. m
H(py o pu) = Tt iog( 3 )

i=1
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we observe that the same f¥,...,f* would maximize the entropy

H(p,..., p,) subject to the same two constraints. Here, p; = fi/Y7_, f as
before. The stationary point equation of Eq. (5.3-6) or Eq. (5.3-7) is
VI=0 ) (5.3-8)
or
d
1ogA—logﬂ—Aa—fQ(f,,...,ﬂ,)=0 (5.3-9)
or
a
(;L“l)—logﬁ—)\gfo(ﬁ,--.,ﬁ,):0. (5.3-10)

Normally, we first attempt to solve an unconstrained maximization of J
or its stationary point equation V.J = 0. The simplest such algorithm is
steepest ascent, in which one performs a line search along the direction of
VJ. This is well known to be inefficient. The standard way to improve a
steepest ascent algorithm is to use some variant of the conjugate gradient
technique. Instead of using VJ itself as the search direction, one uses a
combination of this with previous gradient(s) chosen to give quick conver-
gence if J is exactly quadratic in f,, . .. , fu- Unfortunately, J in maximum
entropy is highly nonquadratic, and conjugate gradients will also not be
powerful.

Instead of searching along just one direction at a time, Burch er al. use
a subspace of three directions, namely

(e1); éﬁj—;, where for convenience let § = —gﬁ log(;{‘:), (5.3-11)

(e5); éﬂ'iTQ, (5.3-12)
5 n BZQ B_J )

(e3); H; lorar of o (5.3-13)

where, according to the required stationary point equation VJ =0 (J = S -
AQ), A is necessarily given by

- (M)l/z
2 fi(8Q/af)?

Here the first direction e, helps S to be maximized through 45/af;. The
extra factor f; has the operational characteristic of letting the algorithm

(5.3-14)
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concentrate on intense areas of the image instead of areas already known
to be faint and requiring little further attention. Likewise, the second
direction e, helps the desired value of Q to be reached, with a similar factor
of fi. These factors can be understood by using the entropy curvature
_VVS = —(8°S/af; af;) = diag[1/f1, ..., 1/£.] as the metric tensor defining
lengths and angles in f space. The third direction e; corresponds to the
initial correction which a conjugate gradient maximization of J would make
to the steepest ascent direction VJ, provided —VVS was being used as the
metric.

Within this three-dimensional subspace, the iterative change to be made
to f can be expressed as

5f = x'e, + x%e; + X’e;, (5.3-15)

where suitable coefficients x' (i =1, 2, 3) are to be determined. Burch et
al. begin by constructing quadratic models for § and Q with respect to
variables x!, x?, x* from the local gradients and curvatures, thus modeling

S(x)=S+VS- 6f + %{Ef)TVVS(Sf)

=S+ Z(VS, e;)x' f%(af)f diag[1/f1, ..., 1/f.1(6f)

i=1

3 3
=S5+ ) ,(Y5,e)x’ —% Y (el diag[1/f;,...,1/f,)e)x'x,  (5.3-16)

i=1 =1

G(x) = Q + (VQ, 80) + (6N Y Q(aN)

3
=Q+).(VQe)x'+ %(af)TA'DA(Sf)

i=1

3 3
1 w
=Q+).(VQ,e)x’ 2 Y (eTA"DAe)x'x,  (53-17)
i=1 =1
where A = (Aji) mxn, D = diag[d,, ..., d,].
In keeping with using —VVS as the metric tensor in f space, Burch et
al. define the length squared of the increment &f as

I? = (80)T(-VVS)(8f)
\ .
=Y (e] diag[1/f1, ..., 1/f,]e)x'x. (5.3-18)
=1
starting with a flat iterate f; = A, the control of the algorithm now passes
into the subspace, where highly sophisticated processing can be performed
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on the 26 defining scalars S, Q, (V S, e;), (e diag[1/f.,...,1//.1¢),(VQ,e,),
(ef/A"DAe)), i,j=1,2, 3. )

The first “control” step is to rotate the coordinate system within the
subspace to diagonalize the symmetric matrix

(e;r diag[1/fi, ..., 1/fu1€)3xs.

This enables the algorithm to be protected against accidental linear depen-
dence of the search directions by discarding eigenvectors corresponding to
unusually small eigenvalues of (e diag[1/f;,..., 1/f,1e;)sxs.

Assume R = [r;, r;, r;] is a 3 X 3 rotational matrix, i.e., orthonormal with
det(R) = 1 such that

RT(e diag{1/f,.. .., 1/f,]e)sxsR = diaglAy, Az, Ayl (5.3-19)
or after rearrangement '
([e, €2, 3]R) " diag[1/f1, ..., 1/f,)([ey, €2, €3]R)

= diag[Ay, Az, A;1(diag[1/Vfi, ..., 1/V lle, 2, 6]R) . (5.3-20)
(diag[1/Vfi, ..., 1/VF, 1[el, €2, e;]R) = diag[A,, A,, A5]. (5.3-21)
It is clear that
Ay = ||diag{1/VFi, ..., 1/VF l[ei, &, &5]R[1,0,0]7||* = 0,
A, = ||diag[1/Vfi, ..., /T, 1[e., ez, €s1R[0, 1,017 > = 0, (5.3-22)
A; = ||diag[1/Vf, ..., 1/V], 1[e,, e5, esIR[0, 0, 117 ||* = 0.

Thus, from Eq. (5.3-22) it is clear that there is a zero eigenvalue A; =0 if
and only if

diag[1/vfi,. .., 1/VF)ler, e, €], = 0 (5.3-23)
or
[e), e, e]r; =0 (5.3-24)

or the search directions e,, e,, €,, are linearly dependent. Moreover, it i
easy to verify that r; is the eigenvector of

([ey, &2, es}r diag[1/fi, ..., 1/f.][e:, ez, €35])3x3

corresponding to zero eiger}_value Ai=0. .
Let y = Rx. Then S(x), Q(x) becomes S(y), Q(y), respectively, where

S(y) = S+{(VS, e)]5aRTy — 3y" diag[A,, Az, A3y, (5.3-25)
A(y) = Q+[(VQ,e)15RTy + Jy"R7(e] ATDAe)s.Ry.  (5.3-20)
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If none of three eigenvalues A,, A, A, is small, letting z = diag[v'A,, VA,,
JA31y, S(u), Q(y) becomes 5(z), Q(z), respectively, where

S(z) = S+ [(VS,e)]5R" diag[1/VA;,1/VX;, 1/VAsJlz =327z, (5.3-27)
0(2) = Q + [(VQ, e)1]RT diag[1/VA;, 1/VA;, 1/VA3 1z
+ 127 diag[1/VA,, 1/¥A3, 1/¥VA; IRT (e] ATDAe;)1.3R
- diag[1/VA;, 1/VA3, 1/VA3 ]z (5.3-28)
Introduce the second rotational matrix V such that
VT diag[1/VA,, 1/VA;, 1/VA; IR (e] ATDAe;)5.3R
- diag[1/VA;, 1/Vay, 1/VA; IV = diag[p, pa, sl (5.3-29)

- Letting u = Vz, S(z) and Q(z) become S(u) and (j(u), respectively, where

S(w) = 5+ [(VS, )] LR” diagl1/VAr, 1/VEs, 1/VE; IVTu = 2u"n,
(5.3-30)

O(u) = Q + [(VQ,e)]T R diag[1/vA;, 1/vVA5, 1/VA; IV u+ = Zp,

i=1

(5.3-31)
If A; is very small but A,, A, are not so small, we let y; = 0 and
[z, Zz]T = diag[‘/A_n \/xz:][J’l, }’2]T;
then S(y), Q(y) become S(z), O(z), where

diag[1/VAy, VA i, 1] E S
e

S(z) = S +[(VS, ej)];ranT[ 0

2 2
-S4+ z Sz — % z 2 (5.3-32)

Oz)=0Q+ Z Quzi + - Z Mjz;z;, (5.3-33)

|}'|

Where S;, Q;, M, all could be explicitly determined.
Introduce the second rotational matrix V,,, such that

VTMV = diag[u,, p2)- (5.3-34)
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Letting u = Vz, §(z), @(z) become S(u), (j(u):
S(u)=S+(S,,S]"Vu-lu"y, (5.3-35)

Q@) = Q+[Q, Q:]"V7u+ Z s (5.3-36)

i=]
In any other cases, the treatment is similar.

Now we attempt to maximize S subject to Q = m/2 within the u-subspace.
Here without loss of generality we could write

Swy=5+Y su, —%Zuf, (5.3-37)

Oy =Q+Y Qu, + 12 i, (5.3-38)

Since the symmetric matrix (e TATDAeJ)M3 is nonnegative, eigenvalues g,
are nonncgatlvc too. Thus, most likely Q(u) will have a minimum value

3 Y. Qiu;. If the minimum value exceeds the desired value m/2, it is
1mpossuble to satisfy the constraint Q=m/2. Accordingly, Burch et al. set
the more modest constraint Q Qo,

@ = max(o - %Z Q% iy m/z) (5.3-39)

which is always accessible within the u subspace. . .
Maximizing S subject to Q Q, is equivalent to maximizing § —AQ
subject to Q Qo It leads to

w = (S —1Q)/(1 + Xu) (5.3-40)

A binary search could be used to give the value of A which attains the aim
of Q(u) = Q.

However, the quadratlc model for S will only be accurate locally, within
some distance limit: u"u < I3 = 0.2 Y f,, the factor 0.2 being a dimensionless
coefficient suggested by Burch et al. from their practical experience. As
easily seen, the followmg holds.

£ x (ei diag[1/f,,..., l/j;'r]ej)ijx
=y diag[A,, A,, A;]y

=u'u. (5.3-41)

So § must be maximized subject to Q Qo and an overrriding constraint
< 3. To satisfy the distance constraint, the algorithm normally uses the
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same values of A and u as before, but the binary search is redirected toward
the current value Q [see Eq. (5.3-38)] whenever X gives an increment with
I* too large. This gives extra safety without changing the model parameters
S, Si, Q g, R

When there is no sufficiently close increment, the distance constraint must
be introduced explicitly via a second multiplier P, giving

W=8-10-iPF (P=0), (5.3-42)

since otherwise the first constraint (j = éo could be drastically overriden
by the second constraint I” < I, W is maximized at

Si - XQ;

= 5.3-43
H 1+ A(w; + P) (5.3-43)

P can be interpreted as a modification of é which increases its curvature
components from w; to u; + P, giving a revised model

Q=0 +%P ¥ ul (5.3-44)

With P invoked, X is searched toward é = Qp, but is redirected toward
Qr = Q whenever I is too large. For sufficiently large P, Burch et al. claimed
that the binary search could always reach a result obeying

O;=0 <020 (5.3-45)

and the smallest such P is used to give the final result x.

All that remains is to increment f by the multiples x; of the search
directions while protecting against the very occasional stray nonnegative
value.

Burch et al. also claimed that, in any case, the results are not sensitive
to the precise value of the parameter A.

54 A DIFFERENTIAL EQUATION APPROACH TO
MAXIMUM ENTROPY IMAGE RESTORATION (5]

In this section we develop a new algorithm for solving the maximum
entropy image restoration problem. The problem is reduced to solving a
system of ordinary differential equations with appropriate initial conditions.
The choice of initial conditions closely relates to the satisfaction of con-
Straints, and we show how the initial conditions are determined. The
filgorithm does not involve any optimization method. Instead of searching
In the (n + 1)-dimensional space as required for most ME algorithms, our
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approach relies on solving a one-dimensional search along a self-defineq
and easily mastered path. Moreover, an efficient algorithm is developed to
handle the search. The computer restoration verifies the theory.

In subsection A of this section, the basic concepts for the maximum
entropy restoration technique are given. This part includes the derivatiop
of a system of differential equations defining a branch of solutions over
which the one-dimensional search is performed. The section concludes with
an analysis of the existence interval for A, the search parameter. Subsectiop
B deals mainly with the problem of selecting initial conditions so that the
constraints imposed on the original formulation of the problem can be
satisfied. A more comprehensive analysis of this subject is carried out in
subsection C. The algorithm for solving the system of differential equations
for the maximum entropy reconstruction problem is outlined in subsection
D. Subsection E deals with the problem of adjusting a parameter in order
to satisfy the constraint on the total image intensity embedded in the original
problem formulation. In subsection F experiments in image reconstruction
using the algorithm outlined in subsection E are described and results are
presented.

A. Maximum Entropy, Stationary Point Equations, and
Cauchy Problem of Differential Equations

Let the required reconstructed image have pixel values represented by

positive numbers f,, . . . ,f which are to be determined, and on which the
entropy
H(pi,...,p) =Y. plogp, p = ,.L i=1,...,n, (54-1)
i=1 Zi:]_fl:

is defined. The entropy depends only on the distribution of gray levels in
the image and not on the total intensity Y7 __ f.
Let the observed image data be given by

4= Afite, j=1,..m (54-2)
i=1

where the ¢s represent independent zero mean, o; variance noise terms.
We define

11
QUi f) =35 —

J=1"1i

(L as-a)

i=1

(Af —d)7 diag[1/03, ..., 1/0%]1(Af - d)%ﬂAf —d|l%,
(5.4-3)

B |

|
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where A2 [Aln, T2[fi,.... 5], d&[d,. ..,d,]", and D&
diag[1/a3,...,1/ a2,). Typical least-squares approaches would try to deter-
mine those values f;, ..., f, which minimize Q(f,, ..., f,). Rather than do
this, we seek those f;,...,f, which maximize the entropy subject to the
constraint

Qfsye - fu) = m/2. (5.4-4)

The motivation for this constraint comes about from the central limit
theorem [6], which states

Thus, provided that m is large, we would expect the true value of fi,. .. o
to satisfy Eq. (5.4-4). The condition Q = m/2 now determines the set of
feasible images f which pass the given statistical test for consistency with
the actual image data {d,,..., d,}.

Although any of the feasible images is acceptable as a reconstruction,
the maximum entropy criterion selects that particular f which has the least
configurational information, i.e., the one where the pixel values are least
separated. Hence it can be looked on as a smoothing criterion. Of all
reconstructions which fit the actual data {d,, .. ., d,}, the maximum entropy
solution thus gives uniquely safe and unprejudicial results.

Formally we are to maximize the entropy H(p,, ..., p,) given the con-
straints Q(f;,...,f,)=m/2 and ¥|_,fi=1t (t>0). We introduce the
second constraint for two reasons. One is that the total intensity has a status
different from individual pixel values. It does not contribute to the shape
of the gray tone intensity function of the image f. For the second reason
we must look to the equality

H(fis s Jn z
H(Pi,---,Pn)z fl f)*IOEZf;,
i=1

Yo f
where H(f,,...,f.) = —Y,f logf.. Introducing the second constraint
Y.fi=1, we obtain a linear relation between H(f;,...,f,) and
H(p,,..., p,) enabling us to treat H(f,, ..., f,) instead of H(py,...,P.),

the first one being much more tractable. Anyway, this constraint is not very
strict, and it may be varied to obtain any required total intensity.

From the relation between H(p,,..., p,) and H(f,,...,f,) it is easily
seen that the following three problems are equivalent to each other:

Problem 1. max H(py,..., Pa)
subject to Q=m/2, v.fi=t
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Problem 2. max H(f,,...,f,)
subject to Q=m/2, . fi=t
Problem 3. max[H(fy,....f.)+pn Y. fi—AQ(f:,....f)]
subject to Q=m/2, Y.i=t
Instead of solving problem 3, we solve the following problem:

Problem 4. max H[(fy,...,f)+u X, fi=AQ(fi,...,f)]
subject to Q=m/2.

In problem 4 the total intensity is treated like a “free boundary condition.”
No specific value is assigned to it in advance. In fact, problem 4 is a very
reasonable formulation of the maximum entropy image reconstruction prob-
lem. If f*,..., f¥ is a solution of problem 4, then it is also a solution of
problems 1, 2, 3, with t = ¥, f¥*. Usually we are satisfied with the solution
of problem 4. If not, we could adjust the parameter u so that the solution
of problem 4 has the required total intensity (see subsection F).

To solve problem 4 we need to consider the related unconstrained
maximization problem.

Problem 5. max[H(f,,....f,)+up ¥, fi—AQ(fi,....1.)]. (5.4-5)
Let

IfiseeosSus D) = H(fryoo o S+ 1 2 fi = AQUS - o)

Then problem 5 is to find maximal points of J(f,, ..., f,; i, A). The function
J(f; p, A) is defined and continuous in the closed domain E, where E £
{filfi>0,i=1,...,n}. When A = 0 the continuous function J has a unique
maximal point, which is finite since J tends to minus infinity as ||f|| > ©
and is strictly concave due to the negative definiteness of its Jacobian V*J:

V2J = —diag[1/f;,...,1/f,] — AATDA < 0. (5.4-6)

As known, if the maximal point f° is an inner point, i.e., f® € E, then the
following stationary point equations hold:

VI=—[logfy,...,logfo]" +(u — 1)h— Aa "D(Af° —d) =0, (5.4-7)

where for abbreviation h£ [1,...,1]],,.

Conversely, if VJ equals zero at a point fc E as A = 0, then f° must
be a maximal point, as easily seen from Eq. (5.4-6).

In the following we will prove that Eq. (5.4-7) is always solvable as A = 0.
Thus, problem 5 is actually equivalent to Eq. (5.4-7) as A = 0. The solution
of Eg. (5.4-7) gives that unique maximal point required by problem 5 s
A=0.
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To prove that Eq. (5.4-7) is always (uniquely) solvable as A = 0, all we
need is to find such a path f(A; 1) in E, defined for 0 < A < o, that the
gradient VJ is identically equal to zero along it:

VI((A; k) 1 A) =0, 0=sA <o, (5.4-8)

It is clear that Eq. (5.4-8) is equivalent to the following Egs. (5.4-9) and
(5.4-10),

d
EIVJ(f(A;,u); H,A) =0, 0= A <o, (5.4-9)

VJ((0; p); u, 0) = 0. (5.4-10)

It is also clear that Eq. (5.4-9) is equivalent to the following differential
equations for f(A; u) (by working out the derivative dVJ/dr):

VZJ(E p, A) df/dA = aQ(f), 0<A <o, (5.4-11)
and Eq. (5.4-10) directly gives f(0; W) as
f(0; 1) = exp(u — 1)h, (5.4-12)

where h equals [1,...,1]7,,.

Thus, the stationary point equation is always (uniquely) solvable as A = 0
if the following Cauchy problem of differential equations defines a solution
curve in E for 0 < A < oo:

V2 dffdA = VO,
flr-0 = exp(p — Dh. (5.4-13)

This is proved in Theorem 1 of the Appendix. Having shown that the
unconstrained maximization problem 5 has the form of Eq. (5.4-13), we
are ready to consider the variety of computing schemes available to solve it.

To solve the maximum entropy image reconstruction problem, the only
thing left is to select suitable initial conditions for the Cauchy problem, Eq.
(5.4-13), in order for the constraint Q = m/2 to be reached by the solution
Curve. For this we need to know more about the solution curve of Eq.
(5.4-13). We discuss this in the next section.

B. Properties of Eq. (5.4-13)

In this subsection we define the sets giving the u’s for which a maximum
Entropy solution satisfying the constraint @ = m/2 can be found. Naturally,
We are interested in the behavior of Q(f(A; 1)) along the solution curve.
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It is easy to see that
dQ(f(A; p))/dx = (VQ) " df/dA
= (VQ)"(V*))"(VQ). (5.4-14)

In the following we prove that Q(f(A; w)) decreases strictly monotonically
as A increases unless the solution curve f(A; u) shrinks into a single point
exp(p — 1)h. As a matter of fact, along the solution curve there are only
two possibilities: either

f(A;p)=exp(u ~1)h  and  VQ(exp(p — 1)h) =0, (5.4-15)
or
VOf(A; n)) #0, 0= <oo. (5.4-16)

Thus, when f(A; u) does not shrink into a single point, the derivative
dQ(f(A; p))/dA will always be negative because of (5.4-14), (5.4-16), and
(V2J)™" < 0. As for (5.4-15) and (5.4-16) we can proceed as follows.

Suppose there exists a point f* = f(A*; x) along the solution curve such
that

VQ(f*) = 0. (5.4-17)

Then f(A; 1) will coincide with the solution curve defined by the following
Cauchy problem due to the uniqueness of the solution to

VI df/dr = VQ,
flrmae = f*. (5.4-18)

However, the solution curve of Eq. (5.4-18) obviously is a single point f*
due to Eq. (5.4-17) and the initial condition in Eq. (5.4-18). thus it holds

f(A; w)=1*, 0= A <oo, (5.4-19)
Now it is not hard to see that Eq. (5.4-15) is valid since f(0; )=
exp(u — 1)h. Thus, we have proved
Theorem 5.4-1. The derivative dQ(f(A; ))/dA is always negative unless
VQ(exp(x — 1)h) = 0.

In order for the solution curve f(A; u) to satisfy the constraint Q = m/2,
only those u’s need be considered which satisfy either

Q(exp((p — 1)h) = m/2 (5.4-20)
or

Qlexp(e —1Dh) > m/2  and VQ(exp(u — 1)h) # 0. (5.4-21)
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If Eq. (5.4-20) holds, then exp(u — 1)h solves problem 4. Otherwise, we
need to select suitable u’s by means of Eg. (5.4-21) and then compute
f(A; w) by means of Eq. (5.4-13).

Let the sets U, V, W be defined as follows:

U = {p: Q(exp(p — 1)h) = m/2}, (5.4-22)
V ={n:Q(exp(p — 1)h) > m/2}, (5.4-23)
W = {u:VQ(exp(p — 1)h) # O}. (5.4-24)

From the previous discussion it is clear that only those u's which belong
to U or V n W can produce meaningful results.

C. Computing the Sets U, V, and W

In this subsection, we will investigate further the sets U, V, and W in
order to determine initial values for which a maximum entropy solution
satisfying the constraint can be found.

For abbreviation we let

a =exp(p — 1), (5.4-25)
n n 7
r= [Z Al./al,...,ZAmi/om] , (5.4-26)
i=1 i=1
S=[d/ay,. -, dm/om]". (5.4-27)
Then a direct computation yields
Q(ah) = aa’ + ba + ¢, (5.4-28)
where three coefficients a, b, ¢ are as follows:
a = 3fjr|)? (5.4-29)
b= —(r,s), (5.4-30)
c = 3ls|. (5.4-31)

By using the Schwartz inequality it is easily verified that b® < 4ac. In the
following we prove that the expectation E{c}=m/2 and (1/m)(c—
gl >4 with probability ome as m-—>co, where g 2
[ZL] Aufil o, L Amfi/o.]" and the appearing f's are true image
intensity values.

Let

u=[e/o1,. ., em/Oml, (5.4-32)
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where the ¢’s represent independent zero mean, orf variance noise terms,
as known in subsection A. From Eq. (5.4-2) we have
s=g+u (5.4-33)
and hence
E{c}=:E{[lg+u[?}
= 3llgl* + (g, E{u}) + 2E{||u]*}
=1lg|*+ m/2= m/2. (5.4-34)

From Eq. (5.4-34) it is clear that E{c} = m/2 if and only if g = 0.
As proved in Theorem 2 in the Appendix, if ||g|/m — 0 and m - 0, then
with probability one

(1/m)(g,u)—>0 asm - o (5.4-35)
and

(1/m)(c—3lg|® »0 as m - 00, (5.4-36)

On the basis of this fact, if m is large and ||g||/m is small, then ¢ can be
rather safely replaced by m/2 + ||g|*/2, which is never less than m/2. Hence
in computing the sets U, V, and W, we assume ¢ = m/2. In particular, we
are interested in determining a nonempty set u or in determining the set
intersection V n W should U = &.

1. Computing the Set U
According to Egs. (5.4-22), (5.4-25), and (5.4-28) the set U is determined
as
U={1+loga:aa’+ ba +(c— m/2) = 0with « > 0}. (5.4-37)
Case 1. a> 0, b>>4da(c—m/2), b<0:

_ {{1 +log[(—b £ Vb* —4a(c - m/2))/(2a)},  ¢>m/2, (5.4-38)
~ {1 + log(—-b/a)}, c=m/2. ‘
Case2. a=0(=b=0),c=m/2:

U = {(c0, —o0)}. (5.4-39)

In all other cases U = (J, an empty set. Here the second case occurs very
rarely. Thus in general U is empty or has at most two elements. This
corresponds to no equientropy solution or at most two equientropy solutions
for problem 4, respectively.
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2. Computing the Set V When U Is Empty

The set V is determined as
V={1+loga:aa®+ba+(c—m/2)> 0 with « > 0}. (5.4-40)
Since the set U is empty, the following cases exhaust all possibilities:

Case 1. a>0,b*—4a(c—m/2)<0.
Case 2. a>0,b*—4a(c—m/2)=0,b=0.
Case3. a=0(=b=0),c>m/2

It is easy to see that all three cases lead to the same V:

V = {(—20,0)}. (5.4-41)
3. Computing the Set W

The set W is determined as:
W = {1 + log a: @(ATDAh) # ATDd with & > 0}. (5.4-42)
From Eq. (5.4-42) it is clear that W equals {(—00,0)} unless the (n x

1)-vector ATDd has the same direction as the (n x 1)-vector ATDAh. The
exceptional case occurs very rarely. Thus in general there holds

W = {(—00,0)}. (5.4-43)
In summary, there are only two possibilities in general. Either U is not

empty and thus problem 4 has at most two equientropy solutions. Or
V A W = {(—00, )} and thus for any p there hold

Qexp(p — Dh>m/2, (5.4-44)
AQ(exp(p — 1)h) # 0. (5.4-45)

As known from Theorem 5.4-1, Eq. (5.4-45) assures
dQ(f(A; w))/dr <0 as A =0, (5.4-46)

where f(A; ) is the unique solution of the Cauchy problem, Eq. (5.4-13).
Intuitively, from Eq. (5.4-44) we would like to choose such a u that
Q(exp(up — 1)h) is as close to m/?2 as possible. When —b/2a > 0, we can
simply choose that

pw=1+ log(—b/2a), (5.4-47)

because of [dQ(ah)/dal.-—b/2a = 0.
From Egs. (5.4-26), (5.4-27) and (5.4-29), (5.4-30) it is apparent that the
condition, —b/2a > 0, is equivalent to (r, s) > 0. Notice that d; and f; are
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related by
‘i}:'zAjiﬂ'i'ej, J=1,...,m,
i=1 i

where all f; are nonnegative, and the matrix (Aji) nxm represents the blurring
operation which occurred in the Imaging process. The latter implies A =0
in most practical cases. Thus, (r, s) > 0 will hold whenever the noise is not
too large.

D. Algorithm for Solving Differential Egquations

In this subsection the algorithm for solving the system of differential
equations (5.4-13) is presented. As mentioned in the introduction, we do a
search along the solution curve by varying the parameter A, starting with
Ao =0. A satisfactory solution is found when QUF(A; w))/(m/2) is
sufficiently near 1. For each A a large system of linear equations must be
solved. This is done by making extensive use of the properties of the
coefficient matrix and applying the Gauss-Seidel algorithm [7], which is
an iterative technique providing fast convergence.

Suppose that the U is empty, i.e., problem 4 has no equientropy solution,
and moreover an appropriate x has been chosen from the intersection
V n W. From differential equations (5.4-13) we have the following discret-
ized iterative equations:

{f°=eXP(u—1)-h, (5.4-48)
kz0: (F'+LMATDA)(f — ) = — (A, — MJATD(AL* - ),

where F* = diag[1/f¥,..., 1/f%], Ao = 0, and Ak > A Whenall [Ay,, — Ay
are small enough, f* will approximate f(A, ; ) very well. Equation (5.4-48)
can be written as follows:

fo = exp(p, - l)h,
k=0: (F“+AATDA)! = (24, — A,,,)ATDAF* (5.4-49)
+h+ (Agsy — A)ATDA.
This is a large linear system of equations. Fortunately, the coefficient matrix
(F“+ A,ATDA) is positive definite and symmetric. The Gauss-Seidel itera-
tive scheme (see [7]) can then be used to solve Eq. (5.4-49) efficiently.
Let P represent the matrix (F*+ A,ATDA). Let b represent the vector

(2Ak = Ak )JATDASF* + h + (Ay,, — A )ATDA. Further let x be the (k + 1)st
estimate £“*' of f(A,,; u). For m = 1 we have the following Gauss-Seidel
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iterative equations for solving Px = b:
X = £¥,
(5.4-50)
] (Rl P

(my _ 4 (m) _ (m—1)
X P |: Z Pyx; P‘UxJ
it J=i

Itis proved (see [7]) that the convergence and the limit point are independent
of the choice of x'”. Thus lim x'™ = f**'. We choose x'” = {* since f**'
should be near f* when |A,,, — A.| is small. This choice of x'” greatly speeds
up the convergence of (5.4-50). Experiments indicate that in most cases
only one iteration for each k is enough to obtain f**' from f*.

In the sequel we let

L=ATDA,
p=A"Dd, (5.4-51)
=L, =012
Then from Eq. (5.4-49) it follows
k=0: (F* 4+ A" = (20 — A8 + h+ (Ajey — AP, (5.4-52)

k=1: gk+l:(2—A;+l)gk+%[fT }kf’l(ﬂ’”-’fﬁ}*:ﬂ]r
k k 1 n

A

5 (__k 1 1)],_ (5.4-53)
At

The initial values f°, g°, g' for Egs. (5.4-52)-(5.4-53) are as follows:

f° = exp(» — 1)h,

g’ = Lf° = exp(p —1)[ZL1,,...,i ,,,-]

g' = Lf".
Thus Eq. (5.4-54), which involves matrix calculations, is used to find g°, g',
and the recursive formula (5.4-53) involving only vector calculations is used
for g*, k= 2.
Finally we summarize this subsection by giving the following easily
implemented algorithm for solving the maximum entropy image reconstruc-
tion problem.

(5.4-54)

T
’

Step 1. If U # J and p € U, then there is an equientropy solution
f* = exp(w — 1)h. Stop.

Step 2. Choose an appropriate uw € V » W such that Q(exp{u — 1)h)
is as small as possible.
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Step 3. Setk =0,A, =0, f* = exp(u — 1)h, g* = Lf* and Q* = Q(f").

Step 4. If [Q%/(m/2) - 1| < g, then Stop. Here ¢ is a prescribed sma|
positive number.,

Step 5. Solve Eq. (5.4-49) for f**' by using Gauss-Seidel iterative
scheme, Eq. (5.4-50).

Step 6. Compute Q**' = Q(f*1),

Step 7. If k is large enough, Stop.

Step 8. If [Q**'/(m/2) — 1| < &, then Stop.

Step 9. If k = 1, then compute g“"! by Eq. (5.4-53), else gt = Lk

Step: 10. IF Q%' = m/2, then set A > 0, else set 5A < 0,

Step 11. Set k = k+1, A, = A,_, + 8.

Step 12. Goto Step 5.

In the experiments we consider only cases where the blurring given by
the matrix A can be represented as a convolution between the undergraded
image and a (regular) mask. By making full use of the fact that very few
of the elements in the matrix L are nonzero for moderate mask sizes, it has
been possible to construct a fast algorithm without resorting to Fourier
transforms. If the blurring happens in the imaging processes, then the mask
usually is small. For very large masks, however, the situation is different,
and the possibility of saving time by use of Fourier transforms should be
investigated. Equation (5.4-49), however, does not have a convolution form,
so implementation of Fourier transforms is not straightforward.

E. Adjusting p to Get the Required Total Intensity

Assume that the set U is empty and we have parameters Ko and A, such
that Ao=0 and |Q(f(A,: Ko))/(m/2) — 1| < e We are looking for a
differentiable curve A = A(u) passsing through (u,, A), along which the Q
values, Q(f(A(u); 1)), are constant. In this case, adjusting the parameter
# will not affect the satisfaction of the constraint [Q/(m/2) — 1| < . Now
along the required curve we should have two relations:

dQ(f(A(w); w))/du =0, (5.4-55)
VIAA(w); w); e, A(p)) =0, (5.4-56)

the latter because JA(); 1) is the stationary point of the function
J(f; i, A(pe)) as known before.
From (5.4-56) it is easy to derive that

d : d
VA (s 1); 1, A(w) “"fit)’“u s ’;L“”vo(f(»\(m;m) =0
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or
df(A - | dA
L = 9251000 w0 [ Ay ot ) - 3
“ du
(5.4-57)
Under the assumption U = &, we have that
Vn W= {(—o0, )}, (5.4-58)
which implies that
VQ(exp(e — 1))h # 0. (5.4-59)
As stated before [see Egs. (5.4-15) and (5.4-16)], Eq. (5.4-56) implies that
V(A (p); 1)) #0 (5.4-60)
everywhere.
From (5.4-55) we have
[VQU(A(1); p))ITdE(A(p); )/ dp = 0. (5.4-61)

Combining (5.4-59), (5.4-60), and (5.4-61), we obtain
dA(p)/du = [VQI'[VJI'W/[VQIT[VII'[VQ],  (5.4-62)

where the differential curve passes through (uo, Ag), i.e., A(iy) = Aq.
Then, multiplying both sides of (5.4-57) by h”, it follows

dYi filA(w); u)
dp

dA
= I'IT[VZ.[]_IVQ' ;i:b_ _ hT[vZJ]—lh

_ (IVQI'[V* ] 'n)?

[(VQI'[V]7'[VQ]

Finally, we obtain the following Cauchy problem of n + 2 differential
equations for adjusting u to ge the required total intensity:

[sz]df(f\;i); ®) _ dt:if:}
dA () _ (VQI'[V*J] 'h
dp [VQI'[VZJI'[VQT
A3 S (s); p) _ ([VQ]'[VHI] 'h)
du [VOI' [V '[VQ]
i, =00 100,
= "\'0’

—h"[V2J] 'h (5.4-63)

(Y@l—&,

—h7[VJ]'h, (5.4-64)

Alu;m

2 filiimse = W7 (A} o).
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For each reconstruction the algorithm was run until the resulting Q was
sufficiently near Q = m/2 (m is the number of data points, i.e., pixels). The
number of iterations for each A and step size in A, 6A = |A,,, ~ Ayl, were
determined empirically, and the chosen values represent a reasonable, but
in no way the best, choice. The optimal choice of §A also varies strongly
with noise level. If the relative reduction in Q in one step is below a
user-specified limit, the step size is doubled for the next step. This can save
a great deal of time compared to keeping 8A constant for a whole search.
Indeed, in some cases it is quite necessary in order to be able to reach a
solution in a reasonable time. One Gauss-Seidel iteration was enough to
obtain /**! from f* with satisfactory accuracy.

Table 5.4-2 gives an overview of some of the experiments run for the five
input images generated from the Girl source image. K is the number of

Table 5.4-2
Data for Reconstruction of Girl Image

Image K 8A;  8A;  A-final Q-init Q-final m/2 CPU
Image 1 1 02 02 0.2 769041 52588 1.36
Image 1 6 0.2 04 1.4 769041 10340 10.15
Image 1 1202 04 38 769041 8381 8192 20.10
Image 2 1 40 4.0 4.0 15970 13539 1.36
Image 2 5 40 40 20.0 15970 8875 8.40
Image 2 9 40 40 36.0 15970 8379 8192 15.05
Image 3 1 02 03 0.2 643424 73208 2.50
Image 3 6 0.2 04 1.6 643424 11845 18.10
Image 3 10 025 0.5 4.0 643424 8423 8192 30.15
Image 4 1 4.0 4.0 4.0 14715 12814 2.50
Image 4 4 40 40 16.0 14715 9473 12.40
Image 4 8 4.0 4.0 320 14715 8412 8192 24.00
Image 5 1 05 05 0.5 77151 47400 1.45
Image 5 8 0.5 1.0 5.5 77151 3 14.30
Image 5 15 0.5 1.0 12.5 77151 825 820 26.20

Steps. 8A, is the initial step size in A and 8A, is the final step size. Q-init is
the initial Q value computed from the flat (constant) image which is the
Starting image. CPU is the VAX 11/780 CPU time in minutes and seconds.

¢ corresponding images are shown in Figs. 5.4.5 to 5.4-9 for image 1
through image 5. The upper left image is the input image, upper right is
the result after one step in A, lower left is the intermediate result, and lower
right is the final result.
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constant step size would in many cases make practical applicatigp,
impossible.

The checkerboard image was the only case where the result did no|
indisputably improve with the number of iterations. The average contrag
between black and white squares did increase, but pixel values for the twe
regions overlap after 25 iterations (see Fig. 5.4-11), whereas this was nol
the case for just 6 iterations with a final A of only 2.0 (shown in the same
figure).

The experiments were run on a VAX-11/780 computer. Data for the
experiments as well as CPU time consumed are listed in Tables 5.4-2 and
5.4-3. Though the general problem complexity is the square of the numbe;
of pixels, the computational complexity can in many cases (for instance,
when the degradation matrix has a simple convolution form) be reduced
to linear in the number of pixels. This is confirmed through experiments
on a 256 x 256 image. For many applications CPU time is crucial. Taking
into account the size of the problem, the CPU times listed in Tables 5.4.)
and 5.4-3 are very satisfactory. It is, however, evident that this time can be
reduced even more if a better technique for finding an optimal or near-
optimal 8A for each step in the search along the path is developed.

5.5 CONCLUSION

We have briefly reviewed Frieden's approach and the Burch e dl
approach to maximum entropy restoration. We have given a detailed
description of a new differential equation approach to maximum entropy
image restoration. We have performed and discussed an initial set of
experiments with the differential equation approach,

The experimentation phase has not yet been completed. More combina-
tions of the most essential parameters need to be investigated. To fully
verify the potential of the algorithm, this more extensive experimentation
should include:

(1) Testing more combinations of noise and blurring,

(2) Optimizing the search in A,

(3) Possibly evaluating a better criterion for termination of the search
process,

(4) Trying more source images, and

(5) Investigating possible time savings by use of Fourier transforms (fof
large masks).

A final assessment of the algorithm must wait for this work to be comp
leted. However, the experiments run so far indicate that the algorith™
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presented in this chapter is a very prospective tool in image reconstruction.
In the most general case this reconstruction will require either an enormous
storage capacity (the matrix L = A"DA has N? elements, where N is number
of pixels in an image) or a substantial amount of CPU time (if all elements
of L have to be computed every time they are used). However, in many
practical applications simplifications are possible and the reconstruction
can be done at a reasonable cost in CPU time without requiring excessive
storage capacity.

APPENDIX

Theorem 1. A unique solution curve f(A; x) is defined in E for 0 < A < oo
by the following Cauchy problem of differential equations:

V2Idf/dr =V Q,
(5:A-1)
fli-o = exp(u — Dh.

Proof. Since the coefficient matrix V2J is negative definite and both V2J
and VQ are analytic in E, Eq. (5.A-1) does define a unique solution curve
f(A; w)in E for0 < A < a where a is some positive number or plus infinity.
Thus all we need now is to prove that the solution curve could be extended
whenever o < co.

Suppose a < o, We are to prove first that the solution curve f(A; u)
tends to a point f* € E as A approaches a from below and the limit point
* satisfies the stationary point equations, Eq. (5.4-7). Then the solution
curve f(A; u) is extended beyond a by the solution curve of the following
Cauchy problem:

Vidi/dr = VQ,

(5.A-2)
o —
Along the solution curve f(A, 1) we have
VI(f(A; p); u, A) =0, O0=si<a (5.A-3)

Premultiplying Eq. (5.A-3) with f7(A; u) yields
797 =) filogfi+(w-1Y f - MT(ATDA) + AfTATDd

=0 0=sA<aq, (5.A-4)

bl
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where for abbreviation the arguments in f(A; u) are dropped. Equatiop
(5.A-4) indicates that the norm [|f(A; u)|| must be bounded as A - q -0,
Otherwise f'(A;u) VJ(f(A; ), u, A) would g0 to —o0 because of
f7(A; L)XATDAY(A; 1) =0 and —¥ f log f, + (n—1)Yf+AfTATDA &
—00. The boundedness of ||f(A; x)|| assures that each component fi(A; )
has a positive lower bound as A - a — 0. Otherwise the corresponding
component of VJ(f(A; u); u, A) would go to o, as easily seen from Eq.
(5.4-7). Therefore, not only the entire solution curve but also its limit point(s)
as A » a — 0 belong to E. Now it is clear that each limit point will satisfy
Eq. (5.4-7) and hence coincide with that unique maximal point of J at ¢
If we denote the unique limit point by f*, then Eq. (5.A-2) does define a
unique solution curve in E for some small interval (a — 8, @ + §) with
a — & =0 which coincides with the maximal point path of J as Ae
(@ — 8, @ + §). Hence the solution curve given by Eq. (5.A-2) coincides
with f(A; u) as A € (@ — 8, @) and extends f(A; 1) beyond a.

Theorem 2. Assume that |g||/m - 0 as m - co. Then with probability one,

1

*n:(g, u) >0 asm - oo, (5.A-5)
1 1
;(c - %”g”z) >3 asmooo (5.A-6)

Proof. Let x,, = (1/m)(g, u). It is easy to verify by means of E{u} =0,
E{uu;} = &;, and the assumption lel/m > 0 as m - o that

E{x,} =0, (5.A-7)
Var{x,} = E{x}} = (%) >0 asm- . (5.A-8)

The latter will lead to x,,, + 0 as m - o with probability one by Chebychev's
inequality (see [6], p. 151). This validates the first part of the theorem. To
prove the second part we need to write (1/m)(c — !|g|) as

(1/m)(c = 3lgl*) = x,, + (1/2m) |u- (5.A-9)

The components u; of u are independent, identically distributed random
variables with zero mean and variance 1; thus (1/m)ul*>1 as m~><
with probability one by the central limit theorem [6]. Combining this fact
with x,, > 0 as m > co with probability one, we obtain (1/m)(c — el -2
as m - o0 with probability one. This completes the second part of the
theorem.
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