7

MATCHING RELATIONAL STRUCTURES
USING DISCRETE RELAXATION

LINDA G. SHAPIRO
and
ROBERT M. HARALICK
Department of Electrical Engineering
University of Washington
Seattle, WA 98195
USA

A relational description of an object describes the object in terms of its properties, its
parts, and the interrelations among its parts. Relational matching is the process of
comparing two relational descriptions to determine the correspondence between their
part sets and to decide, based on this correspondence, how similar they are. Relational
matching can be used for stereo vigion, for object recognition, and for organizing a
database of models. In this chapter, we describe several different kinds of relational
matching and give algorithms that use discrete relaxation to solve the relational matching
problem. An approach to relational matching using parallel hardware is briefly discussed.

180 Syntactic and Structural Pattern Recognition — Theory and Applications

1. INTRODUCTION

High-level vision processes perform matching and reasoning tasks. One
important task that high-level vision performs is to identify objects in the
scene from their projections on the image and to interpret the meaning of
the scene as a whole. Although classification of many simple objects can
be performed by statistical techniques, the recognition of complex objects
having parts in various spatial relationships requires a different approach.
When the objective iz not only to recognize an object, but also to measure
some critical angles or distances on the object, then again statistical tech-
niques are not sufficient. When the scene is interpreted as a whole, the
analysis depends on the interpretations of the various objects in the scene
and on their spatial relationships. In all of these tasks, an approach called
relational matching can be used to solve the problem. In this paper we
define several kinds of relational matching, give sequential algorithms for
solving relational matching problems using discrete relaxation, and briefly
discuss a parallel approach to relational matching.

2. RELATIONAL DESCRIPTIONS AND MAPPINGS

How can a complex object or entity be described? The object or entity
has global properties such as area, height and width. It also has a set of
parts or important features. The parts each have properties of their own
and there are spatial relationships that describe their interconnections. In
order to define the process of relational matching, we need a unified context
in which to express these properties and relationships. We call this context
a relational description. A relational description is a set of relations that
together describe a complex object or entity. The relation is the basic unit
of a relational description, so we will start with relations.

2.1. Relations

Let O4 be an object or entity and A be the set of its parts or important
features. An N-ary relation R over A is a subset of the Cartesian product
AY = Ax ...x A (N times). For example, suppose that O is a chair and
its part set A consists of four legs, a back and a seat. A list of the parts is a
unary relation R; C A. A list of the pairs of parts that connect together is
a binary relation R; C Ax A. Other binary relations of interest include the
list B3 © A X A of pairs of parallel parts and the list Ry C A x A of pairs of
perpendicular parts. The set of triples of the form (p;, pz, ps) where parts

Matching Relational Structures Using Discrete Relaxation 181

p1 and p3 both connect to part p; is a fifth relation By C A x 4 x A. The
set Dy = {Ry, Ry, R3, Ry, Rs} forms a relational description of the chair.
This relational description describes only spatial relationships. Before we
add properties to make the descriptions more robust, we discuss a method
for comparing these simple relations.

2.2. Relational Homomorphisms

Let A be the part set of object O 4, and B be the part set of object Op.
Let R C A" be an N-ary relation over part set A. Let f: A — B be a
function that maps elements of set A into set B. We define the composition
Rof of R with f by

Ro f={(b1,...,bn) € B| there exists
[al,... ,aN) € R with f(a,-) =bi,1=1,... ,N)} .

Figure 1 illustrates the composition of a binary relation with a mapping.

R R o h
hil—a

2—=b

4—d

S5—e

Fig. 1. The composition of binary relation R with mapping h.

Let S C B¥ be a second N-ary relation. A relational homomorphism
from R to S is a mapping f : A — B that satisfies R of C S. That
is, when a relational homomorphism is applied to each component of an
N-tuple of R, the result is an N-tuple of 5. Figure 2 illustrates the concept
of a relational homomorphism.

A relational homomorphism maps the primitives of A to a subset of
the primitives of R having all the same inter-relationships that the original

182 Syntactic and Structural Pattern Recognition — Theory and Applications

04%0
()
© O

RohCS

Fig. 2. A relational homomorphism h from binary relation R to binary relation §.

primitives of A had. If A is a much smaller set than B, then finding a
one-one relational homomorphism is equivalent to finding a copy of a small
object as part of a larger object. Finding a chair in an office scene is an
example of such a task. If A and B are about the same size, then finding a
relational homomorphism is equivalent to determining that the two objects
are similar. A relational monomorphism is arelational homomorphism that
is one-one. Such a function maps each primitive in A to a unique primitive
in B. A monomorphism indicates a stronger match than a homomorphism.
Figure 3 illustrates a relational monomorphism.

Finally, a relational isomorphism f from an N-ary relation R to an N-ary
relation S is a one-one relational homomorphism from R to S, and f~'isa
relational homomorphism from S to R. In this case, A and B have the same
number of elements, each primitive in 4 maps to a unique primitive in B,
and every primitive in A is mapped to by some primitive of B. Also, every
tuple in R has a corresponding tuple in S, and vice versa. An isomorphism
is the strongest kind of match: a symmetric match. Figure 4 illustrates 2
relational isomorphism and Fig. 5 shows the difference between a relational
isomorphism and a relational monomorphism.

Matching Relational Structures Using Discrete Relaxarion 183

hil—a

2—b

3—e

4—d

b—e
RohC S hisl-1

Fig. 3. A relational monomorphism h from binary relation R to binary relation S. There
is a copy of Rin §.

h:l—a
2+
3—c
4—d
E—e
Roh= Sand his 1-1
or equivalently,
RohC5 Soh ™l CR andhisi-1

Fig. 4. A relational isomorphism & from binary relation R to binary relation §.

184 Syntactic and Structural Pattern Recognition — Theory and Applications

hil—a
2—b
3—¢
4—d

5—e

RokC 5 his 1-1, and h is onto.

Fig. 5. A relational monomorphism from binary relation R onto binary relation §. This
mapping A is not a relational isomorphism since A~ ! is not a relational monomorphism
from S to R.

2.3. Relational Descriptions and Relational Distance

A relational description Dx is a set of relations Dx = {Ry,... R}
where for eachi =1,, .. , I, there exists a positive integer n; with R; C X™
for some set X. X is a set of the parts of the entity being described and the
relations R; indicate various relationships among the parts. A relational
description may be used to describe an object model, a group of regions
on an image, a two-dimensional shape, a Chinese character, or anything
else having structure to it. In the spirit of the relational homomorphisms
defined in the previous section, we wish to define a distance measure for
pairs of relational descriptions.

Let Dy = {Ry,...,R;} be a relational description with part set A.
Let Dp = {S),...,5;} be a second relational description with part set B.
We will assume that |4| = |BJ; if this is not the case, we will add enough
dummy parts to the smaller set to make it the case.

Let f be any one-one, onto mapping from A to B. The structural error
of f for the 7 th pair of corresponding relations (R; and S;) in D4 and Dg
is given by

Ef(f)=lRi°f*Sil+|S;°f‘1—R;l.

The structural error indicates how many tuples in R; are not mapped by f

Matching Relational Structures Using Discrete Reluxation 185

to tuples in S; and how many tuples in S; are not mapped by f~! to tuples
in R;.

The total error of f with respect to D4 and Dpg is the sum of the
structural errors for each pair of corresponding relations. That is,

E(f) = z: ().

The total error gives a quantitative idea of the difference between the two
relational descriptions D4 and Dy with respect to the mapping f.
The relational distance between D4 and Dpg is then given by

GD(D4,Dp) = min E(f) .
f :-1;1» B
onto

That is, the relational distance is the minimal total error obtained for
any one-one, onto mapping f from A to B. In Ref. 1 we proved that the
relational distance is a metric over the space of relational descriptions. We
call a mapping f that minimizes total error a best mapping from Dy to
Dpg. If there is more than one best mapping, we arbitrarily select one as
the designated best mapping. More than one best mapping will occur when
the relational descriptions involve certain kinds of symmetries.

Ezamples

Let A ={1,2,3,4} and B = {a,b,¢,d}. Let Dy = {R; C A% R, C A%}
and Dg = {S; C B? S; C B%}. Let R, = {(1,2)(2,3)(3,4)(4,2)} and
Sy = {(a,b)(b,c)(d,b)}. Let Rz = {(1,2,3)} and S2 = {(a,b,c)}. Let f
be defined by f(1) = a, f(2) = b, f(3) = ¢, f(4) = d. These relations are
illustrated in Fig. 6. Then we have

|Ry o f — 81| = |{(a,d), (b,¢), (¢, d),(d,b)}
- {(a, b]: (b,c), (d: b)}l =1

[S10f71 = Ra| = [{(1,2),(2,3), (4,2)}
—{(1,2),(2,3),(3,4), (4,2)}| = 0,
ElNf)=1+0=1
|Rz 0 f — 82| = |{(a,b,¢)} — {(a,b,c)}[= 0
1S20 f71 = Re| = [{(1,2,3)} - {(1,2,3)}| =0,

186 Syntactic and Structural Pattern Recognition — Theory and Applications

e Y e

1 Rlof 51

79298
RZQR”@S@

Fig. 6. The relations Ri,R; of 51, Rz, Ryo fand 52. The notation M indicates a
hyperarc representing a triple.

E}(f)=0+0=0,
E(f)=E}f)+E*(f)=1.

We note that f is the best mapping and therefore GD(D4s,Dp) = 1.

For a simple but practical example, consider a set of object models
constructed from simple parts with two binary relations: the connection
relation and the parallel relation. Figure 7 illustrates a model (M1) and
two other models (M2 and M3) that are each a relational distance of 1 from
the first model. The model M4 shown in Fig. 8 is a variation of M3, but
its relational distance from M3 is 6, due to several missing relationships
induced by the additional two parts.

2.4. Attributed Relational Descriptions and Relational Distance

The relational descriptions defined in the previous section describe rela-
tionships among parts, but not properties of parts, properties of the whole,
or properties of these relationships. However, it is easy to extend both the
concept of relational description and the definition of relational distance to
include them. Intuitively, an m-tuple of attributes added to an n-tuple of
parts produces an n + m-tuple that specifies a relationship plus the prop-
erties of that relationship. If r = 1 and m > 0, each tuple lists a part and

Matching Relational Structures Using Discrete Relaxation 187

Connection “ Parallel

(1,2) (2,3)
(1,3)
M

Connection Parallel
(1,29 0
L3

M2
‘ "

Connection e Parallel
(1"1 2") (2";315’
“-fJJ'l) 2 3
(1, 4"

M3

Fig. 7. An object model M1 and two other models, M2 and M3, that are each a relational
distance of 1 from M.

its properties. If n = 0,m > 0, and the relation has only one tuple, this is
a property vector describing the global properties of the object. Formally,
the definitions change to the following.

Let X be a set of parts of object Ox and P be a set of property values.
Generally, we can assume that P is the set of real numbers. An attributed
relation over part set X with property value set P is a subset of X" x P™ for

188 Syntactic and Structural Pattern Recognition — Theory and Applications

5o Bre
Connection Parallel
(4o, 50)
(4, 61}
(1o, Su)
(1, 67)
(14, 2+)
(14, 37)

(2, 34)
(5, 64)

M4
Fig. 8. A model M4 that differs from M3 by a relational distance of 6.

gome non-negative integers n and m. An attributed relational description
Dx is a sequence of attributed relations Dy = {Ry,..., Rt} where for each
1=1,...,1, there exists a non-negative integer n;, a non-negative integer
m; (where n; +m; > 0), and a property value set P; with R; C X™ x P,
For example, a binary parts connection relation R C X? can be extended
to an attributed relation R’ C X2 x R, with R the set of real numbers,
where an attributed pair (%1, 72, a) specifies that part z; connects to part
z, at angle a.

Consider an attributed relation R C A" x P™ over some part set 4 and
property value set P. Let r € R be an n+ m-tuple having n parts followed
by m property values. Let § C B™ x P™ be a second attributed relation
over part set B and property value set P. Let f 1 A — B by a one-one,
onto mapping from A to B. We define the composition r o f of attributed
tuple r with f by

rof:{(bl,...bn,pl,... Pm) € B® x P™
there exists (ay, ... ,an,p1,... iPm)
€ R with f(a;)=b;, i=1,... ,n}.

Assume that if (by,... ,b,,pq,... Pn) € S and (by,... ,b,,q1,... v Gm)
€ 5, then p; = ¢1,...,pm = gm. That is, each n-tuple of parts has only
one m-tuple of properties. The error of a tuple ¢ = (by,... ,b0,p1,... ,0m)

Matching Relational Structures Using Discrete Relaxation 189

with respect to a relation § C B™ x P™ is given by

norm_dis((p1,--- ,2m), (915 yqm)) if (b1y.-. ,bnyq1y..- s qm)
e(t,s) = €S

1 otherwise
where norm_dis returns the Euclidean distance (or any other desired dis-
tance) between two vectors, normalized by dividing by some maximum
possible distance. Thus e(t,s) is a quantity between 0 and 1. Now we
can extend the definition of the structural error of f for the ith pair of
corresponding relations (R; and S;) to

Ei(f) = E e(ro f,8;) + Z e(so f"' Ry) .

reER; 8ES;

Total error and relational distance are defined as in Sec. 2.3.

3. ALGORITHMS FOR RELATIONAL MATCHING

In Sec. 2 we explored several ways of defining relational matching. One
can demand that two relational descriptions be isomorphic in order to say
they match, or one can be more lenient and say that there must be a
relational homomorphism from the first to the second. PFurthermore, it
may be desirable to find the best match between an unknown relational
description and a set of stored relational models. In this case, the stored
model that has the least relational distance to the unknown description is
the best match. Whether the object is to detect relational isomorphisms,
monomorphisms, or homomorphisms or to compute relational distance, the
only known algorithms that can solve arbitrary matching problems employ
a tree search. In this section we describe the standard backtracking tree
search and one of its variants, and we make some comments on parallel
algorithms. For more details and other variants, see Refs. 2-7. To simplify
the discussion, the algorithms presented will be to determine all relational
homomorphisms from a relation R to a relation S. The algorithms for
monomorphisms, isomorphisms and relational distance are straightforward
variations of the homomorphism algorithms.

3.1. Backtracking Tree Search

Let R be an N-ary relation over part set A and let S be an N-ary
relation over part set B. We will refer to the elements of set A as wnits
and the elements of set B as labels. We wish to find the set of all mappings

190 Syntactic and Structural Pattern Recognition — Theory and Applications

f: A — B that satisfy Ro f C §. Of course the set may be empty, in
which case the algorithm should fail. The backtracking tree search begins
with the first unit of A. This unit can potentially match each label in set
B. Each of these potential assignments iz a node at level 1 of the tree.
The algorithm selects one of these nodes, makes the assignment, selects
the second unit of A, and begins to construct the children of the first
node, which are nodes that map the second unit of A to each possible label
of B. At this level, some of the nodes may be ruled out because they
violate the constraint R o f C S. The process continues to level |A| of
the tree. The paths from the root node to any successful nodes at level
|A| are the relational homomorphisms. Figure 9 illustrates a portion of
the backtracking tree search for a simple digraph matching problem. The
algorithm for a backtracking tree search is as follows.

procedure treesearch (A, B, f, R, S)
a:= first (A);
for each be B
{
fl= fu {(a: b)}i
OK:= true;
for each N-tuple r in R containing component a
and whose other components are all in domain(f)
if ref' is not in S
then {OK := false; break } endif:
if OK then
{
A’ = remainder (A4);
if isempty(A’)
then output(f’)
else treesearch(A’, B, f', R, §);

}
endif

}

end treesearch;

3.2. Backtracking with Forward Checking

The backtracking tree search has exponential time complexity. Al-
though there are no known polynomial algorithms in the general case, there

Matching Relational Structures Using Discrete Relaxation 191

(,a) (L) {e) 1, d)1,e)

AN

(2,a)(2,b112,c)(2,d) (2,e) : P
X X \\ \\\
(3,a) 3,b) B,c) (3,d) 3e) (3,0) (3,5) 3,c) (3,d) (Be)

x\X\Xxxxxx

(4,a) (4,0} (4,c) (4,d) (4 e)
X X X X

.
.

Fig. 9. The backtracking treesearch to find a homomorphism from R = {(1,2), (2,3),
(3,4), (4,2)} to 8§ = {{a0), (g, b), (b d), (4 ¢), (& €)}. An “X" under a node indicates
failure. The only homomorphism found is f = {(1, a), (2, ¢), (3, b), (4, d)}.

are a number of discrete relaxation algorithms that can cut down search
time by reducing the size of the tree that is searched. Forward checking
is one such method. It is based on the idea that once a unit-label pair
(a,b) is instantiated at a node in the tree, the constraints imposed by the
relations cause instantiation of some future unit-label pairs (a’,b') to be-
come impossible. Suppose that (a,b) is instantiated high in the tree and
that the subtree beneath that node contains nodes with first components
@1,82;... ,an,a'. Although (a’,') is impossible for any instantiations of

192 Syntactic and Structural Pattern Recognition — Theory and Applications

(ay,az,...,ay,) it will be tried in every path that reaches its level in the
tree. The principle of forward checking is to rule out (a',b') at the time
that (a,b) is instantiated and keep a record of that information.

The data structure used to store the information is called a future error
table (FTAB). There is one future error table for each level of recursion in
the tree search. Each table is a2 matrix having one row for each element of
A and one column for each element of B. For any uninstantiated or future
unit o' € A and potential label &' € B, FTAB (a', ') = 1 if it is still possi-
ble to instantiate (a’,b') given the history of instantiations already made.
FTAB(a',b') = 0 if (a’,b') has already been ruled out due to some previ-
ous assignment. When a pair (a, b) is instantiated by the backtracking tree
search, an updating procedure is called to examine all pairs (d/, b’) of future
units and their possible labels. For each pair (a/, b') that is incompatible
with the assignment of (a,b) and the previous instantiations, FTAB(d',b')
has become 0. If for any future unit a’, FTAB(a’, b') becomes 0 for all labels
b" € B, then instantiation of (a, b) fails immediately. The backtracking tree
search with forward checking is as follows.

procedure forward._checking_treesearch (a, b, f, FTAB, R, S)
a := first (A);
for each be B
if (FTAB(a,b) == 1)
then
i
= fu{{a,b)};
A" := remainder(A);
if isempty(A’)
then output(f’)
else
{
NEWFTAB := copy(FTAB);
OK := update(NEWFTAB, a, b, A, B,R, S, f;
if (OK) forward_ checking_treesearch
(A',B, A NEWFTAB, R, S);
}

endif

endif

Matching Relational Structures Using Discrete Relaxation 193

procedure update(FTAB, a,b, future_units, B, R, S, 1)
update := false;
for each &' € future_units
for each b’ € B with FTAB(d/,b') == 1
if compatible(a,b,a’,b', R, S, f’
then update := true
else FTAB(a',}') := 0
endif;
end update

For binary relations R and S, the utility function compatible, which
determines whether an instantiation of (a’, ") is possible given instantiation
(a, b), is very simple. Units a and a’ only constrain one another when either
(a,a’) or (a',a) is in R. Thus, the algorithm for function compatible for
binary relations R and S is as follows.

procedure b_compatible(a,b,a’,b’, R, S,)

if ((a, ') € R and not ((,4') € §)) or
((a',a) € R and not ((¥,3) € S))

then b_compatible := false

else b_compatible := true endif:

end b_compatible;

Note that for binary functions, the last argument f' to function
b_compatible is not used, but is included here for consistency.

For N-ary relations R and S, N > 2, those N-tuples of R where a and
a’ are among the components and all other components that are already
instantiated must be examined. The code for N-ary relations R and § is
as follows:

procedure compatible(a, b, a’,b', R, S, i
= fu {(a',b')};
compatible := true;
for each r € R containing @ and a’ whose other components
are in domain (f")
ifro f" is not in 8
then { compatible := false; break} endif:
end compatible;

The binary procedure is very fast, since its time complexity is constant,

194 Syntactic and Structural Pattern Recognirion — Theory and Applications

The general procedure, if implemented ag stated here, would have to exam-
ine each N-tuple of R. For a software implementation, it would be desirable
to design the data structures for R, S, and f so that only the appropriate
N-tuples of R are tested. A hardware implementation could offer even more
flexibility.

3.3. Parallel Algorithms

To make the relational matching algorithm parallel, one needs to be
able to make the backtracking tree search parallel. It is not difficult to
understand how to parallelize the tree search in a computational network
of parallel processors®. The whole tree is given to one processor within the
network and this processor begins to work on the tree search. All processors
in the network which are not working on the tree search and therefore idle,
interrupt, in turn, all processors to which they can directly communicate.
The interrupt essentially is a message indicating “idleness” . Any processor
which is working and receives an “idleness” interrupt, takes the tree it is
working on and splits the tree into two subtrees. It keeps one subtree and
it gives the other to the interrupting processor to work on,

So long as there is some communication path, however indirect, between
every pair of processors in the network, the above approach to parallelizing
the tree search will guarantee that every processor gets some work to do
after it becomes idle. The communication overhead of passing a subtree to

corresponding labels specifies the subtree,

In so far as parallelizing the forward checking procedure, a parallel ar-
ray processor SIMD implementation can be readily formulated®. The unit
label table can be represented as a bit matrix with the labels indexing the
columns and the units indexing the rows. The updating procedure essen-
tially amounts to ORing over each row and then ANDing those results.
This kind of updating must be done for each unit-label pair.

Matching Relational Structures Using Discrete Relaxation 195

4. SUMMARY

We have introduced the concepts of relational descriptions, relational
homomorphisms and isomorphisms and relational distance. We have gen-
eralized these concepts to attributed relational descriptions and attributed
relational distance. We have given procedures for finding relational ho-
momorphisms that use discrete relaxation and operate on sequential com-
puters and briefly discussed parallel algorithms for multiprocessor systems.
We feel that the current trend toward massively parallel architectures will
produce a number of new algorithms that can rapidly solve any relational
matching problem. Such algorithms will be important in the solution of
complex vision problems.

REFERENCES

1. L.G. Shapiro and R.M. Haralick, “A metric for comparing relational descriptions”,
IEEE Trans. PAMI 7 (1986) 90-94.

2. R.M. Haralick and L.G. Shapiro, “The consistent labeling problem — Part 17, IEEE
Trans. PAMI 1 (1979) 173-184,

8. R.M. Haralick and L.G. Shapiro, “The consistent labeling problem — Part II” , IEEE
Trans. PAMI 2 (1980) 193-203.

4. A. Rosenfeld, R.A. Hummel and 5.W. Zucker, “Scene labeling by relaxation opera-
tions” , JEEE Trans. SMC June (1976) 420-433.

5. L.G. Shapiro and R.M. Haralick, “Structural descriptions and inexact matching”,
IEEFE Trans. PAMI 3 (1981) 6504-519.

6. L.G. Shapiro and R.M. Haralick, "Organization of relational models for scene anal-
ysis”, IEEE Trans. PAMI 4 (1982) 595-602.

7. L.G. Shapiro, “The use of numeric relational distance and symbolic differences for
organizing models and for matching”, in Techniques for 3D Machine Perception (North
Holland, 1986).

8. J.T. McCall, J. Tront, F. Gray, R.M. Haralick and W.M. McCormick, “The effects
of combinatorial problem parameters on the design of multi parallel architecture”,
IEEE Trans. Comput. 34 (1985) 973-980.

9. J.R. Ullman, R.M. Haralick and L.G. Shapiro, “Computer architecture for solving
consistent labeling problems”, The Computer Journal 28 (1985) 105-111.

