
B. LOW-LEVEL VISION 

UNDERLYING some approaches to computational vision and to machine 
vision are basic tasks of breaking up an image into component regions. 
This segmentation problem must be tackled before determining 3-D sur­
face characteristics or recognizing objects in the scene. A large variety 
of methods have been invented imd studied for this initial analysis task. 
The next subsection gives an overview of this subfield, expanding upon 
the description of region analysis in Article XIII.C5 in Volume III. 

Bl. Segmentation Techniques 

IN TRADITIONAL APPROACHES to computer vision, the pixels of an image 
are grouped into regions in a process called segmentation, and this is 
done prior to any attempt to interpret the regions as objects in the scene. 
A perceived advantage of computing a segmentation is that one could, 
relatively easily, achieve a relatively concise representation of the 
image's essential pictorial aspects, and that this would permit the seman­
tic phase of the analysis to be accomplished painlessly. Except in certain 
artificial environments, segmentation has proven to be difficult in itself, 
and it seems that semantic considerations are often needed at the seg­
mentation level. Nonetheless, various segmentation methods make up 
an important part of the arsenal of techniques that can be employed in 
computer vision, and they provide a good starting point for a tutorial 
overview of developments in vision. 

What should a good image segmentation be? Although this depends 
largely on the application, it can be answered in an application-indepen­
dent way to a certain extent. Let us attempt to do so. 

Regions of an image segmentation should be homogeneous-uniform 
with respect to some characteristic such as gray tone or texture. Region 
interiors should usually be simple and without many small holes. Adja­
cent regions of a segmentation should have significantly different values 
with respect to the characteristic on which they are uniform. Boundaries 
of each segment should be simple, not ragged, and must be spatially 
accurate. 

Achieving all these desired properties is difficult because strictly 
uniform and homogeneous regions are typically full of small holes and 
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have ragged boundaries. Insisting that adjacent regions have large dif­
ferences in values can cause regions that ought to be kept separated to 
merge and thus the intervening boundaries to be lost. 

Just as there is no generally accepted theory of clustering in statis­
tics, there is no well-accepted theory of image segmentation. Image seg­
mentation techniques tend to be ad hoc. They differ in the ways in which 
they emphasize one or more of the desired properties and in the ways in 
which they balance and compromise one desired property against 
another. 

Image segmentation techniques can be classified into one of the 
following groups: . 

1. Measurement-space-guided spatial clustering 

2. Single-linkage region-growing schemes 

3. Hybrid-linkage region-growing schemes 

4. Centroid-linkage region-growing schemes 

5. Spatial clustering schemes 

6. Split-and-merge schemes 

As this brief typology suggests, image segmentation can be viewed as a 
clustering process. The difference between image segmentation and clus­
tering is in grouping. In clustering, the grouping is done in measurement 
space (e.g., the space of gray values rather than the space of pixel coor­
dinate pairs). In image segmentation, the grouping is done on the spatial 
domain of the image, and there is an interplay in the clustering between 
the (possibly overlapping) groups in measurement space and the 
mutually exclusive groups of the image segmentation. 

The single-linkage region-growing schemes are the simplest and 
most prone to the unwanted region-merge errors. The hybrid-linkage 
and centroid-linkage region-growing schemes are better in this regard. 
The split-and-merge technique is not as subject to the unwanted region­
merge error. However, it suffers from large memory usage and exces­
sively blocky region boundaries. The measurement-space-guided spatial 
clustering tends to avoid both the region-merge errors and the blocky 
boundary problems because of its primary reliance on measurement 
space. But the regions produced are not smoothly bounded, and they 
often have holes, giving the effect of salt-and-pepper noise. The spatial 
clustering schemes may be better in this regard, but they have not been 
tested well enough. The hybrid-linkage schemes appear to offer the best 
compromise between having smooth boundaries and few unwanted 
region merges. 

The remainder of this section describes the main ideas behind the 
major image segmentation techniques. Additional image segmentation 
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surveys can be found in Zucker (1~76), Riseman and Arbib (1977), Kan­
ade (1980), and Fu and Mui (1981), and Haralick and Shapiro (1985). 

Measurement-space-Guided Spatial Clustering 

This technique for image segmentation uses the measurement-space 
clustering process to define a partition in measurement space (e.g., the 
space of pixel gray values of the image). Then each pixel is assigned the 
label of the cell in the measurement-space partition to which it belongs. 
The image segments are defined as the connected components of the 
pixels having the same label. 

The accuracy of image segmentation using the measurement~space 
clustering process depends directly on how well the objects of interest on 
the image separate into distinct measurement-space clusters. Typically 
the process works well in situations where there are a few kinds of 
distinct objects having widely different gray-tone intensities (or gray­
tone intensity vectors, for multiband images) and these objects appear · 
on a nearly uniform background. 

Clustering procedures that use the pixel as a unit and compare each 
pixel value with every other pixel value can require excessively large 
computation times because of the large number of pixels in an image. 
Iterative partition-rearrangement schemes such as ISODATA have to go 
through the image data set many times and if done without sampling 
can also take excessive computation time. Histogram-mode seeking, 
because it requires only one pass through the data, probably involves 
the least computation time of the measurement-space clustering tech­
niques, and it is the one we discuss here. 

Histogram-mode seeking is a measurement-space clustering process 
in which it is assumed that homogeneous objects on the image manifest 
themselves as the clusters in measurement space. Image segmentation 
is accomplished by mapping the clusters back to the image domain where 
the maximal connected components of the mapped back clusters consti­
tute the image segments. For single-band images, calculation of this 
histogram in an array is direct. The measurement-space clustering can 
be accomplished by determining the valleys in this histogram and declar­
ing the clusters to be the interval of values between valleys. A pixel 
whose value is in the ith interval is labeled with index i and the segment 
it belongs to is one of the connected components of all pixels whose label 
is i. 

Ohlander et al. (1975) refines the clustering idea in a recursive way. 
He begins by defining a mask selecting all pixels on the image. Given 
any mask, a histogram of the masked image is computed. Measurement­
space clustering enables the separation of one mode of the histogram set 
from another mode. Pixels on the image are then identified with the 
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cluster to which they belong. If there is only on~ measurement-space 
cluster, the mask is terminated. If multiple clusters are present, the 
process is repeated for each connected component (region) associated with 
each cluster. Note that one cluster may produce more than one connected 
component. During successive iterations, the next mask in the stack 
selects pixels in the histogram-computation process. Clustering is 
repeated for each new mask until the stack is empty. The process is 
illustrated in Figure B-1. 

Single-linkage Region Growing 

Single-linkage region growing schemes regard each pixel as a node 
in a graph. Neighboring pixels whose properties are "similar enough" 
are joined by an arc. The image segments are maximal sets of pixels all 
belonging to the same connected component. Single-linkage image­
segmentation schemes are attractive for their simplicity. They do, how­
ever, have a problem with chaining, because it takes only one arc leaking 
from one region to a neighboring one to cause the regions to merge. 

The simplest single-linkage scheme defines "similar enough" by pixel 
difference. Two neighboring pixels are similar enough if the absolute 
value of the difference between their gray-tone intensity values is small 
enough. Bryant (1979) defines "similar enough" by normalizing the dif­
ference by the quantity v'2 times the root-mean-square value of neigh­
boring pixel differences taken over the entire image. 

For pixels having vector values, the obvious generalization is to use 
a vector norm of the pixel-difference vector. Instead of using a Euclidean 
distance, Asano and Yokoya (1981) suggest that two pixels be joined 
together if the absolute value of their difference is small enough com­
pared to the average absolute value of the center pixel minus neighbor 
pixel for each of the neighborhoods to which the pixels belong. The ease 
with which unwanted region chaining can occur with this technique 
limits its potential on complex or noisy data. 

Hybrid-linkage Region Growing 

Hybrid single-linkage techniques are more powerful than the simple 
single-linkage technique. The hybrid techniques seek to assign a prop­
erty vector to each pixel where the property vector depends on the neigh­
borhood of the pixel. Pixels that are similar are so because their 
neighborhoods in some special sense are similar. Similarity is thus estab­
lished as a function of neighboring pixel values, and this makes the 
technique better behaved on noisy data. 

One hybrid single-linkage scheme relies on an edge operator to estab­
lish whether two pixels are joined with an arc. Here an edge operator is 
applied to the image, labeling each pixel as edge or nonedge. Neighboring 
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pixels, neither of which are edges, are· joined by- an arc. The initial 
segments are the connected components of the nonedge labeled pixels. 
The edge pixels can either be left as edges and be considered as back­
ground or they can be assigned to the spatially nearest region having a 
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Figure B-1. The recursive histogram spatial clustering 
method of Ohlander. 
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Figure B-2. Image of a bulkhead of an F-15 aircraft. 

label. Successful use of this technique may require closing edge gaps 
before performing the region growing. 

Figure B-2 illustrates an image of a section of an F-15 aircraft 
bulkhead. Figure B-3 illustrates a second directional derivative zero­
crossing operator applied to the image of Figure B-2. Figure B-4 shows 
the segmentation that results from connecting the non-edge pixels. The 
method is thus a hybrid-linkage region-growing scheme in which any 
pair of neighboring pixels, neither of which are edge pixels, can link 
together. The resulting segmentation consists of the connected compo­
nents of the nonedge pixels and where each edge pixel is assigned to its 
nearest connected component. 

Centroid-linkage Region Growing 

In centroid-linking region growing, in contrast with single-linkage 
region growing, pairs of neighboring pixels are not compared for simi­
larity. Rather, the image is scanned in some predetermined manner such 
as left to right or top to bottom. A pixel's value is compared to the mean 
of an already existing but not necessarily completed neighboring seg­
ment. If its value and the segment's mean value are close enough, the 
pixel is added to the segment and the segment's mean is updated. If more 
than one region is close enough, it is added to the closest region. However, 
if the means of the two competing regions are close enough, the two 
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Figure B-3. Directional derivative zero-crossing operator 
applied to the F-15 image. 
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regions are merged and the pixel is added to the merged region. If no 
neighboring region has its mean close enough, a new segment is estab­
lished having the given pixel's value as its first member. The scan geom­
etry for the centroid-linkage region-growing scheme is shown in Figure 
B-5. 

Keeping track of the means and scatters for all region as they are 
being determined does not require large amounts of memory space. There 
cannot be more regions active at one time than the number of pixels in 
a row of the image. Hence a hash table mechanism with the space of a 
small multiple of the number of pixels in a row can work well. 

One way of performing the region growing is by the use of the T­
test. Let R be a segment of N pixels neighboring a pixel with gray-tone 
intensity y. Define the mean X and scatter 8 2 by 

1 
X = N :2; l(r, c) 

(r,c)eR 
(1) 

and 

8 2 = :2; (J(r, c) - X)2 (2) 
(r,c)eR 
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Figure B-4. Segmentation of the F-15 image. 

Under the assumption that all the pixels in R and the test pixel y 
are independent and identically distributed normals, the statistic 

T = [(N- 1)N (y- Jt)z!sz]l/2 (3) 
(N + 1) 

has a TN-1 distribution. If Tis small enough, y is added to region Rand 
the mean and scatter are updated using y. The new mean and scatter 
are given by 

Xnew +-- (NXoid + y)/(N + 1) (4) 

and 

(5) 

If T is too high, the value y is not likely to have arisen from the 
population of pixels in R. If y is different from all of its neighboring 
regions, it begins its own region. A slightly stricter linking criterion can 
require that not only must y be close enough to the mean of the neigh­
boring regions, but also that a neighboring pixel in that region must 
have a close enough value to y. This combines a centroid linkage and 
single linkage criterion. 

The Levine and Shaheen scheme (1981) is similar. The difference is 
that Levine and Shaheen attempt to keep regions more homogeneous 
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Figure B-5. Region-growing geometry for the one-pass scan, 
left-right, top-bottom region growing. 
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and try to keep the region scatter from getting too high. They do this by 
requiring the differences to be more significant before a merge takes 
place if the region scatter is high. For a user-specified value e, -they 
define a test statistic T where 

T = I.Y - Xnewl - (1 - S/Xnew)6 (6) 

If T < 0 for the neighboring region R in which I.Y - XJ is the smallest, y 
is added toR. If T > 0 for the neighboring region in which i.Y- XJ is the 
smallest, y begins a new region. 

Figure B-6 illustrates the application of the centroid-linkage region­
growing technique to the bulkhead image. This application uses two 
successive scans of the image. The first is a left-right top-down scan, and 
the second is a right-left bottom-top scan. 

Hybrid-linkage Combination Techniques 

The centroid-linkage and the hybrid-linkage methods can be com­
bined in a way that takes advantage of their relative strengths. The 
strength of the single-linkage method is that boundaries are placed in a 
spatially accurate way. Its weakness is that edge gaps result in excessive 
merging. The strength of the centroid-linkage method is its ability to 
place boundaries in weak-gradient areas. It can do this because it does 
not depend on a large difference between the pixel and its neighbor to 
declare a boundary. It depends instead on a large difference between the 
pixel and the mean of the neighboring region to declare a boundary. 
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Figure B-6. The two-pass top-down centroid segmentation of 
the bulkhead image. 

The combined centroid-hybrid linkage technique does the obvious 
thing. Centroid linkage is only done for nonedge pixels; that is, region 
growing is not permitted across edge pixels. Saying it another way, edge 
pixels are not permitted to be assigned to any region and cannot link to 
any region. Thus, if the parameters of centroid linkage were set so that 
any difference, however large, between pixel value and region mean was 
considered small enough to permit merging, the two-pass hybrid com­
bination technique would produce a connected components of the nonedge 
pixels. As the difference criterion is made more strict, the centroid link­
age produces boundaries in addition to those produced by the edges. 
Figure B-7 illustrates the application of the hybrid-linkage technique 
to the bulkhead image. 

Split-and-Merge 

The split-and-merge method for segmentation begins with the entire 
image as the initial segment. Then it successively splits each of its 
current segments into quarters if the segment is not homogeneous 
enough. Homogeneity can be easily established by determining if the 
difference between the largest and smallest gray-tone intensities is small 
enough. Algorithms of this type were first suggested by Robertson (1973) 
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Figure B-7. Segmentation using the one-pass combined 
centroid and hybrid linkage method. 
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and Klinger (1973). Kettig and Landgrebe (1975) try to split all nonuni­
form 2 x 2 neighborhoods before beginning the region merging. Fukada 
(1980) suggests successively splitting a region into quarters until the 
sample variance is small enough. The efficiency of the split-and-merge 
method can be increased by arbitrarily partitioning the image into 
square regions of a user-selected size and then splitting these further if 
they are not homogeneous. 

Because segments are successively divided into quarters, the bound­
aries produced by the split technique tend to be squarish and slightly 
artificial. Sometimes adjacent quarters coming from adjacent split seg­
ments need to be joined rather than remain separate. Horowitz and 
Pavlidis (1976) suggest a split-and-merge strategy to take care of this 
problem. Muerle and Allen (1968) suggest merging a pair of adjacent 
regions if their gray-tone intensity distributions are similar enough. 
They recommend the Kolmogorov-Smirnov test. 

Chen and Pavlidis (1980) suggest using statistical tests for uniform­
ity rather than a simple examination of the difference between the 
largest and smallest gray-tone intensities in the region under consider­
ation for splitting. The uniformity test requires that there be no signif­
icant difference between the mean of the region and each of its quarters. 
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The Chen and Pavlidis tests assume that the variances are equal and 
known. 

Let each quarter have K pixels, Xii be the jth pixel in the ith region, 
X; be the mean of the ith quarter, and X .. be the grand mean of all the 
pixels in the four quarters. Then, for a region to be considered homoge­
neous, Chen and Pavlidis require that 

jX; - x .. 1 s: e, i = 1, 2, 3, 4 (7) 

We give here the F-test for testing the hypothesis that the mean and 
variances of the quarters are identical. The value of variance is not 
assumed known. If we assume that the regions are independent and 
identically distributed normals, the optimal test is given by the statistic 
F, which is defined by 

F _ K ~t=l(X;. - X .. )2/3 
- ~t=l ~f=l(X;k - Xd14(K - 1) 

(8) 

It has a Fa,4<K-ll distribution. IfF is too high, the region is declared not 
uniform. 

The data structures required to do a split-and-merge on images larger 
than 512 x 512 are very large. Execution of the algorithm on virtual­
memory computers results in so much paging that the dominant activity 
may be paging rather than segmentation. Browning and Tanimoto (1982) 
describe a split-and-merge scheme where the split-and-merge is first 
accomplished on mutually exclusive subimage blocks and the resulting 
segments are then merged between adjacent blocks to take care of the 
artificial block boundaries. 

B2. Edges 

IF AN IMAGE is successfully segmented into regions, the contours of the 
regions are available for shape analysis. However, it is sometimes more 
expedient to compute the contours directly from the image, rather than 
to go through one of the previously described segmentation processes. To 
compute contours directly from the image, "edge detection" must be 
performed. This subsection discusses the important characteristics of 
edges. Edge detection continues to be a subject of intense research. Ele­
mentary methods for edge detection, including the Roberts cross operator 
and the Sobel operator, are described in Article XIII.C4, Vol. III. 

The Difficulties of Finding the Contours of Objects in an Image 

What is an edge in a digital image? The first intuitive notion is that 
a digital edge occurs on the boundary between two pixels when the 
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respective brightness values of the two pixels are significantly different. 
"Significantly different" may depend on the distribution of brightness 
values around each of the pixels. 

We often point to a region on an image and say this region is brighter 
than its surrounding area, meaning that the mean of the brightness 
values of pixels inside the region is greater than the mean of the bright­
ness values outside the region. Having noticed this, we would then say 
that an edge exists between each pair of neighboring pixels where one 
pixel is inside the region and the other is outside the region. Such edges 
are referred to as step edges. 

Step edges are not the only kind of edge. If we scan through a region 
left to right observing the brightness values steadily increasing, and 
then after a certain point we observe that the brightness values are 
steadily decreasing, we are likely to say that there is an edge at the 
point of change from increasing to decreasing brightness values. Such 
edges are called roof edges. 

Thus, in general, an edge is a place in an image where there appears 
to be a jump in brightness value or a jump in brightness value derivative. · 

In some sense, this summary statement about edges is quite reveal­
ing because in a discrete array of brightness values there are jumps (in 
the literal sense) between neighboring brightness values if the bright­
ness values are different, even if only slightly different. Perhaps more 
to the heart of the matter, there exists no definition of derivative for a 
discrete array of brightness values. The only way to interpret jumps in 
value and jumps in derivatives when referring to a discrete array of 
values is to assume that the discrete array of values comes about as 
some kind of sampling of a real-valued function defined on a bounded 
and connected subset ofthe real planeR2

• The jumps in value andjumps 
in derivative really must refer to points of discontinuity off and to points 
of discontinuity in the partial derivatives of f. 

Edge finders should then regard the digital picture function as a 
sampling of the underlying function f, where some kind of random noise 
has been added to the true function values. To do this, the edge finder 
must assume some kind of parametric form for the underlying function 
{, use the sampled brightness values of the digital picture function to 
estimate the parameters, and finally make decisions regarding the loca­
tions of discontinuities of the underlying function and its partial deriv­
atives based on the estimated values of the parameters. 

Of course, it is impossible to determine the true locations of discon­
tinuities in value or derivatives based on samplings of the functions. The 
locations are estimated by function approximation. The location of the 
estimated discontinuity will be where the first derivative has a relative 
maximum. This is where the second derivative will have a negatively 
shaped zero-crossing if the edge is being crossed from low value to high 
value. Sharp discontinuities will reveal themselves in high values for 
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estimates of first partial derivatives. Sharp discontinuities in derivative 
will reveal themselves in high values for estimates of the second partial 
derivatives. This means that the best we can do is to assume that the 
first and second derivatives of any possible underlying image function 
have known bounds. Therefore any estimated first- or second-order par­
tials that exceed these known bounds must be due to discontinuities in 
value of the underlying function. The location of the estimated discon­
tinuity in derivative will be where the second derivative has a relative 
extremum and this will be where the third derivative has an appropri­
ately shaped zero-crossing. 

Recent Developments 

Marr and Hildreth (1980) used for the second derivative the isotropic 
Laplacian. Haralick (1984) and Canny (1986) used, for the second deriv­
ative, the second directional derivative taken in a direction that extrem­
izes the first directional derivative. The implementation of each of these 
zero-crossing edge operators is quite different. 

Since the differentiation of a sampled signal is, properly speaking, 
an ill-posed problem, it has been proposed that edge detection be per­
formed by first filtering the image (or "regularizing" it) and then differ­
entiating it. A mathematical problem is well-posed in the sense of 
Hadamard, provided its solution exists, is unique, and depends contin­
uously on the given data. Regularization refers to the transformation of 
an ill-posed problem into a well-posed one. Standard methods of regu­
larization have been developed-see, for example, Tikhonov and Arsenin 
(1977)-and applied in edge detection. Details may be found in Torre 
and Poggio (1986). A good overview of edge detection, including a dis­
cussion of regularization, may be found in Hildreth (1987). 

B3. Stereo 

Overview 

The objective in many computer vision problems is to reconstruct a 
three-dimensional surface representation of a scene from the image infor­
mation output by cameras. Video cameras provide only 2-D images, and 
stereo methods must be used to obtain depth information. The use of two 
(or more) images of the same scene, taken from different positions, can 
permit the determination of depth using parallax-the analysis of each 
triangle formed by some notable surface point in the scene and the two 
camera viewpoints. With two such images, the method of depth deter­
mination is called binocular stereo. With three, it is trinocular stereo. 
With more, it is sometimes called multiple-image stereo. For an intro-



B Low-level Vision 537 

duction to binocular stereo, see Article XIII.D3, or see Barnard and 
Fischler (1987). When the scene is static but a sequence of images is 
taken from a moving viewpoint, motion stereo may be used to establish 
3-D information. 

The usual sequence of steps needed in binocular stereo is as follows: 

1. Input images either from two cameras or from one camera at two 
different times and positions. 

2. Determine camera parameters-position, orientation, focal length, 
and so on. 

3. Detect/select feature points in the images that are candidates for 
matching (e.g., edge points). 

4. Match feature points by constructing a correspondence between fea­
ture points of the two images. 

5. Compute depth values at the locations of the matched feature points. 

6. Interpolate depth values at all or many of the points in the image 
that are not locations of matched f~ature points. 

Feature Point Detection/Selection 

With a simple camera geometry we may assume that the two images 
of a point in the scene have a positional disparity along the x-axis of the 
image but not along the y-axis. To determine this disparity, using fea­
ture-based or edge-based stereo, the points must be detected in each 
image and then put into correspondence. Generally speaking, only cer­
tain points in the image are capable of being matched directly; these are 
prominent locations in the image that are easily distinguished from 
neighboring points. In most cases the feature points can be obtained 
using edge-detection methods. 

A popular method for finding feature points for stereo matching 
requires that the Laplacian operator be applied to the image (see Volume 
3, p. 211-212). Then the zero-crossing contours of the resulting image 
are identified. The points on the zero-crossing contours are taken as the 
feature points. Since the digital images have a limited number of scan 
lines, the number of zero-crossing points is generally manageable. 

Because the disparities occur in the x direction, it is usually sufficient 
to perform the differentiation (or apply the Laplacian) in one dimension, 
along each scan line of the image. This is computationally inexpensive 
in comparison with two-dimensional Laplacians. 

If general camera geometries are used, the feature points must be 
distinguishable in both the x andy directions. Although the detection of 
these points is therefore more computationally expensive, the resulting 
number of points is usually less than for one-dimensional analysis, and 
this can speed up the matching process. Scene points that generate good 
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feature points with distinction in both dimensions are corners (vertices) 
of polyhedra and bright spots and corners of 2-D patterns painted on the 
surfaces of objects in the scene. 

It is also possible to match areas rather than features. In area-based 
matching, correspondences are typically established using cross-corre­
lation. This tends to be computationally more expensive and also less 
accurate than feature-based or edge-based matching. However, area­
based stereo can be more robust in cases of noisy images or images with 
poorly defined edges. 

Matching. Although matching for stereo is similar in spirit to 
model matching for object recognition, it is also somewhat different. In 
the case of horizontally constrained displacement, we have a collection 
of one-dimensional matching problems, one for each scan line. We can 
expect the disparity function along the scan line to exhibit some coher­
ence as we move to each successive scan line, as well as along the line. 
Therefore the solutions to each 1-D matching problem are not completely 
independent. 

Some of the approaches to matching are as follows: 

1. Coarse-to-fine (see Marr and Poggio, 1977; and Grimson, 1985) 

2. Dynamic programming (see Baker and Binford, 1981) 

3. Energy minimization (see Direct Matching with Simulated Anneal­
ing, described below) 

4. Ad hoc correspondence building 

Interpolating Depth Values. The problem of obtaining a full set 
of depth values from the sparse set obtained from feature-based stereo 
can be solved with interpolation. However, this interpolation should 
satisfy both smoothness on surfaces and maintain sudden depth changes 
at surface boundaries. In the case of natural terrain, quadratic surface 
fitting may be appropriate (see Smith, 1984): For rapid interpolation 
subject to smoothness constraints, multigrid methods may be used (see 
Section D). 

Direct Matching with Simulated Annealing. A method of match­
ing a stereo pair of images using simulated annealing has been proposed 
by Barnard (1987). This is an area-based rather than a feature-based 
approach. An energy measure E is to be minimized through the adjust­
ment of disparity values DiJ: 

I = ~ (jMijl + >-IVDijl) 
<,J 

where M.ii = IL(i,j) - IR(i,j + Dii); h and IR are the left- and right­
image intensity values; and Dii is the disparity value for location (i,j). 
This measures the difference in intensity between each two matched 
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points as well as the unsmoothness of the disparity function. If both of 
these terms are zero, the two images match perfectly, except for a trans­
lation, and the scene must be flat. 

Starting from an initial high-energy state, the disparity values are 
adjusted stochastically according to the Metropolis algorithm (see page 
576) or with an alternative method proposed by Barnard. 

Nonbinocular Methods. Trinocular stereo employs three images 
of a scene to obtain 3-D surface data. The third image, taken from a 
viewpoint not colinear with the other two, greatly reduces the number 
of incorrect matches and it can increase the accuracy of the resulting 
depth information. A method that permits the three cameras to be in 
arbitrary positions is described by Ayache and Lustman (1987). One that 
requires the viewpoints to form a right triangle is given by Ohta et al. 
(1986). Others are given by Yachida et al. (1986), Ito and Ishii (1986), 
and Pietikainen and Harwood (1986). The number of viewpoints need 
not be limited to three. Multiple-image stereo allows additional improve­
ments in accuracy at the expense of higher computational cost (see 
Yachida, 1985). 

In addition to binocular, trinocular, and multiple-image stereo, sur­
face orientation may be computed using two images from the same 
viewpoint, but taken under illumination by a light source in two different 
positions. This method is called photometric stereo and is described briefly 
in the Overview to Chapter XIII in Volume III of the Handbook. The 
change in shading at a surface point from one image to the other gives 
an indication of the surface gradient at that point. Such methods are 
described in Woodham (1980). 

B4. Mathematical Morphology for Image Analysis 

A CLASS OF TECHNIQUES called mathematical morphology has found a 
variety of applications in industrial machine vision. This section presents 
the primary operations of mathematical morphology: dilation, erosion, 
opening, and closing. In addition to their definitions, some properties of 
these operations are also given. 

The mathematical morphology approach to the processing of digital 
images is based on shape. Appropriately used, these techniques can 
simplify image data, preserving essential shape characteristics and elim­
inating irrelevancies. Since the identification of objects, features, and 
manufacturing defects depend closely on shape, this approach is natural 
for such tasks. 

Although the techniques are being used in the industrial world, the 
basis and theory of binary morphology are not covered in many texts or 
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monographs. Exceptions are the highly mathematical books by Matheron 
(1975) and Serra (1982). 

The language of mathematical morphology is that of set theory. Sets 
in mathematical morphology represent the shapes that are manifested 
on binary or gray-tone images. The set of all the black pixels in a black 
and white image (a binary image) constitutes a complete description of 
the binary image. Sets in two-dimensional Euclidean space are repre­
sented by foreground regions in binary images. Sets in three-dimensional 
Euclidean space may actually represent time-varying binary imagery or 
static gray-scale imagery as well as binary solids. Sets in higher dimen­
sional spaces may incorporate additional image information such as 
color, or multiple perspective imagery. Mathematical morphology trans­
formations apply to sets of any dimensions, including those in Euclidean 
N-space and its discrete or digitized equivalents, the set of N-tuples of 
integers, zN. For the sake of simplicity we will refer to either of these 
sets as~. 

Those points in a set being morphologically transformed are consid­
ered as the selected set of points, and those in the complement set are 
considered as not selected. Hence, morphology from this point of view is 
binary morphology. We begin our discussion with the morphological oper­
ation of dilation. 

Dilation 

Dilation is a morphological transformation that combines two sets using 
vector addition of set elements. If A and B are sets in N-space (~) with 
elements a and b, respectively, a = (a1, ... , aN) and b = (b1, ... , bN) being 
N-tuples of element coordinates, then the dilation of A by B is the set of 
all possible vector sums of pairs of elements, one coming from A and one 
coming from B. Denoting dilation by EB, 

A EB B = {c E ~ I c = a + b for some a E A and b E B} 

Dilation as a set theoretic operation was proposed by Minkowski 
(1903) to characterize integral measures of certain_ open (sparse) sets. 
Dilation as an image-processing operation was employed by several early 
investigators in image processing as smoothing operations: Unger (1958), 
Golay (1969), and Preston (1961, 1973). Dilation as an image operator 
for shape extraction and estimation of image parameters was explored 
by Matheron (1975) and Serra (1972). 

Mathematically the roles of the sets A and B are symmetric; the 
dilation operation is commutative because addition is commutative. 
Hence A EBB = B EB A. In practice, A and B are handled quite differently. 
The first operand is considered to be the image undergoing analysis, 
whereas the second operand, referred to as the structuring element, is 
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thought of as constituting a single shape parameter of the dilation trans­
formation. 

Dilation of a set by a structuring element in the shape of a disk 
results in an isotropic swelling or expansion of the set. (Approximating 
the disk by a small square, 3 x 3, the expansion can be implemented as 
a neighborhood operation on a mesh architecture or pipelined image­
processing architecture.) Some sample dilation transformations are illus­
trated in Figures B-8 and B-9. In Figure B-8, the upper left is the input 
image consisting of a cross. The lower right shows an octagonal struc­
turing element. The upper right shows the input image dilated by the 
octagonal structuring element. In Figure B-9, the upper left contains 
the input image consisting of two objects. The upper right shows the 
input image dilated by the structuring element {(0, 0), (14, 0)}. The lower 
left shows the input image dilated by the structuring element {(0, 0), 
(0, 14)}. The lower right shows the input image dilated by the structuring 
element {(0, 0), (14, 0), (0, 14)}. This example illustrates that dilation 
can be viewed as the replication of a pattern. In actual use, the replicated 
copies of the pattern usually overlap, as in Figure B-8. 

Since addition is associative, the dilation of an image A by a struc­
turing element D, which is itself a dilation D = B EB C, can be computed 
as 

A EB D = A EB (B EB C) = (A EB B) EB C 

r __[ 
1 1 1 

1 1 1 1 1 

1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 

1 1 1 1 

r 1 1 

1 1 1 1 

1 1 1 1 

1 1 

Figure B-8. Dilation by an octagonal structuring element. 
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Figure B-9. Dilation with an additional structuring element. 

That is, dilation is associative. The form (A EBB) EB C gives a considerable 
savings in number of operations to be performed when A is the image 
and B EB C is the structuring element. The savings come about because 
a brute force dilation by B EB C might take as many as ~ operations, 
whereas first dilating A by B and then dilating the result by C could 
take as few as 2N operations, where N is the number of elements in B 
and in C. 

The dilation of A by B can be computed as the union of translations 
of A by the elements of B. That is, 

A EBB= U (A)b 
bEB 

Erosion 

Erosion is the morphological dual to dilation. It is normally used to 
eliminate small protrusions on a shape or islands in an image. It can 
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widen cracks and holes. Erosion combines two sets using vector subtrac­
tion of set elements. If A and B are sets in Euclidean N-space, the erosion 
of A by B is the set of all elements x for which x + b E A for every 
b EB. 

Let us denote the erosion of A by B as A 8 B. Erosion is thus defined 
by 

A e B = {x E EN I X + b E A for every b E B} 

The utility of the erosion transformation is better appreciated when 
the erosion is expressed in a different form (that given by Matheron, 
1975). The erosion of an image A by a structuring element B is the set 
of all elements x of EN for which B translated to xis contained in A. 

A e B = {x E EN I (B)x k A} 

Erosion is illustrated in Figure B-10. The upper left shows the input 
image consisting of two blobs. The upper right shows the input image 
eroded by the structuring element 

Figure B-10. Erosion of an image of two blobs. 
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{(0, 0), ( -14, 0)} 

The lower left shows the input image eroded by the structuring element 

{(0, 0), (0, -14)} 

The lower right shows the input image eroded by the structuring element 

{(0, 0), (0, -14), ( -14, 0)} 

Openings and Closings 

In practice, dilations and erosions are usually employed in pairs, either 
dilation of an image followed by the erosion of the dilated result or image 
erosion followed by dilation. In either case, the result of iteratively 
applied dilations and erosions is an elimination of specific image detail 
smaller than the structuring element without the global geometric dis­
tortion of unsuppressed features. The opening of image B by structuring 
element K is denoted by B o K and is defined as B o K = (B 8 K) EB K. 
The closing of image B by structuring element K is denoted by B • K 
and is defined by B • K = (B EEl K) 8 K. 

For example, opening an image with a disk-shaped structuring ele­
ment smooths the contour, breaks narrow isthmuses, and eliminates 
small islands and sharp peaks or capes. Closing an image with a disk­
structuring element smooths the contours, fuses narrow breaks and long 
thin gulfs, eliminates small holes, and fills gaps on the contours. 

Of particular significance is the fact that image transformations 
employing iteratively applied dilations and erosions are idempotent, that 
is, their reapplication effects no further changes to the previously trans­
formed result. The practical importance of idempotent transformations 
is that they comprise complete and closed stages of image analysis algo­
rithms because shapes can be naturally described in terms of under what 
structuring elements they can be opened or can be closed and yet remain 
the same. 

If B is unchanged by opening it with K, we say that B is open with 
respect to K, whereas if B is unchanged by closing it with K, then B is 
closed with respect to K. 

Sets that can be expressed as some set dilated by K are necessarily 
open under K. 

AEBK=(AEBK)oK 

Similarly, images that have been eroded by K are necessarily closed 
underK. 

A 8K =(A 8K) •K 
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From these two facts, the idem potency of opening and closing follows. 
Openings and closings have other properties. For example, it follows 
immediately from the increasing p;roperty of dilation and the increasing 
property of erosion that both opening and closing are increasing. 

There is a nice geometric characterization to the opening operation. 
This characterization justifies why mathematical morphology provides 
material for extracting shape information from image data. The opening 
of A by B is the union of all translations of B that are contained in A. 

Discussion 

Dilation, erosion, opening, and closing can be used as the basis of 
image algebras. These algebras allow the definition of shape transfor­
mations that are customized for particular applications. A sequence of 
these operations, with suitable structuring elements, can be used to 
identify gear teeth in images of gears, or holes of particular sizes in 
images of machine parts. These techniques have been successfully 
applied to the problem of visually detecting shorts and open circuits in 
the wiring of printed circuit boards. This is illustrated schematically in 
Figure B-11. 

Opening removes small protmsions, isthmuses and islands. Closing 
removes small cracks, bays, and holes. Taking the exclusive-OR of the 
resulting image with the original gives an image in which only potential 
defects remain. The original binary image is shown in the upper left. 
The result after erosion is in the upper center. After dilating that image, 
the result in the upper right is obtained. A second step of dilation takes 
us to the result in the lower left, and then another erosion takes us to 
the lower center. Exclusive-ORing this with the original produces the 
image of the isolated defects, shown in the lower right. 

These operations can be efficiently computed with appropriate hard­
ware. An entire session of the 1985 IEEE Computer Society Workshop 
on Computer Architecture for Pattern Analysis and Image Database 
Management was devoted to computer architecture specialized to per­
form morphological operations. Papers included those by McCubbrey and 
Lougheed (1985), Wilson (1985), Kimmel, Jaffe, Manderville, and Lavin 
(1985), Leonard (1985), Pratt (1985), and Haralick (1985). Gerritsen and 
Verbeek (1984) show how convolution followed by a table lookup opera­
tion can accomplish binary morphology operations. 

Mathematical morphology is being extended to encompass more and 
more general classes of operators. Gray-scale extensions have been stud­
ied. Efforts have been made to cast morphology operations into a digital 
signal processing framework. A tutorial article presenting many more 
of the details of mathematical morphology is the paper by Haralick, 
Sternberg, and Zhuang (1987). 
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Figure B-11. Application of opening and closing to PC board 

inspection. 
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