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Image Texture Survey*

Robert M. Haralick

1. Introduction

Texture is an important characteristic for the analysis of many types of images.
- It can be seen in all images from multi-spectral scanner images obtained from
aircraft or satellite platforms (which the remote sensing community analyzes) to
microscopic images of cell cultures or tissue samples (which the bio-medical
community analyzes). Despite its important and ubiquity in image data, a formal
approach or precise definition of texture does not exist. The texture discrimina-
tion techniques are, for the most part, ad-hoc. In this paper we survey, unify, and
generalize some of the extraction techniques and models which investigators have
been using to measure textural properties.

The image texture we consider is non-figurative and cellular. We think of this
kind of texture as an organized area phenomenon. When it is decomposable, it
has two basic dimensions on which it may be described. The first dimension is for
describing the primitives out of which the image texture is composed, and the
second dimension is for the description of the spatial dependence or interaction
between the primitives of an image texture. The first dimension is concerned with
tonal primitives or local properties, and the second dimension is concerned with
the spatial organization of the tonal primitives.

Tonal primitives are regions with tonal properties. The tonal primitive can be
described in terms such as the average tone, or maximum and minimum tone of
its region. The region is a maximally connected set of pixels having a given tonal
property. The tonal region can be evaluated in terms of its area and shape. The
tonal primitive includes both its gray tone and tonal region properties.

An image texture is described by the number and types of its primitives and the
spatial organization or layout of its primitives. The spatial organization may be
random, may have a pairwise dependence of one primitive on a neighboring
primitive, or may have a dependence of n primitives at a time. The dependence
may be structural, probabilistic, or functional (like a linear dependence).

To characterize texture, we must characterize the tonal primitive properties as
well as characterize the spatial inter-relationships between them. This implies that
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texture-tone is really a two-layered structure, the first layer having to do with
specifying the local properties which manifest themselves in tonal primitives and
the second layer having to do with specifying the organization among the tonal
primitives. We, therefore, would expect that methods designed to characterize
texture would have parts devoted to analyzing each of these aspects of texture. In
the review of the work done to date, we will discover that each of the existing
methods tends to emphasize one or the other aspect and tends not to treat each
aspect equally.

2. Review of the literature on texture models

There have been eight statistical approaches to the measurement and char-
acterization of image texture: autocorrelation functions, optical transforms, dig-
ital transforms, textural edgeness, structural elements, spatial gray tone co-
occurrence probabilities, gray tone run lengths, and auto-regressive models. An
early review of some of these approaches is given by Hawkins (1970). The first
three of these approaches are related in that they all measure spatial frequency
directly or indirectly. Spatial frequency is related to texture because fine textures
are rich in high spatial frequencies while coarse textures are rich in low spatial
frequencies.

An alternative to viewing texture as spatial frequency distribution is to view
texture as amount of edge per unit area. Coarse textures have a small number of
edges per unit area. Fine textures have a high number of edges per unit area.

The structural element approach of Serra (1974) and Matheron (1967) uses a
matching procedure to detect the spatial regularity of shapes called structural
elements in a binary image. When the structural elements themselves are single
resolution cells, the information provided by this approach is the autocorrelation
function of the binary image. By using larger and more complex shapes, a more
generalized autocorrelation can be computed.

The gray tone spatial dependence approach characterizes texture by the co-
occurrence of its gray tones. Coarse textures are those for which the distribution
changes only slightly with distance and fine textures are those for which the
distribution changes rapidly with distance.

The gray level run length approach characterizes coarse textures as having
many pixels in a constant gray tone run and fine textures as having few pixels in a
constant gray tone run.

The auto-regressive model is a way to use linear estimates of a pixel’s gray tone
given the gray tones in a neighborhood containing it in order to characterize
texture. For coarse textures, the coefficients will all be similar. For fine textures,
the coefficients will have wide variation.

The power of the spatial frequency approach to texture is the familiarity we
have with these concepts. However, one of the inherent problems is in regard to
gray tone calibration of the image. The procedures are not invariant under even a
linear translation of gray tone. To compensate for this, probability quantizing can
be employed. But the price paid for the invariance of the quantized images under.
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monotonic gray tone transformations is the resulting loss of gray tone precision in
the quantized image. Weszka, Dyer and Rosenfeld (1976) compare the effective-
ness of some of these techniques for terrain classification. They conclude that
spatial frequency approaches perform significantly poorer than the other ap-
proaches.

The power of the structural element approach is that it emphasizes the shape
aspects of the tonal primitives. Its weakness is that it can only do so for binary
images.

The power of the co-occurrence approach is that it characterizes the spatial
inter-relationships of the gray tones in a textural pattern and can do so in a way
that is invariant under monotonic gray tone transformations. Its weakness is that
it does not capture the shape aspects of the tonal primitives. Hence, it is not likely
to work well for textures composed of large-area primitives.

The power of the auto-regressive linear estimator approach is that it is easy to
use the estimator in a mode which synthesizes textures from any initially given
linear estimator. In this sense, the auto-regressive approach is sufficient to capture
everything about a texture. Its weakness is that the texture it can characterize are

likely to consist mostly of micro-textures.

2.1.  The autocorrelation function and texture

From one point of view, texture relates to the spatial size of the tonal primitives
on an image. Tonal primitives of larger size are indicative of coarser textures;
tonal primitives of smaller size are indicative of finer textures. The autocorrela-
tion function is a feature which tells about the size of the tonal primitives.

We describe the autocorrelation function with the help of a thought experi-
ment. Consider two image transparencies which are exact copies of one another.
Overlay one transparency on top of the other and with a uniform source of light,
measure the average light transmitted through the double transparency. Now
translate one transparency relative to the other and measure only the average light
transmitted through the portion of the image where one transparency overlaps the
other. A graph of these measurements as a function of the (x, y) translated
positions and normalized with respect to the (0,0) translation depicts the two-
dimensional autocorrelation function of the image transparency.

Let I(u, v) denote the transmission of an image transparency at position (u, v).
We assume that outside some bounded rectangular region 0<u<L _and 0<v<
L, the image transmission is zero. Let (x, y) denote the x-translation and
y-translation, respectively. The autocorrelation function for the image trans-

parency d is formally defined by
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If the tonal primitives on the image are relatively large, then the autocorrelation
will drop off slowly with distance. If the tonal primitives are small, then the
autocorrelation will drop off quickly with distance. To the extent that the tonal
primitives are spatially periodic, the autocorrelation function will drop off and
rise again in a periodic manner. The relationship between the autocorrelation
function and the power spectral density function is well known: they are Fourier
transforms of one another (Yaglom, 1962).

The tonal primitive in the autocorrelation model is the gray tone. The spatial
organization is characterized by the correlation coefficient which is a measure of
the linear dependence one pixel has on another.

An experiment was carried out by Kaizer (1955) to see of the autocorrelation
function had any relationship to the texture which photointerpreters see in
images. He used a series of seven aerial photographs of an Arctic region and
determined the autocorrelation function of the images with a spatial correlator
which worked in a manner similar to the one envisioned in our thought experi-
ment. Kaizer assumed the autocorrelation function was circularly symmetric and
computed in only as a function of radial distance. Then for each image, he found
the distance d such that the autocorrelation function p at d took the value
1/e;p(d)=1/e.

Kaizer then asked 20 subjects to rank the seven images on a scale from fine
detail to coarse detail. He correlated the rankings with the distances correspond-
ing to the (1/e)th value of the autocorrelation function. He found a correlation
coefficient of 0.99. This established that at least for his data set, the autocorrela-
tion function and the subjects were measuring the same kind of textural features.

Kaizer noticed, however, that even though there was a high degree of correla-
tion between p~'(1 /e) and subject rankings, some subjects put first what p~ (1 /e)
put fifth. Upon further investigation, he discovered that a relatively flat back-
ground (indicative of high frequency or fine texture) can be interpreted as a fine
textured or coarse textured area. This phenomena is not unusual and actually
points out a fundamental characteristic of texture: it cannot be analyzed without
a reference frame of tonal primitive being stated or implied. For any smooth gray
tone surface there exists a scale such that when the surface is examined, it has no
texture. Then as resolution increases, it takes on a fine texture and then a coarse
texture. In Kaizer’s situation, the resolution of his spatial correlator was not good
enough to pick up the fine texture which some of his subjects did in an area which
had a weak but fine texture.

2.2.  Orthogonal transformations

Spatial frequency characteristics of two-dimensional images can be expressed
by the autocorrelation function or by the power spectra of those images. Both
may be calculated digitally and /or implemented in a real-time optical system.

Lendaris and Stanley (1969, 1970) used optical techniques to perform texture
analysis on a data base of low altitude photographs. They illuminated small
circular sections of those images and used the Fraunhoffer diffraction pattern to
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generate features for identifying photographic regions. The major discriminations
of concern to these investigators were those of man-made versus natural scenes.
The man-made category was further subdivided into roads, intersections of roads,
buildings and orchards.

Feature vectors extracted from these diffraction patterns consisted of forty
components. Twenty of the components were mean energy levels in concentric
annular rings of the diffraction pattern and the other twenty components were
mean energy levels in 9°-wedges of the diffraction pattern. Greater than 90%
classification accuracy was reported using this technique.

Cutrona, Leith, Palermo and Porcello (1969) present a review of optical
processing methods for computing the Fourier transform. Goodman (1968),
Preston (1972) and Shulman (1970) also present in their books comprehensive
reviews of Fourier optics. Swanlund (1971) discusses the hardware specifications
for a system using optical techniques to perform texture analysis.

Gramenopolous (1973) used a digital Fourier transform technique to analyze
aerial images. He examined subimages of 32X 32 pixels and determined that for
an (ERTS) image over Phoenix, spatial frequencies between 3.5 and 5.9 cycles /km
contained most of the information required to discriminate among terrain types.
An overall classification accuracy of 87% was achieved using image categories of
clouds, water desert, farms, mountain, urban, river bed and cloud shadows.
Horning and Smith (1973) used a similar approach to interpret aerial multispec-
tral scanner imagery.

Bajscy (1972, 1973) and Bajscy and Lieberman (1974, 1976) computed the
two-dimensional power spectra of a matrix of square image windows. They
expressed the power spectrum in a polar coordinate system of radius (r) versus
angle (a). As expected, they determined that directional textures tend to have
peaks in the power spectrum along a line orthogonal to the principle direction of
the texture. Blob-like textures tend to have peaks in the power spectrum at radii
(r) comparable to the sizes of the blobs. This work also shows that texture
gradients can be measured by determining the trends of relative maxima of radii
(r) and angles () as a function of the position of the image window whose power
spectrum is being analyzed. For example, as the power peaks along the radial
direction tend to shift towards larger values of r, the image surface becomes more
finely textured. In general, features based on Fourier power spectra have been
shown to perform more poorly than features based on second order gray level
co-occurrence statistics (Haralick, Shanmugam, and Dinstein, 1973) or those
based on first order statistics of gray level differences (Weszka, Dyer and
Rosenfeld, 1976). Presence of aperture effects has been hypothesized to account
for part of the unfavorable performance by Fourier features compared to space-
domain gray level statistics (Dyer and Rosenfeld, 1976), although experimental
results indicate that this effect, if present, is minimal.

Transforms other than the Fourier Transform can be used for texture analysis.
Kirvida (1976) compared the fast Fourier, Hadamard and Slant transforms for
textural features on aerial images of Minnesota. Five classes (i.e., hardwood trees,
conifers, open space, city and water) were studied using 8 X8 subimages. A 74%



404 Robert M. Haralick

correct classification rate was obtained using only spectral information. This rate
increased to 98.5% when textural information was also included in the analysis.
These researchers reported no significant difference in the classification accuracy
as a function of which transform was employed.

Pratt (1978) and Pratt, Faugeras and Gagalowitz (1978) suggest measuring
texture by the coefficients of the linear filter required to decorrelate an image and
by the first four moments of the gray level distribution of the decorrelated image.
They have shown promising preliminary results.

The linear dependence which one image pixel has on another is well known and
can be measured by the autocorrelation function. This linear dependence is
exploited by the autoregression texture characterization and synthesis model
developed by McCormick and Jayaramamurthy (1974) to synthesize textures.
McCormick and Jayaramamurthy used the Box and Jenkins (1970) time series
seasonal analysis method to estimate the parameters of a given texture. These
estimated parameters and a given set of starting values were then used to
illustrate that the synthesized texture was close in appearance to the given texture.
Deguchi and Morishita (1978), Tou, Kao and Chang (1976) and Tou and Chang
(1976) used similar techniques.

The autoregressive model for texture synthesis begins with a randomly gener-
ated noise image. Then, given any sequence of K synthesized gray level values in
its immediately past neighborhood, the next gray level value can be synthesized as
a linear combination of those values plus a linear combination of the previous L
random noise values. The coefficients of these linear combinations are the
parameters of the model. Texture analysis work based on this model requires the
identification of these coefficient values from a given texture image.

2.3.  Gray tone co-occurrence

Textural features can also be calculated from a gray level spatial co-occurrence
matrix. The co-occurrence P(i, j) of gray tone i and j for an image [ is defined as
the number of pairs of neighboring resolution cells (pixels) having gray levels i
and j, respectively. The co-occurrence matrix can be normalized by dividing each
entry by the sum of all of the entries in the matrix. Conditional probability
matrices can also be used for textural feature extraction with the advantage that
these matrices are not affected by changes in the gray level histogram of an image,
only by changes in the topological relationships of gray levels within the image.

Apparently Julesz (1962) was the first to use co-occurrence statistics in visual
human texture discrimination experiments. Darling and Joseph (1968) used
statistics obtained from nearest-neighbor gray-level transition probability matrices
to measure texture using spatial intensity dependence in satellite images taken of
clouds. Bartels and Wied (1975), Bartels, Bahr and Wied (1969) and Wied, Bahr
and Bartels (1970) used one-dimensional co-occurrence statistics for the analysis
of cervical cells. Rosenfeld and Troy (1970), Haralick (1971) and Haralick,
Shanmugan and Dinstein (1973) suggested the use of spatial co-occurrence for
arbitrary distances and directions. Galloway (1975) used gray level run length
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statistics to measure texture. These statistics are computable from co-occurrence
assuming that the image is generated by a Markov process. Chen and Pavlidis
(1978) used the co-occurrence matrix in conjunction with a split and merge
algorithm to segment an image at textural boundaries. Tou and Chang (1977)
used statistics from the co-occurrence matrix, followed by a principal components
eigenvector dimensionality reduction scheme (Karhunen-Loéve expansion) to
reduce the dimensionality of the classification problems.

Statistics which Haralick, Shanmugan and Dinstein (1973) computed from such
co-occurrence matrices have been used to analyze textures in satellite images
(Haralick and Shanmugan, 1974). An 89% classification accuracy was obtained.
Additional applications of this technique include the analysis of microscopic
images (Haralick and Shanmugan, 1973), pulmonary radiographs (Chien and Fu,
1974) and cervical cell, leukocyte and lymph node tissue section images
(Pressman, 1976a, 1976b).

Haralick (1975) illustrates a way to use co-occurrence matrices to generate an
image in which the value at each resolution cell is a measure of the texture in the
resolution cell’s neighborhood. All of these studies produced reasonable results on
different textures. Conners and Harlow (1976) concluded that this spatial gray
level dependence technique is more powerful than spatial frequency (power
spectra), gray level difference (gradient) and gray level run length methods
(Galloway, 1975) of texture quantitation.

2.4.  Mathematical morphology

A structural element and filtering approach to texture analysis of binary images
was proposed by Matheron (1967) and Serra and Verchery (1973). This approach
requires the definition of a structural element (i.e., a set of pixels constituting a
specific shape such as a line or square) and the generation of binary images which
result from the translation of the structural element through the image and the
erosion of the image by the structural element. The textural features can be
obtained from the new binary images by counting the number of pixels having the
value 1. This mathematical morphology approach of Serra and Matheron is the
basis of the Leitz Texture Analyser (LTA) (Muller and Hunn, 1974; Muller, 1974;
Serra, 1974). A broad spectrum of applications has been found for this quantita-
tive analysis of microstructures method in materials science and biology.

Watson (1975) summarizes this approach to texture analysis and we now give a
precise description. Let H, a subset of resolution cells, be the structural element.
We define the translate of H by row column coordinates (r, ¢) as H(r, c) where

H(r,c)={(i, j)| for some (r',c’)EH,x=r+r',c=c+c'}.
Then the erosion of F by the structural element H, written FOH, is defined as

FOH={(m,n)|H(m,n) C F}.

The eroded image J obtained by eroding F with structural element H is a binary
image where pixels take the value 1 for all resolution cells in FOH. Textural
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properties can be obtained from the erosion process by appropriately para-
meterizing the structural element ( /) and determining the number of elements of
the erosion as a function of the parameter’s value. Theoretical properties of the
erosion operator as well as other operators are presented by Matheron (1975),
Serra (1978) and Lantuejoul (1978). The importance of this approach to texture
analysis is that properties obtained by the application of operators in mathemati-
cal morphology can be related to physical properties of the materials imaged.

2.5. Gradient analysis

Rosenfeld and Troy (1970) and Rosenfeld and Thurston (1971) regard texture
in terms of the amount of ‘edge’ per unit image area. An edge can be detected by
a variety of local mathematical operators which essentially measure some property
related to the gradient of the image intensity function. Rosenfeld and Thurston
used the Roberts gradient and then computed, as a measure of texture for any
image window, the average value of the Roberts gradient taken over all of the
pixels in the window. Sutton and Hall (1972) extend this concept by measuring
the gradient as a function of the distance between pixels. An 80% classification
accuracy was achieved by applying this textural measure in a pulmonary disease
identification experiment.

Related approaches include Triendl (1972) who, smoothes the image using 3 X3
neighborhoods, then applies a 3 X 3 digital Laplacian operator and finally smoothes
the image with an 11X 11 window. The resulting texture parameters obtained
from the frequency filtered image can be used as a discriminatory textural feature.
Hsu (1977) determines edgeness by computing variance-like measures for the
intensities in a neighborhood of pixels. He suggests the deviation of the intensities
in a pixel’s neighborhood from both the intensity of the central pixel and from the
average intensity of the neighborhood. The histogram of a gradient image was
used to generate textural parameters by Landeweerd and Gelsema (1978) to
measure texture properties in the nuclei of leukocytes. Rosenfeld (1975) generates
an image whose intensity is proportional to the edge per unit area of the original
image. This transformed image is then further processed by gradient transforma-
tions prior to textural feature extraction.

For example, mosaic texture models tessellate a picture into regions and assign
a gray level to the region according to a specified probability density function
(Schacter, Rosenfeld and Davis, 1978). Among the kinds of mosaic models are the
Occupancy Model (Miles, 1970), Johnson-Mehl Model (Gilbert, 1962), Poisson
Line Model (Miles, 1969) and Bombing Model (Switzer, 1967). The mosaic
texture models seem readily adaptable to numerical analysis and their properties
seem amenable to mathematical analysis.

3. Structural approaches to texture models

Pure structural models of texture presume that textures consist of primitives
which appear in quasi-periodic spatial arrangements. Descriptions of these primi-
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tives and their placement rules can be used to describe textures (Rosenfeld and
Lipkin, 1970). The identification and location of a particular primitive in an
image may be probabilistically related to the identification and distribution of
primitives in its neighborhood.

Carlucci (1972) suggests a texture model using primitives of line segments, open
polygons and closed polygons in which the placement rules are given syntactically
in a graph-like language. Zucker (1976a, 1976b) conceives of a real texture to be
the distortion of an ideal texture. Zucker’s model, however, is more of a
competance based model than a performance model. Lu and Fu (1978) and Tsai
and Fu (1978) use a syntactic approach to texture.

In the remainder of this section, we discuss some structural-statistical ap-
proaches to texture models. The approach is structural in the sense that primitives
are explicitly defined. The approach is statistical in that the spatial interaction, or
lack of it, between primitives is measured by probabilities.

We classify textures as being weak textures, or strong textures. Weak textures
are those which have weak spatial-interaction between primitives. To distinguish
between them it may be sufficient to only determine the frequency with which the
variety of primitive kinds occur in some local neighborhood. Hence, weak texture
measures account for many of the statistical textural features. Strong textures are
those which have non-random spatial interactions. To distinguish between them it
may be sufficient to only determine, for each pair of primitives, the frequency
with which the primitives co-occur in a specified spatial relationship. Thus, our
discussion will center on the variety of ways in which primitives can be defined
and the ways in which spatial relationships between primitives can be defined.

3.1. Primitives

A primitive is a connected set of resolution cells characterized by a list of
attributes. The simplest primitive is the pixel with its gray tone attribute.
Sometimes it is useful to work with primitives which are maximally connected sets
of resolution cells having a particular property. An example of such a primitive is
a maximally connected set of pixels all having the same gray tone or all having
the same edge direction.

Gray tones and local properties are not the only attributes which primitives
may have. Other attributes include measures of shape of connected region and
homogeneity of its local property. For example, a connected set of resolution cells
can be associated with its length or elongation of its shape or the variance of its

local property.

3.2.  Spatial relationships

Once the primitives have been constructed, we have available a list of primi-
tives, their center coordinates, and their attributes. We might also have available
some topological information about the primitives, such as which are adjacent to
which. From this data, we can select a simple spatial relationship such as
adjacency of primitives or nearness of primitives and count how many primitives
of each kind occur in the specified spatial relationship.
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More complex spatial relationships include closest distance or closest distance
within an angular window. In this case, for each kind of primitive situated in the
texture, we could lay expanding circles around it and locate the shortest distance
between it and every other kind of primitive. In this case our co-occurrence
frequency is three-dimensional, two dimensions for primitive kind and one
dimension for shortest distance. This can be dimensionally reduced to two
dimensions by considering only the shortest distance between each pair of like
primitives.

3.3.  Weak texture measures

Tsuji and Tomita (1973) and Tomita, Yachida, and Tsuji (1973) describe a
structural approach to weak texture measures. First a scene is segmented into
atomic regions based on some tonal property such as constant gray tone. These
regions are the primitives. Associated with each primitive is a list of properties
such as size and shape. Then they make a histogram of size property or shape
property over all primitives in the scene. If the scene can be decomposed into two
or more regions of homogeneous texture, the histogram will be multi-modal. If
this is the case, each primitive in the scene can be tagged with the mode in the
histogram to which it belongs. A region growing /cleaning process on the tagged
primitives yields the homogeneous textural region segmentation.

If the initial histogram modes overlap too much, a complete segmentation may
not result. In this case, the entire process can be repeated with each of the then so
far found homogeneous texture region segments. If each of the homogeneous
texture regions consists of mixtures of more than one type of primitive, then the
procedure may not work at all. In this case, the technique of co-occurrence of
primitive properties would have to be used.

Zucker, Rosenfeld and Davis (1975) used a form of this technique by filtering a
scene with a spot detector. Non-maxima pixels on the filtered scene were thrown
out. If a scene has many different homogeneous texture regions, the histogram of
the relative max spot detector filtered scene will be multi-modal. Tagging the
maxima with the modes they belong to and region growing/cleaning thus
produced the segmented scene.

The idea of the constant gray level regions of Tsuji and Tomita or the spots of
Zucker, Rosenfeld, and Davis can be generalized to regions which are peaks, pits,
ridges, ravines, hillsides, passes, breaks, flats and slopes (Toriwaki and Fukumura,
1978; Penucker and Douglas, 1975). In fact, the possibilities are numerous
enough that investigators doing experiments will have a long working period
before understanding will exhaust the possibilities. The next three subsections
review in greater detail some specific approaches and suggest some generaliza-
tions.

3.3.1. Edge per unit area

Rosenfeld and Troy (1970) and Rosenfeld and Thurston (1971) suggested the
amount of edge per unit area for a texture measure. The primitive here is the pixel
and its property is the magnitude of its gradient. The gradient can be calculated
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by any one of the gradient neighborhood operators. For some specified window
centered on a given pixel, the distribution of gradient magnitudes can then be
determined. The mean of this distribution is the amount of edge per unit area
associated with the given pixel. The image in which each pixel’s value is edge per
unit area is actually a defocussed gradient image. Triendl (1972) used a de-
focussed Laplacian image. Sutton and Hall (1972) used such a measure for the
automatic classification of pulmonary disease in chest X-rays.

Ohlander (1975) used such a measure to aid him in segmenting textured scenes.
Rosenfeld (1975) gives an example where the computation of gradient direction
on a defocussed gradient image is an appropriate feature for the direction of
texture gradient. Hsu (1977) used a variety of gradient-like measures.

3.3.2.  Run lengths
The gray level run lengths primitive in its one-dimensional form is maximal

collinear connected set of pixels all having the same gray level. Properties of the
primitive can be length of run, gray level, and angular orientation of the run.
Statistics of these properties were used by Galloway (1975) to distinguish between
textures.

In the two-dimensional form, the gray level run length primitive is a maximal-
connected set of pixels all having the same gray ievel. These maximal homoge-
neous sets have properties such as number of pixels maximum or minimum
diameter, gray level, angular orientation of maximum or minimum diameter.
Maleson et al. (1977) have done some work related to maximal homogeneous sets

and weak textures.

3.3.3.  Relative extrema density

Rosenfeld and Troy (1970) suggest the number of extrema per unit area for a
texture measure. They define extrema in a purely local manner allowing plateaus
to be considered extrema. Ledley (1972) also suggests computing the number of
extrema per unit area as a texture measure.

Mitchell, Myers and Boyne (1977) suggest the extrema idea of Rosenfeld and
Troy except they proposed to use true extrema and to operate on a smoothed
image to eliminate extrema due to noise. See also the work by Carlton and
Mitchell (1977) and Ehrich and Foith (1976, 1978).

One problem with simply counting all extrema in the same extrema plateau as
extrema is that extrema per unit area is not sensitive to the difference between a
region having few large plateaus of extrema and many single pixel extrema. The
solution to this problem is to only count an extrema plateau once. This can be
achieved by locating some central pixel in the extrema plateau and marking it as
the extrema associated with the plateau. Another way of achieving this is to
associate a value 1/N for every extremum in a N-pixel extrema plateau.

In the one-dimensional case there are two properties that can be associated
with every extremum: its height and its width. The height of a maximum can be
defined as the difference between the value of the maximum and the highest
adjacent minimum. The height (depth) of a minimum can be defined as the
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difference between the value of the minimum and the lowest adjacent maximum.
The width of a maximum is the distance between its two adjacent minima. The
width of a minimum is the distance between its two adjacent maxima.

Two-dimensional extrema are more complicated than one-dimensional extrema.
One way of finding extrema in the full two-dimensional sense is by the iterated
use of some recursive neighborhood operators propagating extrema values in an
appropriate way. Maximally connected areas of relative extrema may be areas of
single pixels or may be plateaus of many pixels. We can mark each pixel in a
relative extrema region of size N with the value 4 indicating that it is part of a
relative extremum having height 4 or mark it with the value 4 /N indicating its
contribution to the relative extrema area. Alternatively, we can mark the most
centrally located pixel in the relative extrema region with the value /. Pixels not
marked can be given the value 0. Then for any specified window centered on a
given pixel, we can add up the values of all pixels in the window. This sum
divided by the window size is the average height of extrema in the area.
Alternatively we could set 4 to 1 and the sum would be the number of relative
extrema per unit area to be associated with the given pixel.

Going beyond the simple counting of relative extrema, we can associate
properties to each relative extremum. For example, given a relative maximum, we
can determine the set of all pixels reachable only by the given relative maximum
and not by any other relative maximum by monotonically decreasing paths. This
set of reachable pixels is a connected region and forms a mountain. Its border
pixels may be relative minima or saddle pixels.

The relative height of the mountain is the difference between its relative
maximum and the highest of its exterior border pixels. Its size is the number of
pixels which constitute it. Its shape can be characterized by features such as
elongation, circularity, and symmetric axis. Elongation can be defined as the ratio
of the larger to small eigenvalue of the 2X2 second moment matrix obtained
from the (}) coordinates of the border pixels (Bachi, 1973; Frolov, 1975).
Circularity can be defined as the ratio of the standard deviation to the mean of
the radii from the region’s center to its border (Haralick, 1975). The symmetric
axis feature can be determined by thinning the region down to its skeleton and
counting the number of pixels in the skeleton. For regions which are elongated it
may be important to measure the direction of the elongation or the direction of
the symmetric axis.

3.4. Strong texture measures and generalized co-occurrence

Strong texture measures take into account the co-occurrence between texture
primitives. On the basis of Julesz (1975) it is probably the case that the most
important interaction between texture primitives occurs as a two-way interaction.
Textures with identical second and lower order interactions but with different
higher order interactions tend to be visually similar.

The simplest texture primitive is the pixel with its gray tone property. Gray
tone co-occurrence between neighboring pixels was suggested as a measure of
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texture by a number of researchers as discussed in Section 2.6. All the studies
mentioned there achieved a reasonable classification accuracy of different tex-
tures using co-occurrences of the gray tone primitive.

The next more complicated primitive is a connected set of pixels homogeneous
in tone (Tsuji and Tomita, 1973). Such a primitive can be characterized by size,
elongation, orientation, and average gray tone. Useful texture measures include
co-occurrence of primitives based on relationships of distance or adjacency.
Maleson et al. (1977) suggest using region growing techniques and ellipsoidal
approximations to define the homogeneous regions and degree of co-linearity as
one basis of co-occurrence. For example, for all primitives of elongation greater
than a specified threshold we can use the angular orientation of each primitive
with respect to its closest neighboring primitive as a strong measure of texture.

Relative extrema primitives were proposed by Rosenfeld and Troy (1970),
Mitchell, Myers and Boyne (1977), Ehrich and Foith (1976), Mitchell and
Carlton (1977), and Ehrich and Foith (1978). Co-occurrence between relative
extrema was suggested by Davis et al. (1978). Because of their invariance under
any monotonic gray scale transformation, relative extrema primitives are likely to
be very important.

It is possible to segment an image on the basis of relative extrema (for example,
relative maxima) in the following way: label all pixels in each maximally
connected relative maxima plateau with a unique label. Then label each pixel with
the label of the relative maximum that can reach it by a monotonically decreasing
path. If more than one relative maximum can reach it by a monotonically
decreasing path, then label the pixel with a special label ‘c’ for common. We call
the regions so formed the descending components of the image.

Co-occurrence between properties of the descending components can be based
on the spatial relationship of adjacency. For example, if the property is size, the
co-occurrence matrix could tell us how often a descending component of size s,
occurs adjacent to or nearby to a descending component of size s, or of label ‘c’.

To define the concept of generalized co-occurrence, it is necessary to first
decompose an image into its primitives. Let Q be the set of all primitives on the
image. Then we need to measure primitive properties such as mean gray tone,
variance of gray tonmes, region, size, shape, etc. Let 7 be the set of primitive
properties and f be a function assigning to each primitive in Q a property of 7.
Finally, we need to specify a spatial relation between primitives such as distance
or adjacency. Let S CQ X Q be the binary relation pairing all primitives which
satisfy the spatial relation. The generalized co-occurrence matrix P is defined by

P(t,,1,) = #{(ql,qz)eS|f(qr¢lt)S:tl and /(q,) =t}

P(t,,1,) is just the relative frequency with which two primitives occur with
specified spatial relationship in the image, one primitive having property ¢, and
the other primitive having property 7,.
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Zucker (1974) suggests that some textures may be characterized by the frequency
distribution of the number of primitives any primitive has related to it. This
probability p(k) is defined by

#{(q€Q0|#S(q) =k}
#0 ’

p(k)=

Although this distribution is simpler than co-occurrence, no investigator appears
to have used it in texture discrimination experiments.

4. Conclusion

We have surveyed the image processing literature on the various approaches
and models investigators have used for textures. For microtextures, the statistical
approach seems to work well. The statistical approaches have included autocorre-
lation functions, optical transforms, digital transforms, textural edgeness, struct-
ural elements, gray tone co-occurrence, and autoregressive models. Pure structural
approaches based on more complex primitives than gray tone seems not to be
widely used. For macro-textures, investigators seem to be moving in the direction
of using histograms of primitive properties and co-occurrence of primitive proper-
ties in a structural-statistical generalization of the pure structural and statistical
approaches.
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