drme . ip . iria . nato

nato advanced study institute

TEYT T wImrovrvaaapy
a6l

AINITTISNI AANIS AIINVAAY OiIwN

- digital image
'~ processing |

and analysis

"L 4N a~
Iv.oouma

[l WL LR

NIDDISUBG 3DV

analyseﬂ et
traitement
d’images digitales

VAN LINaVNIALIVAQL L0 JOAIVINY
AA=A A

NS A e
vV UINV Ui

—— e Emr T W Y EW

SISATVN

bonas (gers) |
1976 jU ne 14th = 25th

79

IMAGE PROCESSING SOFTWARE AND DATA STRUCTURES

R. M. Haralick
University of Kansas Center for Research
Lawrence (U.S.A.)

1. INTRODUCTION

Image data are collected in the course of scientific experiments, medical
tests, surveillance operations, and satellite and telescopic photography. To
an increasing extent, these . data must be processed by computer before they can
be used by human interpreters. Computer image processing has evolved over the
last decade from the use of specialized programs to more flexible program
packages using both sophisticated computer and minicomputer systems. This
move toward computer processing of images has been necessitated by the large
volume of image data being produced at the present. One example of this pro-
duction is the Earth Resources Technology Satellite which produces 782 images

each day.

Image processing encompasses all the various operations which can be
applied to photographic or image data. These include, but are not limited to,
image compression, image restoration, image enhancement, preprocessing,
quantization, spatial filtering and other image pattern recognition techniques.
Now image processing is becoming -interactive. An operator, user, oY analyst
sits at a console with a means of assessing, preprocessing, feature extracting,
classifying, identifying and displaying the original imagery or the processed
imagery for his subjective evaluation and further interaction.

Image processing software must resolve some of the most difficult problems
confronting programmed systems: handling large amounts of data which can only
be accessed a segment at a time with processing tasks that provide heavy and
varied loads to the computer system. These problems require sophisticated and
complex software for even the simplest image processing tasks. In this paper
we discuss the structure and design philosophy for an interactive image pro-
cessing system. The ideas in this paper are motivated by the image processing
systems that are beginning to be used in both the large computer and mini-
computer environment.

80

II. SOFTWARE REQUIREMENTS

In order to be able to meet the general needs of interactive image pro-
cessing, the software must meet a number of requirements concerning the hardware
environment on which it executes, the systems programmer environment which cares
for and maintains it, and the user environment which it must ultimately satisfy.
All three environments must be expected to change. Technology will introduce
new hardware systems. Neophyte users will become experienced users, the
experienced users will leave, and new neophyte users will come. Likewise for
the system programmers. And while all this is going on users will request new
image operations which must be quickly and easily added to the software by the
system programmer. If the total software package is not designed to be easily
used, easily learned, easily programmed, easily modified, and easily trans-
portable in this changing environment, then a 100,000 source statement image
processing system can become a patched up unworkable worthless burden in a
matter of a few years.

This paper describes a general approach to the software design problem
for image processing systems. The proposed design of the interactive 1/0
facilititates easy use. The structural modularity of the software facilitates
easy modification. The generalized random access I/0, memory allocation, and
overlay structure facilitate using the software on old or new, large or small
computers with few required changes.

Section III describes how the user should use the system. Section IV
describes the software structure.

III. THE USER'S PERSPECTIVE

The user's chief concerns are how easy it is for him to interact with the
system to get his job done and how much bookkeeping and remembering can the
system do for him in order to lessen his burden. Section IITI.1 discusses some
approaches which facilitate easy interactive I/0 and section III.2 discusses
the concept of processing history records to automatically keep track of all
image parameters and the sequence of processes the image has been through.

1II.1 Interactive I/0

The interactive I/0 must be functional for the neophyte as well as
experienced user. This suggests that a variety of different ways of interacting
with the system be allowed. The neophyte user knows only enough about image
processing to know the general processing area which he thinks he wants to use.
A menu format which at first displays on the console screen four to twelve
different broad image processing categories from which the user can select will
usually be enough to get the neophyte going. After he selects one of the broad
areas, a second level new menu appears on the screen which shows either a list
of related image processing categories or a list of actual image processing
operations. A third level, if necessary, would show a list of four to twelve
image processing operations. The menu concept is illustrated in figure 1.

The more experienced user will find the menu interaction system tiresome.
He desires a quick way to initiate his image processing task. Ideally, he
would just like to type in one command word or process acronym and be done.
This emphasis on brevity has consequences. The experienced user may forget
the exact spelling or phrasing of a processing name. In this situation he
needs some help like an alphabetically organized list of the command name
acronyms that he can request to be put on his console screen. One command word

81

for short vocabulary should be able to give him this help.

Then there is the user who is not a neophyte, but has not been around
long enough to be fully experienced. For such a user, an alphabetically
organized list of process acronyms will not be enough; ~ he will guess that
there are two or more possible acronyms that might do what he wants. He needs
to be able to ask the system what any particular process acronym or command
name means. For him a vocabulary command which can explain what any command
acronym or abbreviation means needs to be proveded.

Finally, there is the case where an experienced or neophyte user is not
able to get satisfactory operation for some process because he does not under-
stand what the process does or because he does not understand how to set up
the parameters for the process correctly. Here, a complete explanation defining
what the process does, legal ways of calling the process into action, what the
parameters of the process do, and legal values for the parameters is needed.

An explain command can fulfill this need.

Every image operation works on an input image and produces and output
image, statistics, or features of the input image. Once the image processing
operation is specified by a menu or command name procedure, the input and
output files or devices must be specified. One natural way is the question/
answer approach. The question "What is the input image name?'" appears on the
console screen and the user types in the name,whereupon the software makes
sure the file name syntax is correct and then asks about the output image name.

The question and answer approach is not the only one. There are a
variety of different convenient ways of combining command names with input and
output file names into a command string. For example, take the process of
quantizing which has the command name QUANT.

Possible command string syntaxes include
QUANT OUTPUT IMG < INPUT IMG
INPUT IMG.> QUANT > OUTPUT IMG
OUTPUT IMG = QUANT (INPUT IMG)

The first syntax is used in the KANDIDATS system at the University of Kansas
and can be interpreted as quantize to an image named OUTPUT IMG the image
named INPUT IMG. The second syntax, analogous to the engineering diagram
showing input, black box, and output, is used in the IDIMS system at the
Electromagnetic Sensing Laboratory. It can be interpreted as take the image
INPUT IMG and go through the process QUANT to produce the resulting image
called OUTPUT IMG. The third syntax, a mathematical functional form notation,
is used in the EIES system at Control Data Corporation and can be interpreted
as: the image OUTPUT IMG is a quantized version of the image INPUT IMG.

When the image processing task does not produce another image but produces
statistics about the input image, there is the question of whether these
statistics should be put on the user console screen for examination, to a line
printer for hard copy, or to be made into a source file to be saved on the
mass store device. Natural variacions of the basic command string can easily
permit these distinctions to be made. Take for example the process of getting
a histogram of the grey tone on an image. Let the command name be HIST. The
following three command strings can direct the histogram to the terminal, to
the line printer or to the disk pack as a file called TONE HST:

82

HIST TT <« INPUT IMG
HIST LP <« INPUT IMG
HIST TONE HST < INPUT IMG

Once the basic combination of input image, output image, and command
name have been specified, the image process itself may require additional
parameters. The equal interval quantizing command, for example, will need to
know how many quantized levels the user desires for the output image. Other
processes such as the histogram command will need to know what portion of the
image should be histogramed. In this case the user will have to specify a
subimage size and location. Because it often is the case that similar kinds
of information will be needed for a variety of different commands, the prompting
questions that the software provides should be identical in format and style.
Certainly a request for the same information should always appear to a user in
the same format.

Because there may be many steps to an image processing task, it will be
important for the image processing system to have two modes of operation: an
interactive mode and a batch-like mode. The batch-like mode should provide a
way for the experienced user to write a sequence of ten or twenty command
strings stored as a system standard ASCII file which he can then ask the image
processing system to execute or run. For image processing tasks that need to
be repeated on a few images this capability will save the user much wasted
terminal time. Figure 2 illustrates such a command string program.

III.2 Processing History Records

Interactive image processing usually proceeds on a step by step basis
with many intermediate images created and then deleted before a final resulting
image is produced. (The intermediate images are deleted to save mass store
file space.) If the user has not kept careful notes about how it was that he
produced the final image, all the processing may be lost for he could not
report what processing steps he had done to his initial image to achieve
his final image. Since the best bookkeeper in the world is the computer, the
user should expect that the image processing system will keep processing history
records for each image.

Processing history records fall in three general categories. The first
category consists of some free format information that the user wants
associated with the image. Such information could be about the image's
origin, associated photography, method of digitization, tape identifiers for
the tapes holding copies of the original digital image, associated files of
ground truth information, specific information about targets in the image,
and perhaps some information about the purpose of the image processing.

What the user wants to put in these records, how much he wants to put, and the
format in which he puts them should all be left free. These records should be
considered like ASCII source information with no structure. They should let
the user tell any story he likes.

The second category of descriptor records is more structured and
accurately tells what processes the image has been through. The input image(s),
the process name, the output image, the date of the processing, and all the
parameters required by the process all should appear in these records. Because
the kind and number of parameters varies as a function of the image process,

83

these descriptor records themselves will have to be a data structure to allow
easy access to them by program or user. :

The third category of descriptor records has statistical information
about the image which either processing programs create or ground truth
information which the user must input. This information cannot be free format
because it is information that other processing oeprations must access in order
to do their job. Hence, the order in which the pieces of this kind of infor-
mation appear must be standardized. Examples of statistical information
include histograms, minimum and maximums, and mean and covariance matrices.
Examples of ground truth information include tables which relate a land use
type or target name to be associated with some numeric symbol on a band of the
image and lists giving land use types, numeric symbol, and associated polygonal
areas on the image of the named land use type.

The users should be able to examine these descriptor records by some
commands very much in the same manner that he tells the image processing
system to do a job. Descriptor record operations should include the capability
to list all descriptor records, list only the names of the processes the image
has undergone in order of their occurrence, list only free format records, and
list only the statistical records. In addition, the user will need to have a
way to add unstructured information to the descriptor file. A descriptor
record deletion operation is needed so that the user can correct any misin-
formation he added to the descriptor record history. However, the user should
not be. allowed to delete processing history records created by processing

programs.

IV. The Software Structure

In order to satisfy the requirements of easy addition of new processing
operations, high portability to new computer hardware environments, and easily
understandable software by the system's programmers, the image processing system
software must be structured and highly modular.

As shown in Figure 3, one way of structuring the software is to have a
monitor to take care of the flow of control. A typical operation sequence would
be for the monitor to call the command string interpreter or menu prompting
routine to accept a user processing assignment. The menu mode of operétion
could be initiated by a command through the command string interpreter as
shown. Once a processing option has been selected, input and output file
names given, and source or destination devices assumed or given, control can
be returned to the monitor.

The monitor's next job is to call the process driver subroutine and pass
it all the information it has received from the menu or command string inter-
preter. The process drivers first call device and file checking routines
to make sure the input image files exist and to make sure the specified
devices are legal for the process. Depending on the task, various parameters
may need to be obtained. The process driver can call ASC11 I/Q prompting
subroutines, each one asking a specific question, to obtain the required
information. When all parameters are specified consistently the process
driver can allocate the available memory in the best way it knows how and
then call the processing subroutine specifying all the information it has in
the calling argument list.

84

The processing subroutine's first job is to initialize proper input and
output image files and copy the descriptor records associated with the input
image(s) to the descriptor records associated with the output image. Then
image processing can begin by accessing the subimage blocks or segments in
an appropriate order, passing these subimages to a number crunching routine
which does the actual processing. On return from the number crunching
routine, the image processing routine writes the processed subimage to the out-
put image file and accesses the next group of subimage blocks on the input
image. When all the subimage blocks have been processed, the files are closed
and control is passed back to the driver which returns control to the monitor.

IV.1 Errors and User Generated Interrupt Handling

During each stage of processing, error should be prevented from occurring.
For example, in a quantizing operation, the command string interpreter must
make sure that the input image file name is syntactically a correct one. The
process driver makes sure that the input image file specified really exists.
The ASCIT 1/0 routine must make sure that the specified number of quantization
levels is a positive integer greater than 1. In the processing subroutine,
if access to an image file cannot be done because of bad records or because
something happens related to image file handling or because something happens
relating to a numerical calculation, then an error status word should be set
and control passed back to the monitor. The monitor's action should be to let
the user know what the error was and prompt him for a new processing assignment.

Each different computer hardware and operating system is likely
to handle default errors and trace of calls information differently. To
maintain portability and control this should be done internally by the image
processing system. One possible way is to have an array which operates as
a stack. Each time an entry is made into a subroutine, the subroutine calls a
routine to push its name on the stack. Just before normal exist from a sub-
routine, the subroutine can call a routine to pop its name from the stack.
If an error occurs during processing, a status variable can be set and an
alternate return taken which does not pop the subroutine name from the stack.
Thus, if it is conceivable for an unexpected error to occur in a subroutine ,
then the subroutine must have two additional arguments: a status word and an
alternate error return.

Pushing and popping subroutine names for internal trace of calls infor-
mation has an added advantage to the system programmer and debugger, for it
makes available an interactive trace capability. Upon setting a trace flag
by inputting a command TRACE, each time a subroutine pushes or pops its name
from the stack, the push and pop routine can output to the console the same
names. In this manner a real time trace becomes available and the exact moment
and sequence in which an error occurs can be located.

There is one other kind of special condition the subroutines must be able
to handle: wuser generated interrupts. Sometimes after a user initiates a
processing task assignment, he realizes that he himself entered a legal but
incorrect parameter. Rather than wait the required time for the task to
finish, he would like to interrupt the process, return to parameter input
interaction again or perhaps even to the monitor level in order to specify a
different task. To facilitate this, = at each appropriate place in the
processing sequence where control can be returned to and where processing can
begin again, a call can be made to a subroutine which sets a return address
(or statement number) to which control is returned upon a user generated in-
terrupt.

85

IV.2 Memory Management

In order for the image processing software to execute in both the large
and minicomputer environment, careful attention must be paid to the memory
management constraints found on minicomputers. Care must be given to the
overlay structure so that the different process drivers can overlay one
another and the different processing routines can overlay one another. This
implies that BCD -I/0 must be separated from any file to file image processing
operations so that the memory consumming BCD I/0 can be in separate overlay

links.

Since the total amount of memory available is fixed, and the amount of
code required by the different processing routines can vary, memory available
for working arrays will vary. Since the process driver knows which subroutine
it calls, it in effect knows how much code the processing routines will take.
Therefore, it can allocate all remaining memory for working arrays.

Another constraint that the minicomputer operating environment has is
the restricted nature of the overlaying structure. Instead of being able to
overlay routines in a general tree structured way with a level (n + 1) overlay
being loaded in memory immediately below its associated level n overlay, some
minicomputer operating systems require that level (n + 1) overlays be loaded
in memory immediately below the lowest level n overlay. To achieve efficient
memory management the various overlay links should be about the same size for
each level. Figure 4 shows a general way of overlaying which is consistent with
minicomputer restrictions and which minimizes wasted memory space.

1V.3 Image Access Protocol

In order to isolate the computer environment in which the software
executes and the image processing software subroutines, no image file
handling should be done directly by any of the image processing routines.
Rather, a call to a generalized image access routine should be made. In this
manner, the processing routines never need to take into account physical
record buffering or be concerned about whether the image is coming from a random
disk device or a super large external random access memory. In this manner,
all operations of actual image access which are dependent on the available
hardware of computer peripherals can be concentrated in a few subroutines.

Because the image access subroutines are so important in designing a
seét of standardized image processing subroutines, we define in section 1V.3.1
the multi-image, which is what is accessed, we describe in section 1V.3.2 what
the access routines must do, and we suggest in section 1V.3.3 a file structure

for the multi-image.

1v.3.1 The Multi-TImage

We will consider the spatial domain for a digital multi-image to be a
rectangular area which is divided up into small mutually exclusive rectangular
regions called resolution cells. On a one band image, each resolution cell
has a single value or number specifying the average grey tone intensity for
that resolution cell. On ap N-band multi-image, each resolution cell has an
N-tuple of numbers. The n component of the N-tuple specifies the average
grey tone intensity for that resolution cell on band n. In essence, then,
each band of a digital multi-image is like a matrix of numbers. The multi-
image itself is like a set of N matrices stacked one on top of the other.

86

Because the number of rows and columns of a multi-image can easily be a
few thousand, the entire image cannot be stored in menory at once and to save
file space, the grey tone intensity values are often packed as bytes, many to
a computer word. This problem with space has two consequences. The first is
that the entire image cannot be accessed at once. Rather it must be accessed
segment by segment. We will consider the segments to be logical records and
we will assume that a logical record corresponds to a subimage block of S
rows by S, columns for one band. The most frequently used segment or blogk
is one complete image row.

The second consequence is due to the possibility of packing bytes. It
leads to the variety of data modes an image can have. For example, when the
grey tone intensity values lie between 0 and 63, it would be most space saving
to store the intensity values as six bit absolute binary bytes. Of course
other interpretations of the byte are possible: a two's complement form,
for instance.

To be consistent with the way most computers do arithmetic, an absolute
binary byte can be as large as one bit less than the number of bits in an
integer word. No such constraint is necessary for the two's complement
form byte. The two forms of integer bytes plus the other data modes supported
by the language in which the software is written lead to seven multi-image
data modes: (1) absolute binary bytes, (2) two's complement binary bytes,

(3) double integer, (4) real, (5) double precision, (6) complex, and (7)
double precision complex. Because there are seven data modes possible we will
suggest the constraint that all bands of a multi-image file must be in the
same data mode.

Sometimes in thematic maps and c%ﬁssified image data files, image bands
are created in which the value of the n band for any resolution cell does not
have the grey tone intensity interpretation. Rather, the value stands as a
symbol or an index to some category name. For example, in a map which shows
areas of wheat, corn, and bare ground, the value 1 could be the symbol for
wheat, the value 2 could be the symbol for corn, and the value 3 could be the
symbol for bare ground. To distinguish these kinds of bands from the bands
having grey tone interpretations, we name those bands having grey tomne inter-
pretations as numeric bands and we name those bands whose values are really
symbols for category names as symbolic bands. To make matters easy, we will
arrange the bands so that the symbolic bands are always the last ones on an
image. The operational significance of this numeric/ symbolic distinction
for bands is that those image operations which involve arithmetic manipulations
must be only done on numeric bands and they must leave the symbolic bands alone.

IV.3.2 The Image Access Routines

The image access routines get and put image segments from the array
the user works with to the buffer area in which the I/0 system has the data
packed. This buffer area is transparent to the user. It can be as small
as enough memory for one logical record or as large as enough memory for one
hundred logical records. A call to the image access routines does not
necessarily imply a physical disk I/0 transfer. From the point of view of
the user, he does not know or care about when the disk transfers actually
take place. Hence, the level at which the image access routines operate is
at a level which is more general than disk I/0 transfers.

We assume that the image access routines do random accesses. There are
four image input/output procedures of major consequence. They are:

87

(1) open or initialize an old file;
(2) open or initialize a new file;
(3) read a logical record;

(4) write a logical record.

Any call to one of the I/0 procedures will involve specifying or retrieving
basic booking information about the image. For example, to open or
initialize an old file, the procedure must retrieve from some kind of header
record the basic image parameters which includes:

number of rows in the image

number of columns in the image

number of bands in the image

image data mode

‘number of bits per value

number of rows in a subimage block (logical record)
number of columns in a subimage block (logical record)
minimum value over all bands in the image

maximum value over all bands in the image

number of symbolic bands

These parameters, as suggested above, can be placed in an image
identification array. This leads to a CALL sequence like

CALL RDKINL (LU, FILNM, IDENT, NO, IEV, IALTRT)

LU is logical unit number
FILNM is file number
IDENT is identification array
NO is 1 for old file
2 is for new file
IEV is an event variable idicating status upon completion

of initialize action
TALTRT is the alternate return statement number taken
on a bad status

To read or write logical records, some of the information in the header
record might be useful to the procedure. Hence, we assume that one of the
arguments which must be in the read and write entry points is the identifica-

tion of the header record.

Since it is frequently the case that only a part of the image is of
concern throughout an entire processing operation, the read/write procedure
argument list must contain information specifying the total subimage size and
position which is to undergo processing. This entails specifying the first
row, first column, last row, and last column as well as the spatial sampling
rate which indicates things like taking every other point along the rows and
tripling every point down a column.

88

Since there are no guarantees that a user must specify a subimage size
and position which locates the subimage at block boundaries, there can be some
accessing ambiguties. On a read operation we will define all resolution cells
to have the value zero which are outside the specified subimage but within a
block having some resolution cells in the specified subimage. On a write
operation involving any problem blocks we will first read the block, replace
all data values inside the subimage region using the information to be written,
leave alone any of the read values lying outside the specified subimage, and
then write the changed block back on the disk.

Because the subimage designated for processing can be different from
the image, a decision has to be made regarding whether any specified block
number is relative to the subimage area or whether it is the absolute block
number in the original image. It is probably more convenient to have the block
number be relative to the subimage area to be processed since that would make
identical the block indexing for both input and output images for a particular
image manipulation routine.

The read/write procedures must, of course, pack and unpack bytes if the
data mode of the image is single integer. In addition it would be useful to
have the read/write procedures do a simple grey tone intensity rescaling.

The simplest rescaling or renormaliziﬁg which can be considered for numeric
bands is multiplying or dividing by 2 for some integer k.

Thus we see that the read/write procedure must have argument lists
which specify:

(1) image identification array

(2) subimage size and position

(3) spatial sampling rate

(4) normalizing or rescaling factor for numeric bands

(5) the image bands which are to be read or written

(6) how many subimage blocks are to be read or written at a time
(7) the index for the first subimage block to be read or written

This suggests a CALL sequence like

CALL RREAD

REWRITE (LU, IMGARY, IBAND, IBLKNO, NSBIMG, IPAR, IDENT, IEV, IALTRT)
where

LU is logical unit number

IMGARY is array to store subimage in

IBAND is an array to tell which bands to access

1 if Ith band is to be accessed

0 if Ith band is not to be involved

IBAND(I)

89

IBLKNO is subimage block number to begin accesses with

NSBIMG 1is number of subimage blocks to access

IPAR is the processing parameter array having information on
subimage window size and position that all processing
will take place in, spatial sampling rate, and grey
tone rescaling factor for numeric bands.

IDENT is the image identification array

IEV is the status event variable

TIALTRT 1is the alternate return taken -on bad status

IV.3.3 The Multi-Image File

The multi-image file should be able to be accessed randomly as well

as sequentially. This implies that the logical records must all be of

the same length because some operating systems do not support variable
length random files. To simplify the job of buffering, the subimage block
requested in a read or write must be one of the logical records in the
multi-image file. Hence, the only areas of the image which can be accessed
by a read or write is a subimage block of the same size and positioned
exactly in the same place as one of the, logical records in the file.

The question about the sequential order in which the logical records
are placed on the file is governed by whether to have band number or
subimage block number go the fastest. If subimage block number goes the
fastest, then the file is organized as all subimage blocks from band 1
followed by all subimage blocks from band 2, etc. If band number goes the
fastest, the file is organized as all bands for subimage block number 1
followed by all bands for subimage block number 2, etc.

From the point of view of random accessing, the order makes no
difference. This is not so, however, for sequential accessing. Given the
constraint that all bands for subimage block i should be able to be read
sequentially without a rewind after reading all bands for subimage block
i-e, we see that the file must be organized having the image bands run

the fastest.

Therefore, the multi-image file takes the following. form. All records

are equal length. The first record must be an identification parameter
record. The remaining records must be organized having the image bands
run the fastest and the subimage blocks run the slowest.

V. Conclusion

We have discussed the interactive image processing system from the
point of view of the user and from the point of view of the hardware. A
monitor governing flow of control, command string interpreter and menu
prompting routines, separate ASCII I/0 routines for each special prompting
question, process drivers which call file and device checking subroutines,
ASCII I/0 routines, allocate memory, and call processing programs all lead

to the modularity of the structure. Internal keeping track of trace of calls
and error checking keeps the image processing software in control rather than

the operating system. The image access protocol isolates the image access

—

problem from the buffering problem and the independence of the different
processing functions from one another lead to an ease of updating and adding
new routines, a high portability from one computer to another, and a highly
overlayed structure so that execution can take place in a minicomputer
environment.

Figure 1 shows three levels of a menu prompting system.
level (figure 1l.a) the user selects Utility Operations.

A.

C.
D.

LoNOTUBP>~WN
. . .

91

IMAGE PROCESSING CATEGORIES

Utility Operations

Clustering Operations

Pattern Discrimination Operations
Transform and Compression Operations

(Figure 1l.a) .

UTILITY OPERATIONS

Information Operations

Transfer Operations

Spatial Domain Operations

Greytone Operations

Operations to Compute Statistics

Control Operations

Ground Truth Operations

Magnetic Tape Operations

Image Generation Operations
(Figure 1.b)

SPATIAL DOMAIN OPERATIONS

a. Register Image

b. Extract Subimager

c. Expand/Compress Image

d. Flip Image

e. Rotate Image

f. Transpose Image

g. Mosaic Image

h. Rubber Sheet Images

i. Reblock Images
(Figure 1l.c)

At the first
At the

second level (figure 1.b) the user selects Spatial Domain Operations.
At the third level (figure l.c) the user selects an actual command
‘and would then be prompted by the input and output image name

questions.

92

fiIERTS TSITE IMG < MT2 (RC) (NOTE:The RC flags cause
ENTER FIRST, LAST ROWS (1 -2340) -- 1,1000 the row, column questions
ENTER FIRST, LAST COLUMNS (1 - 824) -- 1,800 to be asked)

#:QUANT TSITE QNT < TSITE IMG

ENTER NUMBER OF QUANTIZED LEVELS (0) -- 32

#:RCNV TSITE RCN <« TSITE QNT

ENTER WINDOW SIZE -- 3,3

#:XPCMP TSITE CMP <« TSITE QNT

ENTER VERTICAL MODE <C> OMPRESS, <E> XPAND, <N> ONE --C
ENTER RATIO FOR VERTICAL OPERATION -- 1000,100

ENTER HORIZONTAL MODE <C> OMPRESS, <E> XPAND, <N> ONE -- C
ENTER RATIO FOR HORIZONTAL OPERATION -- 140,824

#:TSIF ID1 « TSITE CMP (F)

ENTER BAND TO DISPLAY (1 -4) —— 2

#:GDTI TSITE RCN < TSITE CMP

Figure 2.a shows an interactive processing example where
rows 1,1000 and column 1,800 are transferred from an
ERTS tape to a standard image format on the disk. The
image TSITE RCN is then equal interval quantized to 32
levels, rectangular convoluted with a 3x3 window, com-
pressed 10 to 1 vertically and 824 to 140 horizontally,
and has band 2 displayed on the video display device.
Computer prompting is underlined.

After the user enters ground truth information via a
display device, the ground truth is placed on the
descriptor records of the image TSITE RCN and is used in
the run mode pattern discriminating processing involked
by the command:

ﬁiRUN PATDIS BTC

93

BAYES TSITE BOl <TSITE RCN (D) (number of categories)
(ground truth set no.)

(no. 2nd order marginals)
(first band pair)
2 (second band pair)
4 (probability thresholds)
3

BAYES TSITE BO2 « TSITE RCN (D)

53

2,4

.03

.21

BAYES TSITE BO3 < TSITE RCN (D)

CNTNG LP < TSITE RCN,TSITE BO1
Y (descriptor records?)

2 (ground truth set no.)
CNTNG LP <« TSITE RCN,TSITE BO2

Y

2

CNTNG LP <« TSITE RCN,TSITE BO3

Y

1

EXIT

Figure 2.b shows the command string statements on the
run file which applies a table look-up Bayes rule to
each of three sets of band pairs from the image TSITE
RCN. A contigency table comparing the resulting classi-
fied image with ground truth descriptor records is

then computed and outputed to a line printer.

94

sauinougng
buisssdoid

JaALI(Q
$53204d

|0J3U03 JO MO} 3ABMYOS ||BI3A0 U} Sae}sni|| g al nbi4

saunnoIqns
buissasoid

JaALQ
$5320.d

saulnoy
0/1 3aARdeIBU|

buissasoid
10443

J0}IUOW

saulnoy
nuaw

Jajaldadyu|
bul}S. puewwo)

