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INTRODUCTION

The facet model states thad all processing of digital-image data has its final
authoritative interprecion relative to what the processing does 1o (he
underlying gray-tone intensity surface. I'he digital image's pixel values
are noisy sampled observations of the underlying surface. Thus, in order
to do any processing, we must estimate this underlying surlace at each
pixel position. This requires a model that describes what the general
form of the surface would be in the neighborhood of any pixel if there
were no noise. To estimate the surface from the neighborhood around a
pixel, then, amounts to estimating the free parameters of the general
form. The processing that takes place is then defined in terms of the
estimated parameters.

The topographic primal sketch (Haralick. Watson, & Lalley, 1983) is
one possible way of representing the fundamental structure of a digital
image in a rich and robust way. ‘The basis ol the topographic primal
sketch is the classitication and grouping of the underlying image-inten-
sity surface patches according 1o the categories defined by monotonic,
gray-tone invariant functions of directional derivatives. Examples of
such categories are peak, pit, ridge, ravine, saddle, flac, and hillside.
From this initial classification, categories can be grouped to obtain a vich,
hierarchical, and structurally complete representation of the fundamen-
tal image structure. By contrast, representations of the fundamental
image structure only involving edges or the primal sketch as described by
Marr (1976) are impoverished in the sense that they are insufficient for
unambiguous matching. ‘They also do not have the required invariance
with respect to monotonically increasing gray-tone transformations.
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The facet approach can also be used in classical gradient-based edge
detection, in image segmentation, as well as in determining the topo-
graphic primal sketch of an image. The following sections discuss the
facet model for image-data specialized to the sloped facet case and its
direct application to gradient-edge detection; the facet model con-
cepts as they can apply 1o image segmentation: the delinition of the
topographic primal sketch and how the information it requires can all
come from the facet-model estimates; and three-dimensional object sur-
face-shape estimation based on the patterns ol the topographic primal
sketch.

THE FACET MODEL FOR IMAGE DATA

The commonly used general forms for the Lacet maodel include piecewise
constant (flat facet model), precewise linear (sloped facet model), piece-
wise quadratic, and piecewise cubic. In the (Tat model, cach ideal fitting
neighborhood in the image 1s constant iy gray tone. In the sloped model,
cach ideal fitting neighborhood has a gray tone surface that is a sloped
plane. Similarly, in the quadratic and cubic models, regions have gray
tone surlaces that are quadratic and cubic surfaces, respectively.

Given a noisy defocused image, and assuming one of these models,
the problen is to estimate the parameters of the underlying surface for a
given neighborhood and estimate the variance of the noise. These esti-
mates can then be used i a variety of ways: edge detection, line detec-
tion, corner detection, and segmentation. In this section we review the
parameter estimation problem for the sloped facet model and illustrate
its use i the classic gradient edge detector application,

Sleped Facet Parameter and Error Estimation

In this discussion we employ a least-squares procedure to estimate the
patameters of the sloped facet model for a given rectangular neigh-
borhood whose row index set is B and whose column index set is . 'The

facet parameter estimates are obtained for the central neighborhood of

cach pixel on the image. We assume that for each (r, ¢) e B x €, the
image function g is modeled hy

g, e) = ar t Be + vy + i, o)

where mis a random variable indexed on B % €, which represents noise.
We will assume that 7 is noise having mean 0 and variance o2 and that
the noise Tor any two pixels is independent.

The least-squares procedure determines an @, B, and %, which mini-
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mize the sum ol the squared differences between the fitted surface and
the observed one:

b &l
! = Z L [ar + Be + v — g, 0)]*.
roe INeoe (]

Takmg the partial derivatives of €2 and setting them 1o zero results in

“

de-
i o
) id Al al s ” =
r_e_~ = 2 2, Z (@ + Bty —glr,e] ¢ ) =0 (1)
dB e It e ( ’
; ? ‘ 1
e
e—f'ﬂy

Without loss of generality, we choose our coordinate system B X € so
that the center of the neighborhood R x € has coordinates (0, (). When
the number of rows and columns is odd, the center pixel, therefore, has
coordinates (0, 0). When the number of rows and columns is even, there
is no pixel in the center but the point where the corners of the four
central pixels meet has coordinates (0, 0). In this case, pixel centers will
have coordinates of an integer plus a half.
The symmetry in the chosen coordinate system leads o

2 r =0 and E c =10

1 e It e € (O

Hence,

> 2 at=2 ra(r, o),
2 2Bz =2 D gl o),
22 9= 22 ano

Solving for &, B, and ¥ we obtain

&= 2 ol 22
B=22 qna) 22 (2)
=2 E e(r, o)/ z z 1.

2>
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5
Replacing g(r. ¢) I_’."_ art ety + i o)and f""”l"]",‘"”“-’» the equations we may substitute into the last three terms for €2 and obtain after simplhi-
will allow us to explicitly see the dependence of &, B, and 5 on the noise, fication
We obtain ~ ~ SN
) R 5 & = 2 2 M ) — (@ — ) 2, Zrz— B—pX X e
0.':(‘(+(>,Z?‘T]()'.f'}/2,__,)‘—)‘ v v
r t 1 I
. o \‘\ \'\
A ~ - — ~ ’ _(’Y_FY)"L'JLJI
B=B+ (2 2 me.al2 e, ro
) ‘ 1 [
Now notice that
~ N ~ 3
F=y (2 2 ol 2 2. 3 RN
; o 2 2 o)
' ‘
From this it 18 apparent that &, B, ;.mtl M are unbiased estimators {or o, is the sum of the squares of
B, and vy, respectively, and have vartances AR
i w5 P 2 21
Vlg| = rr-/’}, 2
= independently distributed normal random variables. Hence,
* % l A F
1|B]F-'-(r—/z :L =, Z ZT](} V¥
’ ‘
V] = o2 f YN 15 distributed as a chi-squared variate with
d L »
y i ). )
. . - - . A ZJ L ]
Normally. distributed noise implies that &, 3, and 4 are norm: lly v
(]I‘allllllllltf(l The nulltp(ndtm( of the noise implics that , B. and ¥ are degrees of freedom. Because é. B and 4 are independent normals,
mdependent since they are normal and that
A e P (=P 27+ @-pr2 2t G-y 2 2 e
Ll = a)B =B = El(@d —o)(§ — )] = EIB- B -y 0
as a straightforward calculation shows. is distributed as a chi-sauared variate with 3 degrees of freedom. There-
. o fore, /o is distributed as a chi-squared variate with
Examining the squared error residual €2 we find that Z 3

m
R

= 2, 2, [(&r + B + Y= (oar b Be byt ol o)) 7
o degrees of {reedom. This means that €2/( Z 2 1 — 3) can be used as

=2 B (& = )22+ (B = B)22 4 (3 — y)2 + (. o) C

an unbiased estimator {or o2,

S ¥ P . A i = Qi s
206 = ahmlr, o) = 28 = Biem(r, ©) = 2% — yIm(r. o). Gradient-Based Facel-Edge Detection

Using the fact that : ; ; ; ; g
5 Suppose that our model of the ideal image 1s one where cach object part

(@ — a) Z 2, rn(r, ¢ Z ey is imaged as a region that is homogeneous in gray tone. In this case the
: boundary between object parts will manifest itsell as jumps in gray level

G-p-33 —_— "Z ?)t‘thf(_’ll SUCCessIve [-)iplu‘ls on the image. A sm;t.ll ncigh.l)nrhnml on the
image that can be divided into two parts by a line passing through the

middle of the neighborhood and in which all the pixels on one side of the

F =¥ = E er D, N e, ey /2 by Z line have one gray level is a neighborhood in which the dividing line is

d ‘ ' indeed an edge line. When such a neighborhood is fitted with the sloped
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facet model, ar + G(‘ + 4, a gradient magnitude of V&2 + B2 will result.
The gradient magnitude will be proportional to the gray-level jump. On
the other hand if the region is entirely contained within a homogeneous
area, then the true surface ar + Be + y will have a = B = O and the fited,
sloped facet model ar + Be + 5 will produce a value of Vi&* + B2 which is
near zero. Hence, it is reasonable for edge detectors 1o use the estimated
gradient magnitude \/a_li—-—é_-’ as the basis for edge detection. Such edge
detectors are called “gradient based edge detectors.” There are other
kinds of edge detectors such as zero-crossing edge detectors. A discus-
sion of how the facet model can be used to determine zero crossings of
second directional derivatives as edges can be found in Haralick (1984).

The most interesting question in the use of the estimated gradient
Va2 + B2 as an edge detector is how large does the gradient have to be in
order for it to be considered signilicantly different from 0. The discus-
sion that answers this question begins by noting that & has a normal

distribution with mean a and variance o2/ E z r2, that B has a nor-

1 ‘
- )
mal distribution with mean B and variance o2/ Z E 2 and that &
r ‘

and Bzu'c independent. Hence,
(G- 22 D2+ R-pry X

9
=

is distributed as a chi-square variate with 2 degrees of freedom. From this
it follows that 1o test the hypothesis of no edge under the assumption
that & = B = 0, we use the statistic &

&2 D24 B2 > 2 e

a?

G =

which s distributed as a chi-squared variate with 2 degrees of {reedom. If
the statistic G has a high enough value, then we reject the hypothesis that
there is no edge, ]

Il the neighborhood used (o estimate the facet is square, then

%, il Bl ¥ - Fy . . - -
2 ET" = Z Z 2 so that the test statistic is a multiple of the estimated
¥ [

’ (

squared gradier magnitude 2 + B2, Such an edge operator is the well
known Prewilt edge operator. However, by knowing the conditional dis-
tribution given no edge, it becomes casier 1o choose a threshold. For
example, suppose we want the edge detector 1o work with a controlled
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false-alarm rate. The false-alarm rate is the conditional probability that
the edge detector classifies a pixel as an edge given that the pixel is not
an edge. Suppose the false-alarm rate is 1o be held 1o 1% Then since
P(X3 = 9.21) = .01, the threshold we must use must be at least 9.21.

But to use this technique, we must know the noise variance o2, For-
tunately we can obtain a good estimate of o®. Each neighborhood’s nor-
malized squared residual error,

(2, 21~ 3),

can constitute an estinsttor for o2, This estimator is available for each
neighborhood of the image. Because there are usually large numbers

(thousands) ol pixels in the image, the average of e'—’."(z 2‘, 1 —3)

r ‘
taken over all the neighborhoods of the image is a very good and stable
estimator of o2 if 1t can be assumed that the noise variance is the same in
cach neighborhood. 11 €2 represents the squared residential fiting ervor
from the n'" neighborhood, then we Nty use
N
1 Y =) al
i o © _—"
== 3 &l X X 1-3
| 1] r

N

H.=*

in place of o2 Hence our test statistic G hecomes
~ n -
&32 z,.z ” B:E Z ri
r i L} ‘

it

Under the hypothesis of no edge, G, being the vatio of two chi-squared
statistics, would have an F distribution. But because the number of de-
grees ol freedom of &2 is so high, ¢ has essentially a chi-squared distribu-
tion with two degrees of {reedom. Thus if we wanted 1o detect edges and
be assured that the false-alarm rate (the conditional probability ol assign-
ing a pixel as an edge given that itis not an edge) is less than p,,, we would
use a threshold of 8, where P(X3 = 6,)) = p,,.

Figure 1.1a shows a controlled 100 x 100 image having a disk of
diameter 63. The intervior of this disk has gray level of 200. The back-
ground of the disk has gray level of 0. Independent Gaussian noise
having mean zero and standard deviaton of 40, 50, and 75 is added 1o
the controlled image. The noisy images are shown in Figures 1.1b, 1.1¢,
and L.1d, respectively.

A sloped facet model is fitted to each 5 % 5 neighborhood of each
image and its &, B, and € is computed. For the ideal image of Figure
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FIGURE 1.1. (i) (upper leln) shows
the controlled disk (hackground hav-
ing value 0, disk having value 200)
and noisy disks. () (the upper right)
has noise standard deviation 40, (¢)
(the lower left) has noise standard
deviation of 50, () (the lower righi)
has noise standard devianon ol 75,

I.Ta, the average squared residual lining ervor €2, the average being
taken over all neighborhoods, was 302,33, This corresponds o a stan-
dard deviation of about 17.4, which is 8.7% of the dynamic range of the
image.

Obviously the fit will be perfect for all 5 % 5 neighborhoods that ave
entirely contained in the background or on the disk. The error must
come from those neighborhoods that have some pixels from the back-
ground and some pixels from the disk. In (hese neighborhoods, the
sloped fit is only an approximation. The neighborhood that has the
worst it is shown in Figure 1.2. The sloped fit there has an average

o] o o] o o i [-us]-32 196 | o Teu] ows| 3|6 o

o o o o o | [ [Tz w0 36| [z8] el wlTzolaed

o] o o] o o 8| 2u| uo |56 | 72 -8 | Z2u | o |56 | <72

of o of o200 | [ux ! 60| 76 52 |108 -un | 260 [,-76 | 92| 92
| 0| 200|200 | 250 |200 “TBo [ 96 |77z [12¢ [y | -8c| tou| 88| 72| 56

e o
observed neighborhood slope fitted neighborhood residual fitting errors
{a) (b) (c)

FIGURE L.2. (a) illustrates a neighborhood tor which the slope Tit is a
relatively b approximation. The fit produces an @ 36,3 = 16, and ¥ =
40 The sloped hinted neighborbood is shown in (h), and the vesidual
fitting er~ors are shown in (¢). The 1otal squared error from (¢) is 82400.
This divided by the degrees ol hieedom, 95 - 3 = 992 vields an average
squared error of 3746, The square root of 3746 is abow 61.2, which
represents the standard deviation ol the residual ltting ervors.
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squared residual crvor of 3746, The standard deviation of fittmg error i
then 612, which represents 30.6% of the dynamic range.

For the noisy image of Figure 1.1, the standard deviation of the
fitting ervors is o = 77.5. This is Just alittle higher than the standard
deviation of the noise because it takes into account the extent to which
the data do not {1t the model. In fact, assuming that the imperfectedness
ol the model and the noise are independent, we would expect to find
standard deviation of V1747 + 752 = 77, which is close 1o the 77.9
measured.

Figure 1.3a shows edges obtamed when the statistic G computed on
the ideal image of Figure 1. 1ais thresholded at the value 120, Since 62

302.33 and E E ¥ ‘_: ‘\_: ¢ 500 1his corresponds to selecting all
neighborhoods l;u\'ing sl(’qws greater than 26.91. Figure 1.3b, ¢, and
show the edges obtained when a 5 x5 sloped facet model is employed
and when the statistic G computed from cach neighborhood of the noisy
image ol Figure 1. 1d is thresholded at 4, 8, and 11. Since 62 = 5975.3 for
the noisy image, a threshold of 8 corresponds to selecting all neigh-
borhoods having slopes greater than 30.92. These thresholds of 4, 8, and
I'l guarantee (under the conditions of independent Gaussian noise) that
the false alarm rates must be less than (1353, .01832, and 0041, respec-
tively. The observed false-alarm rates for these thresholds are .1931.
0164, and L0042, respectively. The corresponding misdetection rates are
L0205, .0820, and .1598.

As just mentioned, corresponding to each possible threshold is a false
alarm rate and a misdetection rate. The misdetection rate is the condi-
tional probability that a pixel is assigned “no edge” given that it is actu-
ally an “edge” pixel. One way (o characterize the performance of an edge
detectoris to plot its false-alarm rate as a function of misdetection rate in
a controlled experiment. Such a plot is called an “operating curve.”
Figure 1.4 shows two operating curves for the sloped facet edge detector.

FIGURE 1.3. (a) (upper left) shows
edges obtimed when the statistic ¢
computed using 5 x5 neighbor-
hoods on the ideal image ol () is
thresholeded at the value 120, (b) (up-
per right) shows the edges obtained
when the statistic G computed using
5 x5 neighborhoods on the noisy
image of (d) is thresholded at the val-
ue 4. () (lower left) and (d) (Jower
right) show thresholds of 8 and 11,
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FIGURE 1.4. shows two aperating "
curves for the 5 x5 slope-tacet gra- 2
dient edge detecor. The hagher one (
corresporls to a noisy disk with

noise standard deviation ol 75 and T
the upper one corresponds to a noisy

disk with noise standard deviation of

M.

The higher one corresponds to a noisy disk with noise standard deviation
75. The lower one corresponds to a noisy disk with noise standard devia-
tion H().

H it cannot be assumed that the noise variance is the same in each
neighborhood, then the estimator using the average ol the normalized
squared residual cerrors for o is not proper. In this case, the local
€[ E E I = 3) can be used as an estimate of the variance in each neigh-

ro
borhood. However, this estimate is not as stable. It does have a higher
variance than the estimate based on the average of the local variances,
and it kas a much lower number of degrees of freedom. Here, to test the
hypothesis of no edge for the lat-world assumption, ¢ = = 0, we use
the ratio

F= ((dL’Z Er"-’ 4 B"Z 2 r“")/f!)/(t‘.z/(z El '_3)).
which has an F distribution with
( 2.2 2 1~-3)

degrees of freedom and reject the hypothesis for large values ol F.

Again notice that ¥ may be regarded as a significance or reliability
measure associated with the existence of a nonzero sloped region in the
domain R x (. It is essentially proportional 1o the squared gradient of
the region normalized by

69/(2}21—3)

which is a random variable whose expected value is o2, the variance of
the noise.
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EXAMPLL: Consider the following 3 % 3 region:

3 h 9
t 7 7
0 3 7
Then & = —1.17, B = 2.67, and ¥ = 5.00. The estimated gray-tone

surface is given by @ 4 Br + § and is

. ~ B -
3,50 616 R8.83
2.33 5.00 7.67
1.17 A3 .50
The difference between the estimated and the observed surface is the
error and it is
(.50 1.17 -0.17
_—l_.ﬁ? 2.00 0.67
.17 0.83 -(1.50

From this we can compute the squared error €2 = 11.19. The F statistic is
then

[(—117)2- 6 + (2672 6)/2 _

11.19/6 13.67.

If we were compelled to make a hard decision about the signilicance
of the observed slope in the given 3 x 38 region, we would probably call it
a nonzero sloped region, since the probability of a region with true zero
slope giving an F, ; statistic of value less than 10.6 is 0.99. 13.67 is
greater than 10.6, so we are assured that the probability of calling the
region a nonzero sloped region when it is in fact a zero sloped region is



12 SHAPIRO AND HARALICK

FIGURE L.5. ‘The cdges obtained under a 5 % 5 sloped-facet model
using the I statistic. (a) (upper left) shows the thresholded Fstatistic from
the noiseless disk. (1) (upper right) shows the £ statistic image ol the noisy
disk ol () (moise standard deviation 75) thresholded at 2,320 (o) (Jower
lefty and () (lower righty use thresholds of 5.0-F and 7.06.

much less than 1% . The statstcally oviented veader will recognize the
test as a 1% signilicance level tesr. ‘

Figure 1.5 shows the edges obtained when a b % 5 sloped facet model
is employved and when the stistic £ computed from cach neighborhood
of the noisy image of Figure L Ed is thresholded ac 2,32, 5,04, and 7.06.
These thresholds should guarantee (under conditions of independent
Gaussian noise) et the False-alarm rates arve less than (1218, 0158,
and 0012, respectively. These thresholds produce observed lalse-alinm
rates of (1236, 0165, and 0012, indicating these were simall but negligi-
ble departures from the independent Gaussian assumptions. Since Elnl'st'
observed [alse-alarm rates are almost wentical 1o the observed false-
alarm rates from the Chi-square tests ol Figure 1.3, we may compare the
corresponding misidentlication rates. The observed misidentification
rates for the F test were 0792, 3224, and 5137, all of which are consid-
(’r;l.hly higher than the observed misidentification of the corresponding
Chi-square tests. It is obvious [rom i « omparison of these images tha 1|1‘(‘
cd.g(.* noise is worse i the Fiests compared to the Chi-square tests. All
this is to be expected because the noise meets the assumption of the Chi-
square test, and the more one 1s able to correctly assume about reality,
the ll)cll(‘r the results ought to be when the ;1[)p1“n;)1i;tlv statistical test is
used.
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SEGMENTATION USING THE FACET MODLEL

The facet model allows cach neighborhood of an nage to be thought of
as a })iv(‘c'wis(' lincar (or constant or quadratic or cubic) surface. One way
in which this facet representation is uselul is for image segmentation,
There are a variety of approaches. We describe here one approach o
determine an initial segmentation and a second approach to merge re-
gions ol an initial segmentation, The first approach was originally dis-
cussed in Haralick and Shapiro (1985) and the second approach in Pong,
Shapiro, Watson, & Haralick (1981).

Determining an Initial Segmentation

o find regions ol a segmentation we must look for connected sets ol
resolution cells that are surely on the same gray-tone intensity surface.
To find edges we must look lor pairs of adjacent regions having signifi-
cantly different surfaces. To do segmentation, we must do both. This
suggests the following hybrid linkage-combination technique. Select an
appropriate-sized neighborhood. Run this neighborhood over the -
age. For cach location where the neighborhood may be placed on the
image, determine the parameters ol a sloped facet-surface it as well as
the €2 error of the fit. Use this information to create an edge image.

Now perform a region-growing algorithm on the nonedge pixels.
This means that no linking is performed across edge pixels, and edge
pixels are not assigned to any region. Edges are barriers to the region-
growing process. Such a region-growing technique is described in Har-
alick and Shapiro (1985). T'he image is scanned in usual raster-scan
order: lelt 1o right and top to bottom. Each current pixel then neighbors
four pixels (for 8-connectivity), which have been previously scanned. It a
previously scanned pixel is not an edge pixel then it belongs to some
already existing, but not necessarily completed, region segment. This not
necessarily completed region segment has a mean and variance. If the
value of the current pixel is noi significantly different from the mean of
such a neighboring region segment, the pixel is added 1o the segment
and the mean and variance of the segment is updated. Here, signifi-
cantly different means by a T test.

If there is more than one region that is close enough, then the test
pixel is added 1o the closest region. If the means of any two competing
neighboring regions are each close enough to the current pixel value and
close enough 1o each other, then the two regions are merged and the
pixel is added to the merged regions. If no neighboring region has its
mean close enough, then a new segment is established containing the
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current pixel and having a mean value that is the value of the current
pixel.

We now define the T test precisely. Let R be asegment containing N
pixels and whose pixels neighbor the current pixel. The mcan X and the
scatter 8= of region R are defined by

f=a ¥ e

]
1\ (r.)edd

§2= 2 de, )~ X)P

(1. held

Let the cuvrent pixel have the value y.
Under the assumption that all the pixels in R and the test pixel y are

mdependent and identically distributed normals, the statistic

o (N — 1) s sy | T

= | A Sy - SR

AR

hasa 7'y distribution. 17 is small cnough, yis added (o region R, and
the mean and scatter are updated using y. 'The new mean and scatter are
given by

X

TTnew

—NX gt/ N+
and

S =S = ¢ N = il

ew

IF T is 100 high, the value y is not likely to have arisen from the
popuiation ol pixels in R 10y is dilferent from all of its neighboring
regions then it begins its own region. A slightly stricter linking criterion
can require that not only must v be close cnough 1o the mean of the
neighboring regions, but that a neighboring pixel in that region must
have a close enough value to y. This combines a centroid linkage and
single-linkage criterion.

To give a precise meaning 1o the notion of oo high a difference, we
use an o level statistical significance test. The fraction o represents the
probability that a 7 statistic with N = 1 degrees of freedom will exceed
the value 1y, (). If the observed T is Larger than ( (@), then we
declare the ditference to be significant. 1 the pixel and the segment
really come from the same population, the probability that the test pro-
vides an incorrect answer is . -

The significaee level o is a user-provided parameter. The value of
v fe) s higher for small degrees of freedom and lower for larger
degrees of freedom. Thus, region scatters considered 1o be equal, the

w1
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Jarger a region is, the closer the value of a pixel has 1o be to the mean of
that region in ovder 1o be merged with that region.

Note that all regions initially begin as one pixel in size. To avoid the
pml:lt‘m ol division by 0 (for §2 is necessarily 0 for 1-pixel regions and 0
for regions having identically valued pixels), a small positive constant can
be added 10 52 One convenient way of determining the constant is to
decide on a prior variance V= 0 and an inital segment size N, The
initial scatter for a new L-pixel region is then given by NV, and the new
mitial region size is given by N, This mechanism keeps the degrees of
frecdom ol the T-stanstic high enough so thae a significant difference is
not the huge dilference required for a T-statistic with a small number of
degrees of freedom.

Region Merging

The problem with using the initial segmentation just described as input
toa higher-level algorithn attempting to recognize objects in the scene is
that the regions are too small to be meanminglul. This problem motivaied
us to develop a region-growing scheme that starts with an initial segmen-
tation and produces a new segmentation having larger, hopefully more
usctul regions. Such a procedure could be repeated any number of times
producing a sequence of rongher and rougher segmentations. The final
result or the entire sequence of segmentations might prove useful o a
higher-level process.

Once an initial segmentation has been produced, (cither by the meth-
od previously described or some alternate method) properties of the
inttial regions are computed. These resulting property vectors are used
in the region-merging process. Among the properties measured for each
region, we have used the following in our experiments.

1. Size is simply the number of pixels in a region.

Mean gray level is the average gray-level intensity in a region.

3. Elongation is a measure ol the shape of a figure. 1t is obtained by
[inding the covariance matrix M of the distribution of (r — F, ¢ — ¢)
where (r, ¢) represents the coordinates of a pixel in region R, and
(7, ¢) is the center of mass ol K.

The matrix M is defined by

> - 2 (r=Pxlc—7)

(r.e)el? (r.0)elR

M=\ T w~axtr-n % &=

(r,e)elt (r.c)elt
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and (f, ¢) tor a region R is given by

P = /R E rand ¢ = U/|R| P

(r.cyelt (r.0)el

Two eigenvalues can be obtained from the matrix M. Elongation is
defined as the ratio of the larger eigenvalue to the smaller.

Besides the property vector for each region, a region adjacency graph
that gives topological information about the regions is also generated for
a segmented image. Two regions R1 and R2 are said to be adjacent for a
segmented image if there exists some pixel in R1 such that its 4(8)-
neighborhood intersects R2. The region adjacency graph has nodes cor-
responding to regions and edges that connect together nodes represent-
ing adjacent regions.

Now we are ready to describe the merging process. Suppose an initial
segmentation is given. We group regions using an iterative scheme. Each
region is represented by a property vector. At each iteration, the proper-
ty vector of a region can be replaced by some function of the property
vectors of the regions constituting its best fitting neighborhood of re-
gions, a concept to be soon defined. After convergence of the iterative
procedure, connected sets of regions with similar revised property vee-
tors become the new regions.

The merging algorithin has two phases. In phase | the properties of
each region are updated based upon the properties of its region neigh-
borhood. In phase 2 adjacent regions that have similar updated propert y
values are merged together. We now describe the algorithm and its
several variations in detail.

Phase |

Suppose that the image-spatial domain has been divided into N non-
overlapping regions labeled r(1), . . ., #{N) with corresponding property
vectors pr(1), . . . LPEN) ad the A weration. Deline the neighborhood of
region r, NBD(r), by

NBD(@) = {r" | region r' is adjacent o region r},
Suppose for some region r that NBD(y) = r'(h., ... r'"om)}. Then be-
cause neighboring is symmetric, rois also an element of NBD(r' (7)) for
7= L. m Thus region r participates in o dilferent neighborhoaods.
For a given neighborhood X, we define the variance of X, var(X), by

var(X) = Z [ (PG = pEN |2 4X] = 1)

Tiflex
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where p(X) is the mean property vector of X, and [X] is the cardinality of
X. The best-litting neighborhood of region r, BF(), is that one of the m
neighborhoods it participates in that has lowest variance. Thus

BIF(r) = X
where Xk = NBD(') Tor some ' € NBD(r) and

. min o e
var(X) = SN var(NBD(r")).

An iteration of the region growing algorithm starts with the set of
regions r(1), .. .. r(N), with property vectors pi(l), .. ., pX(N), and re-
places the property vector of each region by some function of the prop-
erty vectors ol its best-fitting neighborhood. That s,

PNy = [(BFER)),n =1, ... N

where, of course, BI%(r(n)) depends on phn). The process is repeated
until it reaches or approaches a fixed point. Then in phase 2, adjacent
regions with identical or near identical property vectors are merged to
form a new set ol regions.

Phase 2

Suppose that we start with a segmented image whose regions are
labeled (1), .. . #(N,). If the process for these regions reaches a fixed
point at some iteration, we merge them to form a new set of regions
), o YN ) inthe Tollowing way,

Construct a graph in which the nodes are the regions. Link together
all pairs of regions (a) that are adjacent and (b) whose updated property
vectors are close enough. Determine the connected components of the
resulting graph. Each connected component corresponds to a subset of
regions whose union constitutes one of the merged regions for the nexi
cycle. For an image with 7" regions, let n() be the number of neighbors
for region /. Then the number of computations for an iteration of this
algorithm is proportional 1o n(1) + n(2) + - + n(T), which FIVES i
computational complexity O(7T X i), where 7 is the average number of
neighboring regions for all the regions. In most cases i << T, which
makes this an efficient algorithm.

Updating the Property Vectors

One of the most important steps in this region-growing algorithm is to
update the property vector for each region. Three different alternatives
have been tried. The [irst method uses the mean property vector of its
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best-fitting neighborhood. At iteration £, the updated property vector of
a region R is given by
/,;u LRy = F(R*)

where ¥ = BF(R). Extensions ol the theorem for the {Tat-facet model in
(Haralick & Watson, 1981) guarantee the convergence ol this method.,

The second way of updating the property vector of a region is to make
it take on the original property vector of the region that defines the best-
fiing neighborhood. That is, instead of using p* ' Y(R) = i (R*) as in
methad (1), the property vector is updated by

/)k bl (R) = Pk

where NBD(S) = BE(R). Resulis showed that the rate ol merging by this
method is faster than the fivst. But unfortunately, this method shows
oscillatory behavior for some images: it does not always lead o a fixed
point.

The third alternative is to calculate the mean by weighting the proper-
ty vectors of a neighborhood by their region sizes. Our results show that
the first approach, using the mean property vector, is the most reliable
method.

Thresholded Flat-Facet Iteration

The updating schemes described in the previous section recompute
the property vector of every region at each iteration, To prevent inaccu-
rate segmentation due to property vectors changing too much, we need
to inhibit the updating if the new property vector of a region is too
different from the original one. 'To accomplish this, the idea of a thresh-
olded flat-facet weration is introduced. For a lat-facet ieration with
threshold e, the updated property vector of a region R is given by

PONRY = R, I [BRE) — pER)| > e
= p(R=), otherwise.

The convergence of the flat facet iteration is guaranteed (Haralick &
Watson, 1981). The prool that the thiesholded Mat-facet iteration also
converges was given in Pong, Shapiro, & Haralick (1985).

To illustrate the region-merging technique, we begin with a busy
mmage (Figure 1.6a) and an equally busy initial segmentation (Figure

1.6b). Figure 1.7a shows the segmentation obtained alter one iteration of

region merging, using only the gray-tone property and employing the
first approach to updating the property vectors. After only one iteration,
some order begins to appear in the cluttered segmentation. Figure 1.7.b
shows the segmentation obtained after two iterations: A few meaningtul
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FIGURE L6. () shows an actial image of buildings. () shows s initial
segmentation using the technigues pust desenibed,

FIGURE 1.7. (a) shows the segmentation
alter one iteration of merging the regions
of the segmentation of (b). (b) shows the
resulting segmentation after two iterations.
(¢) shows the resulting segmentation after
five tterations,
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structures, such as streets and l)uil(lingsr. are now S!](.)Will}_{ up. Figure
| 7¢ shows the segmentation obtained after .fl\’t‘.:l[(’l';lll'()nﬁ. More merg-
ing has taken place and there are more n}t‘;unqgiul regions to work with.
Of course, we must remember that this is a blind, bottom-up segmenta-
ton technique. Unless it is used wuh A knu.wlc.'(Igc-_h;lsvcl system ‘(h;u
understands the semantics of some of the variations in gray t.om- ol the
original image, we cannot expect such a system to segment o mean-
ingful objects.

THE TOPOGRAPHIC PRIMAL SKETCH

Our classilication approach is based on the estimation of the first- :m(l_
second-order directional derivatives. In two dimensions, lh(.’ rate ol
change of a function f depends on direction. W‘c- denote the ’(ln'e('imn;.tl
derivative of F at the point (r, ¢) in the direction of 8 by /7(r.c). It is

defined as

a lim fir + A" sin 0, ¢ + h"cos B) — [(r, o)
falti ¥) = psu A

The direction angle 6 is the clockwise angle from the column axis. It
follows divectly from this definition that

. af ‘
(r, ¢) = s + —/ (r. ¢) % cosf.

Jolr. ) = 7

=

We denote the second derivative of [ at the point (r, ¢) In the direction 6
by fotr. ), and it follows that

if

o (‘2f T = ('J/ o e + =L . 20
[o = o5 * sin’ 0+ 2% — o * s 0+ cos b g ¥ LORT

7] -

or

‘The gradient of [ is a vector whose magnitude,

EYs : . 172
() (2]
dr e
at a given point (r, ¢) is the maximum rate of change of [ at that pont,
and whaose direction,

df
ar
o

e

tan

is the direction in which the surface has the greatest rate of change.
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The Mathematical Properties
We will use the following notation to describe the mathematical proper-
ties of our various topographic categories for continuous surfaces. Let
V=
/1

w' = unit vector in direction in which second directional
derivativehas greatest magnitude;

gradient vector of it function /;

gradient magnitude;

w™ = unit vector orthogonal 10wt
A, = value of second directional derivative in the direction
m‘“;

Ao = value of second directional derivative in the direction of
(2). '
w?);

V- w" = value of first directional derivative in the direction of
wM: and

b2

V/ - 0@ = value of first directional derivative in the direction of @,

Without loss of generality, we assume [h,| = ||

FEach type of topographic structure in our classification scheme is
defined in terms of the aforementioned quantities. In order to calculate
these values, the first- and second-order partials with respect 1o r and ¢
need Lo be approximated. These five partials are as follows:

oflar, dffac, aflar?, a°flac?, a*flar oc.
The gradient vector is simply (8f/ar, df/dc). The second directional

derivatives may be calculated by forming the [{essian where the Hessian
15 4 2 X 2 matrix defined as

/= a?f/ar-2 o¥flar ac
d3fldc or a*flac:

Hessian matrices are used extensively in nonlinear programming.
Only three parameters are required to determine the Hessian matrix H,
since the order of differentiation of the cross partials may be in-
terchanged. That is,

a%flar de = H?[/H(' ar.
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The eigenvalues of the Hessian are the values of the extrema of the
second-directional derivative, and their associated eigenvectors are the
directions in which the second-directional derivative is extremized. This
can easily be seen by rewriting /¢ as the quadratic form

sinf)
cosf

[ = (sin 0 cos 0) « /1] &

Thus
!IU.J(“ = }\]w(l)‘ 'dll(l ‘(Im(Ql = )\-_,UJ(:“)]‘

Furthermore, the two directions represented by eigenvectors are
unlmgunul to one another, Since /115 a 2 X 2 symmetric matrix, caleula-
tion of the eigenvalues and cigenveators can be done efficiently and
accurately using the method ol Rutishauser. We may obtain the values of
the first-divectional derivative by simply taking the dot product of the
gradient with the appropriate eigenvector:

V/i-wh
V[ o

There is a direct relationship between the eigenvalues N and A, and
curvature in the directions " and o2 When the fivst-directional deriv-
ative V f - o' = 0, then A /(1 + (Vf - ¥f)*2 is the curvature in the
direction ", { = 1 or 2.

Having the gradient magnitude and direction and the cigenvalues
and eigenvectors of the Hessian, we can describe the topographic classifi-
cation scheme. A peak occurs where there is a local maxima in all direc-
tons. In other words, we are on a peak if, no matter what direction we
look in, we see no point that is as high as the one we are on. The
curvature is downward in all directions. At a peak, the gradient is zero,
and the second-directional derivative is negative i all directions. T'o test
whether the second-directional derivative is negative in all divections, we
Just have to examine the value of the second-directional devivative in the
directions that make it smallest and largest. A point s therefore classified
as a peak il it satisfied the following conditions:

9/l = 0, A, < 0, x, < 0.

A pitis identical to a peak except that 1t s a local minima in all divections
rather than a local maxima. At a pit the gradient is zevo, and the second-
directional derivative is positive in all directions. A point is classified as a
pitif it satisfic- the following conditions:

v/l = 0. N, > 0, A, = 0.
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Ridge

A ridge occurs on a ridge-line, a curve consisting ol a series of ridge
points. As we walk along the ridge-line, the points to the right and left of
us are lower than the ones we are on. Furthermore, the ridge-line may be
flat, slope upward, slope downward, curve upward, or curve downward.
A ridge occurs where there is a local maximum in one direction. There-
fore, it must have negative second-directional derivative in the direction
across the ridge and also a zevo first-directional derivative in that same
divection. The direction in which the local maximum oceurs may corre-
spond to either of the directions in which the curvature is “extremized.”
since the ridge itselt may be curved. For nonflag ridges, this leads to the
following first two cases for ridge characterization. If the ridge is flat,
then the ridge-line is hovizontal and 1the gradient along 1 is zevo. This
corresponds to the third case. The delining characteristic is that the
second-directional derivative in the direction of the ridge-line is zero,
while the second-directional derivative across the ridge-line is negative.
A point is therefore classified as a ridge if it satisfies any one of the
following three sets of conditions:

9/l # 0, A, <0,V - @D

—_
p—

or

V71 # 0, Ay < 0, Vf - 0 =0
ar

Vil = 0.5, < 0,2, =0.

A geometric way of thinking about the delinition for ridge is to realize
that the condition Vf - 0 = (0 means that the gradient direction (which
is defined for nonzero gradients) is orthogonal to the direction @' of
extremized curvature.

Ravine

A ravine (valley) is identical to a ridge except that it is a local minimum
(rather than maximum) in one direction. As we walk along the ravine-
line, the points to the right and left of us are higher than the one we are
on. A point is classified as a ravine il it satisties any one of the following
three sets of conditions:

"Vf” # 0, > 0, V- ot =0
or
"V/” #* ”9 )\2 > (), V/ # w('z) = {)
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ar

I/ = o, A, > 0, Ay = 0.

Saddle

A saddle occurs where there is a local maximum in one direction and a
local minimum i a perpendicular divection. A saddle must therefore
have positive curvature in one direction and negative curvature in a
perpendicular direction. At a saddle, the gradient magnitude must be
zero and the extrema of the second-directional devivative must have
opposite signs. A point is classilied as a saddle if it satisfies the lollowing
conditions:

“V/“ =0, )\| * }\2 0.

Flat

A flatis a simple, horizontal surface. I, theretore, must have zero gra-
dient and no curvature. A point is classilied as a flat if it satisfies (he
following conditions:

I¥/ll = 0. x, = 0.\, = 0.

Given that the aforementioned conditions are true, a flat may be
further classified as a foot or shoulder. A foot occurs at that pomt where
the flat just begins 1o (urn up mto a hill. A this point, the third-direc-
tionai devivative in the divection toward the hill will be nonzero, and the
surface increases in this divection. The shoulder is an analogous case and
occurs where the flat is ending and tring down into a hill. At this
point, the maximum magnitude of the third-divectional derivative s
nonzero, and the surtace decreases in the direction toward the hill. 1f the
third-directional derivative is zero in all directions, then we are in a lat,
not near a hill. Thus a fat may be further qualified as being a foot or
shoulder, or not qualified an all.

Hillside

A hillside point is anything not covered by the previous categories. It has
anonzero gradient and no strict extrema in the directions of NEXInum
and minimum second-directional derivative, 1 the hill is simply a tilied
flat (i.e., has constang gradient), we call it a “slope.™ I its curvature is
positive (upward), we call it a “convex hill.” [ its curvature is negative
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(downward), we call it a “concave hill” If the curvature is up i one
direction and down in a perpendicular divection, we call it a “saddle hill.”

A point ona hillside is an “inllection point™ if it has a 2ero-crossing ol
the second-directional derivative taken in the direction of the gradient,
The milection-point class is the same as the “step edge” defined by
Haralick (1981) who classilies a pixel as a step edge if there is some point
in the pixel's area having a negatively sloped zero-crossing of the second-
directional derivative tiken in the direction of the gradient.

To determine whether o pointis a hillside, we just take the comple-
ment of the disjunction of the conditions given for all the previous class-
es. Thus, if there is no carvatare, then the gradient must be nonzero., It
there 1s cinvature, then the pomt must not be a relative extremum.,
Therctore, a point is dassiticd as a hillside it all three sets of the follow-
g conditions are true (‘—° represents  the  operation ol logical
implication):

Ay = Ay = 0= ||V # 0,
and

A F 0= V- wth £ 0,
and

Ao # 0= Vf - 0 # 0.

Rewritten as a disjunction ot clauses rather than a conjunction of
clauses, a pointis classified as a hillside if any one of the following four
sets of conditions are true:

V/ wh A ), Vi o™ # 0
or
V£ 0N, =0
or

V/ w7 0, ),

or
IV/Il # 0. %, = 0, A, = 0.
We can dilferentiate between different classes of hillsides by the values
ol the second-directional derivative, The distinction can be macde as
folows:
Slope  if A, = Ay =0
Convex if Ay >= A, == 0, N\, # 0
Concave if A; <=\, <= (), A #0
Saddlehill il Ay d <)
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A slope, convex, concave, or saddle hill is classified as an inflection
point if there is a zero-crossing of the second-directional derivative in the
direction of maximum first-directional dervivative (i.e., the gradient),

Summary of the Topographic Categories

A summary of the mathematical properties of our topographic struc-
tures on continuous surfaces can be found in Table 1.1, The table CX-
haustively defines the topographic classes by their gradient magnitude,
second-directional derivative extrema values, and the first-directional
derivatives taken in the directions that extremize second-directional de-
rivatives. Each entry in the table is either 0, +, —, or *. The 0 means not
significantly different from zero on the positive side; — means signifi-
cantly different from zero on the negative side, and = means it does not
matter, The label “Cannot occur™ means that it is impossible for the
gradient to be nonzero and the first-directional derivative to be zero in
two orthogonal directions. )

From Table 1.1 one can see that our classification scheme is complete.
All possible combinations of first and second-directional dervatives have
a corresponding entry in the table. Fach topographic category has a set
of mathematical properties that uniquely determines it

TABLE 1.1
Mathematical Properties of Topographic
Structures

||Vf" A Ao Vfuth \YRTGE 1abel
0 {) 0 Peak

1] 0 0 0 Rielge

0 1 0 0 Sadddle

] 0 1} 0 () Il

{] t " {) 0 Sadldle

0 t 0 0 0 Ravine

0 1 1 0 0 I'n

t " . 4 Hillside
t * 0 * Ridge

t ® - * 0 Ridge

b 0 o ¥ Hillsicle

t - t Lt -t 1hillside

t 0 () # #* [lillside
b ' = | | IHillsicle
1 | 0 - * Hillsicle

1 t * 0 * Ravine

i ¥ + * 0 Rinvine

1 t t Lt ,; + Hillside
t * * ( () Cannatl occm
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(Note: Special attention is required for the degenerate case Ap =N, #
0. which implies that ©'" and o can be any two orthogonal directions.
In this case, there always exists an extreme direction which s
orthogonal to Vf, and thus the lirst-directional derivative Vf - w is always
zero in an extreme direction. T'o avoid spurious zero-directional deriva-
tives, we choose oM and w'® such that Vi w® s 0and Vf - w® %,
unless the gradient is zero.)

Local Cubic Facet Model

Inorder to estimate the required partial derivatives, we pertorm a least-
squares [ with a two-dlimensional surface, £, 1o a neighborhood of each
pixel. It is requirved that the Tune tion f be continuous and have continu-
ous lirst- and second-order partial devivatives with respect torand ¢ in a
neighborhood around each pixel in the re plane.

We choose f (o be a cubic polynomial in r, and ¢ expressed as a com-
bination of discrete orthogonal polynomials. The function f is the best
discrete least-squares polynomial approximation o the image data in
cach pixel's neighborhood. More details can be found in Haralick and
Watson (1981), in which each coeflicient ol the cubic polynomial is eval-
wated as a lincar combination of the pixels in the fitting neighborhood.

To express the procedure preaisely and without reference o a partic-
ular set of polynomials tied 1o neighborhood size, we will canonically
write the fitted bicubic surface for each fiting neighborhood as

firoe) =k, + kor + ko
+ &® e 4 ket
tohar? + fpe + hgre? + k0t
where the center of the fiting neighborhood is taken as the origin. It

quickly follows that the needed partials evaluated at local coordinates (r,
) are

offdr = ke + 2k + ke + k2 + 2hyre + ko2
ofldc = hy + key + ke + kyr? + 2hore + 3k, 02

1ot = 9k, + Gk + Dhe
a2flac? = 2k + Zhgr + Gk
%1 arac ke + 2kyr + 2k,

Itis easy to see that the above quantities are evaluated at the center of
the pixel where local coordinates (r, ¢) = (0, 0), only the constant terms
will be of significance. If the partials need 1o be evaluated at an arbitrary
point in a pixel's area, then a linear or quadratic-polynomial value must
be computed.
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THREE-DIMENSIONAL SHAPE ESTIMATION

Consider an image of a three-dimensional object illuminated by an arbi-
trary light source and viewed from an arbitrary position. Although ambi-
guities are possible, frequently the human viewer can estimate (a) the
three-dimensional shape of the object, (b) the cunera position, and (¢)
the location of the light source. The original “shape-from-shading” tech-
niques (Horn, 1975) solve systems ol differential equations to derive
three-dimensional shape from gray-tone intensity variations and operate
under a limiting set of vestrictions. In addition to low level shading cues,
we believe that the human viewer also recognizes patterns in the image
that give cues leading to estimation of the shape of the object.

Extracting patterns from the original gray-tone image is, in most non-
trivial cases, an impossible task. In fact, it is for this reason that syntactive
pattern-recognition systems have had 1o first extract descriptions consist-
ing of primitives, their properties, and their interrelationships from he
nage and then to parse these descriptions according to the rules of a
grammar. Instead ol trving 1o recognize patterns at the gray-tone inten-
sity level, we propose to work at the topographic-labeling level. Our goal
i$ Lo use patterns expressed in terms of ridges and valleys, peaks and pits,
flats and hillsides to estimate three-dimensional shape.

Imaging Geometry

The relationship between scene coordinates and image coordinates is
Hustrated in Figure 1.8. We assume that the camera lens 15 at the origin
and that the z-axis is directed toward the image plane which is in (ront of
the lens. The image plane is placed at a distance £, the focal length of the
lens, in front of the origin so that (he image is oriented in the same way
as the scene. As seen {rom Figure 1.11, the following relations hold for
perspective projection:

=

& |

JAS
u==andv =
z
In our discussion, he perspective projection is approximated by an
orthographic projection. This approximation is good when the size of
the objects being imaged is small compared to the viewing distance. In
this case, appropriate coordinate systems can be chosen such that the
following relations hold:

u =xanduv =y
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FIGURE 1.8. Reclationship hetween

scene coordinates and mnage coordi-

nates.

LY}

Hlumination Model

In the following discussion, we will use a simple illumination model that
assumes a distant point-light source and a Lambertian reflectance model.
A Lambertian surtace scatters light equally in all direction. ‘The bright-
ness of a Lambertian surface illuminated by a distant point-light source is
given by:

E=EaN L (1)

where /1, is a constant depending on the surface albedo and the intensity
of the light source, N is the unit surface normal vector, and L is the unit
vector of the illumination direction.

The unit vector which points in the direction of the light source can be
specified by the two angles shown in Figure 1.11. The first is the azimuth
(0), which is the angle between the x-axis and the projection of the vector
onto the x-y plane, while the second is the angle of elevation (¢) of the
light source. If we represent this unit vector by la, b, ] then

a = cos B cos ¢,
b = sin 8 cos ¢, and,

€= —sin ¢.
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In our discussion, we will consider only positive values of ¢. Therelore, ¢
is always less than zero.
If the height of the object surface above the x-y plane is expressed as a
function ol x and y,
r = S(x, ),
then the surface normal is given by the vector:

N =[5, 8, —1]/(1 + 82 + 52172

i
where S, and S, denote first partials of S with respect to x and y, respec-
tively. By carrying out the dot product in Equation 1, it follows that
aS, + bS, — ¢

(1 + 8§24 8§21

4]

Shape From Topographic Patterns

There are two possible methods for determining the pattern of topo-
graphic labels that will appear, given a particular three-dimensional
shape category, a particular reflectance maodel, a particular light source,
and a particular viewpoint. The first method is to work the problem
analytically, obtaining exact equations for the illuminated surface. At
cach point the gradient, eigenvectors, and eigenvalues can be compuied
m order to determine precisely which sets of points have the various
topographic labels. "The second method is to work the problem experi-
mentally, using software o generate digital images of ilhininated three-
dimensional surfaces, to fit these images with either polynomials, splines,
or discrete cosines, and to assign topograpic labels 1o cach pixel. "The first
method has the advantage of exactness and the disadvantage of becom-
ing extremely difticult for all but the simplest surfaces. The second
method has the advantage of being applicable to a wide variety of sur-
faces and illuminating conditions and the disadvantage of yielding some
inaccurate results due to possible errors in fitting the gray-tone image.,
We have begun to experiment with hoth methods, starting with very
simple surfaces, the Lambertian reflectance model, and point light
sources. We have worked with four simple surfaces: (a) the top half of a
cylinder, (b) the upper hemisphere of a sphere, (¢) the top halt of an
(‘llipst)id, and (d) the upper hall of a hyperboloid. Figures 1.9 and 1.10
Hustrate the cylinder and the sphere, respectively.

Method 1: The :xperimental Approach

Fhe process for topographic classilication can be done in one piss
through the image. At each pixel of the image, the following four steps,

FIGURE 1.10. ‘The spherical
object used in our experiments.
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FIGURE 1.9. Ihe ovlindiical ob-

ject used in o experiments,

which were discussed in detail in the previous section need to be
performed.

1. Calculate the least-squares fiting coefficients of a two-dimension
cubic polynomial in an » X »n neighborhood around the pixel.

2. Use the coefficients calculated in step 1 1o find the gradient, the
gradient magnitude, and the eigenvalues and eigenvectors of the
Hessian at the center of the pixel’s neighborhood.

3. Search in the direction of the eigenvectors calculated in step 2 fora
zevo-crossing of the first-directional derivative within the pixel’s
area.

4. Recompute the gradient, gradient magnitude, and values of sec-
ond directional derivative extrema at each zero crossing. Then
classify the pixel based on ‘Table 1.1,
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Method 2: The Analytical Approach
Topographic Labels on the Cylinder
Consider a cylindrical surface given by:
s y) =d = (02 = )R fyr —r = y=r (3)

where d is the distance of the x-y plane from the camera down the z-axis
and 7 is the radius ol the cylinder. This surface in which the axis of the
cylinder lies along the x-axis was chosen 1o simplify calculations. Notice
that since only the top half of the cylinder is considered, the sign of the
square rool i Equation 3 is taken as positive. By differentiating § with
respect (o x and y, we obtain

S, =0and §, = y* - T

It follows from Equation 2 that the mtensity of the cylinder illuminated
from divection (a, b, ¢) is given hy:

I(x, 3) = Iyby — e(? — y2)V2)r (1)
After some simplifications, the first and second partials of 7 are found 10
be:

I =1,=1I_=1_=010,

v xX Xy IRY

I, =1, + 02 = ¥2) 1)y and

i = dgtilr® ~ }‘2) iz,

where the subscripted /s denote partial differentiation with respect to the
subscripu(s).
Since I is equal 1o zero, the gradient magnitude ([V7]) is equal to the
absolute value of 1. Theretore, |V/|| = 0 when
L= 1yb + 0% — ) V) =

which implies
Broy2)V2 = oy, (5)
Upon solving Equation 5, we obtain
¥2 = rhh2 + ),

Because ¢ is always negative, the sign of v is taken o be the same as that
of b in order for Fquation 5 o be satistied.

To determine the second-directional derivative extrema values and
the first-directional derivatives taken in the directions which extremize
second-directional derivatives, we form the Hessian:
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= > GE
O Tyer(r? — y2) B
The cigenvalues of the Hessian are obtained as:
Xy = Lyer(r? = 4% Y2 and (6)
X = U; (7)

ther associated cigenvectors are:

(0,1) and
(1,0).

Recall that ¢ is always negative, therefore, X s always negative for —r <y
< By taking the dot product of the gradient with the clgenvectons, we

ury

]

i,

obtain:

VI-w, =1 = I,b + 302 = y2) 2y and

:
VI w, = 0,
To determine the topographic Libels, we need o consider two cases:

(1) zero-gradient magnitude and (2) positive-gradient magnitude.

CASE 1 Zero-Gradient Magnitude.  1f we let y, = rb(h2 + ¢2) V2, it fol-
lows from Equation 5 that [V/]| = 0 when y = y,,. By Fquations 6 and 7,
the second directional derivative extrema values at ¥ =y, are

Xi = Fare? — 9 -3 (8)
X, = 0. (9

Since X is always less than zero, it follows directly from Table 1.1 that a
ridge is located at y = y,,.

CASE 2: Positive Gradient Magnitude.  1f the gradient magnitude ([|V1|]) is
taken to be positive, then the value of the first-directional devivative in
the direction of w, (VI.w) is always non-zero because Vi, = I, and | V/]|
= |1|. In this case, since X, is always negative and X, is always zero, it
follows from row 11 of Table 1.1 that hillsides are located at those places
where the gradient magnitudes are positive.

Topographic Labels on the Sphere

In the case of the sphere, the equation of a spherical surface with
radius 7 is given by:

S, y) =d — (2 —x2 =12 for r=x <y
and —r=y =y (10)
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[ts intensity illuminated from divection [a, b, clis given by:
fx, y) = 1, Jax 4 by — e(r? — 32 _ ) e I (rn
After some stmplifications, the firs; and secon partials of 7 yre tound 1o
be:
I = Tla 4 ex(r? — 2 — ¥Ry

oo =1,b+ r? — x2 - ¥y

lu = ]“( (1'2 _ },'.{)(’-2 = x'..' — -].L"] TU:E/,“
l,=1.=1, cxp(r? — 32— )32 and
Ly = 1ye(r® = x2)(r2 — y2 _ )My

The gradient magnitude (%2]ly is given hy:
il = a2 + 12y
which is zero when
a(r? — x2 — PR 4 v = O s
hr? — x2 — yHe 4 cy =)
are satisficd simultancously. By squaring and invoking the constrain

A+ b5+ 2 = goan the unit vector lee, b, ¢]. the solution 1o the simul-
taneous equations is found to be:

¥ =raandy =,

The Hessian for the intensily surface of the illuminared sphere is given
by:

Ve re - g Ay
/= e . o T
rirs — T2 1) xy P o=y

lts cigenvalues are found 10 he-
Xy =Ly — 2 — ) M2 and
X = T — o2 — ¥2) g

Notice tha both cigenvalyes are always less (han Z0T0 SInce ¢ s always
less than zero, The elgenvector vorresponding 10 X, is given by:

w, = lx(x'*’ -+ }.2} I,E‘ ‘],('\.2 + '1.2} Il‘_’l
and the eigenvecor corresponding 1o X, is given hy:

wy = [_y(lﬁ + _1'2) I»‘E' X2 4 1,;') I/‘.’]'
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The dot product of (he gradient with 1, is

e G . X
VI wy ('\.1-) p vv._,)],.._, I X ((! + (’_2 = ‘Tm) J

I‘(”*T—L—v) J (12)

e = — g%

and the dot product of (e gradient with w, is
v - wy = Ag(—ay + be)(x? + Y2y V2 (13

We determine the topographic labels by (‘nnsi(lering two cases.

CASE I: Zevo Gradiom Magnitude, e gradient magnitude s cqual 1o
cro when (x, y) = (ree, rh). Since both etgenvalues are less than zero on
the illuminated sphere, it follows directly from Table 1. that a peak is
located ar . v) = (ra, rh).

CASE 2: Positive Gradient Magnitude. In the case when the gradient mag-
nitude is given 1o be positive, since botl cigenvalues are known lo be
negative, it follows from Table LT that there is 5 ridge at those locations
where cither V[ cw, = 0o V/icw, = 0is satisfied. We obtain from
Equations 12 and 13 that

VEws = i wien (ax + by)(r? — x2 — i R S AT %) = 0 and
V!.w2 =} when — ay + by = (),

Table 1.1 also says that hillsides dAppear at places where hoth V/ - w, and
V/ - wy are non-zero.

Estimation of Surface Orientation

The topographic labels along with their quantitative measurements bear
astrong relationship 1o the surface orientation of the three-dimensional
object in the scene, Consider a spherical surface as previously described.
The unnormalized surlace orientation of such a surface can be repre-
sented in the gradient space by the vector [P ¢, = 1), where
; y

p = m'—’-’ and ¢ = m :

An alternative way ol specilying surface orientation is the tilt and slant
representation. [l specifies the orientation of the projection of the
surface normal onto (he image plane. Slang s the angle between (he
surface normal and viewing direction. 'I'he ult and slant representation
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and the gradient space representation can be related by the following
formulas:

Tan 8 = ¢/p and

Tan 0 = (p2 + ¢ or

Cos 0 = (1 + p2 + 492,
In the case of a sphere,

Tan 6 = y/x and

Cos ¢ = (% — x* =y

To see how the surface orientation of a spherical Lambertian surface

can be derived [rom the topographic analysis of the image intensity
surface, we need first to complete the analytical results of the previous

section by considering the lower half of the sphere. The equation of the
lower hemisphere of a sphere whose center is at (0, 0, o) is given by:
Stxy) =d + (* —x? =) for —r=x<r

and —r =y =1,
Differentiating the aforementioned equation with respect to x and y, we
obtain

e —*—v

mand g = (r2 — x2 — )12 "

P = 2 — x2 — y2)!

Notice the sign difference between the surface orientations of the upper
and lower hemispheres.

As for the upper hemisphere, after some simplification, we obtain for
the lower hemisphere a similar set of expressions for I and its partials,

Fo= Tyl~ax = by = c(? = x2 — )12/,

L, = Iy|=mp * 800 =45 = 32y My,
I, = Ljl=b + &= — a2 — g% Wy,
b = Lg% — §PRES ~ &% —oy¥) iR,
I = 1= Leoyt? —x% —y2) Mr and

— l,,r(r'-’ s x:)(,.z — 32 = ).L’) R

Notice that the second partials of I are the same for both halves of the
sphere. Since the second partials make up the Hessian, it follows that the
eigenvalues and eigenvectors for the two hemispheres are also identical.
Recall that .2 cigenvalues and eigenvectors are given by
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X, = Iyor(r2 — x2 — y2) 32

Xy = hjelr= =22 = gy 124

Il

fe(e® + 95~ V2, 9(x2 + )~ M2], and

=
S
I

l_),(x‘_’ + yz) |.'2, _\-(x‘.! + yi:‘) - l/‘..’,_

If we take the ratio of the smaller over the larger eigenvalue, we obtain

-~

2 _ (,.2 — x2 ._yz)

X! r?

.

This ratio is the square root of the cosine of the surface slant. Note that
the signs ol both X and X, depend only on the sign of ¢, which is the
negative of the sine of the angle of elevation of the light source. There-
fore, the ratio is always positive and its square root is always justifiable.
Furthermore, the ratio is always less than or equal to one, since X, is the
smaller cigenvalue. Thus, we can obtain surface slant by taking the arc-
cosine ol the square root of X,/X,. The resulting angle is determined
uniquely because the surface slant for a visible surface always lies be-
tween O and w/2.

The remaining component to be determined for the unit surface nor-
mal is the surface tilt. By considering w,, the eigenvector corresponding
to the larger eigenvalue, we can obtain the direction 8 in which the
second-directional derivative of 7 is extremized. That is,

N o i

tan = ———< -
(x..’ +_Y_*)]p'2 X

=2

x
which is identical to the tangent of the surface tilt. Thus we have ¢ = 8 o1
t =6 + w Unfortunately, there are two possible solutions. T'his is ex-
pected because cach solution corresponds to one half of the sphere. This
shows the ambiguity in local analysis of image shading.

Without any assumption zbout the location of the light source, we
found from the aforementioned analytical results that the topographic
labels on the underlying intensity surface resulting from a spherical
Lambertian surface can only be peak, pit, ridge, valley, convex, or con-
cave hillside. This is because any combination of I 1, and I resulting
from a spherical Lambertian surface can produce only either a semi-
positive or seminegative definite Hessian. Therelore, not all combina-
tons of 1, 1, and I are possible.

Furthermore, if we approximate three-dimensional surfaces locally by
spherical surfaces, it is expected that the radii of the approximating
spheres for points or a spherical surface are constant. Recall that the
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radius, r. and the eigenvalues, X, and X,, of a spherical Lambertian
surface are related by the following expressions:

i
(T — a2 - y2)2

I,cr
o 0 . ey =
X, = F—kz—w and X,

We obtain from the expression from X,

2 2 LIS 1
e i AR T oy .
(r ¥7) X,

We then have from the expression for X,

N 3
X, = I,er ( ‘;Lr ) :

or

o X,I;.—:r'g
X3

Since I, and ¢ are fixed, we conclude that X /X3 is constant for a spherical
Lambertian surface. Therefore, an image point can be determimed as
resulting from a point on a spherical Lambertian surface only if it is
labeled as a peak, pit, ridge, valley, convex hillside or concave hillside,
and the radii of the approximating spheres at pixels within the neigh-
borhood around that point are similar enough. What this suggests is that
we should estimate surface tilt and surface slant locally from the eigen-
values and eigenvectors of the Hessian of the underlying intensity sur-
face only if the underlying intensity surtace is compatible with that of a
spherical Lambertian surlace.

It can be observed from the expressions of the eigenvalues that a pit,
valley, and convex-hillside classification of the intensity surlace ol a
spherical Lambertian surface corresponds to a positive ¢, 'This implies a
light source below the object surface. Although this is physically possible,
such illuminating condition can usually be ignored when solving prac-
tical problems. We thus further assume that a spherical Lambertian sur-
face can only result in peak, ridge, and concave-hillside classifications.

Classification of Object Surfaces

We propose here a scheme for partial classification of three-dimensional
object surfaces. The basic goal of this classification scheme is to group
together pix-is that are likely 1o come [rom the same surface patch. We
limit our consideration to five types ol object surfaces. They are planar,
dcvclnpahlc, spherical, clliptical, and hyperbolic surfaces.
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Based on the previous discussions, it is evident that topographic labels
together with the signs and magnitudes of their second directional deriv-
atives bear a strong relationship to the nature of the three-dimensional
object surlace in the scene. This evidence leads to the assumption tha
maximally connected sets ol pixels having the same topographic label
belong to the same surface patches. A feature-extraction process is em-
ployed 1o extract these connected sets of topographic structures. The
resulting structures are arcs, regions, and topographic labels. The de-
sired topographic structures are then determined by applying a con-
nected-components algorithm to the topographic labels within each re-
glon segment.

The assembled topographic structures may be divided into three cate-
gories: (1) arcal structures, which consist of convex hillsides, concave
hillsides, saddle hillsides, flat surfaces, and sloped surfaces; (2) arc struc-
tures, which include edges, ridges, and valleys; and (3) point structures,
which include peaks, pits, and saddle points. In what follows, we suggest
hypotheses that can be made about the three-dimensional objects based
on the analytical results that we have derived and the results of the
experiments that we have performed. We believe that three-dimensional
object shape can be interred by feeding this knowledge into a hypothesis-
based reasoning system.

Areal Structures

Flat. A flat is a simple surface with zero gradient and no curvature.
That is, the gray-level intensity is constant in a connected flat structure.
Since the surface-normal vectors within a planar surface are constant, we
can be almost certain that pixels belonging to a connected flat structure
come [rom the same planar surtace. Although this may not hold for
shadow areas, we can usually separate shadow areas by identifying (lat
structures with relatively low intensity averages.

Hillsides.  We first hypothesize that a concave/convex hillside assembly
is part of a spherical, elliptical, or developable surface, and a saddle
hillside assembly is part of a hyperbolic surface. Our first hypothesis is
driven by the analytical and experimental results of the cylindrical,
spherical, elliptical, and hyperbolic surfaces that we considered.

We further postulate that a concave/convex hillside assembly is part of
a developable surface if it is adjacent to a straight and horizontal ridge.
In particular, it is part of cylindrical surface if it is concave and the
second-directional derivative of the hillside in the direction of the ridge is
zero.

As a result of the previous section, a hillside assembly can be consid-
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ered as part of a spherical surface if it is concave and the radn of the
approximating spheres within the hillside assembly are similar enough.
We have not been able to derive a complete classification scheme for all
the areal structures. Nonetheless, since the assembled regions are likely
to come from the same surface patches, they are good starting regions
for shape-from-shading approaches.

Line and Point Structures

While edges are considered to be good indications of the discon-
tinuities, peaks and ridges are found to be signilicant structures in the
images ol the conic surfaces that we have considered. The following
observations are gathered from the topographic structures of the conic
surface:

1. The ridge arcs obtained from the images ol the sphere are found
to be symmetrical around the peaks.
2. Ridges for the images of the ellipsoid and the hyperboloid are

found to be symmetrical around the peaks only if the projection of

the light vectors are parallel to one ol the axes of these conic
surlaces.
3. Straight ridge lines are found in the images of the cylinder. The
gray-tone intensities along the ridge lines are found to be constant.
4. While the ridges around the peaks found in the image of the
ellipsoid curve away from the light sources, those of the hyper-
boloid curve toward the light sources.

5. The peaks located in the umages of the conic surfaces correspond
to locations where the surlace normals are pointng toward the
light sources.

Results

We will show the analytical and experimental results of the topographic
patterns on the cylinder and sphere. See Pong, Shapiro, and Haralick
(1985) for results on other surfaces. Three illumination conditions are
considered for each surtace: (1) the light direction is (0, 0, —1), which
means directly above the center of the surtace; (2) the light direction is
(0, V'3/2, —1/2), which translates to azimuth 0° and elevation 30% (3) the
light direction is (1/2, 1/2, - lf\@), which translates to azimuth 45° and
elevation 45°. The illuminated surfaces of the cvlinder and the sphere
are shown in Figure 1.11 and Figure 1.12 respectively.
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FIGURE 1.11. Shaded images of
the ovlinder of Figure 1.4,

Analytical Results for the Cylinder

When the hght direction is from azimuth 0°, elevation 90°, analytical
results indicate a ridge parallel to the axis of the cylinder and rmining
along the center of the top hall as shown in Figure 1.13. When the light
direction is from azimuth 0° and elevation 30°, the ridge appears as in
Figure 1.13. When the hght direction is from azimuth 45° and elevation
45° the ridge appears as in Figure 1.13. In all three cases, the remaining
points of the cylinder are hillsides.

FIGURE 1.12. Shaded images of
the sphere of Figure 1.10.
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