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CUBIC FACET MODEL EDGE DETECTOR AND
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The cubic polynomial is analyzed and its translation
invariant parameters are derived. These translation
invariant parameters are scale and contrast and are related
te the bhorizontal and vertical distance between relative
extrema of the cubic. The implementation details of the
facet model second directional derivative zero-crossing edge
detector and facet model ridge and valley detector previomsly
described by Haralick are then given in terms of these
translation invariant parameters.

INTRODUCTION

In cubic facet model processing for edges and ridges and valleys, a bivariate
cubic function is fit to the central neighborhood of each pixel. In a coordinate
system whose origin=is the center of the pixel, the fit produces the bivariate
cubic function f which is an estimate of the underlying and nnobserved function:
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Based on the estimated coefficients k_ ,...,k a decision is made to label the
pixel as edge or nom-edge, or ridge or valley or non-ridge and valley. A pixel is
labelled as an edge if the second directional derivative, takesm in the direction
of the gradient, has a megatively sloped zero crossing located near the center of
the pixel. A pixel is labelled as a ridge or valley if the first directional
image, taken in a directiom which extremizes the second directional derivative,
has a zero crossing located sufficiently near the center of the pixel,

The straightforward implementation of these definitions in terms of the fitting
coefficients k ""’klo can give rise to unnecessary artifacts., The purpose of
this paper is g‘o illustrate how to apply these definitions through the "Teyes'' of
the fitted cubic. Section II discusses the edge detection case. Section IIT
discusses the ridge valley detection case.

II THE FACET EDGE DETECTOR

By edge we mean a configuration of gray tome intensity values which on each side
of the edge have relatively small variation in value and which across the edge
have relatively large variation in value. An ideal edge of this kind is a step
edge whose gray tone intensity values on each side of the edge take a different
constant value.

The key idea in detecting edges is to look for relatively large contrasts in small
distances. Change in value, or contrast, divided by change in location which
causes the value change is the essence of what a first derivative is. A large
contrast in a small distance means a large enough first derivative. The natural
one to choose would be the one which has largest first derivative. If the first
derivative is to be a relative maximum, then the second derivative must be zero
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and the third derivative must be negative if the edge is crossed from the lower
valoe to the high valome gray tone region.

In the second directional derivative zero crossing edge detector (Haralick, 1984),
a bivariate cubic function is fit to the central neighborhood of pixel, The fit
produces the estimated bivariate cubic function f:
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Based on the estimated coefficients k_,..., a decision is made to label the
pixzel as edge or non—edge. A pixel is Iabelle% as edge if the second directional
derivative, taken in the direction of the gradient, has a negatively sloped zero
crossing located near the center of the pixel.

The simplest way to think about directional derivatives is to cut the surface
f(r,c¢c) with a plane which is oriented in the desired directiom and which is
orthogonal to the row—column plane. By convention, we take the angle to be
measured clockwise from the column axis. We define the desired direction to be
the gradient direction at the center of the given pixel. Hence, the gradient
angle O, satisfies
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The angle © is well defined providing that k; + k§ s 0.

To cut the surface f(r,c) with a plane in the direction © we just require that
r = p sin © and ¢ = p cos @ where p is the independent variable. This
requirement produces the cubic curve fe(p).
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fe(p) = kl + (kzsu!.(-) + kscose)p + (k4s1n 9 + ksslnﬂcose + kscos 8)p
+ (k sinZB + k sinzecose + k_sinBcosO + k cossg)ps
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from which it follows that the first, second and third directional derivatives are
given by
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fa (p) = C, +2C,p + 3C,p
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For a pizel to be labelled as an edge pixel, the second directional derivative
must have a negatively sloped zero crossing sufficiently near the center of the
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pixel. In this case, with the origin taken as the center of the pixel, there must
be a p sufficiently small in magnitude setisfying

fe”(p) = 0 (this is the zero requirement)

and fe”'(p) { 0 (this is the negative slope requirement).

For fe'"(p) ¢ 0 we must determine that C, < 0. If C, < 0, then C3 # 0 and 2 p

3 3
having the value fC2/3C3 exists which makes fe"(p) =0, If ICZ/BCSI < Py where

we take P, to be somewhat less than a pixel length, we can label the pixel as an

edge. In essence, this is the procedure given by Haralick (1984).

If our ideal edge is the step edge, then we can refine the above detection
c¢criteria by insisting that the cumbic polynmomial f_(p) have coefficients which
make f_a sunitable polynomial approximation of the step edge. Now a step edge
does not change in its essence if it is translated to the left or right or if it
has a constant added to its height. Since the cubic polynomial is representing
the step edge, we must determine what it is about the cubic polynomial which is
its fundamental essence after an ordinate and abscissa translation.

To do this, we translate the cubic polynomial so that its inflection point is at
the origin. Calling the new polynomial g, we have
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In our case since Cl = (ki + k;}‘s we know C1 > 0. If a pixel is to be an edge

the second derivative zero crossing slope must be megative, Hence, for edge pixel

candidates 02 < 0. This makes —30103 + C': > 0 which means that ge(p) has relative
extrema. The parameters of the cubic which are invariant under translation relate
to these relative extrema. The parameters are the distance between the relative
extrema in the abscissa direction amd in the ordinate direction.

We develop these invariants directly from the polynomial equation for ge(p).
First we factor out the term

{C; - 3C.C )1°5
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For candidate edge pixels, C3 { 0. This permits a rewrite to

_ el _ 1.5,,1.5.2 2,.2 _ .5
ge(p) = [C‘2 3C1C3) /3 C3] [(3C3/02 3C1C3))] P
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Let the contrast by C and the scale be S. They are defined by
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Finally, we have
go(®) = C(sp - s%p?)

In this form it is relatively easy to determine the character of the cubic.
Differentiating,

gy’ (p) = C(s - 35%p%)
5 (8)
8" (2) = 60s%p

The locations of the relative extrema only depend on S. They are located at
11/(3'55). The height difference between relative extrema depends only on the
contrast. Their heights are 120/(31'5). Other characteristics of the cubic
depend on both C and S. For example, the magnitude of the curvature at the
extreme is 2(3'5)CS2 and the derivative at the inflection point is CS.

Of interest to us is the relationship between an ideal perfect step edge and the
representation it has in the least squares approximating cubic whose essential
parameters are contrast C and scale S. We take an ideal step edge centered in an
odd neighborhood size N to have (N-1)/2 pixels with value -1, a center pixel with
value 0, and (N-1)/2 pixels with value +1. Using neighborhood sizes of from 5 to
23 we find the following values for contrast C and scale S of the least squares
approximating cubic.

Neighborhood Size Contrast Scale
N C S
5 3.0867 .37796
7 3.1357 .26069
9 3.1566 .20000
11 3.1673 .16253
13 3.1734 .13699
15 3.1773 .11844
17 3.1799 .10434
19 3.1817 .09325
21 3.1830 .08430
23 3.1841 .076924
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The average contrast of the approximating cubic is 3,16257. The scale S(N)
appears to be inversely related to N;S(N) = 8/N. The value of S minimizing the
relative error

S(N) - S/N

s

)
is 1.793157.

These two relationships

C = 3.16257

L}

5

1.793157/N

for ideal step edges having a contrast of 2 can help provide additionmal criteria
for edge selection. For example the contrast across an arbitrary step edge can be
estimated by

2C

Edge Contrast = giiggg;

(9)

If the edge contrast is too small, them the pixel is rejected as an edge pixel.
We have found that in many kinds of images, too small means smaller than 5 percent
of the image’s true dynamic range. Interestingly enough, edge contrast C depends
on the three coefficients C,, C,, C, of the representing cubic. First derivative
magnitude at the origin, a “valde used by many edge gradient magnitude detection
techniques, only depends on the coefficient C,. First derivative magnitude at the
inflection peint is precisely CS, a value which mixes both scale and edge contrast
together.

The scale of the edge can be defined by

SN

Edgs Sesls = 703157

(10)

Ideal step edges, regardless of their contrast, will produce least squares
approximating cubic polynomials whose Edge Scale is very close to unity. Values
of Edge Scale larger than one have the relative extrema of the represemting cubic
closer together than expected for am ideal step edge. Values of Edge Scale
smaller than one have the relative extrema of the representing cubic further away
from each other than expected for an ideal step edge. Valoes of Edge Scale which
are significantly different from unity may be indicative of a cubic representing a
data value pattern very mmch different from a step edge. Candidate edge pixels
with an edge scale very different from unity can be rejected as edge pixels.

The determination of how far from unity is differemt enough requires an
understanding of what sorts of non—edge situations yield cubics with a high enough
contrast and with an inflection point close enough to the neighborhood center. We
have found that soch non—edge situations occur when a step like jump occurs at the
last point in the neighborhood. For example, suppose all the observed values are
the same except the valwe at an eandpoint. If N is the neighborhood size then the
inflection point of the approximating cubic will occur at *+(N + 3)/14, the plus
sign corresponding to a different left endpoint and the minus sign corresponding
to a different right endpoint. Hence, for neighborhood sizes of N =5, 7, 9, or
11 the inflection point occurs within a distance of 1 from the center point of the
neighborhood. So providing the contrast is high enough, the situation would be
classified as an edge if scale were ignored. For neighborhood sizes of N =5, 7,
9, 11, and 13, however, the scale of the approximating cubic is 1.98, 1.81, 1.74,
1.71, and 1.68, rxespectively. This suggests that scales larger than 1 are
significally more different from unity scale than corresponding scales smaller
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than 1. We have found that in many images restricting edge scale to be between .4
and 1.1 works well,

III THE FACET RIDGE VALLEY OPERATOR

In the facet ridge valley detector (Haralick, 1983), a bivariate cubic function is
fit to the central neighborhood of a pixel. The fit produces the estimated
bivariate function f:

2 2 3 2 2 3
+ + + k + + + + + k
1 kzr + ksc k4r 5:c ch k7r ksr c kgrc 10°
Based on the estimated coefficiemts k_,..., a decision is made to label the
pixel as ridge of valley. A pixel is lnbelleg as a ridge or valley if the first
directional derviative, taken in a direction which extremizes the second
directional derivative, has a zero crossing located sufficiently near the center
of the pixel.

f(r,e) =k

To determine a direction © extremizing the second directional derivative, we
proceed as before and cut the surface f(r,c) with a plane in the direction 6.
Letting r = p sin © and ¢ = p cos O, we obtain the cubic curve fe(p) defined by

equation 4, Using the definition for CO, G C and C, from equation 3 and

1 T2t 3
equation 4 expressing fg(p) a cubic polynomial having coefficients CD' C1, CZ'
and C3, we readily obtain that the second directional derivative in direction ©

evalpated at the origin is given by

- . o s A
Ie (0) 2c, (sin @ cos ) 2k4 ks sin @
(11)
ks 2k6 cos @
The directions extremizing fg"(o) are precisely the two orthogonal directions
determined by the eigenvectors of
2k k
B=| 4 5 (12)
ks 2k6

which, in fact, is the Hessian of f, the matrix of the second partial derivatives
of f. The eigenvalues of H are given by

- _ 2
A 1:4 + k6 + (l;(5 k4) + kg (13)
Each eigenvector (x,y)’ of H mist satisfy
2k4x +key = [(k4 + ks) + (k6 - k4) + K Ix (14)
Either ks = 0 or mot. If ks = 0, then the eigenvectors of H are
0 1
and
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If ks # 0, then equation 14 can be solved for y producing

(15)

T = sign | X6 ~ ¥4 (16)
k5
from which we obtain for eigenvectors
g il o 1 —1 __ [T (17)
J1 o+ EZ T J1 o+ T2 1
The extremizing directions 91 and 62 are given by
sin B, = —i— cin 6 = —L
1 J1 4+ T 2 J1 + |
(18)

T 1
cos 8, = /——— cos 0, = ———
3 J1+ F 4 /1 + 'J."2
Having determined an extremizing direction, the cubic fG(P) must be analyzed to

determine where its extrema are. The extrema are located at the zero crossings of

f'e(p). If there is a value of p* sufficiently close to 0 which makes
£ (p*) = C, + 2C.p* + 2C,p*2 = 0
L] 1 2 3

and for which f"e(p‘) = 202 + 6(§3p‘2 # 0, then the central pixel of the fitting
neighborhood can be classified as a peak or pit in direction €. It is a peak in
direction € if f"e(p*) ¢ 0 and & pit in direction @ if f"e(p‘) > 0. The

central pixel is classified as a ridge if in one of the extremizing directioms it
is 2 dominant peak and in the other extremizing directiom it is neither a peak or
pit or if it is a peak or pit it is a relatively weak onme. It is classified as a
valley if in one of the extremizing directions it is a dominant pit and in the

other extremizing direction it is neither a peak or a pit or if it is a peak or a
pit it is a relatively weak one. Relative stremgth of pit or peak can be measured

by the ratio of min[lfl”l. |fz"l} to max{|f1"|, |f2”i}. When this ratio is

close to 0 one extrema dominates the other.

2

To determine a value of p*, if any, which makes fe(p") = 01 o 2C2p“ i Cap‘ =0,
there are three cases to comsider., If (13 = 0 and C2 = 0, then fe" = 0 and there
are no extrema, If C3 =0 and C2 # 0, fe is gquadratic and has one extrema loca—

ted at p* = - /¢, If Cy; # 0, fq is cubic and has extrema only if
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Ci - 3(’.‘1C3 > 0, If it has extrema, the most numerically stable way of computing

their location is by

2

s = 8§ =

P* large Sign (Cz’“Cz' + €y -3, ] (19)

p‘small = Cl (20)

3
&
e large

The extrema closest to origin is located at p* If lp* | ¢ radius, then

small” small

a peak or pit in direction O can be declared for the pixel.

However, there are some complications to this basic procedure. The first
complications revolve around the fact that the fitted f_ is, in general, a cubic.
The cubics of interest have extrema. Such a fitted cubic arising from data which
is as simple as piecewise constant with one jump have relative extrema even though
the data does not. This is an artifact of using a cubic fit. It may or may not
be significant; that is, they may or may not correspond to extrema in the data.

To illustrate, consider a one—dimensional data pattern which is a constant with a
jump change at one end. We analyze it in terms of the fitted cubic dynamic range,
the relative depth of its extrema, and its inflection point.

The dynamic range of the cubic segment is defined by

range = m;x fB(P) e m;n fe(p)

The relative depth is defined as follows. Suppose the extrema is a relative
minimom. Let a represent the left end point of the interval, b represent the
right end point of the interval, i represent the location of the inflection point
and v represent the location of the relative minimum. If the relative minimum
occurs to the left of the relative maximum, the depth of the minimom is defimed by

depth = min {fe(a), fe(i)] - fe(v)

If the relative minimum occurs to the right of the relative maximom, the depth of
the minimum is defined by

depth = min {fe(b). fa(i)} = fe(v)
The relative depth of the minimum is then defined by

relative depth = depth/range
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Data Position of Extrema Position of Relative Depth
Closest to Origin Inflection Point

00009 .241 =371 .0408
0000009 .533 -.714 L0610
000000009 .811 -.857 .0731
000000099 =158 -2.14 .0205
00000000099 .0237 =115 .0338
0000000000099 .519 -1.71 0474

In each of these cases the cubic fitted to the data ‘'rings'' around the large
constant region where the data is zero. One extrema of this ringing is close to
the origin. This extrema is an artifact. Notice that in each of these cases, the
inflection point is not too far from the origin indicating a relatively high
frequency ringing. Also for all these cases, the relative depth, which measures
the significence of the rimnging, is close to zero.

Compare this situmation to the case where the data clearly has an extrema near the
origin as in the fellowing one—-dimensional patterns.

Data Position of Extrema Position of Relative Depth
Closest to Origin Inflection Point

01300 -.527 1.00 .279
0013000 -.569 2.14 .419
000130000 -.589 3.67 .604
00001300000 -.600 5.57 .821
0000013000000 -.607 7.86 .849
01900 -.235% 2.71 .803
0019000 -.243 5.57 .874
000190000 -.246 9.38 .906
00001900000 -.247 14.14 .925
0000019000000 ~.248 19.85 .937

Notice that in these cases the inflection points tend to be much further away from
the extrema indicating the '’'ringing’’ behavior has a lower frequency. Also the
relative depth tends to be munch larger in the case of a trne extrema.

What all this means is that in using f, to evaluate derivatives, we must
onderstand and interpret the data through the '’‘eyes'’' of a cubic polynomial. Not
all extrema of the cubic are significant. A cubic extrema is significant in the
sense that it reflects an extrema in the fitted data omly if it passes the
following tests

(1) lPositiDn of extrema from origin| ¢ radius threshold

(2) |position of inflection from origin| > distance

(3) ldistance between roots| > 1,756* Size of Interval
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(4) relative depth > .2

(5 lfe"(p')l > curvature threshold

Test (1) guarantees that the extrema is close emough to the origin. Tests (2) and
(3) guarantee that the ‘'ringing’’ behavior has a long emough period, test (3)
taking into account that for true extrema, the period increases with the size of
the fitting interval. Test (4) guarantees that the relative extrema have a
significant enough height compared to the dynamic range of the fitted cubic
segment. Test (5) guarantees that the curvature at the extrema is sufficiently
high.
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DISCUSSION:
Smeulders:

Is it necessary that the cubic spline goes right through the
pixel point?

Haralick:
Yes, the estimation is done for each neighbourhood independently.
These neighbourhoods are highly overlapping and the places where
the grey values originated from are the centers of the pixels.

Smeulders:
Is that not in conflict with your initial assumption that you

are considering noisy digitized images. Could you not take a
looser sort of fit, for instance the least squares fit?

Haralick:
Well, the fit 1is a least squares fit. If you do not want to
assume that the points come on a regular grid you increase the
computations by a tremendous amount.

Choudry:
Can't you use something different from cubics.

Haralick:

The reason for the cubic model is that it is of just one higher
degree of complexity than absolutely necessary to solve the
problem. That extra degree actually gave me a specific location
in the pixel which was not necessarily the center of the pixel.
Suppose you use a higher order model. Then, in the case of the
edge, instead of trying to solve a linear equation you are going
to ask me to solve a gquadratic equation. The complexity goes up.
And if you ask me to change the basis intc a spline basis or a
discrete cosine basis, then again to compute the zero crossings
is computationally more complex.



