ACHIEVING PORTABILITY IN IMAGE PROCESSING SOFTWARE PACKAGES

S. W. Krusemark
Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061 USA

R. M. Haralick
Department of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061 USA

Abstract. The first key to portability is in the use of a
kernel of routines that interface to the peculiar operating
system of each machine. The kernel provides sophisticated
but standard operating system services required by the image
processing software. It makes the operating system of each
computer appear identical and, nicest of all, when carefully
designed it does not pose a difficult implementation problem.
Above this interface, all image processing applications
programs can be machine-independent, written in a structured
language "such as RATFOR, without sacrificing power or ease of
use on any machine.

1.0 TRO, ON

Transportability is achieved by writing image processing
applications programs that obtain all operating system services from the
standardized operating system interface. Moving to a new machine then

requires only the implementation of the kernel supporting the standard

calls.

1.1 FEootnotes

Some of the research that went in to the kernel was funded by
NSF grants to VPI&SU, University of Maryland, and Rensselaer Polytechnic
Institute. Detailed technical discussion of the overall set of
conventions described here can be found in Hamlet and Haralick (1981) or
Hamlet and Rosenfeld (1979) and detailed discussions of the kernel

conventions can be found in Krusemark and Haralick (1981) or Guerrieri

(1981).

S.W. Krusemark and R.M. Haralick 480

1.2 QOperating system interface

Operating systems all support the capabilities for file
operations, memory allocation, process control, input/output and
interrupt handling. Machine independence can be achieved by obtaining
these services only through prespecified subroutine calls that remain the
same from computer implementation to computer implementation. This
collection of entry points constitutes a kernel that makes all operating
systems look the same to the image processing package.

Three factors shape the definition of the kernel:

1. The services must be powerful enough and easy to use.

2. The kernel must be capable of being built around any
existing operating system.

3. The implementation of the kernel for a new system must be
easy for a local systems expert.

The first two factors tend to increase the size of the
kernel; the last limits its size.

In an operating system whose services are nearly the same as
those of the interface, the kernel would be only a calling-sequence
converter, transforming the subroutine calls into monitor calls with some
additional error checking added. When the system provides very different
services, however, the code may be as large as a few thousand lines of
code. Section 2.0 discusses the operating system interface and section
3.0 discusses the image I/0 primitives that sit on top of the operating

system interface.

1.3 Command and process interface
An image processing package must communicate with its users,
then carry out the tasks they specify. The jobs of scanning commands and

interacting with a user are unlike the processing that takes place after

Achieving portability in image processing software packages 481

the command is decoded. This Jjob can be accomplished in a command
processing module.

In the command-processing module, all interaction with the
user results in a standardized description of a processing request. Any
routine may later use this information without concern for details of
format. Furthermore, the information is checked once and for all at the
beginning. For example, a file may be required to exist, have a certain
format, etc. These matters can be interactively straightened out with
the user before the information is stored for the next module. The
processing module that then deals with the standardized request can be
conventionally linked to the command routines, or overlaid.

Unfortunately, the general overlay organization is an
unsatisfactory mechanism because the implemention capabilities differ
widely in different computers. This is a fundamental transportability
problem. Our approach to the overlay problem is to make a simple kind of
overlay a standardized operating system service called ‘'"program
exchange," in which the executing code calls for itself to be replaced by

another ready-to-execute program module. This simple overlay mechanism

is supported by every modern operating system.

1.4 Image I/0 primitives
The image I/0 routines can be entirely written in a high
level language like RATFOR. They format the image data appropriately,
and call upon the kernel I/0 routines to accomplish the data transfers to
and from the image file. The format for an image must be general,
allowing images to be any practical size and any number of bands.
Logical records can be subimage blocks of arbitrary number of rows and

columns. The most common format would have logical records correspond to

S.W. Krusemark and R.M. Haralick 482

one image row. Since image data often does not have high precision, the
data can be packed. This bit packing occurs inside the image I/0
routines and is completely transparent to the programmer. Section 3.0

discusses the details of the image I/O routines.

1.5 RATFOR
" RATFOR is a structured FORTRAN language that has the
constucts: IF THEN ELSE, REPEAT UNTIL, WHILE, and blocks of code. Thus

an IF statement can execute more than one statement such as:

IF(A > B)
[
A =B
B=C+B
]
ELSE
[
B=A
A=C+A
]

Another example is the DO loop:
DO J =1, 20
ARR(J) = 0
to zero out an array of 20 positions. Note that unless otherwise blocked
([1) the object of a DO, IF, or WHILE is a single statement.

RATFOR permits the use of symbolic names instead of numeric
quantities. These symbolic names are also helpful mnemonics for the
programmer. An example is the use of .OLD instead of the integer 1 as
the parameter in an open call to indicate that an old file is to be
opened. The RATFOR preprocessor translates .OLD into a 1 so that the
output is FORTRAN compatible. The use of the symbolic names instead of
the numeric value is accomplished by the RATFOR DEFINE statement. Thus

.OLD is translated to the numeric 1. A CHARACTER statement can be

Achieving portability in image processing software packages 483

implemented by translating CHARACTER to INTEGER, for example. A table of
such DEFINEs can be built that define system wide constants and by using
the INCLUDE statement in RATFOR, these DEFINEs can be put in every file
on the system. All uses of such symbolic names in this paper start with
the period for clarity.

The INCLUDE statement in RATFOR is a mechanism to merge one
file into another. This, for example, allows a single COMMON to be
defined in an INCLUDE file. If a change is necessary the INCLUDE file is
changed and the system is recompiled. Without the INCLUDE one would have
to find ALL occurrences of the common and change them (hopefully finding
them all) and then rebuild the system. The INCLUDE file can be used for
tables of DEFINEs so that machine constants can be changed quickly, for

commons, and even sometimes for code.

2.0 OPERATING SYSTEM INTERFACE CONVENTIONS

The operating system services provided by the kernel include
program exchange, random sequential file handling, memory allocation, and
user interrupt handling. As discussed in section 2.1, we suggest each
kernel subroutine be an integer function subprogram whose value indicates
a completion condition code. This facilitates error handling. Section
2.2 discusses program exchange, section 2.3 discusses file operations,

section 2.4 discusses memory allocation subroutines and section 2.5

discusses interrupt handling.

2.1 Error handling

When experienced users make use of well-tested software,
error conditions arise only occasionally. But while the users are
learning, or the software is under development, most processing is error

handling. In providing error returns, a set of subroutines should make

S.W. Krusemark and R.M. Haralick 484

it easy for the calling program to deal with complex error situations,
yet at the same time the overhead should be low. Simple situations
should not require the caller to make use of all aspects of the error
mechanism. For software development, there is another important factor:
it must be easy to quarantee that every error is detected, even those
that cannot occur once the software is working properly.

To take care of error processing, each kernel interface
routine is an INTEGER FUNCTION. If there are no errors, the routine
returns a non-negative number (whose value may have significance as a
part of normal processing). However, if there are errors to report, the
routine delivers a negative value indicating the type of error.

In the sections that follow, this error mechanism is

described in full only for the first routine (OSCHAN in section 2.2).

2.2 Program exchange
At any time during execution, a program can terminate by
calling for its successor. The routine accomplishing this is:
INTEGER FUNCTION OSCHAN(PROGRAM)
where PROGRAM is a string of characters identifying the new program. The
only potential failures for OSCHAN involve the nonexistence of PROGRAM.
The error handling works the following way. Let us suppose
that the code -3 is assigned to the file error that the named file does
not exist. (Perhaps -1 means that there was a read error, =2 is end of
file, and so on.) The caller may anticipate that the new program may not
exist, so that
IEV = OSCHAN(PRG)
IF (IEV == =3) # DOESN'T EXIST
WRITE(6, 1)
1 FORMAT(' NO SUCH PROGRAM')

is a call in which the anticipated error is explicitly processed.

Achieving portability in image processing software packages 485

All routines in the kernel treat errors in this way, but the
details will be suppressed in the discussions to follow. This example is
typical of the presentation in other ways: the code is written in RATFOR,

and little attention is paid to FORTRAN conventions about variable names,

in the interests of clarity.

2.2.1 Parameter passing for program exchange. When passing control from
one program to another parameters are needed to allow information to be
passed as well as control. These parameters could be passed by the user
in a program dependent way but since many machines do have fast parameter
passing capability and a transportable version of these routines can be
written, the routines OSSEND and OSRECV were created. The two routines
to send and receive information through a program change are:

OSSEND (PARAMETERS,LENGTH)

OSRECV (PARAMETER, READLENGTH, BUFFERLENGTH)
The send and receive are capable of repeated use to allow several sets of
parameters to be sent. This makes passing séveral arrays of numbers,

file names, etc. possible without the need to recopy them into a single

rather long array. An example is to send two arrays with the new program

name in PRG

OSSEND (ARRAY1,50)
OSSEND (ARRAY2,5)
OSCHAN (PRG)

The receive end looks slightly different because the send and receive

operate like a push-down stack (first-in-last-out) so:

OSRECV (ARRAY2,LEN2,5)
OSRECV (ARRAY1,LEN1,50)

(Error checking on returned length can be done.)

S.W. Krusemark and R.M. Haralick 486

The push-down stack concept allows layers of code similar to
subroutine calls and returns. Each exchanged program reads in only the

last series of arrays sent by OSSEND.

2.3 File operations

Because file operations differ greatly from system to system,
it is necessary to duplicate most of the operations performed by the
local operating system (and the input-output control system, if there is
one) in the interface. Fortunately, most of the coding can be done in
RATFOR, and much of it carries over from machine to machine.

Files can be random access files or sequential files. The
operations which programs need to perform on such files are SETUP, OPEN,
READ/WRITE, and CLOSE. The first, second, and last could be done by the
transfer operations, but they are needed for certain special actions,
and they always provide useful error control. Furthermore, an OPEN
operation can be used to verify the existence of a file, and to acquire
its present characteristics, even if no transfers are contemplated.
Similarly, a CLOSE operation can perform an action like deleting the
file.

The complete file name is stored in an array (one character
per word), and passed to a standard interface routine: OSINFD. This
routine moves the name into an array called FILE. The array FILE, is
called a file descriptor, and is then passed to each system interface
routine. The routine looks like:

OSINFD(FILENAME,FILE)
Space is provided in the array FILE for the routines to assign and
maintain some kind of internal description invisible to the user. The

array parameter containing the file descriptor is designated FILE in each

of the following routines to be described.

Achieving portability in image processing software packages 487

A new random file descriptor must be initialized with the
correct size information before the open. This 1is the job of OSPINF

whose calling sequence is:
OSPINF(FILE,ATTRIBUTE, VALUE)
This routine puts the (ATTRIBUTE, VALUE) pair into the file descriptor

array FILE. The .MODE (record mode) attribute determines whether the

file is treated as an integer, real, etc., file. The .LREC (record
length) attribute determines the length of each record. The .NREC

(number of records) attribute determines for random files the number of
records in the file. These are the most commonly used options. The
other attributes will not be discussed due to space limitations. An
example is to set number of records:

OSPINF(FILE, .NREC, 60)

The OPEN of a random file is done by a call to OSOPNR:

OSOPNR(FILE, TYPE)
where TYPE can be .NEW or .OLD. TYPE is .NEW to create a new file and
.OLD to open an old file. To open a new file, the file descriptor must
have the required number of records and record length. To determine the
number of records and record lengths of an old file, the routine OSGINF
is available. OSGINF is the reverse of OSPINF.

No two calls to OSORNR (without an intervening OSCLOS) may
name the same file, with one exception: using different arrays for the
name, a file may be opened once .OLD and once .NEW at the same time. The
intent is to allow a copy-and-update operation that does not happen in
place.

A1l files must be closed since unclosed files may not

necessarily exist after a program exchange. 0SCLOS provides the close

service:

OSCLOS(FILE,OPTION)

S.W. Krusemark and R.M. Haralick 488

The action of the close depends on the TYPE of open and the OPTION:

OPTION TYPE ACTION

.DELETE .OLD The existing file is deleted.
Any open NEW files are not
touched.

.DELETE NEW The new file is deleted. This

may leave an old copy (which
may or may not be also open
at the time).

.KEEP .OLD The existing file is closed.

.KEEP . NEW This is where any problems that
will occur can occur. The disk
is checked for a pre-existing
file. If one exists, it is
deleted or otherwise removed
from consideration. The NEW
file is closed so that the file
replaces the pre-existing file.
If a pre-existing file does not
exist, then the new file is
closed such that it appears
with the correct names etc.

The actual data transfer to or from open files is done with:

OSRDR(FILE, RECORDNUMBER, BUFFER, READLENTH, WAIT)
OSWTR(FILE, RECORDNUMBER, BUFFER, WRITELENGTH, WAIT)

The routines read from and write to the file having FILE for
its file descriptor. In the BUFFER array is the data. The mode
(INTEGER, REAL, etc.) is determined by the mode specification of the last
call to OSPINF. Since the read and write lengths can be other than a
full record, the RECORDNUMBER is the starting record number (the first
record is one). If the length is greater than a single record, then
multiple records are transferred. If the 1length is shorter than a full
record, the extra data written is garbage on a WRITE and on READ it is
ignored.

If the WAIT parameter is .WAIT, return does not occur until

the operation is complete. If the wait parameter is .NOWAIT, then the

Achieving portability in image processing software packages 489

data transfer is started but control returns to the calling program
immediately allowing the program to continue until the data is actually
needed, at which time

OSWAIT(FILE,WAIT)

is called. The WAIT can be used again if the program wants to only check

if the operation is done.

The last operation specific to the random files is the

ability to change the number of records on a random file.
OSGROW(FILE, NREC)

allows the NREC (number of records) to be changed on a random file.
There are two ways to implement this depending on the machine: 1) to
copy the file, necessary on machines that cannot grow files, and 2) to
simply let the file get bigger. If the code is implemented using OSGROW
rather than the machine dependent capability of making a file can change
its size then transportability is enhanced.

Sequential input/output is more complicated because the
kernel handles files and devices such as terminals, printers, magnetic
tapes, ete. The first call is to OSINFD which creates the file

descriptor. The second call is to OSPINF and sets the characteristics of

the operation. Then the file is opened by a call to:
OSOPNS(FILE, TYPE)

The variable TYPE can take the value .INPUT or. OUTPUT.

The same as specified for the Réndom files can happen for a
.INPUT and .OUTPUT opened with the same name. The operation of .INPUT is
like .OLD and .OUTPUT is like .NEW when the close is done. Devices are
specified by special reserved file names such at TT for terminal and
PRINT for line printer.

The reads are done by:

OSRDS(FILE,BUFFER, ACTUALLENGTH, BUFFERSIZE)

S.W. Krusemark and R.M. Haralick 490

Since in many cases the calling program will not know the actual length
until after the read is done, the amount of space available is specified
by BUFFERSIZE.

The write is done by:

OSWTS(FILE, BUFFER,LENGTH)

Since the data length is known, this is the simplest of the routines.

2.4 Memory allocation

Dynamic memory allocation can be difficult because it
involves manipulation of addresses. To solve this in a transportable
system, the mainline code for each image processing operation becomes a
subroutine:

SUBROUTINE OSMAIN(DYNARRAY)

The programmer writes this routine as if it were the main
program, but is provided with an argument at the outset. The parameter
is an array that may be passed about among the routines of the package,
and which has been set up by the calling side of OSMAIN so that it can
change in size up to some set internal maximum. Initially, DYNARRAY will
have one element, but following a call to

OSALOC(SIZE)
it will be as if it were dynamically altered to

INTEGER DYNARRAY(SIZE)

OSALOC changes the size of the dynamic array DYNARRAY that was passed to
the user via OSMAIN. The user requests the number of integer words
(SIZE) that is needed and the routine OSALOC checks to see if this is
available. If it is, a value of .0OK is returned, otherwise a negative

value is returned. This array is intended to be the main user work area.

Achieving portability in image processing software packages 491

This dynamic allocation can be implemented in two different
ways. The first is very simple and easy to do: simply allocate a very
large array and pass it to OSMAIN. Then OSALOC simply checks if the
request is for too much memory. The second is to set the base of the
array at the end of the user memory space. Then OSALOC extends user

memory by the requested amount. Thus the user only pays for what is

used.

2.5 Interrupt handling

As an example of the use of an interrupt service, imagine the
problem of terminating unwanted output. Most systems have some means of
alerting a running program to a user "attention" typed in, implemented as
an interrupt. If the user invokes this during output, the interface main
program will take control and then call OSINTR. OSINTR sets a flag which
the print routine tests before each line, and returns in the "dismiss"
Printing terminates as soon as that flag is tested and found to be

mode.

present. After printing is stopped the package program proceeds
normally.

The same initial system main program (described in the last
section) can set up interrupt processing. It can set up the system
interrupt to branch to a particular location. Then, should an interrupt
oceurr, it can call the user supplied routine:

OSINTR(TYPE)

TYPE describes the problem that caused the interrupt so that the
processing in the package can be intelligent. By providing two kinds of
returns from OSINTR, the package can "dismiss" the interrupt normally and
continue (perhaps after taking corrective action); or, it can specify a
"pestart" in which the main program again calls subprogram OSMAIN, and

thus cuts short the interrupted code forever. If OSMAIN is written to

test a global flag, it can know whether it is starting or restarting.

S.W. Krusemark and R.M. Haralick 492

3.0 IMAGE I/O ROUTINES

The image I/O primitives take care of file I/0 for image data
files. They permit image data to be handled at one logical level higher
than the I/0 provided by the kernel. The image I/0 routines can be
written as entirely portable code and include an open, a read, a write,
and a close. Haralick (1977) discusses the image access protocol
conventions described here. The open (RDKINL) is passed an array
containing values some of which must be initialized for opening a new
file and others of which do not have to be. This array is called the
IDENT array. On opening an old image file the image files IDENT array is
returned. This array is accessable to the user and is passed to the read

and write routines (RREAD and RWRITE).

3.1 IDENT array

The IDENT array must have certain specified parameters
defined in order to be legal for opening a new image file. The IDENT
array is always zeroed first and so a 'not set' value is zero. The
values that must be set are the logical size of the image, and its mode
(integer, real, double integer, or double precision). If it is an
integer image then either the number of discrete levels of grey shades,
the minimum/maximum grey-tone values, or the number of bits to hold the
grey-tone shades must also be set. Other optional parameters include the
subimage block size (if different from an image row), the number of bands
in the image, and the number of symbolic bands. If not set these

optional parameters default to reasonable values.

Achieving portability in image processing software packages 493

3.2 Error handling

Error handling for the image I/0 primitives as well as for
all machine independent code uses an event variable IEV and alternate
return %$XXXX mechanism. The argument %XXXX is an alternate return as
defined by FORTRAN, the XXXX standing for a statement number such as
1234, When no errors are generated in the routine a normal return is
taken and processing continues at the statement following the call. If,
however, an error occurrs the IEV event variable is set and the alternate

return is taken and processing continues at the statement with the label

XXXX given in the call.

3.3 Random file open
The subroutine RDKINL (Random Disk Initialize) performs the

random file open for both new and old files.

CALL RDKINL(FD, IDENT, OLDNEW, IEV, %XXXX)
The IDENT is the identification array as described earlier. The argument
OLDNEW has one of the two values denoted by the symbolic definitions .NEW

and .OLD, for new and old files, respectively, to be opened.

On a new file the values in the IDENT array are checked for
consistency and unspecified values are initialized. Then a random file

of the correct size is created and the IDENT array is written to the

first record of the file.

On an old file the routine first checks for its existence on
the disk. If it does not exist an error is generated and the alternate

return is taken. If it does exist it is opened and the first record is

read into the IDENT array.

S.W. Krusemark and R.M. Haralick 494

3.4 Random file read/write

The routine RREAD takes the data on the image and copies it
to the buffer and the routine RWRITE copies the data in the buffer to the
image, unpacking and packing where needed.

CALL RREAD

(FD,BUF,BND,BLKNO, IDENT,WAIT,IEV,%XXXX)
CALL RWRITE

(FD,BUF,BND,BLKNO,IDENT,WAIT,IEV,%XXXX)

Since image access is random, the two arguments BND and BLKNO
are needed to get the correct band and block number from the SIF file.
Blocks are numbered starting in the upper left corner and proceed down
the left side to the bottom of the image. The word block corresponds to
a subimage or logical record.

The buffer (BUF) should be dimensioned for the correct size
of one block. Only one block can be obtained at a time. However, if a
value of zero (0) is specified for the band number argument (BND) the
block specified is returned for all bands. Normal use is to specify the
band number and block number thus returning only one block from one band.
Also, the most common shape of a block is a row of the logical image.
The argument WAIT has a value indicating whether or not the I/0 must

complete before returning.

3.5 FEile close
CLOSE compliments the open, in this case RDKINL.
CALL CLOSE(FD)
All files must be closed. The subroutine CLOSE can be used to close any
file descriptor. (It is not an error to close an already closed file,

but all files must be closed before exiting or they may cease to exist as

expected.)

Achieving portability in image processing software packages 495

3.6 Use and example of image I/0 routines

The following example will help to clarify the order and use

of the image I/0 routines.

The RATFOR INCLUDE, MACA1, defines the standard system-wide
set of symbolic definitions is thesfirst 1line of "code". The file
descriptors FDI, FDO are for input and output name information. The data

BUF is passed from above so that the calling program needs to make it

large enough to do what needs doing.

The code first opens the input file with RDKINL, sets up the

output image sizes, and opens the output also with RDKINL.

The next section is the actual algorithm which in this

example simply copies the input to the output.

After the algorithm is finished for all bands and all lines

then the files must be closed, and finally a return to the calling

program is made.

Errors are checked such as the check that the number of
points per line is 1less than or equal to the buffer size. Errors once
detected are dealt with at the bottom of the routine in the manner shown.
This starts the alternate return chain.

INCLUDE MACA1
#

SUBROUTINE NUMBCH(FDI, FDO, BND, NBND, LBUF,

THRSH, IEV, %)

#

REAL THRSH

CHARACTER FDI(.FDLENGTH), FDO(.FDLENGTH)
INTEGER BUF(LBUF), IDENT(.IDLENGTH)
INTEGER OBND, IBND

INTEGER JDENT(.IDLENGTH), BND(NBND)

#
CALL RDKINL(FDI, IDENT, .OLD, IEV, %9000)

i# open input file and temp file

#

IF(IDENT(.IDNPPL) > LBUF) GOTO 9010
i# check if too large an image

i# set up output IDENT record

i#

S.W. Krusemark and R.M. Haralick 496

DO I = 1, .IDLENGTH

JDENT(I) = O
#
JDENT(.IDNPPL) = IDENT(.IDNPPL)
output number of points per line
same as input file
i#

JDENT(.IDNLINS) = IDENT(.IDNLINS)

output number of lines = input

#

JDENT(.IDNBITS) = 8 # number of bits is 8 bits
(0 to 255)

JDENT(.IDNBNDS) = NBND

default to 1 band, row format
image INTEGER image.

e e oSh N

CALL RDKINL(FDO, JDENT, .NEW, IEV, %9000)

This section of code is the 'real!
image processing.

This example is simply a copy from
input to output

TR O O3 Sk Sk oSh oS

NLIN = IDENT(7)
#

DO OBND
$(
IBND = BND(OBND)

DO LIN = 1, NLIN
$(
CALL RREAD(FDI, BUF, IBND, LIN, IDENT,
.WAIT, IEV, %9000)
CALL RWRITE(FDO, BUF, OBND, LIN, JDENT,
.WAIT, IEV, %9000)

1, NBND

$)
$)
#

CALL CLOSE(FDI) # close input file
CALL CLOSE(FDO) # close output file
#
#

RETURN
#

9000 CONTINUE

#
Error in lower routine.
IEV already set.

GOTO 9999

9010 CONTINUE

#

IEV = -3013 # buffer smaller than data to go

in it.

Achieving portability in image processing software packages 497

i#
9999 CONTINUE
CALL CLOSE(FDI) # even on error must close

all files
CALL CLOSE(FDO) # input and output
#
RETURN 1 # take alternate return
#
END

4.0 OMITTED CONVENTIONS
Since the kernel is a complicated concept it is difficult to

fully explain in the small amount of space available in this paper. The

full technical discussion is available in Krusemark and Haralick (1981).

Also left out of the discussion in this paper is the concept that devices
such as terminals and printers are basically a form of sequential file.,
The undiscussed sequential I/0 primitives OSRDS and OSWTS allow terminal
graphics as well as the normal mode of terminal interaction.

One thing that some software packages do not do, but which is

important to do is a form of history keeping. This record keeping should

be maintained in the standard image file so that any and all steps that a

particular image has been through can be recorded. Because of space

limitations we can not describe here the conventions we suggest for these

routines.

5.0 GIPSY

There is a system called GIPSY (General Image Processing

System) at VPI & SU that uses these routines and although it has been in

existence a short while we have already transported over 100,000 lines of

code from an IBM 370/VM running CMS to a VAX 11/780 running VMS in about

one man week. It took less than seven man weeks for a programmer

initially unfamiliar with the VAX 11/780 to write the kernel. GIPSY

currently has over 200,000 lines of code.

S.W. Krusemark and R.M. Haralick 498

6.0 REFERENCES

Interface Kernel User Manual, Preliminary

Guerrieri, E., Software/0.S.
Report, IPL, Rensselaer Polytechnic

Version, Techincal

Institute, March 1981.
Hamlet, R.G. and R.M. Haralick, Transportable "Package"

Software Practice and Experience, to appear.
Hamlet, R.G., and A. Rosenfeld, Transportable Image-Processing Software,

Proc. Nat. Computer Conf., Vol 48, AFIPS Press, June 1979, pp

267-272.
R.M. Haralick, Image Access Protocol for Image Processing Snftware, IEEE

Transactions on Software Engineering, SE-3 (1977), PP.

190-192.
Krusemark, S.K. and R. M. Haralick, Operating System Interface,

Technical Report, SDA 81-1, VPI&SU, April 1981.

Software,

/

/

1q9%7T

