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Document understanding has attained a level of maturity that requires migration
from ad-hoc experimental systems, each of which employs its own set of assumptions
and terms, into a solid, standard frame of reference, with generic definitions that are
agreed upon by the document understanding community.

The logical structure of a document conveys semantic information that is beyond the
document’s character string contents. To capture this additional semantics, document
understanding must relate the document’s physical layout to its logical structure. This
work provides a formal definition of the logical structure of text-intensive documents. A
generic framework using a hierarchy of textons is described for the interpretation of any
text-intensive document’s logical structure. The recursive definition of textons provides
a powerful and flexible tool that is not restricted by the size or complexity of the doc-
ument. Frames are analogously used as recursive constructs for the physical structure
description.

To facilitate the reverse engineering process which is required to derive the logical struc-
ture, we describe DAFS, a Document Attribute Format Specification, and demonstrate
how our framework can serve as a conceptual framework for enhancements of DAFS.

Keywords: Document understanding; Document layout analysis; Physical structure;
Logical structure; Document format standards.
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1. Introduction

The field of document image understanding encompasses the technology required
to allow the information contained in paper documents to be accessed electronically.
Although the task may seem easily definable, the general expressibility of a docu-
ment suggests that document image understanding must involve more than simply
recognizing a string of characters on a page and putting them into the format of a
word processing system.

Historically, Optical Character Recognition (OCR) has been more intensively
researched. Consequently, it has attained a considerable level of maturity. Docu-
ment page layout analysis constitutes a subject of intensive research and it, too, has
reached a certain level of maturity. Physical layout analysis, combined with OCR,
provides for complete reproduction of documents.

Logical document structure is a hierarchy that conveys the semantics of the
document. The same logical document structure can be formatted in a variety of
physical layouts by changing such variables as page and font size, spacings between
paragraphs and between sections, number of columns, etc. In all of these layouts, the
semantics of the document remains unaltered. Logical structure analysis determines
the document’s semantic structure and provides data appropriate for information
retrieval involving more than string matching. For example, one would like to query
all the abstracts of all papers in a database which have some keyword combination
in a title or section heading and were written within a certain time period. To do
this, the resulting data structure(s) should be precisely defined and agreed upon by
the OCR and document understanding community.

The analysis of a document image involves both the physical decomposition of
the page and the derivation of the logical or semantic meanings of the salient fields
or regions defined by the decomposition. For example, if we are given a newspaper
page, the physical analysis involves extraction of blocks of text, graphics and half-
tones as well as the identification of attributes such as font size and style. The
structural analysis, on the other hand, may involve using the layout clues to identify
headlines, locate bylines, group paragraphs from different columns which belong to
the same article, or associate a picture with the article which references it and
the photographer who took it. In general, the analysis involves the extraction and
use of attributes and structural relationships in the document to label document
components within the contextual rules dictated by the document class or type
(memo, letter, journal article, newspaper, etc.).

Document understanding is complicated by the fact that relevant information
can be expressed in a non-textual medium, such as mathematics, drawings and
graphics. Hence, understanding art line drawings, engineering line drawings, per-
spective projections, graphs, and special kinds of documents like complex mathe-
matical formulae and music scores, are all part of the document image understanding
task.

The fact that hardcopy documents convey a great deal of semantic information
via their logical structure, expressed as the two-dimensional arrangement of the
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text and non-text elements on the page, suggests that structural information is an
essential part of understanding. Although there are many ways to store and display
the physical appearance of the same document, the document’s logical structure
should remain the same, because it reflects semantics that is part of the author’s
intention, but beyond the ASCII stream of characters. Determining the logical
structure of a document, therefore, constitutes an important aspect of document
image understanding.

In this chapter, we will address the problem of providing a standard, formal
framework for the management of physical and logical descriptive information ex-
tracted from document images, and address issues of intermediate representation
which arise during the analysis process. Although the techniques used in the anal-
ysis of document images differ widely from those used in the document creation
process, it is useful to examine the fundamental representations used by the more
developed document processing community.

Many standards exist for representing the logical structure of a document. In
publishing applications, documents are “encoded” via standards such as SGML in
preparation for the actual printing process. In document understanding and page
decomposition, however, we perform “reverse encoding”, seeking to reverse-engineer
the meaning from an image of the printed page. The greatest difference between
encoding for document creation and reverse encoding of document images is that
during the reverse encoding process, there may be varying levels of uncertainty in
the interpretation of aspects of the document. In the document creation process,
this ambiguity is not present, since the document is usually encoded by the same
person who created the representation of the document. A data format for document
reverse encoding must have a mechanism for representing these ambiguities.

In document image reverse encoding, it is important to move back and forth
between the interpretation of the physical structure of the document and the se-
mantic structure of the document. Although they rely heavily on one another and
may share common aspects, they are still two different ways of perceiving the struc-
ture of a document. The fact that typically there is not a one-to-one mapping
between the physical and logical structure complicates this requirement.

While document creation proceeds in a serial manner, document image decom-
position usually traces through a document hierarchically rather than serially. This
is a result of the way reverse engineering processes are usually applied to documents.
An example of this is that discrimination between text and non-text regions is often
performed for an entire document before any character recognition is performed.

Throughout this process, the ultimate goal is to use physical attributes to obtain
a consistent and valid interpretation of the semantic attributes. For example, the
text blocks should be semantically ordered by the “reading order” (sequencing) of
the text units. Further, each text unit should be assigned a semantic label. In a
business letter, the sender’s address, receiver’s address, date, opening salutation,
body, closing, and signature can generally be inferred by their relative locations on
the page. Likewise, in a technical article, the title, author(s), abstract, keywords,
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sections, displayed equations, tables, graphs, illustrations, footnotes, page numbers,
reference list, and other logical components can be deduced by their locations and/or
sequencing, as well as the fonts, styles and sizes of the characters that make them up.
The resulting recognized text strings are formatted such that their two-dimensional
layout, deduced from the 2-D layout analysis, are recorded along with the text itself.

The resulting complex data structure, if constructed correctly, captures the en-
tire semantics of the original document. However, it is in a much more condensed
form, providing for both data compression and noise removal. This data structure
enables one to retrieve information through querying and to reproduce the original
page document with practically no noise.

In Sect. 2 of this chapter we provide an overview of the state-of-the-art in both
geometric and logical interpretation. In Sect. 3, we propose a working framework for
the logical structure of text-intensive documents. A key definition is that of a texton?
which provides for recursion and a quantitative definition of document complexity.
Being a complex system, analysis of document structure and layout requires a sound
methodology. We employ the object-process analysis (OPA) methodology (Dori
et al., 1995; Dori, 1995) and object-process diagrams (OPDs), which are the graphic
tool of OPA, to express both the structure and behavior of a document analysis
system within a coherent, unified frame of reference.

In Sect. 4, we describe a new and powerful document attribute format specifi-
cation, called DAFS, which provides mechanisms for representing and maintaining
both physical and logical information during the reverse encoding process. We also
show how the logical framework of Sect. 3 can be implemented directly using DAFS.

2. Literature Survey

Papers covering all areas of document image analysis can be found in the Pro-
ceedings of the 1991, 1993 and 1995 International Conferences on Document Anal-
ysis and Recognition [ICDAR]; the 1992, 1993, 1994 and 1995 Annual Symposia
on Document Analysis and Information Retrieval, sponsored by the University
of Nevada, Las Vegas; and the International Conferences on Pattern Recognition
[ICPR]. The brevity of this survey necessitates that many papers from these con-
ferences are not mentioned. For surveys of document image analysis and document
image understanding see (Casey and Nagy, 1991) and (Tang et al. 1991).

2.1. Geometric Layout Analysis

A geometric page layout of a document image page is a hierarchical specification
of the geometry of different kinds of maximal homogeneous regions. A region is
homogeneous if all its area is of one type, e.g., a character, a line of characters, a text
paragraph, or a figure. Formally, a geometric page layout ® is an ordered pair (R, S),
where R is a set of regions and S is a labeled hierarchical spatial relation on R. A

%Not to be confused with the earlier use of the term by Julesz in connection with visual texture
perception (Julesz and Bergen, 1983).
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surfaces (see Section 2.3), the combination of local pla- ]
narity and rigidity is used. For arbitrary motion, rigidity ]
between environmental points is used to recover motion |
parameters from a small number of image locations (See |
Section 2 and Section 3.1).
The reminder of this section introduces the notation [ ]
used throughout this paper. Section 2 describes how the [ |
local direction of lation is esti d from a flow [ ]
field and cases of motion for which this is particularly ro- [ |
bust. Section 3 describes how the parameters of relative [ |
sensor motion can be recovered from the estimated local [ ]
directions of translation. Section 4 discusses computing [ |
[ ]

[ ]

the local translational decomposition directly from real
image sequences without the initial extraction of optic
flow and other areas for future work. [

1.1 Notation ————

The coordinate system used in this paper is shown in Fig- ]
ure 1. The origin of this right-handed coordinate system ]
lies at the focal point of the camera. The image plane ]
is parallel to the xy-plane and is centered on the point ]
(0,0, f), where f is the focal length of the camera. A [ ]
th di ional envir l point will be referred to [ |

(a) origina image (b) text line bounding boxes

s gy s Yy e s [ |

(c) word bounding boxes (d) text block bounding boxes

Fig. 1. Example of document image decomposition: (a) a document image written in English, (b)
text line bounding boxes, (¢) word bounding boxes, (d) text block bounding boxes.

region R is described by an ordered pair (T, 8), where T defines the type of the region
and 0 is the parameter vector of values for the region. The parameter vector may
also include uncertainties for any of the parameters. Uncertainty can be a parameter
standard deviation, or a tolerance interval, represented as a probability pair. For the
entire parameter vector, the uncertainty can be specified by a covariance matrix.
Figure 1 illustrates the character, line, and paragraph hierarchy for a small text
sample.

Many of the algorithms for determining geometric layout employ the operations
of mathematical morphology? Although the original algorithm developers generally
did not describe their algorithms in terms of mathematical morphology and were
probably not even aware that their algorithms could be described in such terms,
our descriptions will utilize the operations of mathematical morphology. This will

bAn introduction to mathematical morphology is given in the chapter by Ha and Bunke in this
book.
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allow us to be brief and precise.

Early work on page segmentation was done by Wahl et al. (1982), using a tech-
nique called the constrained run length smoothing algorithm. It essentially consists
of a morphological closing of the document image with a horizontal structuring
element of specified length (they used 300) intersected with a morphological clos-
ing of the document image with a vertical structuring element of specified length
(they used 500). The intersection is then morphologically closed with a horizontal
structuring element of specified length (they used 30). The bounding rectangle of
the connected components of the resulting image constitute the block segments.
Features of a block include its area, height, and width, the number of black pixels
in the segment on the original document image, and the mean horizontal black run
lengths of the original image within the segment. Text areas are then classified into
text, horizontal solid black lines, graphic and half-tone images, and vertical solid
black lines. No measure of performance is given.

Nagy and Seth (1984) and Nagy et al. (1986) employ an X-Y tree as the repre-
sentation of a page layout. The root node of an X-Y tree is the bounding rectangle
of the full page. Each node in the tree represents a rectangle on the page. The
children of a node are obtained by subdividing the rectangle of the parent node
either horizontally or vertically, with horizontal and vertical cuts being alternately
employed at successive levels in the tree. Hao et al. (1993) describe a variation on
this technique.

Fisher et al. (1990) sample a 300dpi document image by a factor of 4 and use
a run length smoothing algorithm. They then compute the connected components
of the run length smoothed image. The connected components and their bounding
boxes constitute the blocks of the geometric page layout. They extract connected
component features such as component height, width, aspect ratio, density, perime-
ter, and area for classifying each block as text or non-text.

Lebourgeois et al. (1992) sample a document image by a factor of 8 vertically and
3 horizontally. Each pixel in the sampled image corresponds to an 8 x 3 window in
the original image. If any pixel in this 8 x 3 window is a binary 1, then the sampled
image has a binary 1 in the corresponding pixel position. The sampled image is then
dilated by a horizontal structuring element to effectively smear adjacent characters
into one another. Each connected component is then characterized by its bounding
rectangle and the mean horizontal length of its black runs. Connected components
having vertical height within given bounds and mean horizontal run length within
given bounds are then labeled as text. Lines outside the given bounds are labeled
as non-text lines. Components labeled as text regions are then vertically merged
into larger blocks using rules that take alignment into account. Blocks are also
subdivided to separate them at horizontal peninsulas. No measure of performance
was given but it was indicated that the method needs improvement.

Bloomberg (1991) uses morphological operations on a document image at various
resolutions to identify font style for each word. Class labels include bold, italic, and
normal. The method employs a small vertical dilation, followed by a close-open
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sequence to remove noise, followed by a hit or miss transform to identify seed points
of characters in the italic class or bold class. The words which are in italic or bold
can then be delineated by conditionally dilating the seed with a pre-calculated word
segmentation mask. No accuracy performance results are given.

Saitoh and Pavlidis (1992) sample a document along eight vertical and four hor-
izontal lines and then extracting connected components. They then classify each
component into text, text or noise, diagram or table, half-tone image, horizontal sep-
arator, or vertical separator, using block attributes such as height, height to width
ratio, connectivity features of the line adjacency graph, and whether there are ver-
tical or horizontal rulings. Page rotation skew is estimated from a least squares line
fit to the the center points of blobs belonging to the same block. Blocks are subdi-
vided based on the height of the lines in a block and the vertical distance between.
The technique was tried on 52 Japanese documents and 21 English documents. No
quantitative measure of performance was given.

Hinds et al. (1990) sample a 300dpi document image by a factor of 4 and com-
pute from it a burst image. This image is obtained from the distance transform or
the erosion transform of the document image using a two-pixel vertical (horizontal)
structuring element for portrait (landscape) mode images. The burst image selects
only the column (row) relative maximum pixels of the erosion transform. They then
compute the Hough transform of the burst image, incrementing each Hough bin by
the value of the pixel in the burst image, provided this value is less than 25. The
rotation skew of the image is then determined by searching the Hough parameter
space for the bin having the largest accumulated value; its angle is the rotation skew
angle. They tested the technique on 13 document images, and correctly determined
the rotation angle on all the images. The inter-line spacing on one document im-
age was not correctly determined and the landscape/portrait mode was incorrectly
determined on five document images.

Pavlidis and Zhou (1991) determine geometric page layout by analyzing the
white areas of a page by looking for long white intervals on the vertical projection.
The column intervals are then converted into column blocks, merging small blocks
into larger blocks. Blocks are clustered according to their alignments and the ro-
tation angle is estimated for each cluster. The column blocks are then outlined.
Finally, each block is labeled as text or non-text using features such as the ratio
of the mean length of black intervals to the mean length of white intervals, the
number of black intervals over a certain length, and the total number of intervals.
No performance results are given.

Baird (1992) discusses a computational geometry technique for geometric page
layout which finds the maximal rectangles covering the white areas of the page. The
rectangular regions not covered by these white rectangles can then be classified as
text or non-text.

Amamoto et al. (1993) determine geometric page layout by operating on the
white space of the sampled document image. They open this white space with a
long horizontal structuring element and open it again with a long vertical structuring
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element. The union of these two openings constitutes the white space of the blocks,
which are then extracted from this white space. They decide that a block is a
text block if the length of the longest black run length in the vertical or horizontal
direction is smaller than a given threshold. A decision is made as to whether the
writing is horizontal or vertical based on the number Ny of blocks whose widths
are greater than twice their heights and the number Ny of blocks whose heights
are greater than twice their widths. If Ng > Ny, the decision is horizontal writing;
otherwise, vertical writing. Each block is then assigned a class label from the set
text, figure, image, table, and separation line. No performance results are given.

O’Gorman (1992) presents what he calls the docstrum technique for determining
geometric page layout. This technique involves computing the k nearest neighbors
for each of the black connected components of the page. Each pair of nearest
neighbors has an associated distance and angle. By clustering the components
using the distance and angle features, the geometric regions of a page layout can be
determined.

Ishitani (1993) determines the rotation skew angle as that direction in which the
variance of the complexity of the white-black transitions is greatest. Specifically,
a set of lines is defined for each angle. The difference between successive angles is
0.01 degree. Each line’s complexity is then measured, where complexity is defined
as the number of white-to-black transitions along the line. The variance of the
white-to-black transition counts is then determined. The angle which maximizes
this variance is the estimated rotation skew angle. It is reported that this measure
does not have difficulties with document pages which have large areas of non-text.
The method was tested on 40 300dpi document images taken from magazines, news-
papers, manuals and scientific journals. It was reported that the rotation angle was
measured to within an accuracy of 0.12 degrees.

Chen and Haralick (1994) and Chen, Haralick, and Phillips (1995) use an algo-
rithm based on the recursively computed morphological opening and closing trans-
forms. First the image is subsampled to a 100dpi resolution. The recursive closing
transform is computed, a histogram is generated from the transformed image, and
a threshold is determined using an regression tree function of the histogram values,
where the regression tree was previously determined off-line. The closing trans-
form is then thresholded to produce a closing of the subsampled image that fills
inter-character gaps. Then, on this closed image, a recursive opening transform is
computed, and, in a similar manner, a threshold is determined from the histogram
of the values of the opening transform. The opening transform is then thresholded
to produce an opened image in which the character ascenders and descenders have
been removed. Then the connected components of the opened image are computed
and line fits to each connected component are obtained. Using the estimated ori-
entation of each of the fitted lines and the residual fitting error, the skew angle of
the document page image is obtained from a robust estimation of the fitted line
orientations. To determine the performance of the algorithm they used the UW-I
document image database (Phillips, Chen, and Haralick, 1993) having 1147 distinct
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document images each associated with a ground truth skew angle. This set of im-
ages was then rotated through eleven rotation angles: 0°,+£1° £2° +3° 4+4°, and
+5°, to yield a set of 1147 x 11 = 12617 images. The absolute difference between
the estimated skew angle and the ground truth skew angle was less than 0.5° for
more than 99% of the images and less than 1° for virtually all of the images.

Hirayama (1993) develops a technique for determining the geometric layout
structure of a document which begins by merging character strings into text groups.
Border lines of blocks are determined by linking edges of text groups. Then blocks
which are over-segmented are merged and a projection profile method is applied to
the resulting blocks to differentiate text areas from figure areas. Hirayama reports
that on a data set of 61 pages of Japanese technical papers and magazines 93.3%
of the text areas and 93.2% of the figure areas were correctly detected.

Ittner and Baird (1993) determine geometric layout by doing skew and shear
angle corrections, partitioning the page into blocks of text, inferring the text line
orientation within each block, partitioning each block into text lines, isolating sym-
bols within each text line, and finally merging the symbols into words. The rotation
skew angle is determined by taking the projections of the centers of the connected
components of the black pixels on the page at a given angle. The angle is itera-
tively updated to optimize the alignment without having to compute the projection
over each possible angle. After rotating the image, shear is corrected by a similar
technique. They report an accuracy of less than 3 minutes of arc, and indicate that
the method fails on perhaps one in 1000 images. Blocks are determined by the
white space covering technique of Baird (1992). They report that on 100 English
document image pages from 13 publishers and in 22 styles, 94% of the layouts were
correctly determined. The orientation of the text lines in a block is determined
from the minimum spanning tree of the connected components of the black pixels.
The mode of the histogram of the directions of the edges in the minimum spanning
tree is the orientation of the text lines. Symbols in a text line are determined by
taking the projection in the direction orthogonal to the text line. The projection
profile is checked for a dominant frequency and the segmentation into characters is
done from the projection profile using the knowledge of the dominant frequency. To
determine the words in a text line, they determine a scalable word-space threshold
for each text block separately. Then each text line is independently segmented to
distinguish between the inter-character spacing and the inter-word spacing.

Ankindele and Belaid (1993) determine a geometric page layout that permits
blocks to be polygonal as well as rectangular. They determine the elongated white
spaces in the document image and then find intersections of these white spaces.
Points of intersection are candidate vertices for polygonal blocks. The polygonal
blocks are then extracted from the geometry of the intersection points. No perfor-
mance results are given.
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2.2. Logical Layout Analysis

The emphasis in the work on logical layout analysis is on developing processes
(algorithms) to carry out various tasks related to logical segmentation.

Tsujimoto and Asada (1990) assume that each block of the geometric page layout
contains exactly one logical class. They organize the geometric page layout as a tree.
Each new article in a document such as a newspaper begins with a headline which is
in the head block. They find the paragraphs which belong to the head block by rules
relating to the order of the geometric page layout tree and are able to assign logical
structure labels of title, abstract, sub-title, paragraph, header, footer, page number,
and caption. They worked on 106 document images and correctly determined the
logical structure for 94 of them.

Fisher (1991), an extension of Fisher (1990), describes a rule-based system to
identify the geometrical and logical structure of document images. Ingold and Ar-
mangil (1991) describe a formal top-down method for determining logical structure.
Each document class has a formal description that includes composition rules and
presentation rules. The technique has been tested on legal documents.

Chenevoy and Belaid (1991) use a blackboard system in a top-down method of
logical structure analysis of a document image. The system is defined in a Lisp
formalism and has a hypothesis management component using probabilities.

Kreich et al. (1991) describe a knowledge-based method for determining the log-
ical structure of a document image. To obtain the blocks they search for the largest
text blocks because these are the most characteristic elements in the document lay-
out. The search consists of grouping together the connected components which are
close enough to each other. Once text blocks are determined, lines are found within
each of the text blocks and words within the lines. The determination of document
layout structure is based on interpreting documents and their parts as instances of
hierarchically organized classes. They have defined over 300 classes of document
images and their parts. No performance results are given.

Derrien-Peden (1991) describes a frame-based system for the determination of
structure in a scientific and technical document image. The basis of this system
is a macro-typographical analysis. The idea is that in scientific and technical doc-
uments, changes of character size or thickness of type, white separating spaces,
indentation, etc., are used to make visual searching for information easier. The
technique therefore searches for such typographical indications in the document
and recovers the document’s logical organization without any interpretation of its
semantic content. The first step is the determination of the geometric page layout,
keeping a part of relationship between blocks. The logical structure determination
removes running heads and footnotes and searches for the text reading order. Text
blocks are then compared to logical models of classes and each text block is assigned
a class. No performance results are given.

Yamashita et al. (1991) use a model-based method. Character strings, lines, and
half-tone images are extracted from the document image. Vertical and horizontal
field separators (long white areas or black lines) are detected based on the extracted
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elements; then appropriate labels are assigned to character strings by a relaxation
method. Label classes include header, title, author, affiliation, abstract, body, page
number, column, footnote, block and figure. The technique was applied to 77 front
pages of Japanese patent applications. They reported that the logical structure for
59 of these documents was determined perfectly.

Dengel (1993) discusses a technique for automatically determining the logical
structure of business letters. He reports that on a test set of 100 letters, the re-
cipient and the letter body could be correctly determined. Saitoh et al. (1993)
determine logical layout based on text block labels of body, header, footer, and cap-
tion. They tested their technique on 393 images of mainly Japanese, but including
some English, documents. To characterize performance they measured the average
number of times per image an operator has to correct the results of the automati-
cally produced layout. They report that on the average 2.17 times per image, areas
not suitable for output have to be discarded; 0.01 times per image, mis-classified
areas have to be correctly labeled; and 1.09 times per image, a text area has to be
reset. With respect to text ordering they report that it required moving connections
0.47 times per image on the average, making new connections .11 times per image,
and re-assigning type of text 0.36 times per image.

3. Logical and Physical Document Description

In order to describe a document’s physical and logical characteristics consis-
tently, it is advantageous to first distinguish between the document’s content and
its structure.

3.1. Document Content vs. Document Structure

The content of a document is the information contained in the document, which
is not bound to a particular representation format. At the lowest level, this informa-
tion may include a stream of characters, and these characters make up successively
higher-order objects built on top of each other such as words, sentences, paragraphs,
etc., up to the complete document level.

The physical structure of a document is how the document’s content is laid out
on the physical medium. The same content can be organized in a variety of ways
and therefore can have many physical layouts, which stem from different values of
the attributes of the physical components (point size, line spacing, page size, etc.).
The medium is traditionally paper, but may be any visual host, such as a computer
screen or photographic film, which emulates the layout on the page. Bearing this
extension in mind, we refer to paper documents as the classical representatives.

The logical structure of a document’s content is how the content is organized prior
to the enforcement of a particular physical structure. A text-intensive document, for
example, typically consists of sentences, words and characters, and possibly higher-
order constructs such as sections and chapters for an article, or address block, body
and signature block for a business letter.
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It is essential to note that the same content can be viewed with respect to both
physical structure and logical structure. A major goal of this chapter is to describe
the two types of structure and how they can interact.

3.2. Generic Document Structures

Text-intensive documents can be classified into many types including books
(textbooks, edited books,...) technical papers, correspondence (business letters,
memos, . .. ), newspaper articles, and conference proceedings. When attempting to
describe the structural relationships between document components, it is essential
to provide a level of abstraction, so as not to be caught up in the terminology associ-
ated with a specific type of document. To this end, we define terms that are generic
at both the logical and physical levels. The generic document structure terminology
allows us to define type-independent relationships among document components.

Following this rationale, we distinguish between the generic (both logical and
physical) document structure and the instantiated generic document structure. An
instantiation of a generic structure allows us to begin discussing a particular class
of document, and the relationships between known entities. Such a distinction is
in accordance with the basic concepts of object-oriented analysis (OOA), where
objects are instances of their respective classes.

Terms such as column, line and symbol in the context of physical structure, or
chapter, section, and subsection in the context of logical structure, are instances of
the generic terms we define below. Some of them, such as the physical term “line”
and the logical term “sentence”, are applicable to a large variety of documents,
while others, such as the logical term “session”, are document-type-specific.

Finally, a specific structure (physical or logical) refers to the structure of a single
given document, and describes the structure of that instance of the document.

3.3. Realizing Document Structures

The progression from generic to specific instances of a document is fairly straight-
forward, but the ability to reverse the process can be an important component of
any analysis system. At the first level, the object class “Document” is instanti-
ated as to its type, both physical and logical, according to the document content.
The structure of each instance of the generic document is thus dependent on the
document’s type.

By making such distinctions, it becomes possible to prune the generic document
tree to narrow the analysis to a given document type. For example, there is no
use talking about a document’s physical component called “volume” or the logical
component “chapter” when the document under consideration is of type “business
letter”. Such distinctions can be made at an early point.

A second level of instantiation involves instantiating the object class of a par-
ticular document type, such as “Proceedings”, to its specific structure, such as the
“Proceedings of Document Analysis Systems ’94 Conference” (Dengel and Spitz,
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1994).

We do not attempt to provide a full classification of all the text-intensive docu-
ment types, let alone the particular logical or physical structure of each type. In the
remainder of this section, however, we do provide a set of definitions and tools that
enable this task to be done consistently and coherently, along with a few examples.

3.4. Generic Physical Structure

The following are the definitions related to the generic physical structure.

Frame - an area within a page of a document, which may consist of a collection
of (lower level) frames and/or blocks.

Root Frame - a frame which encompasses the entire physical document.

Page — a frame which occupies a rectangular region of a page, on which the doc-
ument, or part thereof, is physically recorded. A page is the basic physical
document, object.

Page Set — a frame which consists of multiple pages. An instance of a page set
might be a single volume or chapter, for example.

Block or Simple Frame — a terminal, lowest-level frame, which, at the given level
of granularity, need not or cannot be further decomposed.

A frame is defined to be a recursive component, as it may itself consist of one
or more frames. A block is the terminal frame, which defines a region on the page
and has content. Depending on the desired level of granularity, a block’s content
may correspond to a column, line, word, or character, for example.

Each type of frame has an associated set of attributes. Information about a
frame’s location, position on the page, justification, etc. is defined by its attributes.
For example, a character is characterized by such attributes as font, boldness, point
size, inclination; a line, by length; etc.

Being the leaves of the tree, only blocks have content, while items higher in the
hierarchy, which are compound frames, are lists of pointers to lower-level frames.
The block’s granularity must be at least as fine as the smallest logical component to
be described. Thus, for example, if the lowest-level logical component is a word, then
the block cannot be a line—it must be at least a word, and it may be a character.
This data structure enables the reconstruction of the structure of a frame at each
level.

Consider, for example, a paragraph which is split over two pages, or a word which
is split over two columns. In both cases, a single logical component (paragraph or
word) is a combination of two frames, which should be concatenated to yield the
entire logical component.

If, on the other hand, a single physical component is found to correspond to
more than one logical object, such as the string “092596”, which corresponds to
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a date with three logical sub-components (month, day, year), then the physical
representation may be subdivided to reflect the finer granularity. This is quite rare,
however, as the physical structure is normally aimed at reflecting the logical one.

An instance of a text-intensive document may have blocks and frames corre-
sponding to a:

Character — a block containing the image of a symbol in the document’s language.

Word - a frame containing a group of one or more aligned characters, separated
by white space. A word is both a logical object in a document (to be defined
below), which conveys a certain meaning, and a physical object—the frame
(page area) containing the union of its constituent characters. If word is a
block, then its content is the image of the word; otherwise, it is a frame
consisting of characters (each of which is a block), with each character having
its image. The specializations of word are as follows:

Subword - a frame containing a group of one or more aligned characters,
which make up the first part or the last part of a word.

Preword — a subword containing the first part of a word. A preword is
located at the end of a line and ends with a hyphen.

Postword — a subword containing the last part of a word. A postword is
located at the beginning of a line and completes its preceding preword
to a whole word.

Line — a frame containing 1) a collection of one or more aligned words and 2) at
most one preword and at most one postword.

Stack — a frame containing a collection of one or more lines stacked on top of each
other and possibly separated by a non-empty white space, such that its logical
content is one paragraph® at most.

Column — a frame containing a collection of one or more stacks on top of each
other. A page may contain one or more columns. In structured documents,
this number is generally fixed throughout the document.

3.5. Generic Logical Structure

Like the physical structure, which is represented as a hierarchy of frames, the
generic logical structure is similarly viewed as a tree, in which the leaves are typically
the characters, or symbols, and the root is the entire document. This structure is
depicted in Fig. 2.

To be able to describe the logical document hierarchy generically, and not be
restricted by a particular number of levels and associated level names, such as “sec-
tion” and “chapter”, we define the term “texton” as the logical analog of “frame”.

¢Paragraph is a logical term defined below.
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Texton - a logical component of a text-intensive document, which consists of one
or more (lower level) textons or simple textons.

Root Texton — a texton which is the entire document.

Examples of root textons include book, encyclopedia, concordance, dictio-
nary, journal, newspaper, magazine, report, scientific paper, cover letter and
business letter.

Simple Texton — a logical component of a text-intensive document, which is not
further divided.

Instances of a simple texton are paragraph, sentence, phrase, word and char-
acter. If, for example, word is the simple texton in a particular document,
then any subcomponent such as a character is a primitive texton document.

Compound Texton — a texton consisting of a distinct header, body, and optional
trailer.

An example of a compound texton is a section of a document, which has a
header (the section head), a body (the set of paragraphs), and no trailer.
Another, less obvious example of a compound texton is a signature block in
a letter, which contains a header (the closing), a body (the signature), and a
trailer (the printed name).

As shown in Fig. 2, scanning the logical structure from the top down, the entire
document (encyclopedia, book, article, business letter, etc.) is the root texton—the
root of the tree. Below it is a varying number of levels of textons. The black triangle
along the paths connecting a whole to its parts in Fig. 2 is the aggregation symbol
(Dori, 1995).

Texton is the logical analog of the physical frame. Like frame, the definition
of texton is recursive, and the halting condition is that the constituent texton is
a simple texton, i.e., the base logical unit, typically a character. The recursive
definition of texton encompasses the entire spectrum of logical levels in any text-
intensive document, just as the root frame encompasses all the physical levels.

Instances of a texton, in a text-intensive document, include:

Character — a texton which is a symbol in the document’s language. Normally,
character is a basic texton.

Word — a texton containing a sequence of one or more characters, which has some
meaning in the document’s language.

As we have noted, both character and word have logical as well as physical
definitions. The difference between a logical character and a physical character is
that a logical character is the symbol itself, while a physical character is the image
representation of the logical character. Likewise, the difference between a logical
word and a physical word is that a logical word is a semantic-conveying object,
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while a physical word can be considered either as the image representation of the
logical word or as an ordered collection of its comprising physical characters. Note
that there is no logical analog to the physical term subword, whose existence stems
from spatial arrangement considerations.

We continue with the definitions of higher-level textons.

Phrase — a texton which is a meaningful collection of one or more words that do
not necessarily form a complete grammatical sentence.

Examples of phrases include a title of a document or part thereof, a name of
a person or an organization, an address, or a (possibly nested) itemized list
of such entities.

Sentence — a meaningful collection of one or more phrases which correspond to a
valid grammatical sentence, complete with punctuation.

Paragraphon — a texton which is a generalization of a paragraph. It consists of a
group of one or more sentences and/or phrases.

Each one of the items above is an example of a paragraphon, where the title
is a phrase, and it is followed by another phrase and optional sentence(s).

Unlike character and word, higher-level textons have different names than the
corresponding frames, because the physical structure departs from the logical one,
and the correspondence becomes more and more fuzzy as we climb up the two
hierarchies. Thus, above word at the physical level is the frame called line, while
the corresponding textons at the logical level are phrase and sentence. However, it
is obviously unlikely that a single sentence occupies exactly one line. At the next
level up, paragraphon is analogous to stack, but again, the correspondence is only
partial, because a paragraphon may stretch across more than one stack, if it starts
at the end of a column and ends at the first stack of the next column, or even across
several whole columns and pages.

At yet higher levels, the relationships between textons and frames are type-
dependent. For example, the texton chapter in a textbook normally starts at a new
page, as does a paper in a proceedings.

A document may contain logical elements which are referenced from multiple
independent points within the document itself. They are often self contained logical
units (i.e., textons) and should be treated as such. To handle such components, we
define a referenced texton.

Referenced Texton - a graphic or textual texton which is referenced from the
document.

Examples of referenced components include figures, appendices, footnotes,
citations, continuation text bodies (e.g. in newspapers) and even complete
documents. The header of a texton is a label or identifier which is “referenced”
by a pointer.
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Pointer - a referencing texton pointing from the main text of the document to the
referenced texton. This pointer is typically a phrase or a sentence, such as
“continued on page 5, column 3”, “see Figure X”, or “(Author, 1995)”.

Graphon — a referenced texton in a document whose nature is mainly non-textual,
and whose function is to illustrate, explain or demonstrate the text. Examples
of graphons are line drawings (engineering drawings or art-line), half-tones,
photographic (black and white or color) images, maps, diagrams, charts, ta-
bles, etc.?

In graphons, if text exists, it supplements or enhances the graphic. A graphon
has graphic (imagery or geometric) contents and an optional caption, which
itself is a texton, and consists of a mandatory caption header (the graphon
identifier), and an optional caption body (the textual title or explanation
of the graphon). The caption header is mandatory, because it serves as a
reference and is pointed to by the text.

Since a graphon, like the figures in this document, normally occupies a consid-
erable portion of the page area, the physical location of a graphon is frequently
allowed to float in the neighborhood of where it is referred to in the main text
for the first time.

Finally, in addition to the hierarchical structure given by the recursive definition
of the texton, the logical structure must also preserve the reading order.

Reading order — the order in which the characters or symbols in a text-intensive
document must be traversed for the document to be correctly understood.

The reading order corresponds to a depth-first visit of the document’s logical
structure. Reading order normally makes sense only within and between the text-
intensive components of a document. In the case of referenced textons, the texton
appears physically only once, but may appear logically at many locations. A pointer
denotes the logical appearance, so the reading order follows a round-trip “visit” to
the referenced texton.

Graphons tend to “float” and can be referenced from multiple locations in the
main text. Hence, like any referenced texton, the read order is preserved by requiring
a visit from the reference pointer (typically a phrase) to the graphon and back.

3.5.1. Document complezity

We have seen that a text-intensive document has a hierarchy whose textons de-
pend partially on the document’s logical type and may represent chapters, sections,
subsections, parts, etc. Hence, the number of texton levels in a document is finite,
normally not greater than 10. This number depends on the nature of the document

4A table is a boundary case between text and graphon. We classify it as a graphon, because even
though it contains text, the text normally does not have a definite linear reading order and it is
normally enclosed within graphics—the lines that separate rows and columns.
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and indicates its structural complexity. The numbering of the levels is bottom up,
with zero assigned to the character level.

The logical complezity of a document is the level number of the document’s root
texton.

Consider, for example, a journal paper, whose body consists of sections. The
body of each section is a paragraphon. Assigning the level numbers 0, 1, and 2 to
the character, word, and sentence levels, respectively, a paragraphon is a level 3
texton, and the entire document is a level 4 texton. Hence the complexity of this
document is 4. If at least one of the sections is divided into subsections, and no
subsection is divided into sub-subsections, then the document complexity is 5.

Although usually there is a relation between the document’s size and its com-
plexity, these two terms should not be confused. The size can be measured by the
number of pages, words or characters. A dictionary, for example, may be a very
large document, but its complexity is not necessarily high. Similarly, an outline
may be relatively small, but may have much higher logical complexity.

3.5.2. Simple and Compound Textons

Having defined textons and their roles in the document logical structure, we
turn to a more abstract and comprehensive description of logical document layout
than the one given in Fig. 2. Figure 3 is an object-process diagram, or OPD (Dori
et al., 1995; Dori, 1995), which describes the structure of a document.

The object Document is a specialization of a Texton, which is the root of the
structure. This is denoted by the generalization symbol—the blank triangle going
from Texton to Document. Texton is a generalization of Compound Texton and
Simple Texton. This is denoted by the blank triangle from Texton to both Com-
pound Texton and Simple Texton in Fig. 3. A simple texton is a generalization of
a paragraphon.

A character is defined to be a level 0 texton. A word is a level 1 texton, as it
consists of one or more characters, and a sentence is a level 2 texton. A simple
texton in the main text of the document is therefore a level 3 texton. Below it
in the main text reside the sentence or phrase (level 2 texton), the word (level 1
texton), and the character (level 0 texton). As we show below, these level numbers
may vary for side text, such as the table of contents in a book.

Although in the simplest form, one may conceive of a primitive document con-
sisting of a single character, perhaps conveying a coded message, a single-word
document, a single-sentence/phrase document, or a single-paragraph document, we
consider the simplest document to be a document which is a compound texton.
Therefore, the minimal complexity of any document is 4. A simple document, such
as a standard business letter, is an example of a level-4 document. It has a header
(sender and recipient identification and subject), a body (one or more paragraphs:
level 3 textons), and a trailer (salutation, signature, etc.).

The black triangle between Compound Texton on one hand, and Header, Body,
and Trailer on the other hand, is an aggregation (whole-part) relation, expressing
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the fact that a compound texton consists of these three parts. The default cardinal-
ity (participation constraint) of the aggregation symbol is (1..1):(1..1), i.e., exactly
one (minimum 1 and maximum 1) part for exactly one whole.

Consider a texton of level n. The cardinality of the header of this texton is 1, i.e.,
there is exactly one texton of level n — 1 which is the header of the level n texton.
The cardinality of the texton’s body is 1..m, meaning that there are between 1 and
many textons of level n—1 in the body of the level n texton. Finally, the cardinality
of the (optional) texton’s trailer is 0..1, i.e., there is at most one texton of level n—1
functioning as the trailer of the level n texton. The “0..1” next to Trailer indicates
that Trailer is optional. In other words, a texton has either two or three parts and
must have exactly one Header, one Body and at most one Trailer. In summary,
Header has exactly one texton, Body has a number of textons between 1 and many
(denoted “1..m” in Fig. 3) textons, and Trailer, if it exists, has one texton.

For example, a section in a paper is a compound texton. It has a header (the
section title); a body, consisting of one or more paragraphons; and no trailer. As
another example, a textbook is a compound texton, whose header is everything
from the beginning of the book to the beginning of the first chapter. The body of
the book consists of a number of chapters and its trailer is everything from the end
of the last chapter to the end of the book (appendices, glossary, index, etc.).

3.5.3. The Recursion in Texton Definition; the Body Path

Since Compound Texton is Texton, and Compound Texton has Header, Body
and Trailer, each having at least one Texton, we get a recursive definition. As
in any recursion, to avoid infinite looping, a halting condition must exist. The
halting condition, as expressed in the object-process diagram of Fig. 3, occurs
when the textons of Header, Body and Trailer of the Compound Texton are all
Simple Textons. When a texton is simple, the recursion stops, because from this
level downward, we descend through the phrase level and the word level down to
the character level. In the case of a referenced texton, the pointer—a Simple Texton
in the main text—Iinks it to preserve the reading order, while the referenced texton
itself is a Compound Texton, whose header is the identifier the pointer points to.

Body Path is the path in the tree structure going from the root node—the entire
document—through successively decreasing levels of compound textons, all
the way down to the simple texton (the paragraphon level), such that the
path always visits the body of each texton. Since by definition any compound
texton has a body, such a path is guaranteed to exist, and it is unique.

The level of a character, which is the last node—the leaf—along the body path,
is defined to be zero. This implies that along the body path the level number of
a word is 1, the sentence/phrase level is 2, and the level of the paragraphon—the
simple texton—is 3. Note that these numbers are not necessarily the same for
characters, words, sentences and paragraphs which are not nodes along the body
path. As we show in the example below, the level numbers may be higher or lower
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than the ones along the body path, depending on whether the path from the top
texton (the document level) is longer or shorter than the length of the body path.
The fact that of the three compound texton parts only two are mandatory gives
rise to a 2-3 tree structure, as we demonstrate in the example in the next section.

3.5.4. The DAS94 Proceedings—A case in point

To demonstrate the use of the concepts and terms presented above, and to show
how document complexity is defined, consider the document Proceedings of DAS9/
(Dengel and Spitz, 1994). The structure of the document is described in Fig. 4.
The structure is detailed down to the Simple Texton level. Since a compound texton
may have either three parts (Header, Body, and Trailer) or two parts (Header and
Body), the resulting structure in Fig. 4 is a 2-3 tree.

As indicated in the legend of Fig. 4, the body path is marked by thick line
segments. The level numbers are written in parentheses next to the corresponding
textons along the path. The body path visits the nodes “Proceedings of DAS94”
“Session”, “Paper”, “Section”, “Subsection”, and “Paragraph”, in that order. As-
signing the number 3 to the paragraph level and counting up we find that “Sub-
section” is at level 4, “Section” is at level 5, “Paper” is at level 6, “Session” is at
level 7, and the entire document, “Proceedings of DAS94”, is at level 8. Hence the
complexity of this document is 8.

As a compound texton, “Proceedings of DAS94” has a header, a body and
a trailer. The header is a level 7 texton, which, in turn, consists of three level
6 textons: a header—“Front Page” and “Copyright note”, a body—“Chairmen’s
Message”, and a trailer—“Table of Contents”. Chairmen’s Message consists of a
level 5 header—the title “Chairmen’s Message,” a level 5 body, consisting of seven
level 4 paragraphons, and a level 5 trailer, containing two level 4 paragraphons. The
first phrase is “Kasierslautern, October 1994,” and the second is the names of the
two document editors. As we see here, both the paragraphs and the phrases, which
are basic textons, are at level 4 rather than 3. The reason is that the path traversed
here is not the body path. As already noted, a basic texton is guaranteed to be at
level 3 only when it is on the body path. In other paths it may be more (as here)
or less than 3. The path that ends with “Author”, “Affiliation”, and “Address”, for
example, is the longest one. It is longer by two edges than the body path. Therefore
“Address”, which is a simple texton, is a level 1 texton in this case, as shown at the
bottom of Fig. 4. Table of Contents is a level 6 texton, consisting of a header—the
title “Table of Contents,” a body, and no trailer. The body of the Table of Contents
consists of eight items. Each item is a level 5 texton called Session Contents. It
has a header—session number and name, a body—a phrase (itemized list) of three
level 4 items, each called Paper Details, and no trailer. Each Paper Details item is
a level 3 texton. It consists of three paragraphons, each containing a single phrase.
The first phrase is the paper name, the second phrase is the author name, and the
third phrase is the page number.

In most of the papers, Section consists directly of paragraphs, but several papers
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have subsections (see for example page 139 in the document). To accommodate this
variability, we add the condition “if m"” = 0” along the aggregation link from Section
to Paragraph in Fig. 4, where m' is the number of subsections in a section. This
means that if there are no subsections in the section, then Section consists directly
of paragraphs.

3.6. Relating Physical and Logical Structure

Having defined generic terminology for both logical and physical structure, it
is straightforward to relate the two at the content level, in most cases. Fig. 5
shows the structure of a simple document, a multiple page chapter. The chapter is
a compound texton, with a header (title) and two body components (one abstract
and one section). The abstract is a simple texton and the section is a compound
texton, consisting of two simple textons (paragraphons).

The physical structure subdivides the document into rectangular blocks. The
content is shared in both structures. Note that the structure allows logical com-
ponents (i.e., the abstract) to be split over two pages. For most documents, the
logical complexity will be higher.

4. The Document Attribute Format Specification—DAFS

Integrating the physical structure with the logical one is a difficult problem.
We now return to the physical layout as described by DAFS—Document Attribute
Format Specification.

While many formats exist for composing a document from electronic storage
onto paper, no satisfactory standard exists for the reverse process. DAFS is a file
format specification for documents with a variety of uses. It was developed under
the Document Image Understanding (DIMUND) project funded by ARPA and is
meant to be the file format for all documents whose content has been examined
either manually or automatically and which form parts of DIMUND databases. In
addition, DAFS-formatted documents are used in the Illuminator project, where
they are employed for training and testing document image understanding tools.

DAFS is intended to be a standard for the representation of document images
and their partial interpretations during document decomposition. It is hoped that
DAFS will prove to be general enough to enjoy widespread use, particularly in appli-
cations such as OCR and document image understanding. Several standards have
been developed which address the creation or composition of documents, but none
of these standards is well suited to the problem of document decomposition. There
are many applications which would require some form of document decomposition,
including character recognition and document image understanding. DAFS is a
new format, designed explicitly for representing reverse encoding—the encoding of
decomposed documents. As such, DAFS is designed to allow representation of both
the physical and semantic information contained within a document image, but it
is desired that this format have many applications beyond these specific ones. With
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this as a goal, the principle was established that the format should be extensible
to meet the needs of a broad base of users, and that the format should not impose
unnecessary assumptions on potential users.

4.1. DAFS Design

This section describes the philosophy which was used in the development of
DAFS.

4.1.1. Object-Oriented design

In the process of reverse encoding a document image, it becomes clear that it
would be convenient to be able to handle portions of the image as discrete objects.
An object can be any part of a document that may be defined in a stable form.
Under DAFS, an object is called an “entity”, and is essentially one or more rectan-
gular pieces of the document image. Note that a DAFS “entity” is analogous to a
SGML element and has nothing to do with the SGML concept of entity. Examples
of useful entities are “paragraph”, “character”, and “document”. Each may be part
of a document, but needs to have a sufficiently stable form to be unambiguously de-
fined. By implementing this specification in an object-oriented fashion, each entity
may have any number of properties associated with it, allowing information about
the entity to be entered. (See “DAFS Entities” for more information.) Another
advantage of an object-oriented format is that an object may also contain other
objects, which is the key to a hierarchical structure, and that attributes can be
extended to specializing objects.

4.1.2. Hierarchical design

Often the objects we wish to define in a document fit into a hierarchical rela-
tionship. For example, a character may be contained within a word; that word may
then be contained within a line of text; and this in turn may be within a paragraph,
within a page, all of which may be part of a document. DAFS provides the ability
to create “parent”, “child” and “sibling” relationships between entities, forming the
basis for specifying any hierarchy desired.

The use of a hierarchical structure for describing objects within a document can
make the description of the document more compact. Users can leave out the layers
or details that they do not need. For example, an OCR application might use the
structure document-paragraph-line-word-character in processing a document image.
A pitch and phase detector, working with the same image, might use the structure
document-line and have no need for word and character information.
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4.1.3. Euxtensibility

As with any large software system, we do not expect that any primary design
will be general enough to accommodate all potential applications of DAFS. Hence,
an important design goal of DAFS is to give it the greatest potential for extension.
In addressing such future needs, the current specification is designed to provide a
practical degree of extensibility, and to permit asynchronous revisions of data and
applications to coexist.

The use of discrete objects to describe document structure permits easy exten-
sion to the set of objects available for this purpose. In another venue, the availability
of an unlimited number of properties for each object permits user extensions to doc-
ument descriptions. The user may classify, modify, or record information about a
pre-existing document’s content by creating and using new properties. (See “Prop-
erties” for additional information.)

In order to preserve the extensibility of DAFS and to maintain compliance with
this specification, a process that conforms to DAFS must either interpret code values
as specified, or pass these values through and not interpret them at all. A process
must not change a code that it cannot interpret.

4.2. Primary DAFS Requirements

DAFS must meet a number of requirements in order to fulfill its purpose.

In general, DAFS must be powerful enough to serve as the format for database
and tools document interchange. It was developed in the hope that at some point,
the specification will develop into a standard for data interchange in the document
understanding community.

Secondarily, DAFS should offer expandability, allow alternatives/possibilities
(e.g., allow a supposed character’s content to be labeled ‘m’ or ‘rn’ or ‘ii’), allow
confidence values for each alternative, so that a measured choice can be made among
them, support many human languages, help tools process images rapidly, and be
human readable (to allow editing on non-DAFS tools), among others.

4.3. DAFS and existing standards

The definition of DAFS has been influenced by a number of current standards.
Some of these are from private companies, while others are international standards.
Among the private formats are IBM’s RFT:DCA, Microsoft’s Rich Text Format
(RTF), and Digital Equipment Corporation’s CDA. International standards have
been implemented by the International Organization for Standardization (ISO) and
the Comité Consultatif International Télégraphique et Téléphonique (CCITT) to
assist in the open exchange of documents. These standards include the Open Doc-
ument Architecture (ODA), ISO 8613, and the Standard Generalized Markup Lan-
guage (SGML), ISO 8879. The three of these which most influenced DAFS are
SGML for overall structure and text handling, CCITT group IV for images, and
ISO 10646 for Unicode.
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These formats have been made available to the public and are implemented by
numerous vendors. Each was created to provide a common interchange format for
moving documents among heterogeneous document formatting and text publishing
systems. Since they were originally conceived for encoding documents for publishing
applications, none of these formats adequately addresses the problems of document
decomposition and reverse encoding.

4.3.1. DAFS and SGML

The advantages of SGML are so strong it was decided to use it as a basis for
DAFS. Some of these advantages include:

1.

6.

SGML is well-designed. Much thought has gone into what makes up a doc-
ument; how to handle natural hierarchies and nesting of hierarchies; how to
link document content and markup, yet be able to distinguish between the
two.

SGML is designed to be general and to allow modification. For example, the
character set can readily be changed, enabling SGML to handle documents in
many foreign language scripts.

While by no means perfect in handling non-English text, SGML offers several
reasonable alternatives. These are discussed in “DAFS-U Storage Format”.

SGML was designed to be easy to parse. It is possible to start anywhere in
an SGML document and be able to discover where you are without scanning
from the beginning. Elements not recognized by the current application are
easily ignored.

The user does not need to know everything about a document to begin us-
ing SGML. It is not necessary to know the total number of paragraphs, for
example.

SGML is a well-known and widely used standard.

DAFS is being implemented as a special SGML application with a set Document
Type Definition (DTD), but with some built-in features providing the extensibility
and flexibility to cover a wide range of applications. The three main disadvantages
of SGML and their solutions are discussed below.

1.

SGML discourages encoding of physical characteristics. It was decided to
overlook SGML inhibitions about encoding physical attributes. A DTD was
created which encodes essential attributes, including physical ones like “bold”
and “point size”, and which allows users to add their own.

. SGML does not handle images easily. Document decomposition applications

will often require both image and text (for example, the image of a page and
the corresponding OCR’d text). SGML was not designed with this need in
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mind. The difficulty arises from the need to distinguish intentional SGML
tags from chance sequences of image bytes which, by chance, read the same.
To overcome this, DAFS could pursue one of the following options:

o Escape the images. This method of handling the problem makes reading
and writing tedious.

e Write the image after the final tag of the SGML data. Unfortunately,
the end of an SGML file is not well defined, and not all SGML parsers
would necessarily interpret this in the same way.

e Write the image in an associated external file which is referenced by the
text file. Maintaining multiple files for one document can be inconvenient
and is not aesthetic, but there is no question regarding which bytes are
image and which are text.

The decision was to use references to external image files, arguing that the
negative aspects of storing a single document across more than one file are
offset by the certain knowledge of which bytes are text and which are image.
Including image with text via external files is not without precedent. The
CALS (Computer-aided Acquisition and Logistics Support) standards of the
US Department of Defense call for just such handling of mixed text and image.
Under CALS, text is to be converted to SGML and image to another format,
and the two information types are stored in separate but linked files.

3. SGML applications are not necessarily portable from one DTD to another,
yet different applications will require different DTD’s. We are alleviating this
problem by carefully constructing the DAFS DTD to be as generally appli-
cable as possible, and by building in a limited expandability through DAFS
“properties”. These properties provide a way for users to create new cate-
gories of information about a document’s entities, and are discussed further
under “Properties”.

4.4. DAFS Tags

The following suggestions regarding tags have guided the creation of the DAFS
tagset and DTD:

1. Because DAFS aims to support many languages and scripts, DAFS will in-
corporate the Unicode character set. SGML (and by extension, DAFS) allows
any character to be used in a tag, and the idea of specifying a defined set of
tags violates the complete freedom of SGML. Nevertheless, it is highly recom-
mended that all tag characters be the Unicode equivalent of ASCII. Limiting
tag characters to ASCII helps maintain their human-readability, and eases the
interconversion of DAFS-U and DAFS-A—two DAFS file types, discussed in
“DAFS Storage Formats”.
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2. It is anticipated that new tags will be developed by users, but in the interest
of portability of the resulting documents, the DAFS-defined tags should be
used as much as possible.

3. High-frequency entity names should be kept short.

4.5. DAFS Storage Formats

DAFS has three storage formats, each designed for a different purpose, but all
three are wholly interconvertible. These are the compact binary format DAFS-B
(BINARY), and the “human-readable” DAFS-A (ASCII) and DAFS-U (Unicode).
In DAFS-B, image and text (if any) are stored in a binary format in one file. DAFS-
A is a direct application of SGML. DAFS-U is similar to DAFS-A, but modified
to allow Unicode characters as content. In DAFS-A and DAFS-U, images (if any)
are included in external linked files. Software libraries which enable reading and
writing of all three versions have been developed and made publicly available.

4.6. DAFS Entities

DAFS entities are conveniently defined objects within a document such as a
paragraph or word. In essence, an entity is one area of an image which is usually
defined by a bounding box (though it need not be). An entity can have content,
which might be the text it encompasses, properties, such as bounding box, font and
point size, and hierarchical relationships with other entities, allowing specification
of read orders and page layouts.

Prospective users have requested that a list of document elements and charac-
teristics be definable under DAFS and DAFS has been structured to make each of
the following DAFS entity types available.

Doc The document as a whole.

Page A given page.

Column A column of text.

Paragraph A delimited block of text comprising a paragraph.
Line A line of text.

Newline A newline, or carriage return.

Word A word in the text.

Glyph A single character in the text. “Glyph” rather

than “character” is used because we are referring
to an area of image which is meant to be a char-
acter, but which may not actually be correctly
segmented.

Space A Glyph whose textual content is the space
character.

4.6.1. Hierarchical relationships

DAFS permits the creation of parent, child and sibling relationships between
entities, providing easy representation of the hierarchical structures of a document.
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As an example, consider a paragraph entity made up of words which are in turn
composed of glyphs or characters. The component glyphs are the child entities of
each word, while the paragraph is the parent of each word. The other words in the
paragraph are a given word’s siblings.

4.6.2. Properties

An entity may have various attributes or “properties” associated with it. A few
predefined properties are listed below.
bounding box Rectangular box delimiting the entity or portions of it.

font class Information on the character font (e.g. Courier or Helvetica).
point size Size of the printed characters.

bold Characters printed with thicker lines for emphasis.

italic Characters printed with slanting lines for emphasis.

DAFS permits the creation of an unlimited number of user-defined properties. A
property is used to describe or classify an entity and its contents, and exists only in
association with the entity to which it refers. In SGML applications, such attributes
are generally predefined in the DTD. DAFS introduces user-defined properties as
a way for users to create their own entity categories and descriptions, without the
need to alter the underlying DAFS DTD. It provides flexibility for handling a large
variety of applications, yet protects the ability to share tools and data.

4.6.3. Confidences

Since DAFS is meant for use with document decomposition, and since there is
always some uncertainty or ambiguity associated with determining exactly what
the content of an entity is, DAFS must be able to assign confidence values to all its

entities.
conf Contains the confidence in the value of an entity’s

contents or its properties. It defaults to a single
unsigned byte 0-255.

alternative set This is a list of alternatives suggested or allowed
as the content of an entity. Alternatives within an
alternative set are meant to be read as either the
first one or the second, and so on.

4.6.4. Alternative sets and property ranges

A related idea is the allowed range of values for properties. We anticipate the
existence of tools using DAFS which test the effectiveness of automatic character
recognizers, page decomposers, and other image understanding tools. For example,
an automatic page decomposition tool might put a bounding box around a para-
graph, different from the one the human creating the test set had assigned. The
testing tool must determine whether the machine-set bounding box is close enough
to the human-created ‘ideal’. Since exact matches are not required for this type
of application, the exact values of some properties may be uncertain. DAFS ac-
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commodates this need with entities which set the allowed range of properties. The
property “bold” is another example. It may have an allowed range of 100-200 for
font class 1. If the “boldness” of a glyph is measured as 132, this is within the range
and it will be concluded that the glyph is in fact bold. For consistency, all other
bold glyphs like it from font class 1 should also have a boldness of 132.

4.6.5. Alternative Contents: Or and Borrow

DAFS must be able to handle alternative values for entity content. Any at-
tempt to decompose a document will engender areas of uncertainty. A classic OCR
uncertainty, for example, involves distinguishing ‘I’ (capital I), ‘1’, and ‘I’ (lower
case L). If just one of the three is selected as “most likely”, the fact that the other
two were very nearly as likely is lost. DAFS provides easy means of preserving and
presenting sets of such alternatives. The use of alternatives is available not only for
sets of characters, but for any other kind of entity as well.

The key to DAFS alternatives involves the concepts of child type and entity
borrowing. An entity’s children may be of “And” type, such as the component
glyphs of a word, which are all meant to be presented together. “Or” type children,
on the other hand, are alternatives of one another; only one of the set can be present
at one time. A glyph may have “Or” children ‘T’, ‘1’, and ‘I’, allowing a variety of
techniques to be tried in selecting the best of the possibilities.

Entity borrowing is another useful device which permits easy data sharing among
entities. As an example, consider a document that has a read order different from
the physical order of the entities on the page. The Document could be an “Or” type
entity with two child entities. The first child would arrange the Paragraphs, Words,
etc. to represent the read order. The second would arrange them to represent page
layout, borrowing the same images used by the read-order child, but arranging
them differently. The Borrow concept allows the data to appear only once, but to
be arranged and used in multiple ways. Through Borrowing, DAFS files can be
more compact than would otherwise be possible.

4.6.6. Alternative Read Orders and Page Layouts

Documents can have multiple allowed read orders and page layouts, and it will
be desirable to encode them into the document itself for the applications which
use them. Automatic testers might use this information when evaluating page
decomposition systems. Alternative read orders and page layouts rely on the entity
borrowing capability discussed above, so that the same entities from the image of
the document can be linked together in different orders.

5. Representing Textons and Specific Structure in DAFS

During the document understanding process, we must analyze and infer the
specific instances of the logical and physical structures of the document. DAFS
provides mechanisms which allow us to represent both the logical and physical
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Fig. 5. A sparse schematic representation of the physical and logical structure of the content of a
document “chapter”.
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structures, as well as alternative structures and associated confidences. Using “or”
children, multiple hypotheses can be carried along in the reverse encoding process.

Recall that DAFS provides a basic entity structure, which may have a property
list and data, as well as child, image and borrowed entities. The property list has
both system-level and user-defined properties for information such as the entity
name, relationships among children, and bounding boxes for physical entities.

The encoding of physical information is straightforward and was highlighted
previously in the description of DAFS (Sect. 4). Each physical “object” in the
document is represented by a single DAFS entity. From the generic description, each
physical entity will correspond to a component of the generic physical description—
Page set, Page, Frame, or Block. Frames will have content which corresponds to a
list of frames and/or blocks, and blocks will have content which corresponds to a
physical region on the page.

In the DAFS representation, a physical entity’s type will correspond to a physical
document component, such as column, paragraph, line, word or character. Which
physical components are valid, however, is clearly dependent on the document’s
type.

Logical entities will similarly be organized in a hierarchical manner. Entities will
be used to represent logical components and are, once again, document class depen-
dent. For a journal article the types may correspond to a page, Sect., paragraph,
etc., whereas for a business letter, the entity types may include the address block,
greeting, and salutation, for example. Each logical entity is related to other enti-
ties with parent, child, and sibling relationships, inferred from the hierarchy. The
concept of a referenced texton is implemented in DAFS by a user defined reference
property which provides the ID of a logical (or physical) entity which it references.

There are also several special-purpose entities which we define to aid in organiz-
ing the physical and logical entity trees. The Document Root represents the root
of the document and has two children—the physical root, pointing to the physical
hierarchy, and the logical root, pointing to the logical hierarchy. The children of
the physical root are simply the largest physical components of the document, e.g.
pages in a journal article, page sets in a multi-volume document, etc. The children
of the logical root are the maximal logical components. One component is likely to
be the main body, and the remaining components are often referenced textons (or
subdocuments) such as figures. Distinguishing between logical components at such
a high level is necessary because of the fact that although figures are embedded in
the physical document, they are disjoint (and referenced) from the main body of
the document.

The terminal components for both hierarchies are characters and graphic blocks.
Both hierarchies descend independently toward the leaf nodes, where they share the
character and graphic components via the DAFS borrow construct. From this rep-
resentation, given a logical component, one can obtain relevant physical information
and vice versa.
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6. Summary

The structure of a document conveys semantic information that is beyond its
character string contents. To capture this additional semantics, document under-
standing must perform a reverse encoding of the document and relate the physical
layout to the logical structure. This work has proposed a formal generic framework
for the definition and interpretation of any text-intensive document’s physical and
logical structure, that is not restricted by the size or complexity of the document.
The physical document is described by a hierarchy of frames and the logical struc-
ture of text-intensive documents is described as a hierarchy of textons. The defini-
tion of textons provides a powerful and flexible tool for document logical structure
analysis. We also propose a method for determining quantitatively, in an objective,
reproducible, and unbiased way, the complexity of such documents.

We have also presented a description of a new and powerful document attribute
format specification, DAFS, which provides mechanisms for representing and main-
taining both physical and logical information during the reverse encoding process,
and have shown how it can be used to relate logical and physical structure at the
content level.
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