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INTRODUCTION

The advent of automatic image analysis resulted in two fundamentally
different approaches to texture analysis: the statistical approach and the
structural approach. The statistical approach generates parameters to char-
acterize the stochastic properties of the spatial distribution of gray levels in an
image. The structural approach analyzes visual scenes in terms of the
organization and relationships among its substructures. In this chapter we
present a survey of the representative literature regarding statistical texture
analysis. However, we do include references to structural techniques for
completeness. Thorough reviews of texture models and approaches have been
presented by Haralick [1] and Ahuja and Rosenfeld [2].
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Ehrich and Foith [3] summarize the main issues in texture analysis. These
issues are listed in the general historical order that researchers have been
concerned with them.

(I) Given a textured region, determine to which of a finite number of
classes does the region belong.

(2) Given a textured region, determine a description or model for it.

(3) Given an image having many textured areas, determine the boundar-
ies between the differently textured regions.

Issue (1) has to do with the pattern recognition task of texture feature
extraction. Issue (2) has to do with generative models of texture. Issue (3) has
to do with using what we know about issues (1) and (2) in order to perform a
texture segmentation of an image. In the remainder of this section we provide
a brief historical elaboration of issues (1) and (2).

Early work in image texture analysis sought to discover useful features that
had some relationship to the fineness and coarseness, contrast, directionality,
roughness, and regularity of image texture. Tamuro, Mori, and Yamawaki
[4] discuss the relationship of such descriptive measures to human visual
perception. Typically, an image known to be texturally homogeneous was
analyzed, and the problem was to measure textural features by which the
image could be classified. For example, using microscopic imagery, discrimin-
ation between eosinophils and large lymphocytes was accomplished by using
a texture feature for cytoplasm and a shape feature of the cell nucleus [5]. By
using aerial imagery, discrimination of areas having natural vegetation and
trees from areas having man-made objects, buildings, and roads [6] was
accomplished using textural features. These statistical textural feature ap-
proaches included use of the autocorrelation function, the spectral power
density function, edgeness per unit area, spatial gray-tone co-occurrence
probabilities, gray-tone run-length distributions, relative extrema spatial
distributions, and mathematical morphology.

Later approaches to image texture analysis sought a deeper understanding
of what image texture is by the use of a generative image model. Given a
generative model and the values of its parameters, it is possible to synthesize
homogeneous image texture examples associated with the model and the
given value of its parameters. This association provides a theoretical and
visual means of understanding the texture, Image texture analysis then
amounts to verification and estimation. First, it must be verified that a given
image texture sample is consistent with or fits the model. Then the values of
the model parameters must be estimated on the basis of the observed sample.
Autoregressive moving-average time-series models (extended to two dimen-
sions), Markov random fields, and mosaic models are examples of some of
the model-based techniques.
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In Section Il we give a brief illustration of texture examples. Section 11T is
the body of the paper and reviews and classifies the published literature on
statistical texture analysis.

TEXTURE EXAMPLES I

To motivate our discussion of image texture, we illustrate how texture
manifests itself on aerial imagery. We will see from these examples that spatial
environments can be understood as being spatial distributions of various
area-extensive objects having characteristic size and reflectance or emissive
qualities and that the spatial organization and relationships of the area-
extensive objects appear as gray-tone spatial distributions on imagery taken
of the environment.

Figure 2, taken from Lewis [9], illustrates how texture relates to geomor-
phology. Here, we examine some plains, low hills, high hills, and mountains
in the Panama and Columbia area as seen on some Westinghouse AN/
APQ97 K-band radar imagery. :

The plains have apparent relief of 0-50 m, the hills have apparent relief of
50-350 m, and the mountains have apparent relief of more than 350 m. The
low hills have little dissection and are generally smooth, convex surfaces,
whereas the high hills are highly dissected and have prominent ridge crests.

The mountain texture is distinguishable from the hill texture on the basis of
the extent of radar shadowing (black tonal areas). The mountains have
shadowing over more than half the area and the hills have shadowing over
less than half the area. The hills can be subdivided from low to high on the
basis of the abruptness of tonal change from terrain front slope to terrain
back slope.

Figure 2, taken from McDonald [7], illustrates how texture relates to
geology. Here, we examine some igneous and sedimentary rocks in Panama
as seen on some Westinghouse AN/APQ97 K-band radar imagery. Figures
2i,k,l show a fine-textured drainage pattern, which is indicative of nonresis-
tant, fine-grained sedimentary rocks. The coarser texture of Figure 2h, left
and diagonal, is indicative of coarse-grained sediments. A massive texture
with rugged and peaked divides (Figs. 2a,b,c,de) is indicative of igneous
rocks. When erosion has nearly base leveled an area, the texture takes on the
hummocky appearance of Fig. 2c.

Figure 3, taken from Haralick and Anderson [8], illustrates how texture
relates to land use categories. Here, we examine five land use categories as
they appear on panchromatic aerial photography. Notice how the texture of
the wooded area is coarser and more definite than the scrub area. The
swamps and marsh generate finer textures than those generated from wood
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Fig. 1. K-band radar imaging illustratin

g how texture relates to geomorphology. (From
Lewis [9].)
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Fig. 2. Textures generated by igneous and sedimentary rocks on K-band radar imagery.
(From McDonald [7].)
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No. 41, SWAMP No. 56, MARSH }

No. 7, HEAVILY WOODED No. 27, RIVER
AREA

Fig. 3. Natural-environmental scenes illustrating how texture relates to land use categories in
panchromatic aerial photography. No. 1, ETL No. 815-N2; No. 66, ETL No. 43-T3B; No. 41,
ETL No. 43-TB; No. 56, ETI No. 53-T3A; No. 7, ETL No. 697-N1A; No. 27, ETL No. 88-R. i
(From Haralick and Anderson [8].)

or scrub areas. The swamp texture is finer and shows more gradual gray-tone
change than the marsh-generated textures.

Figures 4-6 illustrate how the same environment can generate a variety of
textures within the same texture type. Figure 4 shows five environments
where the vegetation both increases in size and disperses. Figure 5, taken in
the Pisgah Crater area, shows five environments where the vegetation
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Fig. 4. Tllustration of how the size and spacing of vegetation can cause texture to change from
fine to coarse.

increases in size, probably due to greater available soil moisture. Figure 6,
taken in the Pisgah Crater area, shows five environments of lava beds having
increasingly distinct contrast.

In these examples it is clear that texture relates to land types and
classification. Furthermore, any one land use type may generate a range of
textures in the same texture grade on a scale of strong to weak, fine to coarse,
etc.
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Fig. 5. Negative images illustrating how the same kind of lava can have a different texture.

I STATISTICAL TEXTURE FEATURES

In this section we survey the following techniques of statistical textural
measures: autocorrelation, orthogonal transforms, gray-tone co-occurrence,
mathematical morphology, gradient analysis, relative extrema density, three-
dimensional shape from texture, discrete Markov random fields, random
mosaic models, and texture segmentation. In addition, we give a brief
discussion of synthetic-texture image generation.
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Fig. 6. Negative images illustrating how lava can have different textures.

The Autocorrelation Function and Texture A

From one point of view, texture relates to the spatial size of the tonal
primitives on an image. Tonal primitives of larger size are indicative of
coarser textures; tonal primitives of smaller size are indicative of finer
textures. The autocorrelation function is a feature which tells about the size of
the tonal primitives.

We describe the autocorrelation function with the help of a thought
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experiment. Consider two image transparencies which are exact copies of one
another. Overlay one transparency on top of the other, and with a uniform
source of light, measure the average light transmitted through the double
transparency. Now translate one transparency relative to the other and
measure only the average light transmitted through the portion of the image
where one transparency overlaps the other. A graph of these measurements as
a function of the (x, ) translated positions and normalized with respect to the
(0, 0) translation depicts the two-dimensional autocorrelation function of the
image transparency.

Let I(u, v) denote the transmission of an image transparency at position
(4, v). We assume that outside some bounded rectangular region0<u <L,
and 0 <v <L, the image transmission is zero. Let (x, y) denote the 0
translation. The autocorrelation function p for the image transparency [ is
formally defined by

1 ad
=, 5D || T ety

1 2
L.L, ff I*(u, v) du dv

px, y) =

where [x| < L_and [yl < L,. Here we are assuming the image has mean 0.

If the tonal primitives on the image are relatively large, then the autocorre-
lation will drop off slowly with distance. If the tonal primitives are small, then
the autocorrelation will drop off quickly with distance. To the extent that the
tonal primitives are spatially periodic, the autocorrelation function will drop
off and rise again in a periodic manner. The relationship between the
autocorrelation function and the power spectral density function is well
known:-they are Fourier transforms of one another [10].

The tonal primitive in the autocorrelation model is the gray tone. The
spatial organization is characterized by the correlation coefficient, which is a
measure of the linear dependence one pixel has on another pixel displaced
from it by the vector (x, y).

An experiment was carried out by Kaizer [11] to see if the autocorrelation
function had any relationship to the texture that photointerpreters see in
images. He used a series of seven aerial photographs of an Arctic region and
determined the autocorrelation function of the images with a spatial correla-
tor that worked in a manner similar to the one envisioned in our thought
experiment. Kaizer assumed the autocorrelation function was circularly
symmetric and computed it only as a function of radial distance. Then, for
cach image, he found the distance 4 such that the autocorrelation function p
at d took the value 1/e (e, p(d) = 1/e).

Kaizer then asked 20 subjects to rank the 7 images on a scale from fine
detail to coarse detail. He correlated the rankings with the distances
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corresponding to the (1/e)th value of the autocorrelation function. He found
a correlation coefficient of 0.99. This established that, at least for his data set,
the autocorrelation function and the subjects were measuring the same kind
of textural features.

Kaizer noticed, however, that even though there was a high degree of
correlation between p~'(1/e) and subject rankings, some subjects put first
what p~'(1/e) put fifth. Upon further investigation, he discovered that a
relatively flat background (indicative of high frequency or fine texture) can be
interpreted as a fine-textured or coarse-textured area. This phenomena is not
unusual and actually points out a fundamental characteristic of texture: it
cannot be analyzed without a reference frame of tonal primitive being stated
or implied. For any smooth gray-tone surface, there exists a scale such that
when the surface is examined, it has no texture. Then, as resolution increases,
it takes on a fine texture and then a coarse texture. In Kaizer’s situation, the
resolution of his spatial correlator was not good enough to pick up the fine
texture which some of his subjects did in an area that had a weak but fine
texture.

Orthogonal Transformations B

Spatial frequency characteristics of two-dimensional images can be ex-
pressed by the autocorrelation function or by the power spectra of those
images. Both may be calculated digitally and/or implemented in a real-time
optical system.

Lendaris and Stanley [12, 13] used optical techniques to perform texture
analysis on a database of low-altitude photographs. They illuminated small
circular sections of those images and used the Fraunhoffer diffraction pattern
to generate features for identifying photographic regions. The major discri-
minations of concern to these investigators were those of man-made roads,
intersections of roads, buildings, and orchards.

Feature vectors extracted from these diffraction patterns consisted of 40
components. Twenty of the components were mean energy levels in concen-
tric annular rings of the diffraction pattern, and the other 20 components
were mean energy levels in 9° wedges of the diffraction pattern. Greater than
90 7%, classification accuracy was reported using this technique.

Cutrona, Leith, Palermo, and Porcello [14] present a review of optical
processing methods for computing the Fourier transform. Goodman [15],
Preston [16], and Shulman [17] also present comprehensive reviews of
Fourier optics in their books. Swanlund [18] discusses the hardware specifi-
cations for a system using optical techniques to perform texture analysis.

Gramenopoulos [19] used a digital Fourier transform technique to
analyze aerial images. He examined subimages of 32 x 32 pixels and deter-
mined that for a LANDSAT image over Phoenix, spatial frequencies between
3.5 and 5.9 cycles/km contained most of the information required to
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discriminate among terrain types. An overall classification accuracy of 879
was achieved using image categories of clouds, water, desert, farms, moun-
tain, urban, river bed, and cloud shadows. Horning and Smith [20] used a
similar approach to interpret aerial multispectral scanner imagery.

Bajscy [21] and Bajscy and Lieberman [22, 23] computed the two-

dimensional power spectra of a matrix of square image windows. They

expressed the power spectrum in a polar coordinate system of radius versus
angle. They determined that directional textures tend to have peaks in the
power spectrum along a line orthogonal to the direction of the texture.
Bloblike textures tend to have peaks in the power spectrum at radii
associated with the sizes of the blobs. This work also shows that texture
gradients can be measured by determining the trends of relative maxima of
radii and angles as a function of the position of the image window whose
power spectrum is being analyzed. For example, as the power peaks along the
radial direction tend to shift toward larger values, the image surface becomes
more finely textured.

In general, features based on Fourier power spectra have been shown to
perform more poorly than features based on second-order gray-level co-
occurrence statistics [24] or those based on first-order statistics of spatial
gray-level differences [25, 26]. The presence of aperture effects has been
hypothesized to account for part of the unfavorable performance by Fourier
features compared to space-domain gray-level statistics [27], although
experimental results indicate that this effect, if present, is minimal. However,
D’Astous and Jernigan [28] argue that the reason for the poorer performance
is that earlier studies using the Fourier transform features used summed
spectral energies within band- or wedge-shaped regions in the power spec-
trum. They argue that additional discriminating information can be obtained
from the power spectrum in terms of characteristics such as regularity,
directionality, linearity, and coarseness. The degree of regularity can be
measured by the relative strength of the highest non-dc peak in the power
spectrum. Other peak features include the Laplacian at the peak, the number
of adjacent neighbors of the peak containing at least 50 7, of the energy in the
peak, the distance of the peak from the origin, and the polar angle of the peak.
In the comparative experiment reported by D’Astous and Jernigan, the peak
features yielded uniformly greater interclass difference than the co-occurrence
features, and the co-occurrence features yielded uniformly greater interclass
distances than the summed Fourier energy features.

Pentland [29] computed the discrete Fourier transform for each block of
8 x 8 pixels of an image and determined the power spectrum. He then used a
linear regression technique on the log of the power spectrum as a function of
frequency to estimate the fractal dimension D. For gray-tone intensity
surfaces of textured scenes which satisfy the fractal model [30], the power
spectrum satisfies

P(f) par Cf— 1(2D+1)

H
l
!
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Pentland reported a classification accuracy of 84.4% on a texture mosaic
using fractal dimensions computed in two orthogonal directions.

Transforms other than the Fourier transform can be used for texture
analysis. Kirvida [31] compared the fast Fourier, Hadamard, and Slant
transforms for textural features on aerial images of Minnesota. Five classes
(hardwood trees, conifers, open space, city, and water) were studied using
8 x 8 subimages. A 749 correct classification rate was obtained using only
spectral information. This rate increased to 98.5 % when textural information
was also included in the analysis. These researchers reported no significant
difference in the classification accuracy as a function of which transform was
employed.

The simplest orthogonal transform that can be locally applied is the
identity transformation. Lowitz [32, 33] and Carlotto [34] suggest using the
local histogram for textural feature extraction. Lowitz uses window sizes as
large as 16 x 16. Corlotto uses window sizes as large as 33 x 33.

Gray-Tone Co-Occurrence C

Textural features can also be calculated from a gray-level spatial co-
occurrence matrix. The co-occurrence (Pi, j) of gray tones i and j for an image
I is defined as the number of pairs of resolution cells (pixels) having gray
levels i and j, respectively, and which are in a fixed spatial relationship, such
as a fixed distance apart or a fixed distance and a fixed angle. The co-
occurrence matrix can be normalized by dividing each entry by the sum of all
of the entries in the matrix. Conditional probability matrices can also be used
for textural feature extraction, with the advantage that these matrices are not
affected by changes in the gray-level histogram of an image, only by changes
in the topological relationships of gray levels within the image.

Formally, let § be the set of all pairs of pixels in the given spatial relation.
Then

P(m, n) = [{((3,)), (k, D) € S|1(i, j) = m and I(k, I) = n}|

Zucker [35] suggested using a distance d for the spatial relationship which
maximizes a chi-square statistic of P. Julesz [36] was the first to use co-
occurrence statistics in visual human texture discrimination experiments.
Zobrist and Thompson [37] used co-occurrence statistics in a Gestalt
grouping experiment. Darling and Joseph [38] used statistics obtained from
nearest-neighbor gray-level transition probability matrices to measure tex-
tures using spatial intensity dependence in satellite images taken of clouds.
Deutsch and Belknap [39] used a variant of co-occurrence matrices to
describe image texture. Bartels and Wied [40], Bartels et al. [41], and Wied et
~ al. [42] used one-dimensional co-occurrence statistics for the analysis of
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cervical cells. Rosenfeld and Troy [43], Haralick [44], and Haralick et al.
[24] suggested the use of spatial co-occurrence for arbitrary distances and
directions. Galloway [45] used gray-level run-length statistics to measure
texture. These statistics are computable from Co-occurrence assuming that
the image is generated by a Markov process. Chen and Pavlidis [46] used the
co-occurrence matrix in conjunction with a split-and-merge algorithm to
segment an image at textural boundaries. Tou and Chang [47] used statistics
from the co-occurrence matrix, followed by a principal components eigenvec-
tor dimensionality reduction scheme, to reduce the dimensionality of the
classification problem.

Statistics that Haralick er al. [24] compute from such co-occurrence
matrices of equal-probability quantized images (see also Conners and
Harlow [48]) have been used to analyze textures in satellite images [49]. An
897 classification accuracy was obtained. Additional applications of this
technique include the analysis of microscopic images [6], pulmonary radio-
graphs [50], and cervical cell, leukocyte, and lymph node tissue section
images [51, 52].

Commonly used statistics of the co-occurrence probabilities include en-
ergy, entropy, contrast, correlation, and homogeneity. They are defined as

Energy Y'Y P(, j)?
J

i

Entropy ) Y'P(i, j) log P(i, j)
i

Contrast Z Z (i — NP, j)
Correlation Z Z (i—u)j— uy)P(i,j)/crny

. P(i, )
Homogeneity Zl:; T+ i ]|

Vickers and Modestino [53] argue that using features of the co-occurrence
matrix in a classification situation is surely suboptimal and that better results
would be obtained by using the co-occurrence matrix directly in a maximum-
likelihood classifier. They report better than 959% correct identification
accuracy in distinguishing between tree bark, calf leather, wool, beach sand,
pigskin, plastic bubbles, herringbone weave, raffia, and wood grain textures.

Bacus and Gose [5] used a gray-tone difference variant of the co-
occurrence matrix to help distinguish between eosimophils and lymphocytes.
They used the probability of a given contrast occurring in a given spatial
relationship as a textural feature. This gray-tone difference probability can be
defined in terms of the co-occurrence probabilities by

PA) =YY PGj), li—jl=d

4
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For a coarse texture, the probability of a small contrast d will be much higher
than the probability of a small contrast for a fine texture. Bacus and Gose
used statistics of the differences between a pixel on a red image and a
displaced pixel on a blue image. Rosenfeld et al. [54] also suggest using
multispectral difference probabilities. Haralick and Shanmugam [24] used
multispectral co-occurrence probabilities.

Weszka et al. [25] used the contrast, energy, entropy, and mean of P(d) as
texture measures and report that they do about as well as the co-occurrence
probabilities. Sun and Wee [55] suggested a variant of the gray-level
difference distribution. They fix a distance d and a contrast ¢ and determine
the number of pixels each having gray tone g and each having n neighbors
that are within distance d and within contrast ¢. That is,

P(g, n) = #{(i, DII(, j) = g and #{(k, DI p((i. ), (k, D) < d
and |I(i, j) — I(k, )| < c} =n}

From P(g, n) they compute a variety of features, such as entropy and energy.
They report an 85% classification accuracy on distinguishing between
textures of three different geological terrain types on Landsat imagery.
Wechsler and Kidode [56] and Wechsler and Citron [57] used the gray-tone
difference probabilities to define a random-walk model for texture. See
DeSouza [58] and Percus [59] for some comments about the random-walk
model. .

Haralick [60] illustrated a way to use co-occurrence matrices to generate
an image in which the value at each resolution cell is a measure of the texture
in the resolution cell’s neighborhood. All of these studies produced reason-
able results on different textures. Conners and Harlow [61, 26] concluded
that this spatial gray-level dependence technique is more powerful than
spatial frequency (power spectra), gray-level difference (gradient), and gray-
level run-length methods [45] of texture quantitation.

Dyer et al. [62] and Davis et al. [63] computed co-occurrence features for
local properties such as edge strength maxima and edge direction relation-
ships. They suggested computing gray-tone co-occurrence only involving
those pixels near edges. Zucker and Kant [64] also suggested using genera-
lized co-occurrence statistics. Terzopoulos and Zucker [65] reported a 13 %
increase in accuracy when combining gray-tone co-occurrence features with
edge co-occurrence features in the diagnosis of osteogenesis imperfecta from
images of fibroblast cultures.

Davis [66] computed co-occurrence probabilities for spatial relationships
parameterized by angular orientation. He defined the polarogram to be a
statistic of these co-occurrence probabilities as a function of the angular
orientation. See also Chetverikov [67]. Chetverikov [68] used co-occurrence
statistics as a function of displacement to determine texture regularity.
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D Mathematical Morphology

Mathematical morphology is the study of shape. For texture analysis, the
shapes analyzed are the shapes of the tonal primitives. The morphological
approach to the texture analysis of binary images was proposed by Matheron
[69] and Serra and Verchery [70]. This approach requires the definition of a
structuring element (i.e., a set of pixels constituting a specific shape, such as a
line, a disk, or a square) and the generation of binary images, which result
from the translation of the structuring element through the image and the
erosion of the image by the structuring element. The textural features can be
obtained from the new binary images by counting the number of pixels
having the value 1. This mathematical morphology approach of Serra and
Matheron is the basis of the Leitz Texture Analyser (TAS) [71-73] and the
Cyto Computer [74]. A broad spectrum of applications has been found for
this quantitative analysis of microstructures method in materials science and
biology.

Watson [75] summarizes this approach to texture analysis. Let H, a subset
of resolution cells, be the structuring element. We define the translate of H by
row-column coordinates (r,c) as H(r, ), where

H(r, ¢) = {(i, )| for some (r,d)eH,i=r+rj=c+ £}

Then the erosion of F by the structuring element H, written FOH, is defined
as
FOH = {(m,n)[H(m, n) = F}

The eroded image J obtained by eroding F with structuring element H is a
binary image where pixels take the value 1 for all resolutions cells in F ©H.
Textural properties can be obtained from the erosion process by appropria-
tely parameterizing the structuring element (H) and determining the number
of elements of the erosion as a function of the parameter’s value.

For example, a two-pixel structuring element can be parameterized by
fixing a row distance and column distance between two pixels. The norma-
lized area of the erosion as a function of row and column distance is the
autocorrelation function of the binary image. Another one-parameter struc-
turing element is a disk. Another is a one-pixel width annulus. The parameter
in both cases is the radius. The area of the eroded image as a function of the
parameter provides a statistical description of the shape distribution of the
image. :

The dual operation to erosion is dilation. The dilation of F by structuring
element H, written F @ H, is defined by

FOH= {(m,n)]forsome(i,j)EFand(r,s)eH, m=i+randn=j+s)}

Compositions of erosions and dilations determine two other important
morphological operations which are idempotent and are duals of one
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another: openings and closings. The opening of F by H is defined by
(FOH) @ H. The closing of F by H is defined by (F @ H)©H.

The number of binary | pixels of the opening as a function of the size
parameter of the structuring element can determine the size distribution of
the grains in an image. We just take H, to be a line-structuring element of
length d or a disk-structuring element of diameter d. We can then define the
granularity of the image F by

(FOH,) @ H,|

Gd)=1- IF|

where | F| means the number of elements in F. G(d) measures the properties of
grain pixels which cannot be contained in some translated structuring
element of size d which is entirely contained in the grain and which contains
the given pixel. Thus, it measures the proportion of pixels participating in
grains having a size smaller than 4.

Sternberg [76] has extended the morphological definition of erosion to
gray-tone images. The erosion of gray-tone image [ by gray-tone structuring
element H produces a gray-tone image J which is defined by

S J(r, o) =min{I(r + i,c +j) — H(i, )} = USH)(r, ¢)
G )
The dilation of gray-tone image I by gray-tone structuring element H
produces a gray-tone image J which is defined by
J(r,c) = max{I(r —i,c — j) + H(i, )} = I @ H)(r, ¢)
G
The gray-tone opening is defined as a gray-tone erosion followed by a
gray-tone dilation. The gray-tone closing is defined as a gray-tone dilation
followed by a gray-tone erosion. Commonly used gray-tone structuring
elements include rods, disks, cones, paraboloids, and hemispheres.
Peleg et al. [77] use gray-tone erosion and dilation to determine the fractal
surface of the gray-tone intensity surface of a textural scene. They define the
scale k volume of the blanket around a gray-tone intensity surface [ to be

Vik)= Y. (1@ HY(r,c) — UOHY(r, c)

(r.c)

where H* is the dilation of H with itself k times and H is defined over the
five-pixel cross neighborhood, taking the value of 1 for the center pixel and 0
elsewhere. The fractal surface area A at scale k is then defined by

A(k) =[V(k) = V(k — 1)]/2

The fractal signature S at scale k is then defined by

o kAR
) = ek B AN ="
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They compare the similarity between textures by the weighted distance D
between their fractal signatures:

s s et 02
D= ; (S;(k) — 8,(k)) IOE,:k — (1/2):,

Werman and Peleg [78] give a fuzzy set generalization to the morphologi-
cal operators. Meyer [79] and Lipkin and Lipkin [80] have demonstrated
the capability of morphological textural parameters in biomedical image
analysis. Theoretical properties of the erosion operator as well as other
operators are presented by Matheron [817, Serra [82, 83], and Lantuejoul
[84]. The importance of this approach to texture analysis is that properties
obtained by the application of operators in mathematical morphology can be
related to physical three-dimensional shape properties of the materials
imaged.

E Gradient Analysis

Rosenfeld and Troy [43] and Rosenfeld and Thurston [85] regard texture
in terms of the amount of “edge” per unit image area. An edge can be
detected by a variety of local mathematical operators which essentially
measure some property related to the gradient of the image intensity
function. Rosenfeld and Thurston use the Roberts gradient and then com-
pute, as a measure of texture for any image window, the average value of the
Roberts gradient taken over all of the pixels in the window. Sutton and Hall
[86] extend this concept by measuring the gradient as a function of the
distance between pixels. An 807, classification accuracy was achieved by
applying this textural measure in a pulmonary disease identification experi-
ment.

Related approaches include Triendl [87], who smoothed the image using
3 x 3 neighborhood, then applied a 3 x 3 digital Laplacian operator, and
finally smoothed the image with an 11 x 11 window. The resulting texture
parameters obtained from the frequency-filtered image can be used as a
discriminatory textural feature. Hsu [88] determines edgeness by computing
variance-like measures for the intensities in a neighborhood of pixels. He
suggested as a textural feature the deviation of the intensities in a pixel’s
neighborhood from both the intensity of the central pixel and from the
average intensity of the neighborhood. The histogram of a gradient image
was used to generate texture properties of the nuclei of leukocytes by
Landeweerd and Gelsema [89]. Rosenfeld [90] generated an image whose
intensity is proportional to the edge per unit area of the original image. This
transformed image is then further processed by gradient transformations
prior to textural feature extraction. Harris and Barrett [91] used vector
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dispersion as a feature to identify cloud types. They reported a 72%
identification accuracy. Lu et al [92] used a 2 x 2 operator which estimates
the second mixed partial derivative to make the resulting image be stationary,
and they then used a first-order autoregressive moving-average model to
describe the texture of the filtered image. Carlotto [34] computed the
gradient and gradient angle at each pixel and used the histograms of these for
textural features. Shen and Wong [93] similarly used the local gradient and
gradient angle histogram for a variety of window sizes.

Relative Extrema Density F

Rosenfeld and Troy [43] suggested the number of extrema per unit area for
a texture measure. They defined extrema in a purely local manner, allowing
plateaus to be considered as extrema. Ledley [94] and Rotolo [95] also
suggested computing the number of extrema per unit area as a texture
measure. They, as well as Mitchell et al. [96], suggested operating on a
smoothed image to eliminate extrema due to noise. (See also Carlton and
Mitchell [97] and Ehrich and Foith [3, 98].

One problem with simply counting all extrema in the same extrema
plateau as extrema is that extrema per unit area is not sensitive to the
difference between a region having a few large plateaus of extrema and many
single-pixel extrema. The solution to this problem is to only count an extrema
plateau once. This can be achieved by locating some central pixel in the
extrema plateau and marking it as the extrema associated with the plateau.
Another way of achieving this is to associate a value 1/N for every extrema in
an N-pixel extrema plateau.

In the one-dimensional case, there are two properties that can be asso-
ciated with every extrema: its height and its width. The height of a maximum
can be defined as the difference between the value of the maxima and the
highest adjacent minimum. The height (depth) of a minimum can be defined
as the difference between the value of the minimum and the lowest adjacent
maximum. The width of a maximum is the distance between its two adjacent
minima. The width of a minimum is the distance between its two adjacent
maxima. Osmon and Saukar [99] use the mean and standard deviation of the
spacing between relative extrema to characterize the surface texture of
materials.

Two-dimensional extrema are more complicated than one-dimensional
extrema. One way of finding extrema in the full two-dimensional sense is by
the iterated use of some recursive neighborhood operators propagating
extrema values in an appropriate way. Maximally connected areas of relative
extrema may be areas of single pixels or may be plateaus of many pixels. We
can mark each pixel in a relative extrema region of size N with the value h,
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indicating that it is part of a relative extrema having height h, or mark it with
the value h/N, indicating its contribution to the relative extrema area.
Alternatively, we can mark the most centrally located pixel in the relative
cxtrema region with the value k. Pixels not marked can be given the value 0,
Then for any specified window centered on a given pixel, we can add up the
values of all pixels in the window. This sum divided by the window size is the
average height of extrema in the area. Alternative]y, we could set A to 1 and
the sum would be the number of relative extrema per unit area to be )
associated with the given pixel.

Going beyond the simple counting of relative extrema, we can associate J
properties to each relative extremum. For example, given a relative maxi-
mum, we can determine the set of all pixels reachable only by the given
relative maximum and not by any other relative maxima by monotonically
decreasing paths. This set of reachable pixels is a connected region and forms
a mountain. Its border pixels may be relative minima or saddle pixels.

The relative height of the mountain is the difference between its relative
maximum and the highest of its extractor border pixels. its size is the number ,
of pixels which constitute it. Its shape can be characterized by features such as
elongation, circularity, and symmetric axis. Elongation can be defined as the i
ratio of the larger to smaller eigenvalue of the 2 x 2 second-moment matrix
obtained from the coordinates of the border pixels [100, 101]. Circularity can
be defined as the ratio of the standard deviation to the mean of the radii from
the center of the region to its border [60]. The symmetric axis feature can be
determined by thinning the region down to its skeleton and counting the
number of pixels in the skeleton. For regions that are elongated, it may be
important to measure the direction of the elongation or the direction of the
symmetric axis.

G  Shape from Texture

Image texture gradients on oblique photography can be used to estimate
the surface orientation of the observed three-dimensional object. The first
work of this kind was done by Carel et al. [102] and Charton and Ferris
[103]. They did a conceptual design of a system called VISILOG, which
could direct a freely moving vehicle through an undetermined environment.
One important kind of guidance information needed by such a vehicle is the i
surface orientation of the surface over which the vehicle is moving. The basis
of the design was an analysis that related surface slant to the texture gradient
in the perspective projection image. Assumptions were that a stochastically
regular surface is observed through a perspective projection and the number
of texture elements could be measured along two parallel line segments
perpendicular to the view direction and two parallel line segments parallel to
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the view direction. They measured the number of texture elements in a line by
measuring the number of changes in brightness along the line. The number of
changes in brightness is the number of relative extrema.

Witkin [104], apparently unaware of the earlier work, derived equations
for the slant and tilt angle of a planar surface under orthographic projection
by measuring the distribution of tangent direction of ZEro-crossing contours,
Witkin divided the tangent angle interval [0, 7] into n equal intervals, the ith
interval being [(i — )n/n, in/n] (i =1,...,n), and measured the number k(i)
of tangent directions that fall in the ith interval. The slant angle s and the tilt
angle ¢ of the observed surface is estimated to be that pair of values
maximizing the a posteriori probability of (s, t) given the observed k(i),
i=1,...,n Davis er al. [105] indicated some mistakes in the Witkin paper
and give the joint a posteriori probability of (s, t) as proportional to

P(s, t/k(i), ..., k(n)) = o sin s cos” s/ﬁ {I —sin?s sinzli@%f — t:‘}
i=1

They also gave a modified version of the two-dimensional Newton method
for determining the (s, t) achieving the maximization.

Other work that relates to surface orientation recovery from texture
includes that of Kender [106], who described an aggregation Hough-related
transform that groups together edge directions associated with the same
vanishing point. An edge direction E = (E_, E,) at position P = (P, P,) has
coordinates T = (T, T,) in the transformed space where

Discrete Markov Random Fields H

The Markov random-field model for texture assumes that the texture field
is stochastic, stationary, and satisfies a conditional independence assumption.
Let R x C be the spatial domain of an image, and for any (r,c)e R x C let
N(r,c) denote the neighbors of (r,c). Because the field is stationary,
(a,b)e N(r,c) if and only if (a +i,¢ + j)e N(r + i, ¢ + j). This means that
the spatial neighborhood configuration is the same all over the image. There
is an obvious difficulty with this condition holding at pixels near the image
boundary. The usual way of handling the problem theoretically is to assume
the image is wrapped around a torus. In this case, the canonical spatial
neighborhood can be given as N(0, 0).

The conditional independence assumption is that the conditional probabi-
lity of the pixel given all the remaining pixels in the image is equal to the
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conditional probability of the pixel given just the pixels in its neighborhood.
That is,

P(I(r, )| 1(, J): (i, j) € R x C, (i, ) # (r, ¢))
= P(I(r, ¢)|1(i, /): (i, j) € N(r, ¢))

Markov mesh models were first introduced into the pattern recognition
community by Chow [107] and then Abend, et al. [108]. One important issue
is how to compute the joint probability function P(I(r, ¢): (r, c)eR x C).
Hassner and Sklansky [109] note that this can be done by identifying the
conditional probability assumption with Gibbs ensembles, which are studied
in statistical mechanics. Woods [110] showed that when the distributions are
Gaussian, the discrete Gauss-Markov field can be written as an equation in
which each pixel’s value is a linear combination of the values in its
neighborhood plus a correlated noise term. That is,

Irney= 3 I(r—i,c —h(i,j) + u(, c)

(i, e N(0,0)

where the coefficients of the linear combination are given by the function h
and {u(r, ¢)|(r, c)eR x C} represent a joint set of possible correlated
Gaussian random variables. This equation has a lot of similarity to the
autoregressive moving-average time-series models of Box and Jenkins [111].
Here the relationship would be expressed by :

Ir,e)= Y I(r—ic—jhi,j) + > u(r—i ¢ — k(i j)

(i, )eN(0, 0) (i, ))eN(0, 0)

where N(0, 0) represents a domain which contains only pixels occurring after
(0,0) in the usual top-down raster scan order of an image. Hence, each term
in the summation I(r — i, ¢ — J) contains only pixels occurring before pixel
(i, j) in the raster scan order. The first summation is called the autoregressive
term and the second term is called the moving-average term. When N(0, 0)
contains pixels occurring before and after (0, 0) in the raster scan order, the
model is called a simultaneous autoregressive model.

It is apparent that the discrete Markov random-field model is a generaliza-
tion of time-series autoregressive moving-average models, which were ini-
tially explored for image texture analysis by McCormick and
Jayaramamurthy [112], Tou and Chang [113], Tou et al. [1 14], and Deguchi
and Morishita [115]. Related papers include Delp et al. [116], Tou [117],
Chen [118], Faugeras [119], Therrien [120], and Jau et al. [121]. Issues
concerning the estimation of & from texture samples can be found in Kashyap
and Challappa [122]. DeSouza [123] develops a chi-square test to discrimin-
ate microtextures described by autoregressive models.

Pratt [124], Pratt et al. [125], and Faugeras and Pratt [126] consider only
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the autoregressive term with independent noise and rewrite the autoregres-
sive equation as

Ir,o)— Y Ir—ic = Dh(, ) = u(r, ¢)

(i, e N(0,0)

Here, {u(r, ¢)|(r,c) e R x C} represents independent random variables, not
necessarily Gaussian. The left-hand side fepresents a convolution which
decorrelates the image. Faugeras and Pratt characterize the texture by the
mean, variance, skewness, and kurtosis of the decorrelated image, which is
obtained either by estimating h or by using a given gradient- or Laplacian-
like operator to perform the decorrelation.

Another related approach is the texture energy transform approach
described by Laws [ 127]. Laws applied a variety of linear operators on an
image. Each operator had a smal] neighborhood for its domain. The squared
operator outputs were then averaged with an equally weighted running-
average window having a larger spatial domain than the original operators,
The resulting values constituted the textural feature vector at each pixel. In
the comparative experiment Laws performed, the co-occurrence features
yielded an identification accuracy of 72%. The texture energy transform
approach yielded an identification accuracy of 87 9;. Unser [128] noted that
one could use a discrete orthogonal transform such as the discrete sine or
discrete cosine transforms applied locally to each pixel’s neighborhood
instead of using the ad hoc linear operators of Laws. He indicated a
classification accuracy above 96% with the discrete sine transform in
distinguishing between textures of paper, grass, sand, and raffia. Ikonomo-
poulos and Unser [129] suggested local directional filters. Jernigan and
D’Astous [130] computed a fast Fourier transform on windows and then
used the entropy in different-sized regions for the normalized power spectrum
for textural features.

Random Mosaic Models |

The random mosaic models are constructed in two steps. The first step
provides a means of tessellating a plane into cells, and the second step assigns
a property value to each cell. In the Poisson line model [131], the plane is
tessellated by a random set of lines. Each cell is then a connected region
whose boundary consists of line segments from the lines in the random set. In
the occupancy model [ 132], a tesselation is produced by a random process
which plants points in the plane. Each point determines a cell which consists
of all points in the plane closest to the given planted point. In the Delauney
model, a line segment is drawn between each pair of planted points whose
corresponding cells in the occupancy model share a common border segment.
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Schachter et al. [133] and Schachter and Ahuja [134] derived the statistical
properties for these random mosaic models. Ahuja, et al. [135] compared
properties of synthetically generated textures with their theoretical values.
Schachter [136] summarized how texture characteristics are related to the
texture’s variogram and correlation function. Modestino et al. [137, 138]
computed the power spectral density function for a plane tesselated by a
random line process and in which the gray levels of one cell have a Markov
dependence on the gray levels of the cells around them. They gave a
maximum-likelihood texture discriminant for this mosaic model and illus-
trated its use on some sample images. Therrien [139] used an autoregressive
model for each cell and, like Modestino et al. [137, 138], superimposed a
Markov random field to describe transitions between cells. Other models
include the Johnson-Mehl model [140] and the bombing model [141].

J Texture Segmentation

Most work in image texture analysis has been devoted to texture feature
analysis of an entire image. However, it is apparent that an image is not
necessarily homogeneously textured. An important image processing opera-
tion, therefore, is the segmentation of an image into regions, each of which are
homogeneously textured. The constraint is that each pair of adjacent regions
is differently textured. Bajcsy [142] was one of the first researchers to do
texture segmentations for outdoor scenes. Her algorithm merged together
small, nearly connected regions having similar local texture or color descrip-
tors. For texture descriptors she used Fourier transform features. The
descriptors for each region included an indication of whether the texture is
isotropic or directional, the size of the texture element, and the separation
between texture elements. If the texture was considered directional, then the
description included the orientation.

Chen and Pavlidis [46] used the split-and-merge algorithm on the co-
occurrence matrix of regions as the basis for merging. Let the four 28! x
2V~ windows in a 2V x 2" window have CME, C™W, C5E and C*W for their
respective co-occurrence matrices. Then, with only little error, the co-
occurrence matrix C of the 2V x 2¥ window can be computed by

CG,J) = 2[CNEG, ) + CVWGL ) + C5G, ), €W, )

Experiments done by Hong et al. [143] indicate that the error of this
computation is minimal. The 2V x 2V window is declared to be uniformly
textured if, for the user specified threshold T,

2. max{CNE(i, j), CN™(, ), CSE(i, j), CSW™(i, j))

(5, J)

—min{CN5(i, j), CNV(i, j), CS8G, j), CSV(i, )} < T

——
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Using this criteria Chen and Pavlidis begin the merging process using
16 x 16 windows. Any 16 x 16 window not merged is split into four § x §
windows. The splitting continues until the window size is 4 x 4. The gray
tones of the images were quantized to eight levels. Chen and Pavlidis [144]
used a similar split-and-merge algorithm, with the correlation coefficients
between vertically adjacent and horizontally adjacent pixels as the feature
vectors. Modestino et al. [138] used a Poisson line process to partition the
plane and assign gray levels to each region by a Gauss-Markov model using
adjacent regions. They developed a maximum-likelihood estimator for the
parameters of the process and show segmentation results on artificially
generated images having three different texture types.

Connors, et al. [145] use six features from the co-occurrence matrix to
segment an aerial urban scene into nine classes: residential, commercial/
industrial, mobile home, water, dry land, runway/taxiway, aircraft parking,
multilane highway, and vehicle parking. Their work is important because it
combined the splitting idea of Chen and Pavlidis into a classification setting.
Any window whose likelihood ratio for its highest likelihood class against
any other class is too low is considered a boundary region and split. Any
window whose likelihood ratio for its highest likelihood class against each
other class is high enough is considered to be uniformly textured and
assigned to the highest likelihood class.

Kashyap and Khotanzad [146] used a simultaneous autoregressive and
circular autoregressive model for each 3 x 3 neighborhood of an image. Here
each neighborhood produced a feature vector associated with the model. The
set of feature vectors generated from the image was clustered and each pixel
was labeled with the cluster label of the feature vector associated with its
3 x 3 neighborhood. Pixels associated with outlier feature vectors are given
the cluster label of the majority of its labeled neighbors. Therrien [139] used
an autoregressive model for each textured region and superimposed a
Markov random field to describe the transitions of one region to another. He
used maximum likelihood and maximum a Posteriori estimation techniques
to achieve a high-quality segmentation of aerial imagery.

Synthetic-Texture Image Generation K

There have been a variety of approaches to the generation of synthetic-
texture images. Rather than giving a detailed description of each, we just
provide a brief guide to some of the representative papers in the literature,
McCormick and J ayaramamurthy [112] used a time-series model for texture
synthesis, as do Tou et al, [114]. Yokoyama and Haralick [147] used a
structured growth model to synthesize a more complex image texture. Pratt
et al. [125, 148] developed a set of techniques for generating textures with
identical means, variances, and autocorrelation functions but different
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higher-order moments. Gagalowicz [149] gave a technique for generating
binary texture fields with prescribed second-order statistics. Chellappa and
Kashyap [150] described a technique for the generation of images having a
given Gauss-Markov random field.

Yokoyama and Haralick [151] described a technique that uses a Markov
chain method. Schachter [152] used a long, crested wave model. Monne et al.
[153] used an interlaced vertical and horizontal Markov chain method to
generate a texture image. Garber and Sawchuk [154] used a best fit model
instead of the Nth-order transition probabilities to make good simulations of
texture without exceeding computer memory limits on storing nth-order
probability functions. Schmitt et al. [155] added vector quantization to the
bidimensional Markov technique of Monne et al. [153] to improve the
appearance of the texture image. Gagalowicz [156] described a texture
synthesis technique that produces textures as they would appear on perspec-
tive projection images of three-dimensional surfaces. Ma and Gagalowicz
[157] described a technique to synthesize artificial textures in parallel from a
compressed data set and retain good visual similarity to natural textures.
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