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Abstract

To recognize objects and to determine their poses in a scene we need to find
correspondences between the features extracted from the image and those of the
object models. Knowledge of the degree to which image features might break up or
disappear under different lighting and viewing conditions is essential to automate
the design of computer vision systems that can work with problems of practical
complexity. In this paper we describe how the model-based vision system PREMIO
(PREdiction in Matching Images to Objects) models some of the physical processes
involved in the image formation and feature detection processes to predict and
evaluate the features that can be expected to be detected in an image of an object
in a semi-controlled environment. We also illustrate how these predictions can be
used to successfully control the inherent combinatorial explosion of the relational
matching approach commonly used in object recognition.

1L Introduction

To recognize objects and to determine their poses in a scene we need to find
correspondences between the features extracted from the image and those of the
object models. Most feature-based matching schemes assume that all the features
that are potentially visible in a view of the object will appear with equal probabil-
ity. The resultant matching algorithms have to allow for “errors” without really
understanding what they mean, and usually get lost in the high combinatorics of
the problem [12]. Thus, the application of these matching algorithms has been re-
duced to very simple tasks where only very few features are needed. Therefore the
knowledge of the degree to which each feature might break up or disappear under
different lighting and viewing conditions is essential to the design of computer vi-
sion systems that can work with problems of practical complexity. In this paper we
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describe how a new model-based vision system, PREMIO (PREdiction in Matching
Images to Objects), models some of the physical processes involved in the image
formation and feature detection processes to predict and evaluate the features that
can be expected to be detected in an image of an object in a semi-controlled en-
vironment. We also illustrate how these predictions can be used to successfully
control the inherent combinatorial explosion of the relational matching approach
commonly used in object recognition.

2. PREMIO Overview

PREMIO uses CAD models, surface reflectance properties, light sources. sensor
characteristics, and the performance of feature detectors to build a model called the
Vision Model. The Vision Model is used to generate a model called the Prediction
Model that will be used to automatically generate vision algorithms. The system is
illustrated in Fig. 1. Our Vision Model is a more complete model of the worid than
the ones presented in the literature. It not only describes the object, light sources
and camera geometries, but it also models their interactions.
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Figure 1. PREMIO: A Model-Based Vision System

The system has two major subsystems: an offline subsystem and a online subsys-
tem. The offline subsystem, in turn, has three modules: a Vision Model generator,
a feature predictor, and an automatic procedure generator. The Vision Model
generator transforms the CAD models of the objects into topological models and
incorporates them into the Vision Model. The feature predictor uses the Vision
Model to predict and evaluate the features that can be expected to be detected in
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an image of an object, taken from a given viewpoint and under a given light source
and sensor configuration. The output of the Prediction Module is organized as the
Prediction Model. The automatic procedure generator takes as its input the Predic-
tion Model and creates the matching procedure to be used for matching the image
features against the object models. The online subsystem consists of the matching
procedure generated by the offline subsystem. It uses the Vision Model, the Predic-
tion Model. and the input images, first, to hypothesize the occurrence of an object
and estimate the reliability of the hypotheses, and second, to determine the object
position reiative to the camera and estimate the accuracy of the calculated pose.

3. The Vision Model

A representation is a set of conventions about how to describe entities [25]. A
clescription makes use of the conventions of a representation to describe some
particular thing [25]. Finding an appropriate representation is a major part of any
system-design effort, and in particular in the design of a machine vision system.

The vision model in a machine vision system is a representation of the world in
which the system works. The entities that must be described by the representation
of the world are the objects to be imaged and the characteristics that these images
will have. In this paper we will limit ourselves to images that are formed when
light is reflected off the surface of an object, such as photographs, but the concepts
discussed here can be easily extended to other types of images such as range or X-ray
images. The characteristics of an object image obtained by the usual optical means
depends on several factors: the geometry of the object; the physical characteristics
of the object surfaces; the position of the object with respect to the sensors, the light
sources, and other objects: the characteristics of the light sources and the sensors:
and ultimately on the characteristics of the processes that “observe” the image.

Following the previous discussion, we can divide the problem of designing the
vision model into three subproblems: how to describe the objects, how to describe
the light sources and sensors, and how to describe the processes that observe the
images. Fig. 2 shows a block diagram of the PREMIO vision model.

3.L The Object Model

An image of an object is a two-dimensional pattern of brightness. How this
pattern is produced depends not only on the geometry of the object but also on
the way that light interacts with the object surface and the sensors. Hence. we
have divided the object model into two submodels: the topological object model and
the physical object model. The topological object model describes the geometry of
the objects in PREMIQ’s world. The physical object model describes how the light
interacts with the object surfaces and the sensors according to the laws of physics.

3.L1L The Topological Object Model

The topological object model describes the geometric characteristics of the objects
in PREMIO’s world. and the relations among their faces, edges and vertices. [n
many domains. all the possible objects to be recognized are known and can be. if
they are not already, modeled using a CAD system. Hence, PREMIO assumes it
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Figure 2. PREMIO’s vision model.

has available CAD models of all the objects. A CAD system describes the geometry
of the objects that it models, but not necessarily in the most adequate form for our
application. CAD systems model 3D-objects and their component parts, providing
view independent descriptions and interactive manipulation capabilities to observe
and combine the different parts that can be automatically machined.

There are a number of commercial and experimental systems available for ge-
ometric modeling. A complete survey can be found in [21]. PREMIO uses the
geometric modeler PADL2, designed by H. B. Voelcker and A. G. Requicha at the
University of Rochester and distributed by Cornell University. This system is a
constructive solid geometry (CSG) modeler, but has the ability to convert the CSG
representation of any object to its boundary representation (BREP). Its primitives
are: spheres, cylinders, cones, rectangular parallelepipeds, wedges and tori. Its
main advantages are its capacity for fast wireframe drawing of the objects being
designed that makes it very friendly to the user and its ability to convert any CSG
representation to its boundary representation.

PREMIQ’s topological object model is a hierarchical, relational model similar
to the one proposed by Shapiro and Haralick [22]. The object model is called a
topological object model because it represents not only the geometry of the objects
but a!so the relations among their faces, edges, and vertices. This information is
redunaant in the sense that it can be derived from the geometrical information, nut
it is included to speed up the system.

The model has five levels: a world level, an object level. a face level, a sur-
face/boundary level, and an arc level. Fig. 3 shows a diagram of the topological
object model. The world level at the top of the hierarchy is concerned with the
arrangement of the different objects in the world . The object level is concerned
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Figure 3. Topological Object Model Structure.

with the arrangement of the different faces, edges and vertices that form the ob-
jects. The face level describes a face in terms of its surfaces and its boundaries.
The surface/boundary level specifies the elemental pieces that form those surfaces
and the arcs that form the boundaries. Finally, the arc level specifies the elemental
pieces that form the arcs.

To create the topological object model from the PAD L2 model, we use the boundary
file routines provided by PADL2. These routines give access to all the information
concerning the face surfaces and the boundary arcs of the objects but do not provide
a direct way to extract the boundary, topology and vertex information that we
need. To find the boundaries of a face, its arcs must be grouped together to form
closed loops. These loops are found using an algorithm developed by Welch [24]
to find closed loops in an undirected graph. At the same time that the boundary
information is obtained, the edge and the vertex information can be updated. The
edge relation provides a way to relate two faces that have an arc in common. while
the vertex relation relates all the arcs that have a vertex in common.

3.1.2. The Physical Object Model

Given the physical properties of a material it is possible to predict the properties
of images of this material. PREMIO works with images produced by ordinary
optical processes like photography or CCD cameras.

Buchanan {7] showed that the reflectance model presented by Cook and Torrance
[10] is the most accurate when the light is completely unpolarized. However. po-
larized light is commonly used in vision tasks to suppress specular reflections from
metal surfaces |3, 6]. Furthermore. monochromatic light is always polarized. Yiet
al.’s proposed a light reflection model that is an extension of Cook and Torrance's
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model, but that incorperates the reflection effects [13] found when the incident light
is partially or totally polarized. and it is the one used in PREMIO.

In Yi et al.'s model the light sources are assumed to be dimensionless point light
sources that radiate in every direction. Let £ be a point on a surface, .\" be the
surface normal at P, and /} be the incident light from light /. The reflection models
predict the intensity of the reflected light at 7, ", as the sum of two terms. The
first term is the ambient component, and the second term contains the specular
and diffuse components summed over the number of lights present:

I"= RS =N 1N LidwilsR, + dRy) . (10

where [ is the intensity of the reflected light, /} is the intensitv of the incident
ambient light. /7, is the ambient reflectance. / is the unblocked fraction of the
hemisphere. /} is the average intensity of the incident light {, V' is the unit surface
normal, [, is the unit vector in the direction of the light [, Jw; is the solid angie of
a beam of the inaident light /, - is the fraction of reflectance that is specular, R. is
the specular bi-directional reflectance, d is the fraction of reflectance that is diffuse
and R, is the diffuse specular reflectance.

The model calculates the specular component by representing the object surface
as a collection of many small planes which are called microfacets. The spectral
reflectance function #, is:
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where £ is the Fresnel term, D is the microfacet distribution, ¢ is the geometric
attenuation, .\ is the surface normal, L is the unit vector in the light direction and
|"is the unit vector in the viewer direction. Then
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where » is the index of refraction and & is the extinction coefficient of the material;
and
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where m is the root mean square slope of the facets, and ¢ is the angle between the
surface normal .\ and the angular bisector between . and 1", //. The parameter m



Figure 4. Light refiection on a microfacet.

15 a scalar between 0 and | and is a measure of the roughness of the surface: the
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The diffuse component is modeled in both models as a constant denoted ;. The
diffuse component is independent of the angle of illumination. and hence it is taken
to be equal to the specular reflection with the illumination on the surface normal
(L=V=N=H).

In summary, the physical object model consists of a set of constants for each of
the object surfaces such that they completely specify the parameters needed in Yi
et al.’s reflection model. These constants are:

R, ambient reflectance R; diffuse reflectance
- specular fraction {  diffuse fraction
m  root mean square slope of microfacets »  index of refraction

A+ extinction coefficient

3.2. The Light Sources and Sensors Model

Image formation occurs when a sensor registers radiation that has interacted
with physical objects. The quality of an image is greatly affected by the sensor
resolution and the scene illumination. In most industrial applications the imaging
acquisition setup is known and controllable. That is, the type of light sources and
sensors used as well as their relative geometric arrangement are known. if not
fixed. This knowledge is incorporated into the vision model of PREMIO.

As with the object model. the light sources and sensors model can be divided into
a topological and a physical model. The topological model describes the possible
geometric or space configurations of the light sources and sensors with respect to
the object being imaged. The physical light sources and sensors model describes
their physical characteristics: the light wavelength and polarized components. the
response of the sensor to the radiation input, and its resolution.
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3.2.1 The Light Sources and Sensors Topological Model

The light sources and sensors topological model consists of all possible geometri-
cal arrangements of the light sources and sensors with respect to the object refer-
ence frame. These configurations could be just a few or hundreds depending on the
object and the particular application. In PREMIO the light sources and sensors
are placed on spheres centered at the origin of the object coordinate system, called
the i/lumination and viewing spheres. The radii of these spheres are large enough
to contain the whole object. The points at the illumination and viewing spheres
constitute a continuous space which is sampled uniformly.

3.2.2. The Light Sources and Sensors Physical Model

The light sources and sensors physical model describes properties and charac-
teristics of the light sources and sensors that respond to the laws of physics and
that are independent of their position in space. The light source physical model
describes light characteristics such as the polarization and the wavelength distri-
bution of the sources. The sensor physical model describes the magnification of the
sensors and their transfer characteristics.

The Light Sources Physical Model

In PREMIO, the light sources are monochromatic point sources that irradiate
partially or totally polarized light in all directions. Hence, the physical model of
the light sources consists of the intensity values of the parallel and perpendicularly
polarized components of the sources.

The Sensor Physical Model

The sensor physical model describes how images are formed. A gray-scale image
is a two-dimensional pattern of brightness. To understand how this pattern is
formed, we need to answer two questions: (1) What determines where, on the
image, some point on the object will appear? and (2) What determines how bright
the image of some surface on the object will be? The first question can be answered
by making a first-order approximation of the camera as a “pinhole” camera. Using
this approximation, images result from projecting scene points through a single
point, the center of projection, onto an image plane at a distance f in front of
the camera (See Fig. 5). Given a coordinate system, called the camera coordinate
system, with its : — «zis parallel to the optic axis of the camera lens and such that
the camera lens is at (rq.yo. zo) and the image plane has equation = = [ + =0, the
coordinates (.. 4. [ + =) of the projection of a point with coordinates (z.y.z) onto
the image plane are given by:
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=
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Figure 5. Imagmng Geometry: Perspective Projection.

Next. we answer the second question of what determines how bright the image
of some surface on the object will be. Different points on the object in front of the
imaging system will have different intensity values on the image depending on the
amount of the incident radiance, how they are illuminated, how they reflect light,
how the reflected lightis collected by the lens system of the imaging system, and how
the sensor responds to the incoming light. The image intensity / is proportional
to the scene radiance. The scene radiance, the amount of light emitted by the
surface, depends on: (1) the amount of light falling on the surface; (2) the fraction
of the incident light that is reflected; and (3) the geometry of the reflection, (i.e.
the direction from which it is viewed as well as the direction from which it is
illuminated). Mathematically, the image intensity of a given point P in a given
object surface 1s given by (13]:

P j'('ﬁ‘f,\ufg(,\\f'(,nd/\

where (" is the lens collection factor, 5 is the wavelength dependent sensor respon-
sivity, () is the spectral distribution of the illumination source, A is the wavelength
of the light, and /" is the reflected intensity at P given by equaton 1. The lens
collection factor, ¢ ', is the portion of the reflected light that comes through the lens
system and affects the film. The lens collection (' is given by [13]:

= (a\®
(= 1(—_ cost n
4\ J

where [ is the focal distance of the lens, a is the diameter of the lens, and « is the
angle between the reflected ray from the object patch to the center of the lens. The
sensor responsivity 5, isin general a function of the wavelength of the incident light.
However, for monochromatic sensors, it can be approximated by 1, independent of
the wavelength of the incident light.

The digital images with which computers deal are arrays of integers. Hence,
both the image domain and the image range have to be sampled. Sampling the
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domain involves the sampling interval and the pattern of the sampled points. The
sampling interval determines how many sampled points (pixels) there are in the
image. Television frames, for example, might be quantized into 450x560 pixels.
while the resolution of general film is approximately 40 lines/mm, that is 1400x1400
pixels for a 35mm slide. The pattern into which the image range is sampled is
called its tessellation. The tessellation pattern used in PREMIO, as with almost all
machine vision systems, is a rectangular pattern. Sampling the range, corresponds
to a quatization of the intensity values into a number of different gray levels. The
number of levels determines the number of bits necessary to represent the intensity
of a pixel. In PREMIO, images are quantized into 256 levels corresponding to 8-bit
pixels.

In summary. a sensor phvsical model in PREMIO is specified by giving the fol-
lowing consiants:

¢ camera focal length  diameter of the camera lens
v film width # film height
It camera resolution

3.3. The Processing Algorithms Model

An image is only as good as the processes used to extract the information that
it contains. In the context of machine vision, these processes are the algorithms
that are used in the feature extraction process. These algorithms and their perfor-
mance must be included in the vision model of the system. Examples of processing
algorithms are edge detectors, corner detectors, line finders, etc. The processing
algorithms model in PREMIO consists of a set of gradient edge operator masks, a
set of threshold values (used to decide when the gradient is large enough to assume
that there is a local edge at a particular pixel), a thinning algorithm, a linking
algorithm and a corner detection algorithm[13].

4. Feature Prediction Module

Given a vision model representing the world, the goal of the prediction module
is threefold: (1) it must predict the features that will appear in an image taken of
the object from a given viewpoint and under given lighting conditions; (2) it must
evaluate the detectability of the predicted features; and (3) it must organize the
data produced by (1) and (2) in an efficient and convenient way for later use. The
visible features can be edges. corners, holes, or any complex relationship among
these primitive features. The detectability of a feature for a given sensor and
detector is the probability of finding the feature using that sensor. Additionally,
the prediction module should evaluate the reliability and accuracy of the predicted
features. The reliability of a feature is the probability of correctly matching the
detected feature to the corresponding one in the model. The accuracy of a feature
is a measure of the error or uncertainty propagated from the detected feature to a
geometric property like the pose of the object.
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4.1 Predicting Features

Given a three-dimensional object and the imaging geometry model, we want to
determine which edges and surfaces are visible on the image of the object. There
are two different approaches to the use of CAD-Vision models for feature prediction:
synthetic-image-based prediction and model-based feature prediction.

Synthetic-image-based feature prediction consists of generating synthetic images
and extracting their features by applying the same process that will be applied to
the real images. Realistic image synthesis is a computer graphics area that has
as its ultimate goal to produce synthetic images as realistic as photographs of
real environments. Amanatides [1] surveyed different techniques used in realistic
image generation. In general there is a tradeoff between processing time and
realism. A parucularly powerful technique used to achieve realism is ray casting:
we cast a ray from the center of projection through each picture element and
identify the visible surface as the surface intersecting the ray closest to the center
of projection. Bhanu et al. [4] use ray casting to generate range images for their
vision model. Other systems, [11, 15] use a different technique, called polygon mesh
shading. This technique approximates the objects with polygon meshes, reducing
considerably the required processing time while maintaining an appealing realism.

Model-based feature prediction uses models of the object, of the light sources and
of the reflectance properties of the materials together with the laws of physics to
analytically predict those features that will appear in the image for a given view
without actually generating the gray tone images. Instead, only data structures are
generated. This is a more difficult approach, but it provides a more computationally
efficient framework suitable for deductive and inductive reasoning. This is the
approach used by PREMIO.

4.LL Model-Based Feature Prediction

The model-based feature prediction task can be divided into three steps: The first
step is to find the edges that would appearin the image, taking into account only the
object geometry and the viewing specifications. The result is similar to a wireframe
rendering of the object, with the hidden lines and surfaces removed. The second
step is to use the material reflectance properties and the lighting knowledge to find
the contrast values along the edgesin a perspective projective image, and to predict
any edges that may appear due to highlighted or shaded regions on the image. The
third and last step is to interpret and group the predicted edges into more complex
features such as line segments, triplets, corners. forks, holes, etc. A block diagram
of the feature prediction module and its connections with the vision model is given
in Fig. 6. Fig. 7 illustrates the model-based feature prediction process. Fig. 7(a)
shows a raycasted image of an object. Fig. 7(b), (¢) and (d) show the results of each
of the steps.

Ponce and Chelberg [19] used this approach to predict features for generalized
cylinder objects. However, thev assumed an imaging system with orthographic
projecuon, and they did not consider the effects of lighting or material properties.
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Figure 6. PREMIO’s Feature Prediction Module.

4.1L2. Analytic Wireframe Prediction

The problem of determining which parts of an object should appear and which
parts should be omitted is a well known problem in computer graphics. A complete
survey of algorithms to solve the “Hidden-Line, Hidden-Surface” problem can be
found in [23]). A particularly efficient way of solving this problem is using an
analytical approach. by projecting the object surface and boundary equations onto
the image plane and determining whether the resuiting edges are visible or not.
This approach obtains the edges as a whole, as opposed to the ray casting approach,
which finds the edges pixel by pixel. The aim of the solution is to compute “exactly”
what the image should be; it will be correct even if enlarged many times, while ray
casting solutions are calculated for a given resolution. Hence this is the preferred
method for our application.

In order to analytically predict a wireframe representation we need to introduce
the following definitions [17]:
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Def. 4.1 A boundary is a closed curve formed by points on the object where the
surface normal is discontinuous.

Def. 4.2 A limb is a curve formed by points on the surface of the object where the
line of sight is tangent to the surface, i.e. perpendicular to the surface normal.

Def. 4.3 A contour is the projection of a limb or a boundary onto the image plane.
Def. 4.4 A T-junction 1s a point where two contours intersect.

Def. 4.5 A cusp point 1s a limb point where the line of sight is aligned with the
limb tangent.

(a) (b)
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Figure 7. Model-Based Feature Prediction. (a) Raycasted Object. h) Wireframe.
‘c) Intensity image along the edges. (d) Edges after applying an edge operator.
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The edges in an image are a subset of the set of contours. A piece of a contour will
not appear in the image if its corresponding boundary or limb is part of a surface
that is partially or totally occluded by another surface closer to the point of view.
Since the visibility of a contour only changes at a cusp point or a T-junction point,
it follows that to find the edges on the image we have to take the following steps:
(1) find all the limbs and cusp points, (2) project the boundaries and limbs to find
the contours and all the T-junctions and (3) find for each cusp and T-junction point
the object surface closest to the point of view.

Finding Limbs and Cusp Points

To find the anaivtical expressions for the limbs and cusp points we use an ap-
proach similar to the one used by Ponce and Chelberg {19]. but designed for PADL2-
modelable objects instead of generaiized cvlinders.

Let /% with object coordinates ( Ny, Yo. Zo) be the projecuion center and let # with
object coordinates 1 \.}.Z) be a point on a limb on the surface ~ with implicit
equation /1 \. Y. 7 = 0. Then, the vector of sight ¢ from £ to # 1s given by:

F=a N = Ao Y =0 = oy (4)
and the normal \ to the surface ~ is given by:

= ) i) ‘]
¥ (& W ’r). 5)

S\av oy az
In order for £ to belong to the limb curve, £ must be on the surface = and the line
of sight must be perpendicular to the normal .\ at P. Hence the limb equations are
given by:
i8N =0
5 s ) (
{ fINY.Z) = 0 (6)
Once the limb equations are solved, a limb can be expressed in a parametrized
form:
A = A
¥ Yt (7)

Z = Z{)

]

with tmin < { € !max. Then, the tangent vector [ to the limb is given bv:
et 02

Jt o it dt
Since a cusp point (" is a limb point where the line of sight is aligned with the limb
tangent. its coordinates must satisfy the following equations:

(8)

-7 =0
N o= X
Vo= Y 2
7= £

The process of finding the limbs is performed in U(-) time where ~ 15 the number
of curved surtfaces of the object.
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Finding the contours and T-junctions

To find the contours we need to project the limbs and boundaries of the object
onto the image plane; to find the T-junctions we need to intersect the resulting con-
tours. The intersection detection problem for n planar objects has been extensively
studied and it can be solved in O{nlogn + s) time [20], where s is the number of
intersections. In our case, the objects are the set of contours. The limb curves are
either circles or straight lines, while the boundaries can be either straight lines,
conics or more complex curves. Since the perspective projection of a straight line
is another straight line. and the perspective projection of a conic is another conic,
we can 1ind a closed solution for the T-junctions between contours that result from
projecting straight lines and conics (8], To find the other T-junctions, a numerical
approach must be used.

Determining Visibility

The next step is to determine the edges and surfaces that are hidden bv occlusion.
Appel (2], and Loutrel [17], have presented similar algorithms for analytical hidden
line removal for line drawings. They define the quantitative invisibility of a point as
the number of relevant faces that lie between the point and the camera. Then, the
problem of hidden line removal reduces to computing the quantitative invisibility of
every point on each relevant edge. The computational effort involved in this task is
dramatically reduced by the fact that an object’s visibility in the image can change
only at a T-junction or at a cusp point. At such points, the quantitative invisibility
increases or decreases by 1. This change can be determined by casting a ray through
the point and ordering the corresponding object surfaces in a “toothpick” manner
along the ray. Hence, if the invisibility of an initial vertex is known, the visibility of
each segment can be calculated by summing the quantitative invisibility changes.

The quantitative invisibility of the initial vertex is determined by doing an ex-
haustive search of all relevant object faces in order to count how many faces hide
the vertex. An object face is considered relevant if it “faces” the camera. i.e. its
outside surface normal points towards the camera. A face hides a vertex if the
line of sight to the vertex intersects the face surface and if the intersection point
is inside the boundary of the face. To propagate the quantitative invisibility from
one edge to another edge starting at its ending vertex, a correction must be applied
to the quantitative invisibility of the starting point of the new edge. The compli-
cation arises from the fact that faces that intersect at the considered vertex may
hide edges emanating from the vertex. This correction factor involves only those
faces that intersect at the vertex, For an object with ¢ edges, | faces, and with an
average of 3 faces meeting at each vertex, the computational time needed to remove
its hidden lines using this algorithm is O{f + (2 x 3 x ¢)).

4.13. Using Material and Lighting Knowledge

Once the wireframe of the object with the hidden lines removed has been ob-
tained. the prediction module uses its knowledge about the sensor, the reflectance
properties of the surfaces material. and the lighting conditions to predict the inten-
sity of the reflected light in the neighborhood of the wireframe contours.

While the contours obtained in the previous stage are continuous. the digital
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images with which computers deal are discrete. Hence. the < ntinuous contours

ave to be discretized according to the resolution of the sensor being modeled. This
is ".ccomplished by using the well known graphics algorithm due to Bresenham [5].
Tl.e intensity of the reflected light is computed in a neighborhood of the contour
pixels by applying the reflectance surface model and the light model to the selected
pixels. Furthermore, each of these pixels has associated one or more proximate
contours and their corresponding 3D boundary or limb.

4.14. Using the Processing Algorithms Model

A line segment that is potentially visible in a set of views of an object may
appear as a whole. disappear entirely, or break up into small segments under
various lighting assumptions depending upon the contrast along the edges and
the detector characteristics. The prediction module uses the processing algorithms
model described in section 3 to predict which features can be detected. The module
applies the modeled algorithms to the intensity pixels predicted in the previous
stage while keeping track of their associated 3D features.

Simple features such as edges can be interpreted by themselves. or can be grouped
to be considered as higher-level features. Matching perceptual groupings of fea-
tures was suggested first by Lowe [18]. Henikoff and Shapiro [14] proposed using
arrangements of triplets of line segments, called interesting patterns. Other useful
high-level features are junctions and closed loops. In general a higher-level feature
will be more useful than a lower-level feature to recognize and locate an object.
Of course, there is a tradeoff between the amount of information that a feature
represents and the cost of extracting that feature from the image.

4.2. Evaluating Predicted Features

After a feature is predicted, its potential utility must be evaluated. In order for
a predicted feature to be useful, it has to be detectable in the image. For a given
sensor and detector, the detectability of a feature is defined as the probability of
finding the feature using that detector on an image taken with that sensor. We
estimate the detectability of a feature by the frequency with which it shows up in
a prediction, when the light and sensor positions are varied over the illumination
and viewing spheres.

4.3. Output of the Predictor Module

For a given object, a configuration of light sources, and one or more sensors, the
output of the predictor module is a hierarchical relational data structure similar
to the one defined in section 2. This structure will be called a prediction of the
object. Each prediction contains a set of image features. their attribute values
such as detectability, and their corresponding three-dimensional features. The
prediction also has five levels: the image level. an object level, a region level, a
boundary level, and an arc level. The image level at the top of the hierarchy is
concerned with the imaging conditions that generated the prediction. the general
object position, the background information, etc. The object level is concerned
with the different regions, edges and junctions that will appear on the image. The
region level describes the regions in terms of their boundaries. The boundary level
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Figure 8. (a) Cube3Cut. (b) Fork.

specifies the arcs that form the boundaries of the regions. Finally, the arc level
specifies the elemental pieces that form the arcs.

5. Illustrative Examples

In this section we will show the usefulness of the predictions obtained by PRE-
MIO through some illustrative examples. Fig. 8 shows real images of Cube3Cut
and Fork, two of the objects modeled in PREMIO. Fig. 9 shows the line segments
obtained after processing the images with a sequence consisting of a Sobel edge op-
erator, a connected shrinking, an edge linking, and a corner detection algorithms.
As a result of the illumination conditions when the images were taken, and the
use of “default” parameters in the image processing sequence, many segments are
missing and others are broken.

The results shown in Fig. 9 are not surprising if we examine the predictions
produced by PREMIO for similar viewing and illumination conditions. Fig. 10
shows some of the predictions generated for views within the same view aspect of
the ones shown in Fig. 8 and with the light at approximately the same location.
Even though the predicted views are different from the real ones being considered.
they show which segments are more prone to disappear or appear fragmented.

PREMIO summarizes hundreds of predictions of an object into a single model
\/. The model consists of a set of features (segments), a set of relational tuples
of features (junctions and chains of segments), and an attribute mapping for the
features (midpoint coordinates, length, and orientation statistics of the segments).
The features and the relational tuples are ranked in decreasing order of detectabil-
ity. Fig. 11 shows visualizations of the sets of features of the models of Cube3Cut
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Figure 9. (a) Cube3Cut segments. (b) Fork segments.
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Figure 10. (a) Cube3Cut: predicted images. (b) Fork: predicted images.
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Figure 11. Cube3Cut and Fork models (segments). (a) CubedCut. (b) Fork.

and Fork respectively. The features are drawn as segments with their mean at-
tribute values. The numbers shown by the segments are the feature ID’s indicating
the relative detectability, with the lower the number, the higher the detectability.

An example of how these predictions can be used to reduce the combinatorial
explosion of the relational matching problem can be found in [8, 9]. There, the
relational matching problem is framed as the Bayesian problem of finding a set of
correspondences / between features of a model M and features of an image /. such
that the a posteriort probability (1. h|I) that the given image [ is an observation
of [ under the transformation A is maximized. Furthermore, it is shown that
this problem is equivalent to maximizing the joint probability P{M. k. [), since the
maximization does not involve /.

In order to solve this problem, we need first to estimate the probability distribu-
tion (M. h. I} and then find the set of correspondences A such that the probability
is maximum. Given a model M, the predicted images produced by PREMIO are
observations of the model, each one having associated a different set of correspon-
dences. Thus. these predictions correspond to samples of the probability distribu-
tion P{ ). k. /) and they can be used to estimate the parameters of the probability
distribution (See [8, 9].). A set of correspondences h that maximizes the £( /. i 1)
probability. can be found by using an iterative-deepening-A* (IDA*) search [16] in
a tree where each node represents a model feature, the branches represent the
possible image feature assignments, and a path from the root to a leaf represents
a possible set of feature correspondences. The IDA* algorithm consists of a se-
quence of depth-first searches. It starts with an initial threshold value equal to
the estimated probability for a path starting at the root. In each iteration, the
algorithm is a pure depth-first search, cutting off any branch that has an estimated
probability smaller than the current threshold value. [f a solution is expanded, the
algorithm is finished. Otherwise. a new threshold value is set to the maximum
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Fipure 12. Cube3Cut and Fork pose estimation. (a) Cube3Cut. (b) Fork model.
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estimated probability that was below the previous threshold, and another depth-
first search is begun from scratch. As in the well known A* heuristic search, if
the estimated probability is an overestimate of the real probability, IDA* finds the
optimal solution with time complexity equal to an exponential function of the error
of the estimate. The advantage of IDA* over A* is that since each iteration of the
algorithm is a depth-first search, the memory complexity is a linear function of the
depth of the solution, instead of being exponential. The number of nodes opened by
[DA* is asymptotically the number of nodes opened by A*, provided that the tree
grows exponentially. In practice, [IDA* runs faster than A*, since its overhead per
node is less than the overhead for A*.

It was found that the use of the predictions resulted in a pruning ratio. defined
as the percentage of pruned paths relative to the total number of opened paths in
the tree. between 40% and 60%.

Fig. 12 shows the estimated wireframes obtained by using 11 and 10 feature
correspondences superimposed on the images of Cube3Cut and Fork respectively.
For Cube3Cut. only 51 paths were ¢pened and 29 of these were pruned, resulting
on a pruning ratio of 56.86% and an execution time of 1.75 sec in a SPARC station
2. For Fork, 196 paths were opened and 126 of them were pruned, resulting in a
pruning ratio of 64.29% and an execution time of 2.9 sec.

6. Conclusion

The CAD-based vision system PREMIO combines techniques of analytic graphics,
CAD models of 3D objects and knowledge of surface reflectance properties, light
sources, sensors characteristics, and the performance of feature detectors to predict
and evaluate the features that can be expected to be detected in an image. The
predictions generated in this way are powerful tools for object recognition. These
predictions can be used to dramatically reduce the search space in a feature-based
object recognition algorithm.
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