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1. Introduction

The facet model for image processing takes the observed pixel values to
be a noisy discretized sampling of an underlying gray tone intensity surface
that in each neighborhood of the image is simple. To process the image
requires the estimation of this simple underlying gray tone intensity surface
in each neighborhood of the image. Prewitt (1970), Haralick and Watson
(1981), and Haralick (1980, 1982, 1983, 1984) all use a least squares estima-
tion procedure. In this note we discuss a Bayesian approach to this estima-
tion problem. The method makes full use of prior probabilities. In addition,
it is robust in the sense that it is less sensitive to small numbers of pixel
values that might deviate highly from the character of the other pixels in
the neighborhood.

Two probability distributions define the model. The first distribution
specifies the conditional probability density of observing a pixel value, given
the true underlying gray tone intensity surface. The second distribution
specifies the conditional probability density of observing a neighborhood
having a given underlying gray tone intensity surface.

To motivate the representations we choose, and to help make clear
what underlying gray tone intensity surface means, consider the following
thought experiment. Suppose we have a noiseless image that is digitized to
some arbitrary precision. Suppose, for the moment, we take simple underly-
ing gray tone intensity surface to mean a constant surface in each neighbor-
hood. Now begin moving a fixed and reasonable sized neighborhood window
through the image. Most neighborhoods (probably all of them) will not have
constant values. Many would be constant except for illumination shading or
texture effects; those neighborhoods are nearly constant. Some have an
object edge passing through; these are not constant.

The nearly constant neighborhoods can be thought of as having arisen
from small perturbations of a constant neighborhood. The perturbation is
due, not to sensor noise, but to the difference between the idealization of
the model (perfectly constant neighborhoods) and the observed perfect real-
ity. In this case, we take the underlying gray tone intensity surface to be a
constant, the value of which is representative of the values in the observed
nearly constant neighborhood.

What does it mean to determine a value that is representative of the
values in the neighborhood? Does it mean an equally weighted average, for
example? To answer this question, fix attention on the center pixel of the
neighborhood. We expect that the neighbors of the center pixel would have
a value close to the value of the center pixel. The neighbors of these
neighbors, the second neighbors, would have values that could deviate more
from the value of the center pixel than the first neighbors. This expecta-
tion—that the closer a pixel is to the center pixel, the less the deviation is
likely to be from the center pixel—should find a way to be incorporated into
the model explicitly. Under these conditions, the representative gray tone
intensity of the underlying gray tone intensity surface in the neighborhood
can be estimated as an unequally weighted average of the pixel values in the
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neighborhood, those pixels farther away from the center pixel getting less
weight.

We have neglected the neighborhoods having an edge or a line passing
through them. These neighborhoods do not satisfy the spirit of a model that
is "constant in each neighborhood." This suggests that we need to be exam-
ining models in which the spatial distribution of gray tones in the neighbor-
hood is more complex than constant. An appropriate model, for example,
may be one in which the ideal gray tone intensity surface is a low order
polynomial of row and column positions.

Now suppose that our model is that the underlying gray tone intensity
surface in each neighborhood is a bivariate cubic polynomial. Again take
our hypothetical noiseless perfect image and pass a neighborhood window
through it. As before, there probably will be no neighborhoods that fit a
cubic precisely, but this time most neighborhoods will nearly or almost
nearly fit. The cubic model can represent constants, slopes, edges, and
lines.

Fix attention on one of the neighborhoods. Suppose it is mostly con-
stant, especially near its center, with a small portion of a line or edge at its
boundary. Instead of thinking of the polynomial underlying gray tone inten-
sity surface as representative, in the sense of fitting, of the entire neigh-
borhood, think of it as containing the values of all partial derivatives of
order 3 or less evaluated at the center pixel. Since the area around the
center pixel is nearly constant, we should expect all partial derivatives of
order 1 to order 3 to be small or zero, despite some significant disturbance
at the boundary of the neighborhood and despite the fact that a least
squares fit of the pixel values in the neighborhood would certainly not pro-
duce near-zero partial derivatives.

At this point we begin to uncover a few concepts about which deeper
understanding is needed. The first is the difference between estimating the
derivatives at the center pixel of a neighborhood and least squares fitting an
entire neighborhood. The second is the notion of neighborhood size. The
larger the neighborhood, the more different things are likely to happen near
and around its boundary and the more we will want to ignore the values
around the boundary in estimating the partial derivatives at the neighbor-
hood center. At the same time, should the pixel values near and around the
boundary of the neighborhood fit in with the spatial distribution at the
center of the neighborhood, we would definitely want to have the estimation
procedure utilize these neighborhood boundary pixels in a supportive way.

The conclusion we can draw from this perspective is that we can expect
the underlying polynomial gray tone intensity surface to be more represen-
tative of what is happening at the center of the neighborhood than at its
periphery. That is, the observed values at the periphery of the neighbor-
hood are likely to deviate more from the corresponding values of the under-
lying gray tone intensity surface than are the observed values at the center
of the neighborhood. Furthermore, we need to pay careful attention to the
similarity or dissimilarity of pixels at the periphery of the neighborhood so
that their values can be used in a supportive way.
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In section 2 we discuss a model and estimation procedure that makes
these ideas precise.

2. The Model

Let z C’ij"icj represent the underlying gray tone intensity surface of
ij
i+j<3

a neighborhood, and let J(r,c) represent the observed gray tone values in the
neighborhood. At each pixel (r,c) the squared deviation between the repre-
sentative underlying gray tone intensity surface and the observed image is

given by | z uijricj = J(re)]? . The expected value of this squared
ij
i+<3

deviation is the variance of J(r,c) around z aijricj- It is a function of
i
i+<3

(rc), and our perspective has suggested that it increases as a monotonic
function of the distance between (r,c) and (0,0). We can express this by
writing

[l ) ajjricl = )(r,c)]12 = o2[1+ k(r2+c2)Py , (M
]

-

i+<3

To help make our notation Compact, we rewrite this in vector notation.
Let | be the vector of observed pixel values in a neighborhood. Let a be
the vector of coefficients for the underlying gray tone intensity surface.
Let F be a matrix whose columns constitute the discretized polynomial basijs.
Thus the column corresponding to the basis function rici has component
values that are rici evaluated at all pixel positions in the neighborhood.

Assuming an ellipsoidally symmetric distribution for the deviations
between the observed pixel values and the underlying gray tone intensity
surface, we have

PU|Fa) = h[(J-Fqa)' Z"(J-Fa)], (2)
J
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where 1, is the covariance matrix of the deviations of the observed values |
from the ideal values Fqy.

For the prior distribution of ¢ we likewise take the deviations between
the neighborhood o and an «, representative of the distribution of 4's over
all neighborhoods to be distributed in an ellipsoidally symmetric form (typi-
cally ay = 0):

Pla) = h[{a-a,)' z-l(a‘ao}] . (3)

a

From a Bayesian point of view, having observed | we wish to estimate
an a that maximizes the probability of o given J. Now,

P()|a) P
Plal)) = ———(”;)j)(a) . (4)

Maximizing P(a|J) is equivalent to maximizing P(J|a)P(a), and this is
equivalent to maximizing log P(Jia) + log P(q). The necessary condition is

for the partial derivative of log P(J|a) + log P(a) with respect to each com-
ponent of o to be equal to zero. This yields

h{(J-Fa)' i"‘(J—Fa)J
|

h'[(a-ao)' z"(a-am
+(-2) 2 Z”(ao-a} = (5)

a
h{(a-a,)’ Z Hamay)]

)

In the case where h is the multivariate normal density,
2
h(x?) = Ae X7/2, (6)
Or, with a simple argument y replacing x?,

h(p) = Ae W'z, (7)
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Hence,

2 M) L, AeTW2(-1/2)
h(u) Ae"ll/z

In the multivariate normal case, the equation simplifies to

-F' Z"(J—Fa) + Z"(a-ao) = § (9)

J a

[F' Z"H Z"]a = F z"‘J + Z-laa- (10)
J a J a

or

To relate this to standard least squares, take X " =421 and Z = 0,
a

in which case we have F'Fq = F'J, which is the usual normal equation.

-1 . . 3
z = 0 means that the variance of g is very large. In essence, it says

Qa

that nothing is known about QLo qu = ¢ %l means that the deviations of

the observed from the ideal are uncorrelated and that the expected squared
deviations are identical throughout the neighborhood rather than increasing
for pixels closer to the periphery as suggested earlier.

Now let us move on to a nonnormal case, in which the tails of the dis-
tribution are much fatter than the normal distribution. One such distribu-
tion is the slash distribution, which arises from a normal (0,1) variate being
divided by a uniform (0,1) variate. Another such distribution is the Cauchy
distribution,

The slash density function has the form

1 - g=X*2
5(x) = —m— 11
(x) Trx? (11)

Because we have squared the argument before the evaluation, we have

W2
su) = 15877 , pe 0. (12)
21]']_1



ROBUST LOCAL FACET ESTIMATION 91

Thus,

2s'(n) y 1= (1+u/2)e™W?
s(u) n? ’

(13)

a function that is always positive, having largest magnitude for small u and a
monotonically decreasing magnitude for larger y.
The Cauchy distribution has the form

1

c(x) = m " (14)

Because we have squared the argument before evaluation, we have

o 6, EENEK uz2 0. (15)
Thus,
_c'(w) 1
cu) ~ T+w (16)

a function that is always positive, having largest magnitude for small u and a
monotonically decreasing magnitude for larger u.

On the basis of the behavior of h'/h for slash and Cauchy distributions,
we can discuss the meanings of h'/h in Eq. (5). Simply, if the fit Fo to J is
relatively good compared to our prior uncertainty about a, then the esti-
mated o is determined mostly by the least squares fit and hardly at all by
the prior information we have about a. If the fit Fa to | is comparable in
uncertainty to our prior uncertainty about «, then the estimated a is deter-
mined in equal measure by the least squares fit and by the prior information.
If the fit Fo to | has more error than our prior uncertainty about a, then
the estimated « is determined more by the prior information than by the fit.

To see how this works more precisely, let

h'[(J-Fa)'i"(J-Fan

Aj(a) = j (17)

h[(J-Fa)*i”(J-Fa)]

J

and
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h'la=a0)' ¥ a-ag)]
a

Agla) = . (18)

h[(a‘ao)'z_l(a'uo)]

a

Equation (5) becomes

[Aj(a)F' Z"F + Aa(aJZ"m

J a
= AJ(Q)F'Z_iJ + ka(a)z-lao . (19)
J a

We can solve this equation iteratively. Let an be the value of the estimated
a at the nth iteration. Take the initial a(}) to satisfy Eq. (10).  Suppose
a (M) has been determined. Substitute ¢ (N) into Egs. (17) and (18) to obtain
Aj(a(”}) and Aa(a{")). Then substitute these valyes for AJ(a") and Aglam
into Eg. (19) to determine q(n+1),

3. The Independence Assumption
An alternative model for the distributions would be for the deviations of

the observed values from the values of the underlying gray tone intensity
surface to be assumed independent. In this case,

Il

P(J/a) TT Pre)(re)a)

(r,c)

J(r,c)? - Zann(r,c) :
= 7T n ki (20)

aj(r,c)

and
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N
Pla) = -H_ Pn(ﬂnlanu)

n=1

- T [(___)] i

n=1 %an

where o' = () eee,ap) and ay = (aygrese,aNg)e
Proceeding as before, we obtain that the maximizing a must satisfy

F' A Z"Fma Z“ @ = [F' A Z”hna z'l @y,  (22)

J a J o

where Z, Z Ay, and A, are diagonal matrices

J a

Y - (\UJ(F,C)Z O) (23)

(26)
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and the diagonal entries of Ay and Ay are given by

N

Ir,c) - Zanfn(r,c) 2
h'[ J

n=1

Aj(re) = lliy (27)

N

J(r,c) E zanfn(r,(:) 2
h [ n=1 J

9j(r.c)

Ag(m) = —an 7 1 (28)

The solution for o can be obtained iteratively. Take the first Ay and A,
to be the corresponding identity matrices. Solve Eq. (22) for 4. Then sub-
stitute into Egs. (27) and (28) for the next Ay and Ao

Because the solution for a is iterative, it is not necessary to take the
required NK(1+N+K) + 2N + N? operations to solve Eq. (22) exactly. (The
vector | is Kx1 and the vector a is Nx1.) There is 3 quicker computation
procedure. Suppose the basis that is the columns of F satisfies

F'Z“F = 1. (29)
J

This means that the basis vectors are discretely orthonormal with respect to

. -1
the weights that are the diagonal entries of the diagonal matrix Z . In

J
this case, Eg. (22) holds if and only if

(F' A 2_1F+Aa Z"u o i Z”F)a
J

Q

—
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Rewriting this equation, we have

1+ 2 Y e

Q

= F'[Ajz-lj +(1-4)) Z'IFQ + Z_IF A, Zhlao] < (31
J

J J a

This equation suggests the following iterative procedure for the determing-
tion of a:
Take

ol = (142, Z")” (F 2“‘1 + Z“au). (32)

Q J o

Suppose a(n) has already been determined. Define

a(n+1) _ (1 + AQZ"I)_I

a

o F'X-l [AJ J+ (1= AJ)Fa(n) + F Aa Z-laoj . (33)

J o

Each iteration of Eq. (33) requires 3KN +4K +3N operations, and only two to
four iterations are necessary to get a reasonably close answer.

4. Robustness

The model assuming the independence of the deviations between the
observed values and the underlying gray tone intensity surface is robust. |f
there are some pixel positions in which J(r,c) deviates greatly from the cor-

N
responding value Z apfa(r,c) of the underlying gray tone intensity surface,
n=1

then since A(r,c) is defined by Eq. (27), that is,
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N
J(re) = D anfn(re) \ 2

n=1

(re)
Aj(re) = 2l (27)

N
J(re) - Z anfn(r,c) | 2
n=1
gj(r.c)

and -h'/h is small for large arguments, x(r,c) will be small.  To understand

the effect of a small AJ(r,c), examine Eq. (33). On the right-hand side of

that equation is the expression Ay o+ (I-Aj)Fa, which consists of a general-

ized convex combination of J, a term depending on the observed data, and

Fa, a term depending on the fit to the data. In those components where

Aj(r,c) is small, the generalized convex combination tends to ignore J(r,c)
N

and, in effect, to substitute for it the fit Z anfp(r,c). Thus small values
n=1

of AJ(r,c) substitute the fitted values for the observed values. Values of
the weight AJ(r,c) close to 1 tend to make the procedure ignore the fitted
values and use only the observed values,

The technique is inherently robust, Any observed valye that deviates
greatly from the fitted value is in a sense ignored and replaced with a fitted
value interpolated on the basis of the other pixel values.

to i) being some monotonically decreasing function of the squared differ-
ence between the observed and fitted values. The monotonically decreasing
function depends on the distributional assumption being made.

One way to avoid the distributional assumption is to use a form A that
has proved to work well over several different kinds of distributions.” One
such form is Tukey's bisquare function, used in computing the biweight

[1-s*rc)]?, if s¥(r,c) <1
Aj(re) = (34)
, otherwise

where
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N
[(re) = P anfa(ric)]?

s3(r,c) = il (35)
Caj(rc)

and C is a constant with value between 6 and 9. In this case, the estimated
coefficients @y,eee,aN are generalizations of the biweight, and the computa-
tional procedure discussed in section 2.1 corresponds to Tukey's iterative
reweighted least squares regression procedure [Mosteller and Tukey, 1977].
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