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Theoretical Analysis and Improved Decision
Criteria for the n-Tuple Classifier

Thomas Martini Jørgensen and Christian Linneberg

Abstract—The anticipated behavior of the n-tuple classification system is that it gives the highest output score for the class to which
the input example actually belongs. By performing a theoretical analysis of how the output scores are related to the underlying
probability distributions of the data, this paper shows that this in general is not to be expected. The theoretical results are able to
explain the behavior that is observed in experimental studies. The theoretical analysis also give valuable insight into how the n-tuple
classifier can be improved to deal with skewed training priors, which until now have been a hard problem for the architecture to
tackle. It is shown that by relating an output score to the probability that a given class generates the data makes it possible to design
the n-tuple net to operate as a close approximation to the Bayes estimator. It is specifically illustrated that this approximation can be
obtained by modifying the decision criteria. In real cases, the underlying example distributions are unknown and accordingly the
optimum way to treat the output scores cannot be calculated theoretically. However, it is shown that the feasibility of performing
leave-one-out cross-validation tests in n-tuple networks makes it possible to obtain proper processing of the scores in such cases.

Index Terms—n-tuple classifier, maximum likelihood, Bayes, cross-validation, RAM-net.
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1 INTRODUCTION

HE so-called n-tuple classifier was invented as a pattern
recognition device in 1959 by Bledsoe and Browning

[6]. In the learning phase, the n-tuple classifier stores class-
specific information about the training set in a number of
look-up tables. The entries in each look-up table are ad-
dressed by sampling n  specific data locations (forming an
n-tuple) of the input presented to the classifier. When per-
forming a classification, all addressed entries in the look-up
tables are summed class-wise and a winner-takes-all (WTA)
decision is made to classify the input vector. As the stan-
dard n-tuple net is based on one-shot learning it is very fast
to train compared with other classification methods. Fur-
thermore, the architecture is highly feasible for hardware
implementations [3], [4], [12].

Early on, different strategies for optimising the choices
of data points to be sampled by the n-tuples were studied
[7] and many modifications and improvements of the ar-
chitecture have been described in the literature, where the
architectures are often denoted weightless neural networks
or RAM-based neural networks [5]. Valuable insight into
the dependency between the output scores of the n-tuple
network and the Hamming distance between training and
test examples has also been provided at an early phase.
Thus in 1970, Aleksander presented an approximate for-
mula describing the relationship between Hamming dis-
tances and output scores [1]. Stonham later modified this
formula [17] to incorporate the overlap between training
examples, which plays a crucial role in understanding the

behavior of the n-tuple net. However, a more thorough
analysis of the n-tuple architecture based on these deriva-
tions has been lacking due to the difficulty in dealing with
the combinatorial explosion found in the mathematical ap-
proaches used in analysing the architecture [17], [5].

There has also been an effort in putting the mechanism
of the so-called frequentist n-tuple classifier into a Bayesian
framework [14]. The approach is based on the fact that na-
ïve estimates of conditional feature estimates arise naturally
within the n-tuples. However, sub-patterns that never ap-
pear in the training set lead to zero estimates although
these patterns might occur for examples outside the train-
ing set. By replacing these zero estimates with a small ad
hoc constant, crude maximum likelihood estimators are
obtained. In the limit with a very small value of the con-
stant, this corresponds to the winner-takes-all classification
scheme. Although the work actually places the n-tuple clas-
sifier in a Bayesian framework by interpreting the contents
of the n-tuples as probability densities, the interpretation is
only a valid approach if the contents of the n-tuples closely
reflect the true distributions of the data. In order to under-
stand the fundamental behavior of the n-tuple classifier, it
is needed to find the relations between the output scores
and the true distributions.

A recent comprehensive experimental benchmark study
of the n-tuple classifier performed by Rohwer and Mor-
ciniec documents very well the advantages as well as
problems with the standard n-tuple classifier [16]. In spite
of the simplicity of the architecture and the training proce-
dure the benchmark results show that the n-tuple classifier
in 6 out of 11 data sets were competitive with the 23 other
classification methods used in the benchmark study. On the
remaining five data sets, the n-tuple classifier performed
poorly compared to most of the other methods. One char-
acteristic of these five data sets is that the number of train-
ing examples varies a lot from one class to the other; this
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feature is often denoted skewed priors. An essential weak-
ness of the standard n-tuple architecture is simply its gen-
eral lack of ability to deal satisfactorily with such priors.

In the present paper we present a theoretical analysis
that relates the expected output scores of the n-tuple net to
the stochastic parameters of the example distributions, the
number of available training examples, and the number of
address lines n  used for each n-tuple. From the obtained
expressions, we are able to study the behavior of the archi-
tecture in different scenarios. Furthermore, it becomes pos-
sible to deduce how the n-tuple classifier should be modi-
fied to operate as a close approximation to the maximum a
posteriori or maximum likelihood estimator. The resulting
modified decision criteria can for instance deal with the
problems caused by skewed training priors, and accord-
ingly they provide an essential improvement of the archi-
tecture. Finally, we illustrate how the feasibility of per-
forming a leave-one-out cross-validation test for the n-tuple
architecture plays an essential role in obtaining the new
decision borders on real data.

The suggested changes in decision criteria are not only ap-
plicable to the original n-tuple architecture based on random
memorization. It also applies to extended n-tuple schemes,
some of which use a more optimal selection of the address
lines (see e.g., the architectures described in [8] and [9]).

2 THE N-TUPLE CLASSIFIER

The n-tuple classifier is a simple memory based classifier
[2], [6]. One of the major benefits of a memory-based sys-
tem is its very fast computation time, both during the
learning phase and during classification. For n-tuple net-
works, which are also known as “RAM networks” or
“weightless neural networks” [5], learning may be accom-
plished by recording features of patterns in a random-
access memory (RAM), which requires just one presenta-
tion of the training set to the system.

The n-tuple classifier can be considered as a number of
look-up tables (LUTs). The number of rows in each LUT
corresponds to the number of possible classes. Which col-
umns to address in the tables are determined from the val-
ues at the input connections of the LUTs. The input values
to a LUT are given as a subset of the data values defining a
given example. The data values are normally represented
by a bit string. With the standard n-tuple classifier, the sub-
sets to be used are selected at random. The values sampled
by a given LUT constitute a specific feature of the presented
example.

Before training, all entries of all LUTs are set to zero. During
training, all examples are presented to the classifier. The con-
tent of a given cell in a LUT is set to one if it is addressed by a
training example. The class of the training example determines
the row of the addressed cell and as described above the sam-
pled data values determine the column.

When performing a classification all values of the ad-
dressed columns are read out. A value of one corresponds
to a vote on the class specified by the row value of the ad-
dressed cell. The votes from all LUTs are summed to obtain
the output score for each class. Subsequently a winner-takes-
all decision is made; i.e., a pattern is classified as belonging

to the class where most of the sampled features in the pat-
tern are shared with those found in the training examples
from that class.

More rigorously, consider a training set ;  and training
examples xi ³ ; . Then the class, C y1 6 , assigned to an ex-
ample y  presented to the n-tuple classifier can be calcu-
lated as

C argmax S , ,y y
c

c c1 6 2 73 8= ;           (1)

where Sc ¼0 5  denotes the relative output score for class c  and
;c  is the set of training examples labelled class c . The rela-
tive output score denotes the number of votes obtained for
the class in question relative to the number of LUTs. For the
standard n-tuple classifier with binary input values, the
address function a yi1 6  indexes the column in the i th LUT
being addressed by example y . It is normally calculated as
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Here y ij  is the jth address line of the ith LUT forming an

index into the example y , and n  denotes the number of
address lines per LUT. Let v y ca ( ),i

 represent the number of

training examples accessing the LUT cell addressed in the
ith LUT by the example y  and the class c :
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Here d i j,  denotes Kroneckers delta (d i j, = 1 if i j=  and

d i j, = 0  if i j� ). With these definitions Sc ¼0 5  can be written as:

S ,c a ( ),i
;c k y c

i

y N v2 7 4 9=
³
Ê

1

W W

Q ,               (4)

where W  describes the set of NW  LUTs making up the whole
network. Qk z( )  is the step function with an offset of k :
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1
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.                             (5)

Using k = 1 in (4) gives the “vanilla” n-tuple classifier,
which we will address in this paper.

The generalization capability of the network is directly
related to the number of address lines (this number n  does
not need to be the same for all LUTs, although this often has
been the case in many implementations). If a LUT samples
all input bits then it will act as a pure memory device with
no generalization capabilities. As the number of input bits
is reduced, the generalization is increased at expense of an
increasing number of ambiguous decisions. Furthermore,
the classification and generalization performances of a LUT
are highly dependent on the actual subset of input bits
probed.

Estimating the generalization capabilities of a classifier
can be done by performing a leave-one-out cross-validation
where in turn a single example is left out of the training set;
i.e., the classifier is trained on the reminder of the training
set and tested on the one example excluded from the train-
ing set. As pointed out by Liisberg and described in [10] it
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is easy to incorporate a leave-one-out cross-validation test
for the n-tuple classifier. The leave-one-out cross-validation
classification of a training example x  can be calculated as

L Q
W

( ) argmax
C ( ), ia ( ),x v

c
x c

i
T x c

=
�
��

�
��+

³
Ê 1 d 4 9 ,         (6)

where C ( )T x  denotes the true class of example x . With N;

denoting the number of training examples the total cross-
validation error rate is given by

1
1
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ÊN x C x

x
i T i

i
; ;

d L( ), ( ) .                          (7)

Comparing (6) with (1) and (4) shows that performing a leave-
one-out classification of a training example is just as simple
and fast as performing a classification of a test example.

3 CALCULATION OF EXPECTED OUTPUT SCORES

When using the classification scheme given by (1) the in-
tention is naturally to find the class that in some sense is
closest to the test example in question. It means that the
output score of a given class preferably should be larger the
more likely it is for an example to belong to the class. Due
to the d a x a y( ), ( )  factor in (3), the output score obtained when

presenting a test example to the trained n-tuple classifier
depends upon the overlap between the example presented
and the examples used to train the classifier. It is obvious
that besides depending on the actual training examples the
scores obtained also are dependent on the number and ac-
tual choice of address lines for the individual tuples. The
expected output scores for the n-tuple classifier and the
training set in question can be obtained by averaging (4) over
the possible choices of address lines obtained from a specific
selection strategy and a given number of address lines.

In the case of random selection of the set of address lines
Y , the calculation of the expected score becomes relatively
straightforward. The relative overlap between a training
example and a test example is given as

D = -1 H x y N( , ) / ,                       (8)

where N  is the dimension of the examples (number of data
values) and H( , )x y  denotes the Hamming distance be-
tween the examples x  and y :

H( , )x y x yi i
i

N

= -
=
Ê

1

.                         (9)

With these definitions, the probability that all n  inputs
sampled by a LUT lie within this overlapping region is
given as Dn . In the case with several training examples,
more than one example can be responsible for a specific
contribution to the output score. Accordingly, the total out-
put score does not correspond to the sum of the individual
contributions from the training examples. In calculating the
expected score, it therefore becomes necessary to incorpo-
rate the effect of overlap between the training examples.
From such considerations it can be found [17] that when
applying an n-tuple classifier trained on specific examples,
xi ³ ; , on a specific test example y , the expected relative
output score is:
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A( )¼  is a function that calculates the overlap defined as the
number of vector co-ordinates whose values are the same
for all examples in the argument list:

A( , , , , ) ,x x x ym x y
j

m

i
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==
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Here xji  denotes the ith element of the vector xj .

Expression (10) describes the expected score that a test
example obtains given a specific set of training examples
and given that the n  address lines for each tuple are picked
at random. As we are actually interested in knowing how
well the architecture can learn the underlying distribution
of the training examples in an average sense, we should
avoid this dependency on a specific training set. In order to
achieve such independence, it is necessary to introduce a
statistical framework for the distribution of training and
test examples. Then, by averaging (10) with respect to the
possible training sets of a given size, one obtains the ex-
pected score behavior for the example distributions in
question.

We introduce a statistical framework by using a model,
where the examples are drawn from an N -dimensional
Bernoulli distribution. Let a specific class c  be characterized
by a prototype example e c . Let the examples considered be
represented as binary vectors of size N . The generation of
an example x  belonging to class c is now defined as the
result of bitwise Bernoulli trials, i.e., for each bit we keep
the value of the prototype with probability pc  and change
the value of the bit with probability q pc c= -1 . We assume
that the training examples are obtained by a random draw
from the underlying distribution. The probability of gener-
ating an example x  thus is:

p( ) H( , ) H( , )x p qc
N x

c
xc c= - e e ,                             (12)

where H( , )x e  is the Hamming distance between x  and e ;
see (9).

As the generated examples are the outcome of N  Ber-
noulli trials, the average Hamming distance between the
generated examples and the prototype example is

H( , )x Nqc ce = .      (13)

A large average Hamming distance corresponds to a large
variation or noise level (i.e., the probability, qc , of inverting
the value of a bit) for the distribution in question.

Expression (10) involves the calculation of overlap areas
between different numbers of training examples and one
test example. In order to average (10) over the training sets,
the overlap areas must be replaced with the calculation of
the average overlap areas between different numbers of
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training examples and a test example. Accordingly, the new
formula will involve terms of the type

1
1 2N

c c mn
nZ ( , , ) ,      (14)

where

Z( , , ) A( , , , , )c c m x x x ym1 2 1 2= K                (15)

denotes a stochastic variable describing the overlap area
between m  examples, x x xm1 2, , ,K , drawn from the exam-
ple distribution corresponding to a class c1 and one test
example y  drawn from the example distribution corre-
sponding to a class c2 .

Let us first consider the situation where the test example
is drawn from the same distribution as the training exam-
ples, i.e., c c2 1= . The stochastic process associated with
Z( , , )c c m1 2  is then described as N  Bernoulli trials with the
probability of success, pz , given by the expression

p ( , , )z c c m p qc
m

c
m

1 1
1 1

1 1
= ++ + ,            (16)

corresponding to the probability that one specific bit has
the same value in all m + 1 examples. Calculating

Z ( , , )n c c m1 1  thus corresponds to calculating the nth mo-

ment mn N( , p )z  of a binomial distribution characterized
by N  and pz. As all training examples are considered to
originate from the same population, all area-of-overlap
terms in (10) involving the same number of examples
have the same average value. Accordingly, the following
result is obtained for the expected output score number
when the test and training examples originate from the
same distribution:
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The moments for the binomial distribution B( , )N p  can be
found making use of its moment generating function; see
Appendix A.

The average Hamming distance between two examples
belonging to the class c1 can be calculated using (16) with
m = 1 and the expression for the first order moment of a
Binomial distribution with N  trials:

H ( , ) ,,c c i j c cx x N p q i j
1 1 1 1

1 2 2= - - �4 9 .    (18)

If the test example is drawn from a distribution different
from that of the training examples, i.e., c c2 1� , there are
two prototype examples to consider, e c1

and e c2
. Let the

associated probabilities of generating a bit, whose value is
the inverse of the corresponding prototype bit, be denoted

qc1
and qc2

. For the following analysis, it is helpful to divide

the data of the two binary prototype examples into two
sets; one set 61  containing all bits having the same value in
the two prototypes, and another set 62  containing all bits of
opposite values. Let the sizes of these two sets respectively
be denoted N1  and N2 , where N N N1 2+ = . In analogy
with the above definition of Z( , , )c c m1 2 , we define two sto-
chastic variables Z ( , , )1 1 2c c m  and Z ( , , )2 1 2c c m  as describing
the overlap area between m  examples drawn from the ex-
ample distribution corresponding to class c1 and one test
example drawn from the example distribution corre-
sponding to class c2 , respectively within the set 61  and 62 .
The overlap areas within these two sets are denoted A61

and A62
. With these definitions we have:
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and

Z( , , ) Z ( , , ) Z ( , , )c c m c c m c c m1 2 1 1 2 2 1 2= + .            (21)

The stochastic process associated with Z ( , , )1 1 2c c m  is
then described as N1  Bernoulli trials with the probability of
success, pz1

, given by the expression

p ( , , )z c
m

c c
m

cc c m p p q q
1 1 2 1 21 2 = + .                   (22)

The first term on the right hand side corresponds to the
probability that a specific bit (from 61) within the m  train-
ing examples has the same value as its prototype and that
the same bit within the test example has the same value as
its prototype. The second term corresponds to the probabil-
ity that the specific bit within the m  training examples has
the opposite value as its prototype and that the same bit
within the test example has the opposite value as its proto-
type. Analogously, we get for Z ( , , )2 1 2c c m :

p ( , , )z c
m

c c
m

cc c m p q q p
2 1 2 1 21 2 = + .                    (23)

Accordingly, the average probability that one specific bit
has the same value in all m + 1 examples is given as:

p ( , , )

p ( , , ) p ( , , ) . ( )

z

z z

c c m

N c c m N c c m N

1 2

1 2 1 1 2 2

1
24

1 2
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Equation (24) simplifies to (16) when N N1 =  (i.e.,

N2 0= ) and p pc c1 2
= . It is noted that the stochastic process

associated with Z( , , )c c m1 2  is not equivalent to N  Bernoulli
trials with the probability of success, pz , given by (24).

In analogy with (18), we can calculate the average
Hamming distance between two examples belonging to
class c1 and c2 , respectively:
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Using (19)-(23), (17) can now be extended to the situa-
tion where the test example is drawn from another bino-
mial distribution than the one used to generate the train-
ing examples:
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By letting e c y
2
=  and qc2

0= , (26) can be used to calculate

the expected output score from class c1 on any test example y .

4 BEHAVIOR OF OUTPUT SCORES

With the formulas obtained in the preceding section, we can
now analyze how the expected scores for a set of n-tuples
relates to the Hamming distance between training and test
examples. Initially we will consider the case with only one
training class.

4.1 Relationship between Output Scores and
Hamming Distance

In Fig. 1 is shown a plot of the expected score

S ,c c y
c

1 1
1

;
;

4 9
Y ,

obtained as a function of the Hamming

distance between the prototype e c1
 of the training examples

in class c1 and a test example y  for a varying number of
training examples. The curves are obtained by setting
N yc2 1

= H( , )e  and N N N1 2= -  in (26) and by letting

e c y
2
=  and qc2

0= . Fig. 2 shows a corresponding plot but

for various numbers of address lines.
The graphs in Fig. 1 illustrate that the expected score

level increases with the number of training examples. The
reason is that it becomes more likely that the features of the
test example identified by the n-tuples also are found in a
training example. Lowering the number of address lines
increases the generalization ability of the classifier as it de-
creases the number of possible features within an n-tuple,
as shown in Fig. 2. On the other hand lowering the number
of address lines will in general decrease the discrimination
ability of the classifier.

Another way to depict the behavior of the n-tuple net is
to plot the expected score as a function of the number of
address lines and the number of training examples for fixed
values of the Hamming distance H( , )e c y

1
. These relation-

ships are shown in Figs. 3 and 4.

4.2 Likelihood and Decision Criteria
We now turn to the case with two training classes. The an-
ticipated behavior of the n-tuple classification system is that
it outputs a higher average score on class 1 than class 2 when
an example actually belongs to the class 1 distribution and

vice versa. In the following analysis, we show that this in
general is not to be expected.

A statistically sound decision criterion is obtained by
applying the maximum a posteriori (MAP) or maximum
likelihood (ML) principle. According to the MAP principle,
the decision boundary is given by the examples that are
equally likely to belong to either of the two distributions
given the observed data; i.e., identifying these examples and
calculating their expected score levels reveals the decision
boundary in the score space. If the two classes are assumed
equally likely, this becomes the ML decision boundary.

By using (12) and assuming equal class likelihood
p( ) p( )c c1 2= , we can initially relate the Hamming dis-
tances between a test example and two training proto-
types of different classes to the conditional probabilities

Fig. 1. Expected score as function of the Hamming distance between the
prototype e

c1
 and the test example y  shown for distinct numbers of training

examples (as indicated on the curves). The number of address lines n  is 5
and the example size N is 100. The noise level q

c1
is 20 percent.

Fig. 2. Expected score as function of Hamming distance between the
prototype and the test example for distinct numbers of address lines
(as indicated). The number of training examples N

X
 is 10. Other pa-

rameters are as in Fig. 1.
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p c y13 8  and p c y23 8; i.e., the posterior probabilities that ex-

ample y  is generated from class c1 and c2 , respectively. Fig. 5
shows how this relation splits the “Hamming space” into
two regions; one region where class 1 is the most likely and
vice versa. It is important to note that only if the stochastic
parameters pc1

and pc2
of the two training classes are equal

is the decision boundary in Hamming space given by the
straight line H( , ) H( , )y ye e1 2= . For brevity, we have used
e1  for e c1

 and e 2  for e c2
.

In order to study the relationship between Hamming
distances and conditional probabilities in more detail we
consider the test examples obtained by moving from one
prototype to the other in such a way that the sum of the two
Hamming distances is kept constant. This corresponds to
moving along the dotted line shown in Fig. 5. Along this

line, we can calculate the conditional probabilities as well
as the expected output scores by using (12) and (26) twice.
The resulting curves are depicted in Figs. 6-10 for differ-
ent characteristics of the training sets and example dis-
tributions. As seen in Figs. 6 and 7, increasing the dis-
tance between the prototypes gives better discrimina-
tion/separation between the score curves. In Figs. 8-10 it is
important to note that different noise levels, different
population sizes, and a difference in the numbers of address

Fig. 3. Expected score as function of the number of address lines for an
n-tuple classifier trained on 10 examples. Hamming distance between
the prototype and the test example is 20. The noise level q

c1
is 20 per-

cent and the example size N is 100.

Fig. 4. Expected score as function of the number of training examples.
Five address lines were used per n-tuple and the other parameters are
as in Fig. 3.

Fig. 5. Decision borders in Hamming space corresponding to the
MAP-principle. Only if the stochastic parameters p

c1
 and p

c2
 are

equal is the decision border given as H( , ) H( , )
1 2

y ye e= . The decision
border corresponding to the case where q

c1
0.1=  and q

c 2
0.3=  is

shown (solid line). The data in Figs. 6-10 are calculated along lines
parallel to the dotted line; here the line is shown for the case with
H( , ) 60

1 2
e e = .

Fig. 6. Expected scores and conditional probability as function of the
Hamming distance along the dotted line in Fig. 5. The Hamming dis-
tance between the prototypes is H( , ) 60

1 2
e e = . The noise levels are

q q
1 2

0.2= = . Number of address lines n = 5. Example size N = 100 .
Numbers of examples in each of the two training classes:
N N

X X1 2
20= = . H H y

1 1
( , )= e  and H H y

2 2
( , )= e .
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lines used for the two classes cause the score curves to cross
at a Hamming distance different from where the conditional
probability curves cross each other. Consequently, equal
score levels for two classes do no necessarily correspond to
equal likelihood. This fact is actually the key to under-
standing the problems with the standard n-tuple architec-
ture, which often performs rather poorly when the training
sets have skewed priors. However, by considering this be-
havior it becomes possible to avoid this limitation of the n-
tuple system. More specifically, the decision boundary in
score space should be made to depend on the spatial den-
sity of the underlying example distributions, the number of
training examples as well as the number of address lines
used for the different classes.

As mentioned above, the decision boundary dictated by
the maximum a posteriori principle is given by the points
where p c y13 8  is equal to p c y23 8 . Given a test example y

with a Hamming distance H1  to the prototype e1 , and H2

to the prototype e 2 , these probabilities are given by (12) if

we assume equal class likelihood. This condition as well as
the demand that H1  and H2  must take on values between 0
and N  defines the decision boundary in Hamming space:
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p q p

q p

H
N p p

q p N
N q p

q p

p p

c
N H

c
H

c
N

c c

c c

c c

c c

c c

c c

2

1

1
1

1
1

2

2 2

2 1

1 1

2 1

1 1

2 1

0

1
2

1
2 27

=

³
�

�
��

�

�
��

�

�
��

�

�
��

�

!
   

"

$
###

� �

- -ln

ln /
,

max ,
ln( / )

ln( / ) , min ,
ln( / )

ln( / ) ,

, ( )

4 9
4 9
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(if pc1
1 2= /  or pc2

1 2= /  the corresponding class corre-

sponds to one where all possible patterns are equally likely,

Fig. 7. As Fig. 6 but with H( , ) 20
1 2
e e = .

Fig. 8. As Fig. 6 but with N
X1

10=  and N
X 2

40= .

Fig. 9. As Fig. 6 but now the number of address lines is different for the
two training classes. Training class c

1
 uses n = 3 and training class c

2

uses n = 8.

Fig. 10. Expected scores and conditional probability as function of the
Hamming distance along the line equivalent to the dotted path in Fig. 5.
The Hamming distance between the prototypes is H( , ) 30

1 2
e e = . The

noise levels are q
1

0.20=  and q
2

0.05= . The number of address lines
n  is 5. Example size N = 100 . Numbers of examples in each of the two
training classes: N N

X X1 2
20= = . H H y

1 1
( , )= e  and H H y

2 2
( , )= e .
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independent of the prototype.) It should be noted that for any
specific choice of prototypes in will in general not be possible
to construct examples that covers the whole range of variation.

With the MAP-decision border in Hamming space
given by (27), (26) is now used to obtain the correspond-
ing expected score values. Examples of decision borders in
score space are shown in Figs. 11-15. The depicted clusters
of data points are obtained from Monte Carlo simulations
with 200 test examples drawn from each of the two exam-
ple distribution. The corresponding scores are average
values over a number of n-tuple classifiers trained on
separate training sets, which were drawn at random from
the underlying example distributions. The two training

prototypes are separated by a Hamming distance of 10.
Larger Hamming distances between the prototypes will
give better separation between the two clusters and vice
versa. The error rates obtained using respectively the tra-
ditional WTA principle and the new decision borders are
given in the figures.

The data clusters in Figs. 11-15 illustrate clearly that the
conventional decision line given as

S , S ,c c c cy y
c c

1 1
1

2 2
2

; ;
; ;

4 9 4 9
Y Y, ,

=

will, in general, not be applicable unless the Hamming dis-
tance between the prototypes is sufficiently large. Indeed,

Fig. 11. Decision border according to the MAP principle. q q
1 2

0.1= = ,
N

X1
10= , N

X 2
40= , N = 100 , n = 5. Error rates on depicted test data

using WTA is 30.3 percent and using the MAP border, it is 1.3 percent.

Fig. 12. Decision border according to the MAP principle. q q
1 2

0.1= = ,
N N

X X1 2
20= = , N = 100 , n = 5 and n = 8 for class c

1
 and c

2
, re-

spectively. Error rates on depicted test data using WTA is 27.3 percent
and using the MAP border it is 1.8 percent.

Fig. 13. Decision border according to the MAP principle. q q
1 2

0.1= = ,
N

X1
10= , N

X 2
40= , N = 100 , n = 5 and n = 8 for class c

1
 and c

2
,

respectively. Error rates on depicted test data using WTA is 0.8 percent
and using the MAP border it is 1.0 percent.

Fig. 14. Decision border according to the MAP principle. q
1

0.1= ,

q
2

0.2= , N N
X X1 2

20= = , N = 100 , n = 5. Error rates on depicted test

data using WTA is 2.5 percent and using the MAP border it is 1.5 percent.
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the decision lines based on MAP considerations separates
the data clusters in a desired manner.

The pure effect of having different number of examples
in competing training classes is illustrated in Fig. 11. The
class represented with most training examples will on aver-
age be better described than the smaller one. This in general
implies that for a given Hamming distance to the training
prototypes the likelihood of obtaining votes on the better-
represented class is increased as is also illustrated in Fig. 8.
By applying the MAP principle the different score levels are
taken in to account and on the depicted data set the test
error rate decreases from 30.3 percent to 1.3 percent.

The number of address lines used in the n-tuples also af-
fects the score levels. When the number of address lines is
increased, the expected output score will decrease due to a
more sparse coverage of the addressable columns. This be-
havior is depicted in Fig. 9. When two training classes are
sampled with a different number of address lines, this be-
havior affects the MAP-decision border as shown in Fig. 12.
Again, the border has shifted from the standard n-tuple
decision line to counteract the different levels of the scores.

As shown in Fig. 13, a difference in the number of ad-
dress lines can counteract the effect caused by different
numbers of training examples in the involved classes. The
test error rates obtained on the depicted test examples us-
ing the WTA scheme and the MAP scheme are almost iden-
tical in this case. Therefore, if the WTA-principle was kept
skewed priors could be dealt with by choosing the number
of address lines individually for each class. In general,
however, restricting the number of address lines unneces-
sarily might not be advisable, since this parameter can be
used to improve the overall performance [11].

Another important characteristic of the training set,
which influences the position of the MAP decision curve, is
the noise level of the distribution. For the underlying ex-
ample distributions used in the above analysis, the noise
level constitutes the variation of the class “around” its

prototype. If the noise level (i.e., the example variation) is
not the same in the different classes, the MAP-decision bor-
der will deviate from the WTA-border as shown in Figs. 14-
15. Fig. 15 illustrates a case where the characteristics of the
training sets and the parameters of the n-tuple classifier
make the WTA-principle unusable. On the other hand, the
MAP-decision border can separate the classes without er-
rors on the test set.

5 IMPLICATIONS OF ANALYSIS ON REAL DATA

In Section 4, we saw that at least for one statistical frame-
work it is possible to modify the n-tuple classifier so that it
on average operates as the Bayesian or maximum likeli-
hood classifier. It is straightforward to incorporate general
costs associated with different decisions into the scheme.
However, in order to calculate the appropriate decision
borders we made use of the stochastic parameters charac-
terising the underlying distributions. In real world prob-
lems, the training examples are usually drawn from an un-
known distribution and in the few cases where sufficient
knowledge about the underlying distribution exists, one
would often be better off using this information directly to
derive the MAP or ML estimator.

In the case with unknown or insufficient information
about the underlying example distributions, it is impossible
to determine the decision border from calculations as those
shown in Section 4. Still, however, the theoretical analysis
tells us how the decision borders would actually be for dif-
ferent scenarios if we knew them. This knowledge is useful
for determining the variability we should allow when de-
termining the new decision rules. By combining this vari-
ability with a suitable estimate of the test error, it would
actually become possible to determine feasible decision
borders for real cases. The approach would be to choose
from the set of possible borders the one that minimised the
estimated test error. A good estimate of the test error (and
test output scores) can be obtained using a leave-one-out
cross-validation test on the training examples. As shown in
eq. (6) it is simple to perform such a test on an n-tuple ar-
chitecture. Accordingly, it becomes also simple to utilise the
implications of the analysis in Section 4. The way this is
achieved is to construct a decision border that minimises
the number of obtained cross-validation errors. It is outside
the scope of this paper to address in detail the possible
schemes for determining the decision borders as well as the
related computational overhead. These topics will be ad-
dressed elsewhere. However, one possible scheme that can
produce a family of curves that qualitatively look similar to
those depicted in Figs. 11-15 is to use a Bézier curve with
four control points. The first and last control points are po-
sitioned in (0, 0) and (1, 1) of a given two-dimensional score
plot and the two remaining control points are chosen so
that the resulting decision border minimises the leave-one-
out cross-validation error.

The so-called BelgianII data set [19] is one of the data
sets that have been used for comparative trials in the Stat-
Log project [13]. Results obtained by applying a standard n-
tuple classifier on this data set has also been reported [16].
The n-tuple results reported are rather poor when compared

Fig. 15. Decision border according to the MAP principle. q
1

0.1= , q
2

0.3= ,

N N
X X1 2

100= = , N = 100 , n = 5. Error rates on depicted test data using

WTA is 43.5 percent and using the MAP border it is 0 percent.
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with the other methods that were tested in the StatLog
project. As one of the two training classes dominates the
training set (as well as the test set), we have a situation with
skewed priors. From the above analysis, it can therefore be
expected to improve the results by replacing the WTA prin-
ciple with a new decision border. We performed training
using 500 n-tuples (or LUTs) each with n  equal to 20. Half
of the address lines were selected at random, and the other
half was guided by a principal component analysis of the
input. The scores obtained on the training examples are
depicted in Fig. 16. As all training examples obtain the larg-
est possible score on their corresponding classes, it is obvi-
ous that Fig. 16 does not provide a basis for determining the
MAP decision border. Fig. 17 shows the leave-one-out
cross-validation scores obtained on the training set together
with a decision border minimising the cross-validation errors.

The decision border is a Bézier curve determined by using the
procedure given above. The implication of using this deci-
sion border on the test set is shown in Fig. 18. The resulting
test error rate is 1.1 percent, which should be compared
with an error rate of 2.5 percent obtained using the WTA-
principle.

Fig. 19 shows individual class error rates obtained by
training and testing on segmented handwritten digits from
the NIST database [15]. The digits were scaled to a 16 � 16
binary representation. During training, we used 100 exam-
ples for each of the digit classes 0, 3, and 6, whereas 500
examples were used for each of the remaining classes. The
test set consisted of 10,000 examples distributed with 1,000
in each class. The number of address lines per tuple was 10
and identical for all classes. All address lines were picked at
random and the net consisted of 1,000 n-tuples. As seen
from Fig. 19, use of the normal classification scheme (WTA)
leads to very large error rates on the small training classes;
both in a cross-validation evaluation on the training exam-
ples and in classifying the test set. From the results of the
theoretical investigation in Section 4, it would be expected
that proper design of the decision borders between the
classes in score space can lead to an improved performance.
As with the BelgianII data set we designed the new deci-
sion borders to minimise the cross-validation error rate. The
implication of using the new decision criteria on the test set
is also illustrated in Fig. 19. It is observed that the error
rates on the classes with low representation in the training
set have obtained a level close to that of the better-
represented classes. The results demonstrate quite con-
vincingly the impact of the novel decision scheme.

6 DISCUSSION

The expected score levels calculated in Section 4 corresponds
to the situation where all n-tuples used for a specific class use
the same number of address lines n . It is, however, simple to

Fig. 16. Scores on training examples for the BelgianII data set. There
are 2,000 training examples each consisting of 57 real attributes, which
are thermometer coded using 20 bits.

Fig. 17. Cross-validation scores for the BelgianII training set. Estimated
decision border is shown. Cross-validation error rate with the new deci-
sion border is 1.9 percent and with the WTA principle it is 3.5 percent.

Fig. 18. Scores for the 1,000 test examples in the BelgianII data set.
Decision border obtained from cross-validation scores is shown. Test
error rate with the new decision border is 1.1 percent and with the WTA
principle it is 2.5 percent.
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extend the formulas to the cases where different numbers
of address lines are used. The overall expected score is
obtained by producing a weighted sum of expected scores
calculated using the individually values of n . The weights
simply correspond to the relative occurrences of the respec-
tive values of n .

In the above analysis, we focused on two different
training classes. It is, however, not a problem to treat
several classes. For all classes, the expected score levels
are calculated using (26) and for each class we can by use
of (12) find the conditional probabilities of the class
given the data. Again, we can use a ML or MAP principle
as decision criterion and then determine for each class
the region in output score space where it is the most
likely class to occur. For real applications, the decision
regions are found by minimizing the cross-validation
error rate as described in Section 5. A detailed descrip-
tion of possible schemes for adjusting the decision bor-
ders will be given elsewhere.

Although the statistical framework we introduced does
not consider statistical correlation between different input
data, it has been able to explain the essential behavior ob-
served using n-tuple classifiers. In addition, our analysis only
involves the cases where the address lines are picked com-
pletely at random although in many cases it is desirable to
select the address lines using, e.g., a priori knowledge. It is
clear that such modifications of our framework would lead
to changes in the theoretical expressions. However, it can be
expected that the overall qualitative dependency of the out-
put scores on the number of address lines, the numbers of
training examples, and the noise within the training classes,
will be the same. We therefore believe that the main conclu-
sions of our analysis and the derived implications on the

decision boundary are valid for a broad range of real world
data, as is also confirmed from our results given in Section 5.

As a consequence of the results given in Section 4, the
classification obtained using the n-tuple net does not neces-
sarily correspond to the class having the largest score. Ac-
cordingly the difference in score levels will in general not
give much sense as a confidence level. A more reasonable
measure will be the distance to the MAP or ML decision
border. A more thorough analysis of the classification con-
fidence is a subject for future research.

7 CONCLUSION

In spite of the simplicity and small computational needs
of the n-tuple classifier, there have been many reports in
the literature on competitive performances obtained with
this architecture. On the other hand, there are also many
examples where the standard n-tuple architecture per-
forms very poorly when compared with most other clas-
sification schemes. Due to lack of a proper theory de-
scribing the architecture, it has been difficult to explain
why and when the n-tuple classifier can be expected to
perform well, although experimental studies have given
some ideas.

This paper has introduced a statistical framework that
has provided the possibility of performing a theoretical
analysis of the connection between the output scores of
the n-tuple net and the underlying distributions of the
training data. The results are able to explain the experi-
mental behavior of the classifier and shows that the
normally used winner-takes-all principle in general is
not applicable. We have shown that by modifying the
decision criteria the classifier is likely to operate as a
close approximation to the Bayes or maximum likelihood
estimator. We have also devised a scheme that makes it
possible to take advantage of the theoretical insight in
real learning cases. One type of problem that can be
handled with this novel scheme is the one caused by
skewed training priors that often has caused the n-tuple
classifier to perform unsatisfactorily.

APPENDIX A
The moments for the binomial distribution B N p( , )  can be
found making use of its moment generating function; see
e.g., [18],
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and the nth moment is given by the formula:
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where M( )n denotes the nth derivative. The first four mo-
ments are listed below:
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Fig. 19. Error rates obtained on segmented handwritten digits using,
respectively, WTA decision borders and optimized decision borders.
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APPENDIX B
NOMENCLATURE

; :      Set of examples.

;c :      Set of examples belonging to class c .

x :      A training example.

y :      A test example.

xj :      The jth example from the set ; .

xi :      ith value of example x .

xji :      ith value of example xj .

Nx :      Number of examples in the set X .

N :      Total number of inputs to the n-tuple classifier.

n :      Number of inputs to each n-tuple.

c :      Class label.

C xT 0 5 :         True class label corresponding to example x .

W :       Set of LUTs.

NW :       Number of LUTs.

ai y1 6 :       Index of the column in the ith LUT being
      addressed by example y .

Y :       Set of address lines used in the n-tuple net.

y ij :       Index (also denoted the address line) of the jth

                     input sampled by the ith LUT.

pc :       Success rate of binomial process associated with

      prototype e c .

q pc c= -1 :  Noise associated with prototype e c .

va y ci ( ), :       The number of training examples accessing the

      LUT cell addressed in the ith LUT by the
      example y  and the class c .
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