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Abstract 

This paper presents a novel approach to real-time 
texture classification, derived from the n-tuple method of 
Bledsoe & Browning, for use in industrial applications. 
In recent years, various approaches have been presented 
for the texture classifcation problem. However, few have 
the computational tractability needed in an automated 
environment. In this paper, methods for texture 
classijkation based on approximations to the nth order 
co-occurrence spectrum are discussed. Limitations of 
these methods are highlighted before a new method 
based around Marr's zero crossing sketch is presented. 
Preliminary results are presented comparing the new 
method and other n-tuple based schemes. 

1. Introduction 

Texture classification remains a fundamental task for 
image processing. A wealth of texture recognition 
methods are currently available [1][2], however few have 
the computational tractability needed in an automated 
environment. In this paper approaches based on n-tuple 
pattern recognition are discussed. N-tuple pattern 
recognition has achieved some success in real-time 
pattern recognition tasks [3] and was extended to texture 
recognition by Patel and Stonham [4] in the Binary 
Texture Cosccurrence Spectrum. 

2. Binary Texture CO-occurrence Spectrum 
(BTCS) 

In the BTCS textural information is represented at two 
distinct scales; that of micro-texture and that of 
macro-texture. Micro-texture information is extracted 
from an image in n pixel samples, termed n-tuples, using 
local neighbourhood operators (see fig. 1). 
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Since the BTCS is used to represent binary textures, 
each n-tuple represents a binary state in the range 0 to 
2"-1. Differences in the Occurrence of these n-tuple states 
constitutes differences in texture at the micro-texture 
scale. However, differences in the relative occurrence of 
these states over a textural region can be used to describe 
texture at the macro-texture scale. 

Cross Operator Horizontal Vertical 

Left Diagonal Right Diagonal 

k = inter pixel spacing of masks 

Fig.1 Local neighbourhood operators (4-tuple) 

Hence the BTCS characterises a sample texture by 
recording the Occurrence of these n-tuple states over the 
texture sample to form a 2" dimensional state vector. 
These state vectors, termed the Binary Texture 
CO-occmence Spectrum, can be readily sorted by 
conventional pattern recognition techniques as 
demonstrated in [4]. The simplicity and computational 
efficiency of this method make it an attractive solution to 
real-time texture classification. However real world 
textures are rarely binary in nature and the method's 
performance is restricted by the effectiveness of the 
thresholdmg techniques employed. 



3. Grey Level Texture CO-occurrence 
Spectrum (GLTCS) 

Unfortunately the BTCS does not scale up to the 
multivalued grey level case since a grey level image 
containing g intensity levels would produce a 
co-occurrence spectrum of dimensionality g" . This 
necessitates some approximation of the n-tuple states to 
be made in order to reduce the dimensionality. Typically 
Rank codrng is utilised [5][6][7] reducing the 
dtmensionality to n! Again the method appears attractive 
to the industrial inspection environment as demonstrated 
by the authors in [SI. 

However, in reducing the dimensionality needed to 
represent the occurrence of the n-tuple states, rank 
coding is indiscriminant in the way it divides the pattern 
space; little or no attention is given to what textural 
features the rank codes are extracting. Since n-tuples are 
extracted by local neighbourhood operators, the grey 
levels changes within the n-tuples will occur gradually. 
This results in n-tuples extracting low order intensity 
profiles, typically 'edge' and 'bar' profiles. Unfortunately, 
as fig. 2 demonstrates, rank coding biases the coding 
towards higher order profiles which are less common in 
the data and more susceptible to noise. 
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Fig.2 Rank coding of &tuples and the 
luminance profiles they represent 

Thus low order profiles (RANK codes 6 & 19) 
dominate the co-occurrence spectrum resulting in all 
texture spectrums appearing similar for all textures (see 
Fig. 3). Wang and He[9] present a similar method, the 
Texture Unit and Texiure Spectrum (TUTS), which 
attempts to code local 3x3 window profiles as texture 
units. Examination of the texture spectra produced by 
this method confirms that only a discrete set of the 6561 
possible texture units actually occur in the textures. 
Again these correspond to 'edge' profiles at various 
orientations suggesting that in common with more 
elaborate texture description methods, texture 
discrimination is based on the spatial distribution of 
simple edge profiles at different spatial frequencies. 

Fig. 3 GLTCS representation of Brodatz 
Textures appear similar 

4. Zero Crossings Texture Co-occurrence 
Spectrum (ZCTCS) 

There have been several methods for local frequency 
decomposition presented in the literature, i.e. Gabor, 
wavelet etc. Fortunately in an industrial application the 
environment is usually controlled and it is highly likely 
that only a small discrete set of scales will be important. 
By choosing the dominant scale of the textures under 
inspection, smoothing (low pass filtering) can be 
performed at that scale. Subsequently a gradient operator 
can be used to describe the edge features at that scale. 

In this paper the filter chosen to perform these two 
tasks is the Laplacian of Gaussian (LOG) or Mexican Hat 
Filter (Eqn. 1) as used by Marr [lo]. An important 
property of the filter is it's balance between positive and 
negative values. This means that the response to 
darMight edges is exactly opposite to that of lightldark 
edges. The image resulting from convolution of this filter 
with a texture defines edges within the texture as zero 
crossings in the new image. 
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D4 D5 D6 D9 D16 D17 D28 D29 D38 D85 

Fig.4 Brodatz textures , grey (top row), LOG filtered (middle), Binarized LOG (bottom) 
Textures are (L to R) : pressed cork, expanded mica(x3), woven aluminium wire, grass, herringbone weave, 
herringbone weave(x4), beach sand(x4), beach sand, water, straw matting 

In order to reduce the complexity of future processing 
the output of the filter is binarized. This binarization acts 
as a 'blob' detector whilst preserving the sign of the zero 
crossings present in the image. As can be seen in Fig.4 
the grey level texture recognition problem has been 
reduced to a binary texture recognition problem which 
can be resolved by the BTCS. The resulting method 
retains the attractiveness of the BTCS whilst making it 
independent of threshold level at the small computational 
expense of a simple pre-processing operation. 

5. Results 

In order to demonstrate the effectiveness of the new 
method it's performance has been compared with the 
BTCS, GLTCS and the TUTS of Wang & He [9]. To 
evaluate each method's discriminating performance, 
classification has been performed on the set of ten 
brodatz textures shown in Fig.4 (top row). Ten sample 
windows were randomly chosen from each of the ten 
texture classes. Each of the samples was then 
transformed using the four methods under test. Following 
the transforms the resulting texture spectrums (state 
vectors) were classified using a 'leave-one-out' procedure 
and a simple Euclidean distance classifier[ 1 11. 

Table 1 shows the classification results for various 
interpixel spacings. A window size of 64 pixels was 
chosen as it effectively extracts typical archetypes for the 
textures. The texture micrographs were 256 x 256 pixels 
x 256 grey level images taken from the brodatz texture 
album [12]. In the BTCS, GLTCS and the ZCTCS 
methods, four 4-tuple operators, horizontal, vertical, 
right and left diagonals were used to form 64,96 and 64 
dimensional texture spectrums respectively. To binarize 
the textures a global threshold level of 80 was used in the 
BTCS method. The TUTS method was implemented as 
in [9] using a 3x3 operator and a 6561 dimensional 
texture spectrum. In the ZCTCS the standard deviation of 
the filter, 0, was chosen to match the dominant scale of 
the majority of the texture set (0 = 1). This defines the 
width of the excitatory region of the mexican hat filter 
and thus defines the optimal interpixel spacing for the 
n-tuple operator. 

r- ZCTCS I 100% 1 100% I 97% I 2.7 I 
ZCTCS 1 95% I 100% 1 92% 1 2,7 I 

Table 1 Result of classification 
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Also shown in the results is the performance of the 
ZCTCS with a simple cross operator instead of the four 
orientational masks. As the results demonstrate the 
performance of the ZCTCS is comparable with others 
methods. However the important advantage of the 
method is in which samples are miss-classified. Any 
misclassifications made by the ZCTCS are exclusively 
associated with classes 2 and 7 (D5 and D28). This is a 
resuit of the scale of the LoG filter being chosen to 
&scriminate the other, finer scale textures. In order to 
classify all textures, another filter would be needed to 
discriminate D5 and D28. 

The improved performance of the ZCTCS over the 
GLTCS can be explained on inspection of the 
co-occurrence spectra associated with each method. The 
ZCTCS clearly transforms each texture to a distinct 
cluster in feature space, whereas the GLTCS clusters all 
textures in the same region of feature space as 
demonstrated in fig. 3. Using Fisher's linear discriminant 
criterion [ll], the relative performance of the ZCTCS 
and GLTCS has been investigated. 

A measure of the separation of two classes is the 
difference of their sample means. We define rn, as the 
sample mean for class i, given by: 

where x is a feature vector representation of a texture 
X ,  is set of all vectors, x, which belong to class i 
n, is the cardinality of Xi 

It follows that the difference between sample means of 
classes i and j, in Euclidean distance sense, is given by: 

In order to obtain good separation between classes this 
difference must be maximised relative to some measure 
of the standard deviations for each class. In Fisher's 
linear discriminant, the within class scatter is defined: 

Combining the two measures, Fisher's criterion is 
defined as: 

( 5 )  

The goal of each texture transform is to map each 
texture to a unique cluster in feature space. This is 
achieved by maximising the separation between classes 
whilst minimising the within class scatter. These criteria 
are represented by maximising the Fisher criterion 
derived above. The performance of the GLTCS and 
ZCTCS is demonstrated in tables 3 and 4 re-vely. 

As can be clearly seen in the tables, the ZCTCS 
improves on the GLTCS for the majority of textures used 
at the expense of reducing discrimination between 
textures two and seven @5 & D28). As already 
explained this is a result of the mexican hat filter being 
tuned to the dominant high spatial frequencies in the 
other textures. Since a higher dmensionality of the 
feature space would result in greater scope for class 
representation, the result has increased significance as 
the ZCTCS has a lower dimensionality than that of the 
GLTCS. 

Table 2 Fisher's Criterion for the GLTCS 
(class numbers correspond to Fig.4) 

11 7 1 0.39 1 0.07 I 2.95 10.38 1 2.56 10.91 I 1 1 11 

Table 3 Fisher's Criterion for the ZCTCS 
(class numbers correspond to Fig.4) 
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6. Conclusions 

The new method has been shown to extend the 
usefulness of n-tuple pattern recognition methods for 
texture classification. Results presented demonstrate how 
the n-tuple methods can be 'tuned' to certain spatial 
frequencies in the texture. Due to the low dimensionality 
of the method's representation, particularly the cross 
operator, several spatial frequencies could be described at 
once without degrading performance significantly. 

Current research on texture assumes some form of 
frequency decomposition of the input followed by a 
non-linear operator as the first stage of processing (e.g. 
LOG, Gabor etc.). The question now is how to represent 
the next level of processing. In this paper we present a 
simplistic, engineering solution which makes real-time 
texture recognition possible. 
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