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Abstract 

The usual algorithms in pattern recognition as­
sume that an n-dimensional domain in the n-dimensional 
representation space corresponds to each of the class­
es. The subspace model assumes that an m-dimensional 
subspace (m<n) passing the origin corresponds to a 
class. The shortcomings of the original version of 
the subspace model, called CLAFIC, were eliminated in 
the new version, called MOSS, that is explained in the 
present paper. The MOSS version assigns mutually or­
thogonal subspaces to classes, where the number of 
classes can be equal to or larger than 2. It also 
provides a special "reject" subspace.. This revised 
version was made possible by new theoretical and com­
putational improvements. A preliminary experiment 
promises a large and fruitful field of applications 
for this model in the future. 

1. Introduction 

According to the vectorial method of pattern rec­
ognition, it is customary to assign an n-dimensional 
region or "zone" in the n-dimensional representation 
space to each of the classes into which objects are to 
be classified. Such a zone may be decided either di­
rectly by a decision-function derived from the para­
digms (class-samples) or indirectly by the condition 
that the probability of a point belonging to a certain 
class is larger than the probability of its belonging 
to any other class. 

In contradistinction to the zone model, another 
model was introduced by one of the present authors 
(S.W.), 1 , 2 according to which a subspace of dimensions 
less than n (usually passing the origin) is assigned 
to a class. This is a natural outgrowth of the SELFIC 
method 3 which may be interpreted as an adaptation of 
the principal component method of statistics to the 
problem of dimensionality reduction in the vectorial 
representation. In fact, when we have a collection of 
vectors belonging to different classes, an application 
of the SELFIC method reveals that except for small er­
rors, most of the vectors are located within a sub­
space of dimensionality considerably smaller than n. 
If this is the case, it is obviously tempting to try 
to apply the same method to the vectors of each class 
separately. It is to be readily expected that vectors 
of different classes will define different subspaces, 
thus providing the basis for a "subspace model" of 
classes. The decision of class-affiliation of a new 
vector may be decided for instance by comparison of 
the magnitudes of the projections of the vector onto 
the different class-subspaces. Thus, the method of 
CLAFIC was born.l 

The CLAFIC method was erogrammed and successfully 
applied to some problems,1 • but the method involved 
two difficulties. (1) In some cases, the intersection 
of two subspaces receives a large number of dimen­
sions. (2) In some cases, the "angle" between the 
subspaces becomes so small that the discrimination be­
comes very difficult. What we present in this paper 
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is, so to speak, a new version of CLAFIC, avoiding the 
difficulty (1) by properly introducing a "reject" sub­
space, and the difficulty (2) by orthogonalizing the 
class-subspaces by the use of a non-orthogonal linear 
transformation. This new method will be hereafter re­
ferred to as MOSS, standing for multiclass orthogonal 
subspace method. The modifier "multiclass" here is 
important because in the meantime Fukunaga and Koontz 5 

introduced a kind of special coordinate system that 
allows to represent two classes as subspaces orthogonal 
to each other. Their method, however, does not allow 
to accommodate more than two classes. We have pub­
lished two interim and partial reports 6 • 7 on the MOSS 
method in the past, but the present report is more com­
plete and free from certain minor errors involved in 
the earlier reports. 

The CLAFIC method involved a peculiar difficulty 
of logical nature.B If we interpret the implication 
A+B (predicate A implies predicate B) meaning that the 
subspace corresponding to A is a subsubspace of the 
subspace corresponding to B, then we obtain a modular 
lattice of predicates, which is not necessarily Bool­
ean, i.e., we cannot indiscriminately use the distribu­
tive law of logic. 9 This difficulty is not fatal, be­
cause the vectors belonging to a class are found more 
or less in a subspace, but not all the vectors of the 
subspace correspond to objects of the class. In the 
revised version MOSS, howeVer, the class-subspaces are 
all orthogonal, as a result of which the distributive 
law is reinstated and the usual logic can be used with­
out restriction. In this respect, too, the MOSS is 
superior to the CLAFIC. 

Before going to explain the MOSS method, we shall 
insert a section introducing mathematical tools that 
will be used later. To save space, some of the longer 
proofs will be omitted. 

2. Mathematical Tools 

The projection operator P in the n-dimensional 
real space is an n x n real, symmetric, idempotent ma­
trix, i.e., 

and 

(2.1) 

(2. 2) 

These relations are obviously invariant for an orthog­
onal transformation. As a result, (2.2) means that 
the eigenvalues of P must be either 0 or 1. The 
eigenvectors corresponding to eigenvalue 1 form a sub­
space (passing the origin) of m dimensions, where 

m = trace P (2.3) 

We can take arbitrarily a set of m mutually orthog­
onal (normalized) vectors in this m-dimensional sub-

space, which we denote ~(k), kal,2, ••• ,m. 

(2.4) 

The matrix P can be written as 

~ (k) ~ (k)T (2.5) 
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The matrix P defines the subspace subtended by ~(k), 
k=l,2, ••• ,m, and conversely a subspace defines a pro­
jection operator P. Subspace and projection operator 
correspond one-to-one; consequently we may use synony­
mously the term subspace and the projection operator 
corresponding to it. 

The eigenvectors corresponding to eigenvalue 0 
form a subspace of (n-m) dimensions. If we take arbi­
trarily (n-m) mutually orthogonal, normalized vectors 

(k) 
~ , k-m+l,m+2, ••. ,n, we can form a set of n base 

(k) . 
vectors~ , k=l,2, ••• ,n. If we express the matrix P 

using its own eigenvectors, ~(k), k=l,2, ••• ,n, as the 
base vectors, the matrix will have first m diagonal 
elements equal to 1 and all other elements equal to 0. 
If we apply an orthogonal transformation that leaves 
invariant the subspace subtended by the first m 
eigenvectors (and hence the subspace subtended by the 
last (n-m) eigenvectors, too), this particular form of 
the matrix will remain unchanged. If we express the 
matrix P using a set of base vectors other than the 
~'s, the matrix will not have this particular form. 

If we apply the matrix P from the left on an 
arbitrary vector x, the result ~ will be the pro­
jection of x on the subspace defined by P. We can 
see this by observing 

x' = Px 
m 
L (~(k)T x) ~(k) (2.6) 

k=l 

The matrix 0 is obviously a projection operator satis­
fying (2.1) and (2.2) and corresponds to the subspace 
of 0 dimension, and the projection of any vector on 
this subspace is zero. The matrix 1 (identity matrix) 
is also a projection operator and corresponds to the 
entire n-dimensional space, and the projection of any 
vector on this subspace is the original vector itself. 
The matrix (1-P) obeys also (2.1) and (2.2), meaning 
that it is a projection operator. It defines the sub­
space subtended by the eigenvectors of P correspond­
ing to eigenvalue 0. The obvious relation 

x = Px + (1-P)x (2.7) 

means that x is the vectorial sum of the projection 
of x on the subspace of P and the projection of x 
on its complementary subspace. 

Two subspaces are said to be orthogonal, if any 
vector of one subspace is orthogonal to all vectors of 
the other subspace. It is easy to see that this con­
dition is equivalent to the condition that the pro­
jection operators P1 and P2 corresponding to them sat­
isfy 

(2.8) 

which we write also 

(2.9) 

Note that P1P2 = 0 implies that P2P1 = 0, since P2P1 
T T T T = P
2
P

1 
= (P1P

2
) = 0 = 0. The orthogonality relation 

is not transitive. A special case of orthogonality is 
P 1 (1-P): 

2 P{l-P) = P-P = P-P = 0 (2.10) 

Subspace P
1 

is said to be "included in" subspace 

P
2 

if any vector of P
1 

is a vector of P2• It is easy 

~~ see that this condition is equivalent to 
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(2.11) 

which we also write 

(2.12) 

Note that P1P
2 

= P1 implies P2P1 = P1 and vice versa, 

since P2P1 = P~Pi = (P1P2)T = Pi = P1• The inclusion 

relation is transitive. If P1 is included in P2 , i.e., 

if (2.11) is the case, the difference P2-P1 is a pro­

jection operator satisfying (2.1) and (2.2). The fact 
that (1-P) is a projection operator is a special case 
of this theorem. It should be noted that O+P+l for any 
P. 

Subspaces P
1 

and P2 are said to be "compatible" if 
(k) 

there exists a set of base vectors~ , k=l,2, ••. ,n 
such that subspace P

1 
as well as subspace P2 is sub-

tended by some of the ~·s. This condition can be ex­
pressed as commutativity of matrices P1 and P2 

(2.13) 

which we also write 

(2.14) 

The compatibility relation is not transitive. If 
(2.12), then (2.14). If P1 and P

2 
are compatible, the 

product 

(2.15) 

is easily seen to be a projection operator and 

Q + P
1 

and Q + P
2 

(2 .16) 

The three subspaces P
1
-Q, P2-Q, Q are mutually orthogo­

nal 

(P
1

-Q) 1 (P
2

-Q) 

(P
2
-Q) 1 Q 

Q 1 (P
1

-Q) } (2 .17) 

Hence, we can select a single set of orthogonal base 
vectors such that some of them belong to subspace P1-Q, 

some others belong to subspace P
2
-Q, and some others 

belong to subspace Q. Subspace P1 is subtended by the 

base vectors of the first group and the base vectors of 
the third group. Subspace P2 is subtended by the base 
vectors of the second group and the base vectors of 
the third group. The remaining base vectors subtend 
the complementary subspace 1 - (P1 - Q) - (P2 - Q) - Q 
= 1 + Q - P1 - P

2
• It is easy to show that this ex-

pression is a projection operator. Q is the intersec­
tion of two compatible subspaces P1 and P2. 

The projection operators, being matrices, can be 
added, subtracted and multiplied, but the result of 
such an arithmetic operation is not necessarily a pro­
jection operator. We have, however, the following 
rules: (1) If P

1 
~ P

2
, then P

1
P

2 
(= P2P1) is a projec-

tion operator; {2) If P1 + P2 then P2 - P1 is a projec­

tion operator; (3) If P1 1 P
2

, then P1 + P2 is a pro­

jection operator. The first two have already been men­
tioned. The third one is easy to prove. 

Now we can introduce "conjunction" P1 n P2 of two 

projection operators P1 and P2 with the help of the 

concept of inclusion (+). A projection P
3 

is said to 



be conjunction P
1 

n P
2 

if P
3 

satisfies the conditions: 

(i) P
3 

+ P1 and P
3 

+ P2 , and (ii) if x + P1 and 

x + P
2

, then x + P
3

• With some mathematical manipula­

tion, we can prove10 that the infinite product of P1 and P2 can be considered to be P3 : 

(2.18) 

It is re.adily seen the P 
3 

corresponds to subspace con­

sisting of all vectors that belong to both P1 and P2• 

In other words, P
3 

is the common subspace, i.e., the 

intersection, of subspace P1 and subspace P2• It may 

be noted that if P
1 
~ P2 then P1 n P

2 
= P1P

2 
= P

2
P

1
• 

We defined conjunction with the help of inclusion, but 
we can conversely define inclusion by conjunction. 
P1 + P2 is equivalent to P1 = P1 n P2 • Special cases 

are 0 n P = 0 and 1 np = P for all P. 

The derivation of (1 - P1) from P1 is called 

"complementation" and we write 

I P = (1 - P). (2 .19) 

From this definition follow the three basic laws of 
complementation: 

i) II p = p 

ii) P
1 

+ P
2 

is equivalent to I P
2 

+I P1 

iii) If P + I P then P = 0. 

} (2.20) 

From our definition, we have 0 I 1 and 1 = I 0. 

The "disjunction" P 
1 

U P 
2 

can now be defined by 

P1 U P2 =I (I P1 n I P2) (2.21) 

= 1- [ .•. (l-P
1

)(1-P
2
)(1-P1)(1-P2) •.• ) (2.22) 

The disjunction \l U P2 thus defined is a subspace 

formed by all the' linear combinations of a vector in 
P1 and a vector in P2• Thus P1 U P2 includes also 

vectors which are not found in either P1 or P
2

• Actu­

ally, the disjunction can be defined first by condi­
tions similar to the ones used in defining the con­
junction, just inverting the direction of arrows, and 
then prove with the help of (2.20) that the conjunc­
tion and disjunction are related by de Morgan's rule 
(2.21). Then, it is as well justified to define the 
disjunction directly by de Morgan's rule like (2.21). 
P1 + P2 is equivalent to P2 = P1 UP2• Special cases 

are 0 Up= P and 1 UP= 1 for all P. 

The conjunction and disjunction as thus defined 
obey the following five basic laws: 

i) Idempotent law: P
1 

n P1 = P1 , P1 U P1 P
1 

(2.23) 

ii) Commutative law: P
1 

n P
2 

= P2 n P1 , 

iii) Associative law: 

(P
1 

n P
2

) n P
3 

P1 n (P
2 

n P
3

) 

(Pl U P2) U p3 Pl. U (P 2 U P3) 

iv) Absorptive law: P
1 

n (P1 U P2) =; P1 

pl U (Pl (lp2) = pl 

(2.24) 

(2.25) 

(2. 26) 

v) de Morgan's law: I (P1 n P
2

) =I P
1 

U I P
2 

I (P
1 

U P
2

) =I pl n1 p
2 

(2.27) 

This shows that the projection operators, including 0 
and 1, form a complemented lattice. 

It is very important to note that the 

Distributive laws: 

(P
1 

n P
2

) u p3 (P
1 

U P
3

) n (P
2 

U p
3

) (2.28) 

(P
1 

U P
2

) n P3 (Pl n P3) u (P
2 

n p
3

) (2.29) 

do not in general hold. For instance, suppose that P
1 and P2 are respectively x-direction and y-direction 

(each one is a one-dimensional subspace) and P
3 

is an-

other direction in the x-y-plane. Then P
1 

n P
2 

= 0, 

hence the left hand side of (2.28) is 0 U P
3 

= P
3

• 

But, on the right hand side both (P
1 

U P
3

) and 

(P 2 U P3) are the x-y-plane, as a result the right 

hand side becomes also the x-y-plane. Hence the dis­
tributive law breaks down. The lattice is non­
distributive. 

We can, however, prove the so-called modular law 
which states that if 

(2.30) 

then (2.28) holds. Since (2.30) is equivalent to 
P1 U P3 = P1 , we can state the theorem as follows: If 

(2.30) is true then 

(2.31) 

This theorem is also equivalent to the statement that 
if P1 + P3 , then (2.24) holds. See Ref. 11 for a 

proof. 

It is important to note that if all the P's at 
hand are compatible with one another, the distributive 
law holds for all of them. This is intuitively obvi­
ous since in this case there exists a single set of 

base vectors ~(k), k=l,2, ••• ,n, such that any P can be 
determined by a subset of the ~'s. Thus, P

1 
np

2 
is a 

P which is determined by those ~'s that are commonly 
included in P

1 
and P2 , and P

1 
U P

2 
is a P that is 

determined by those ~'s that are included in either or 
both of P1 and P2• Hence, the conjunction and dis-

junction acquire the usual set-theoretical meaning, 
and therefore the distributive law has to hold. The 
lattice becomes distributive or Boolean. 

If we assign a proposition to each P, then the 
lattice can be regarded as the logic of propositions. 
"P l is included in P 2" is interpreted as "P l implies 

P2." The conjunction and disjunction are interpreted 

as "and" and "or." The complementation is interpreted 
as negation. The modular lattice is isomorphic with 
the so-called quantum logic (for the case of finite 
dimensionality), and the distributive lattice is iso­
morphic with the usual Boolean logic. 

3. Class-Subspaces and Their Orthogonalization 

Let x(k) be an n-dimensional vector representing 
Cl 

the a-th paradigm (class-sample) of the k-th class, 

a=l,2, ••• ,v(k); k=l,2, .•• ,m. There are m classes, 
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and there are v(k) paradigms (class-samples) in class 

k. The autocorrelation matrix G(k) for class k is 
defined by 

(k) 
G(k) = ~ x(k) x(k)T I 

a=l a a 

which is normalized so that 

trace G(k) = 1 

(k) 
~ (k)T (k) 
<. X X 

a=l a a 
(3.1) 

(3. 2) 

The orthonormal base vectors peculiar to the k-th 
(k) 

class, {tjJj }, (j=l,2, ••• ,n), are defined as the 

eigenvectors of G{k) 

G(k),,, (k) .. '{k),,, (k) (j 1 2 ) 
"j "j "j ., ' ' .. • ,n (3.3) 

where the :I.'s are non-negative, and, due to (3.2), 
sums up to unity: 

n 
A (k) I: .. 1. 

j=l j (3.4) 

We choose the index j so that 

A (k) > (k) > A (k) 
1 - :~. 2 a ... - n (3.5) 

In most of the examples we encounter in pattern 

recognition, the eigenvalues :~.jk) decrease very fast 

with j, which means that the paradigm vectors of 
class k on the average have very little weight 

(square of components) along the directions tjJjk) for 

large j. This gives a picture that the vectors of 
class k are located in a subspace subtended by the 

tjJjk),s with small j's only. If we determine the di­

mensionality n(k) of the subspace by the condition 

A(k) < a(k) ~ 
j (3.6) 

the subspace so defined accounts on the average for 

about 100 a(k) % of the weight of the paradigms of 
class k.. We are usually surprised to see that for a 

relatively large value of a(k) (say, 0.95) the dimen­

sion n(k) of the subspace becomes very small compared 
with n. This fact supports the subspace model of 
pattern recognition. In practice, we take the same 

value a(k) for different classes in order to treat 
different classes on an equal footing. An appropriate 
value of a in-the case of SELFIC (in which we make 
only one subspace regardless of class affiliation) can 
be determined more or less by hunch and experience. 
In our present case, however, we may determine a so 
that the class discrimination becomes optimal. 

The subspace for class k can now be represented 
by the projection operator 

(k) 
~ tjJ(k) 

j=l j 

Since the !Ji(k),s are normalized 
j 

trace P(k) = n(k) 
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(3. 7) 

(3. 8) 

The subspace P(k) consists of those feature vari­
ables that have high weights in the collection of par­
adigms of class k. But, this does not guarantee that 
the subspaces for two different classes do not contain 
the same variables. Such common variables have no 
discriminating power and should be taken out of con­
sideration. We therefore define the "retrenched" sub-

space P(k) by subtracting the overlapped subspaces 

from each subspace P(k). 

p(k)
1 

"'p(k) (3.9) 

where P (k) n P (R.) is the "overlap" of P (k) and P (R.). 

Since each term (P(k) n P(R.)) is a subspace of p(k), 
the merger of them under U is also a subspace of 

(k) R.~ (k)1 

P • Hence the difference P is a projection op-
erator, having the form of P

1 
- P2 with P2 ~ P

1
. 

Since P2 ~ P1 implies that P
1 

and P2 are compatible, 

we can also write P2 = P2 n P1 = P1P2• Hence P1 - P
2 

= Pl- plp2 = Pl (l- P2) = Pl 'I P2 = Pl nl P2. 

Applying this transformation, we can rewrite (3.9) as 

p(k)
1 

.. p(k) n 1 u (P(k) n P(R.)) 
R.~ 

• p(k) n n < 1 P(k) u1 P(R.)) 
R.~ 

(3.10) 

The dimension n(k)
1 

of the retrenched subspace is 
in general smaller than the original subspace. 

(3.11) 

These retrenched subspaces contain no common vectors 
with one another. We can see this point by noticing 

p{k)l n p(R.)I ... p(k)n p<R.>n n ( 1 P{k)u 1 p<P>) 

~ 

n n < 1 p<R.>ul p(q)) 
q*R. 

(3.12) 

where there must be a term ( I P (k)u I P (R.)) under the 
conjunctions n and n which will cancel the first 

~ q*R. 

term P(k)n P(R.) ,·since the conjunction of a projection 
operator and its complement becomes 0. Hence 

(3.13) 

showing that the P(k)
1 

are projection operators and 
contain no common vectors if ~. 

The total class-subspace occupied by vectors of 
all the retrenched class-subspaces is given by 
m (k)l 
U P , and the dimension of this total class-sub­

k .. l 
space is at most n but in general less than n. The 
subspace orthogonal to the total class-subspace 

I m ( I 
p (m+1 ) = I U p k) 

k=l 

m (k)l 
1- up 

k•l 
(3.14) 

can be considered as consisting of vectors which are 
either not included in the original class-subspaces or 
included in more than one original subspace. Hence, 



we consider this as a "reject" subspace and name it 
the (m+l)-st class. 

In each subspace P (k)', we can take 

independent vectors. There are in total 

n (k)' linearly 

m (k)' 
I: n 

k=l 
such vectors, and they are not 

linearly independent, even if 

necessarily mutually 
m (k)' 
I: n < n. However, 

k=l -
in actual computation, there seldom happens linear de­
pendence among these vectors. Even if there is linear 
dependence, a slight modification will make them all 
linearly independent. If that is the case, the dimen-

m (k)' 
sion of the total class-subspace U P is the same 

k=l 
as the sum of the dimensions 
spaces. In such a case, the 

of individual class-sub­
dimension of the reject 

m (k)' 
class will be n - I: n • 

m (k)' 
In usual examples, I: n 

k=l k=l 
is not larger than n, provided m is not excessively 
large or o is not taken ·unreasonably high. 

The next step is to introduce a linear transfor­
mation that will turn the class-subspaces until they 
become orthogonal to one another. To do this, we take 

n (k)' orthogonal vectors in P (k)', i.e. , we take n (k)' 
(k)' 

orthogonal degenerate eigenvectors of P correspon-
ding to eigenvalue unity. If we take all such vectors 

(m+l)' 
for all k and include the reject class P , we 
shall get exactly n vectors, which we denote by 

(a) (a) 
n , a=l,2, ••• ,n, and the components of n in the 

original coordinate systems by n(a), p=l,2, ••• ,n. The 

vectors n(a) are not uniquely de~ermined (due to the 
degeneracy of eigenvalue L), but this ambiguity does 
not affect the effect of the linear transformation we 
are going to introduce. The linear transformation L 
we are now considering is such that the transforms 

n(a)* of n(a) by L become all orthogonal, i.e., 

(a)*T (b)* ~ (a)* (b) n n = ~ n
0 

n
0 

=cab (a,b=l,2, ••• ,n) (3.15) 
o=l 

where 
n 
L L (a) 

p=l op np 

Such an L can be given by the condition 

n 
I: 

p=l 
L (a) = o 

op np oa o,a=l,2, ••• ,n 

(3 .16) 

(3.17) 

By this transformation (3.17), the vectors n(a) be­

longing to the same subspace P(k)' will remain orthog­
onal and its magnitude will remain unchanged provided 

the n(a) are normalized originally. As a result, the 
subspace corresponding to a class remains internally 

unchanged. Two vectors n(a) belonging to two differ­

ent subspaces P(k)' are made orthogonal to each other 
by the transformation (3.17). 

In general a non-orthogona~ linear transformation 

L changes a projectio~ operat~r P into LPLT (not 

LPL- 1
) which are no longer necessarily a projection 

operator. But, by the special linear transformation 

(k)' (k)* L, the P are transformed into P which are pro-
jection operators and mutually orthogonal. The compo-

nents of P(k)* are given by 

p(k)* 
po (3.18) (a)* (a)* 

I: n n 
aEk P 0 

with the summation with respect to a extends over 
(k)' those vectors included in the subspace P • The pro-

duct of two such operators becomes 

(3.19) 

where the condition (3.15) has been used. Eq. (3.19) 

shows at once that the P(k)* are not only projection 
operators (idempotency) but are also mutually orthogo­
nal. 

From this point on every vector, paradigm or new 
sample, is transformed by the L-transformation and 
then we proceed to the next stage of consideration, 
namely, the problem of discrimination. There remains 
a certain ambiguity whether the G-matrices should be 
transformed according to the same formal rule as 
(3.18) or should be redefined by the same formula as 
(3.1), only using the vectors with asterisk in both 
numerator and denominator. In the former case the 
condition (3.2) will no longer be vigorously true, but 
the difference should be very little anyway because 
the paradigm vectors lie more or less entirely in the 

P(k) space, and the L-transformation will not alter 
the internal structure of each subspace. 

4. Decision Procedure 

In this section we do not use the asterisk on 
quantities any longer, but all the quantiti~s, includ­
ing the new samples, are supposed to have been subjec­
ted to the 1-transformation. 

The quantity in which we are first interested is 
the probability of an average paradigm vector of class 

k appearing in subspace P(~). This will be obviously 
given by 

p(~\k) = trace (G(k) (4.1) 

which is normalized with respect to subspaces P(~), 
where t runs from 1 to m+l: 

m+l 
I: p(~ \k) = 1 

i=l 

, 

(4.2) 

Obviously p(k\k) will be the largest among p(~\k). 

The inverse conditional probability that an arbi­

trary vector in the P (i) belongs to class k will be 
given, with the help of the prior probability p(k) of 
class k, by 

m 
q(k\~> • p(t\k) p(k) I E p(~\k) p(k) 

kcl 

which is normalized with respect to m classes: 

m 
I: q(k\t) = 1 

k•l 

(4.3) 

(4.4) 
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Now, when a new object with vector y (of course, 
after the L-transformation) arrives, we have to find 
out in which subspace it is located. The probability 

of vector y being in subspace P(~), or the fraction 

of its weight in subspace P(~) is given by 

(4.5) 

m+l 
with E w(ll.iy) = 1 (4.6) 

y=l 

Since if y is located in subspace P(ll.), it will be­
long to class k with probability q(kill.), we can con­
clude that the probability of y belonging to class k 
is 

with 

q(kiy) 

m 

m+l 
E q(kill.) w(ll.!y) 

ll. .. l 

E q(kiy) "' 1 
k=l 

(4. 7) 

(4.8) 

This quantity q(kiy) thus defined is proportional to 
p(k), p(t!k) and w(ll.jy), which seems to be quite rea­
sonable. 

Our decision rule will be to assign class 
which maximizes q(k!y), i.e., 

k 
0 

(4.9) 

The reader may be disturbed by the fact that in 
this formalism there is no probability q(m+liy) of y 
belonging to the reject class. But, this is because 
we have introduced the reject subspace but not the re­
ject class. The way to utilize the reject subspace 
for a useful purpose is to compare the probability 
w(m+liy) of y being in the reject subspace with the 
probability p(m+llk ) of an average vector of the as-

o 
signed class being in the reject subspace. If the 
former is considerably larger than the latter, we have 
to conclude that the assignment is not well-founded. 
We can make a criterion of the type 

(4.10) 

where e is the threshold for admittance in class k 
0 

and the parameter y is a real number larger than unity. 
If we decrease the threshold e, the number of the para­
digms of class k being rejected will increase and at 
the same time the number of the misclassification of 
paradigms will decrease. We can adjust 8 so that the 
(weighted) sum of these two undesirable numbers will 
become minimum. 

An interesting possibility is that we can deter­
mine the yet-undetermined parameter, fidelity, o by 
requiring the maximum discrimination. The discrimina­
tion can be measured by the unevenness of q(k!y), since 
if q(kjy) is dis£ributed more or less evenly over dif­
ferent k's, the decision made by (4.9) will be unreli­
able. A good measure for this would be the entropy 
function. 

s (y) 
m 
E 

k=l 
q(k!y), log q(kiy) (4.11) 

In practice, the best would be to determine the value 
of o by the requirement that the average entropy S(y) 
for the given paradigms will become minimum, i.e., the 
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most desirable value o of o can be given by 
0 

S(o
0

) = Min S(o) (4.12) 
0 

m \)(k) 
S(x(k)) where S(o) = I: E (4.13) 

k=l a=l a 

Although the expression (4.11) does not show the depen­
dence of S(y) on o, but it is obvious that the value of 
S(y) depends on o. 

5. Preliminary Experimental Test 

A computational difficulty arises in the present 
formalism if utmost care is not taken in calculating 
the infinite product, P3 = P1 n P2 = ••• P

1
P

2
P

1
P

2 
••• , of 

two projection operators, P
1 

and P2• First, we make 

the product Q = P1P2 which is not a projection operator 

except in the compatible case. We calculate succes­

sively Q2 , Q4 , Qe, ••• ,Q2n. At the limit~. Q2n 
should become a projection operator P

3
, but we have to 

be satisfied with a large value of n, at which the two 
conditions of a projection operator, namely the symme­
try and the idempotency, are approximately satisfied. 
The approximate idempotency, moreover, will guarantee 
that we have reached almost the limiting value, since 

n n+l 
it would mean that Q2 and Q2 are approximately the 
same. Before we began to use the double pr6cision com­
putation, the accumulated errors in multiplication pre­
vented the product to become either symmetric or idem­
potent.** We have now a program that works beautiful­
ly. 

An alternative method of calculating P3 would be 

to repeat the process: X + YXY and Y + XYX, with 
starting values: X= P1 , Y = P2• Both X andY will 

approach P3 , but in this case the symmetry, XT = X and 
T Y = Y, is automatically satisfied at each stage. To 

guarantee this, we may add the corrective method: 

X+ (X+ XT)/2, Y + (Y + YT)/2 at each stage. 

We testell the conaisteney of our l!let:hod by analyz­
ing handwritten letters, A, B, and c. 7hey are orJ.g1-
nally 20 x 20 black-and-white meshes. but we app~i.ed 
the method of crossing number compressionl2 to this 
40Q-digit binary information and obtained a 2S-digit 
number, each digit can be occupied by 0, 1, 2 or 3. 
Thus, our representation space has n = 26 dimensions. 
Each of A, B, and C had 50 paradigms. The actual char­
acters are deliberately deformed and some of them were 
difficult to decipher even for a human recognizer. 

For the fidelity o, we took three different val­
ues, 0.93, 0.95, and 0.97. The dimensionality of each 
subspace depends on the a-value and the actual values 
are given in Table 1. The superscript k = 1,2,3,4 des­
ignate respectively subspace for A, that for B, that 
for C and the reject subspace. We see, here again, 
that the dimensionality of each class-subspace is quite 
small. It is quite clear that as o increases, the di­
mensionality of the reject subspace decreases. 

** The authors would like to thank Dr. Seiji Inatsugu 
for helpful discussion with regard to the computa­
tional difficulties. 



1 2 3 4 

.93 2 4 4 18 

.95 3 5 4 16 

• 97 3 7 6 12 

Table 1 

The dimensionality n(k)* of sub­

space P(k)*, where k=l,2,3,4 mean 
respectively, A, B, C, reject, as 
dependent on the fidelity a. 

On Tables 2, 3, 4, we give the conditional proba­
bility p(t!k) that the average vector of class k is 

found in subspace t, P(t). This probability for the 
reject subspace decreases as a increases. This proba­
bility corresponds to p(m+l!k) of Section 4 and plays 
an important role in (4.10). Tables 2, 3, 4 corre­
spond respectively to a= 0.93, 0.95, 0.97. 

t 1 k 
2 3 4 

1 .8703 .05331 .05858 .01777 

2 .09889 . 7812 .09825 .02160 

3 .03232 .08259 .8621 .02294 

Table 2 

The values of p(t!k) for a .. 0.93 

t 1 2 3 4 
k 

1 .9099 .02958 .04889 .01155 

2 .1519 .6810 .1549 .01215 

3 .03045 .1391 .8169 .0136 

Table 3 

The values of p(tlk) for a • 0.95 

t 1 2 3 4 
k 

1 .6237 .1538 .2174 .004947 

2 • 1141 .6683 .2126 . 004928 

3 .02454 .20356 .76814 .003481 

Table 4' 

The values of p(-t!'k) for a= 0.97 

The next step is to calculate the inverse condi­
tional probability q(klt), which is tabulated in Tables 
5, 6, 7, respectively for a= 0.93, 0.95, 0.97. In Ta­
bles 2, 3, 4, the figures add up to unity horizontally 
whereas in Tables 5, 6, 7, the figures add up to unity 
vertically. The prior probability p(k) was set equal 
for all k's • 

k 

1 

2 

3 

k 

1 

2 

3 

k 

1 

2 

3 

1 2 3 

.8689 .05813 .05749 

.09874 .8518 .09642 

.03227 .09005 .8460 

Table 5 

The values of q(klt) for a 

1 

.8336 

.1390 

.02788 

2 

.03481 

.8014 

.1637 

Table 6 

3 

.0479 

.15177 

.8003 

4 

.2852 

.3466 

.3681 

0.93 

4 

.3096 

.3258 

.36454 

The values of q(k!t) for a = 0.95 

1 2 3 4 

.8180 .1500 .1814 .3704 

.1497 .6515 .1773 .3689 

.03220 .1984 .6411 .2606 

Table 7 

The values of q(klt) for a 0.97 

Finally, we took each paradigm as the y and 
tested if it would be classified correctly according 
to our procedure. Tables 8, 9, 10 show the results of 
our decision procedures for a = 0.93, 0.95, 0.97 re­
spectively. Since the same vector is used as the "new 
arrival" as well as one of the 50 paradigms that de­
termine the subspace, this test may be considered as a 
test of self-consistency only. But, in view of a 
large variety of input data in each class, the result 
may be regarded as very satisfactory • 
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k 

1 

2 

3 

k .. 1 
0 

46 

1 

0 

k - 2 
0 

0 

45 

0 

Table 8 

k .. 3 
0 

2 

3 

47 

reject 

2 

1 

3 

The result of our decision procedure 
for cr = 0.93. k is the true class, k

0 
is 

the assigned class according to (4.9). 
Rejection is done according to (4.10). 

k k = 1 
0 

1 49 

2 2 

3 0 

The result 
for cr = 0.95. 

k 

1 

2 

3 

k 
0 

1 

45 

4 

0 

k = 2 k = 3 reject 
0 0 

0 0 1 

45 3 0 

1 49 0 

Table 9 

of our decision proc.edure 

k = 2 
0 

1 

39 

0 

Table 10 

k = 3 
0 

2 

4 

49 

reject 

2 

3 

1 

The result of our decision procedure 
for cr = 0.97. 

We also tried 50 sample vectors which did not be­
long to either A orB or C, i.e., they are just pro­
duced by random numbers. With cr = 0.93, it classified 
92% of them as reject, using the same rule of rejec­
tion as in Tables 8, 9, 10. 

6. Conclusion 

It is not claimed that the subspace model is su­
perior to the zone model for all pattern recognition 
problems. But, it seems justified to believe that for 
some types of problems the subspace model in the MOSS 
version as explained in this paper is just as good or 
even better than the zone model. The only theoretical 
objection that could be raised against the subspace 
model in the CLAFIC version was the apparent breakdown 
of the Boolean logic. The identification of logical 
implication with inclusion of subspaces is quite natu­
ral and unavoidable. Then, the "and" and "or" will 
follow the definition given in Section 2, and we en­
counter a strange fact that the distributive law of 
logic no longer holds in general. This objection 
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should not be taken too seriously, because the vectors 
of a class are located approximately in a subspace, 
but not all the vectors of the subspace may correspond 
to real objects of the class. However, in the case of 
MOSS version of the subspace method, there cannot be 
any breakdown of the distributive law. Since the sub­
spaces are all orthogonal, their projection operators 
are all mutually commutative. Hence, the lattice be­
comes distributive and the corresponding logic will be 
the usual one. 
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