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Euclidean Distance

Definition

The Squared Euclidean Distance Between x and y is defined by

||x − y ||2 = (x − y)′(x − y)

It is called the L2 norm
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L2 norm with a symmetric positive definite matrix

Definition

The squared L2 norm of x − y with respect to a symmetric positive
definite matrix A is given by

||x − y ||2A = (x − y)′A(x − y)
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Orthonormal

Definition

A square matrix T is orthonormal if and only if

Each column of T has norm 1

Every pair of different columns of T is orthogonal

4 / 54



Eigen Decomposition

Definition

The Eigen Decomposition of a real square matrix A is given by

A = TΛT ′

where T is an orthonormal matrix and Λ is a diagonal matrix.

The columns of T are the eigenvectors

The diagonals of Λ are the eigenvalues

The i th column of T and the i th diagonal element of Λ
constitute an eigenvector eigenvalue pair

If ti is the i th column of T and λi is the i th eigenvalue of Λ, then

Ati = λi ti
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Eigenvector Eigenvalue

Definition

t is an eigenvector of A and λ is the corresponding eigenvalue if
and only if

At = λt
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Eigenvector Eigenvalue

Suppose that an N × N matrix A = TΛT . Then the i th column of
T , ti , and the i th diagonal element, λi , of Λ constitute an
eigenvector eigenvalue pair
Proof
Since A = TΛT ′, we can write

Ati = TΛT ′ti

= TΛ


t ′1
t ′2
...
t ′N

 ti
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Eigenvector Eigenvalue

But every pair of different columns of A are orthogonal

Ati = TΛT ′ti

= TΛ(0, 0, . . . , 1, . . . 0)′

= T



0
...
0
λi
0
...
0


Ati = λi ti
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Positive Definite Matrix

Definition

A square matrix A is called positive definite if and only if all its
eigenvalues of positive
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L2 norm with respect to square matrix A

The L2 norm of (x − y) with respect to positive definite square
matrix A is

(x − y)′A(x − y) = (x − y)′TΛT ′(x − y)

= (x − y)′TΛ
1
2 Λ

1
2T ′(x − y)

= [(x − y)′TΛ
1
2 ][Λ

1
2T ′(x − y)]

= [Λ
1
2T ′(x − y)]′[Λ

1
2T ′(x − y)]

= ||[Λ
1
2T ′(x − y)]||2

This has a geometric meaning. An orthonormal matrix is either a
rotation matrix or a rotation matrix with a reflection. So (x − y)

gets rotated by T ′ and scaled by Λ
1
2 . After rotating and scaled, the

norm is the standard L2 norm (with respect to the identity matrix).
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Mahalanobis Distance

Definition

The Mahalanobis distance between x and y with respect to
covariance matrix Σ is defined by

D(x − y) =
√

(x − y)′Σ−1(x − y)

If Σ has the Eigen Decomposition Σ = TΛT ′, then Σ−1 has the
Eigen Decomposition Σ−1 = TΛ−1T ′, where

Λ−1 = Diag
(

1
σ2
1
, . . . , 1

σ2
N

)
and Λ−

1
2 = Diag

(
1
σ1
, . . . , 1

σN

)
Hence,

D(x − y) =

√
||Λ−

1
2T ′(x − y)||2

and means rotate (x − y) by T ′ and then normalize by the
standard deviations in the rotated space.
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Ellipse

Definition

The ellipse in standard rotation is given by

(x − x0)2

a2
(y − y0)2

b2
= 1

The center of the ellipse is (x0, y0)

The leftmost point of the ellipse is at (x0 − a, y0)

The rightmost point of the ellipse is at (x0 + a, y0)

The extent of the ellipse axis along the x-axis is 2a

The bottommost point of the ellipse is at (x0, y0 − b)

The topmost point of the ellipse is at (x0, y0 + b)

The extent of the ellipse along the y -axis is 2b
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Mahalanobis Distance

(x − y)′A(x − y) = θ

Specifies an elipse

(x − y)′A(x − y) ≤ θ

Specifies the insides of an ellipse

(x − µ)′Σ−1(x − µ) = θ

(x − µ)′TΛT ′(x − µ) = θ

||Λ−
1
2T ′(x − µ)||2 = θ
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The Hyperellipsoid

||Λ−
1
2T ′(x − µ)||2 = 1

Is the equation of an hyperellipsoid

Whose center is µ

Which has been rotated by T ′

And scaled by Λ−
1
2

The nth column of T is tn

The nth component of µ is µn

The nth diagonal entry of Λ−
1
2 is 1

σn

The maximum point of the ellipse in the tn direction is µn +σn

The minimum point of the ellipse in the tn direction is µn− σn
The extent of the ellipse in the tn direction is 2σn
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The Rotated Ellipsoid
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The Gaussian Classifier

µ1 mean of class 1
µ2 mean of class 2
Σ1 covariance matrix of class 1
Σ2 covariance matrix of class 2

Then
√

(x − µ1)′Σ−11 (x − µ1) is the distance between x and the

distribution with mean µ1 and covariance Σ1.

When |Σ1| = |Σ2| and P(c1) = P(c2), then assign vector x to
class c1 when

(x − µ1)′Σ−11 (x − µ1) < (x − µ2)′Σ−12 (x − µ2)

Else assign to class c2
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The Fisher Linear Discriminant

v = Σ−1W (µ1 − µ2)

Assign x to class 1 if

v ′x ≥ θ(
Σ−1W (µ1 − µ2)

)′
x ≥ θ

(µ1 − µ2)′Σ−1′W x ≥ θ

(µ1 − µ2)′Σ−1W x ≥ θ

(µ2 − µ1)′Σ−1W x < θ

When Σ1 = Σ2, the Gaussian classifier is a linear classifier and
identical to the Fisher Linear Discriminant Classifier since
ΣW = Σ1 = Σ2
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High Dimensional Spaces

When the set of features becomes large

There are dependencies between features

Dependencies cause covariance matrices to be singular
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Singular Covariance Matrices

The Gaussian classifier is not stable

The Fisher Linear Discriminant Classifier is not stable

The support of the class conditional density function is in a
translated subspace

Regularize the covariance, for α > 0

Σ← Σ + αI
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Subspace Classifier

The subspace classifier was introduced by Satosi Watanabe

It assumes that the covariance matrices are near singular

Works in the dense subspaces
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Entropy Multivariate Gaussian Distribution

The entropy of a K-dimensional N(µ,Σ) density is

H =
K

2
(1 + log(2π)) +

K

2

K∑
k=1

log λk

where λ1 ≥ λ2 ≥ . . . ≥ λK are the eigenvalues of Σ
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Class Featuring Information Compression

CLAFIC

M classes

Lm feature vectors from class cm
D − dimensional

xm1 , . . . , x
m
Lm

N =
∑M

m=1 Lm Total number of vectors

µ Global mean

ymk Transformed feature vectors

µ =
1

N

M∑
m=1

Lm∑
k=1

xmk

ymk = xmk − µ

Satosi Watanabe, Feature Compression, Advances in Information Sciences,
Vol 3, Julius Tou (ed.), Plenun Press, New York, 1970, pp.63-111.
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Class Featuring Information Compression

Sm =
1

Lm

Lm∑
k=1

ymk (ymk )′

Eigenvalues of Sm λm1 ≥ λm2 ≥ . . . ≥ λmD
Corresponding Eigenvectors tm1 , . . . , t

m
D

Given σ, 0 < σ < 1,

The Jm most important directions for class m are

tm1 , . . . , t
m
Jm

where ∑Jm−1
j=1 λmj∑D
j=1 λ

m
j

< σ ≤
∑Jm

j=1 λ
m
j∑D

j=1 λ
m
j
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Class Featuring Information Compression

Assign x to class cm where

Jm∑
j=1

(
(tmj )′x

)2 ≥ Jk∑
j=1

(
(tkj )′x

)2
, k = 1, . . . ,M
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Orthogonal Projection Operator

Proposition

Let Tm be a matrix whose columns are orthonormal.

Tm =


...

... . . .
...

tm1 tm2 . . . tmJm
...

... . . .
...


Pm = Tm(Tm)′

Then Pm is the orthogonal projection operator onto the subspace
spanned by Col(Tm)

Proof.

PmPm = [Tm(Tm)′][Tm(Tm)′] = Tm[(Tm)′Tm](Tm)′

= Tm(Tm)′ = Pm

P ′
m = [Tm(Tm)′]′ = Tm(Tm)′ = Pm
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Orthogonal Projection Operator

Assign x to class cm where

||Pmx ||2 ≥ ||Pjx ||2, j = 1, . . . ,M

This is equivalent to
Assign x to class cm where

x ′Pmx ≥ x ′Pjx , j = 1, . . . ,M
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Two Class Case

Use a threshold θ

Assign x to class c1 if

x ′P1x

x ′P2x
> θ

Else assign x to class c2
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Angle Between x and a Subspace

Let P be an orthogonal projection operator to a subspace V
Let θ be the angle between x and V
Then

cos2θ =
x ′Px

x ′x

Assign x to class cm when

x ′Pmx ≥ x ′Pjx , j = 1, . . . ,M

is the equivalent to Assign x to class cm when

x ′Pmx

x ′x
≥

x ′Pjx

x ′x
, j = 1, . . . ,M

cos2θm ≥ cos2θj , j = 1, . . . ,M

θm ≤ θj , j = 1, . . . ,M
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Subspaces

Proposition

Let P1 the orthogonal projection operator to subspace S1, and P2

the orthogonal projection operator to subspace S2. If S1 ⊆ S2,
then P1P2 = P2P1 = P1

Proof.

Since S1 ⊆ S2, S
⊥
2 ⊆ S⊥

1 . Let x be an arbitrary vector. Then
x = u + v + w where u ∈ S1, v ∈ S2 ∩ S⊥

1 , w ∈ S⊥
2 .

P1P2x = P1P2(u + v + w) = P1P2u + P1P2v + P1P2w

= P1u + P1v + 0 = u + 0 = u

P2P1x = P2P1(u + v + w) = P2P1u + P2P1v + P2P1w

= P2u + 0 + 0 = u

P1x = P1(u + v + w) = P1u + P1v + P1w

= u = 0 + 0 = u

Therefore P1P2 = P2P1 = P1
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Direct Sum

Definition

Let U and V be subspaces. Then the Direct Sum of U and V is
denoted by U ⊕ V and is defined by

U ⊕ V = {x | for some u ∈ U, v ∈ V , x = u + v}
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Orthogonal Projection Operators

Proposition

Let P and Q be orthogonal projection operators. If PQ = QP, then PQ
is an orthogonal projection operator onto Col(P) ∩ Col(Q)

Proof.

Suppose PQ = QP. Then

(PQ)(PQ) = P(QP)Q = P(PQ)Q

= (PP)(QQ) = PQ

Since P and Q are orthogonal projection operators, P = P ′ and Q = Q ′.
Hence,

(PQ)′ = Q ′P ′ = QP

= PQ
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Proof Continued

Proof.

Let x ∈ RN . Then PQx ∈ Col(P) and QPx ∈ Col(Q). Since
PQ = QP, PQx ∈ Col(P) ∩ Col(Q).
Let x ∈ Col(P) ∩ Col(Q). Then Px = x and Qx = x . This implies
that PQx = Px = x Hence every element of Col(P) ∩ Col(Q) is
left invariant under the operator PQ. Let y ∈ Col(P)⊥. Then
QPy = Q0 = 0. Likewise if y ∈ Col(Q), PQy = P0 = 0.
Let u ∈ Col(P)⊥ and v ∈ Col(Q)⊥.

PQ(u + v) = PQu + PQv = PQu

= QPu = 0

So y ∈ Col(P)⊥ ⊕ Col(Q)⊥ implies PQy = 0.
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Orthogonal Projection Operators

Let P be an orthogonal projection operator to subspace V and Q
be an orthogonal projection operator to subspace W . If PQ = QP,
then P − PQ is the orthogonal projection operator to subspace
V ∩W⊥

Proof.

(P − PQ)(P − PQ) = PP − PPQ − PQP + PQPQ

= P − PQ − QPP + PPQQ

= P − PQ − QP + PQ

= P − PQ − PQ + PQ = P − PQ

(P − PQ)′ = P ′ − (PQ)′ = P ′ − Q ′P ′

= P − QP = P − PQ
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Proof Continued

Proof.

Let x be arbitrary. Then x = u + v + w , where u ∈ V ∩W⊥,
v ∈ V ∩W , and w ∈ V⊥.

(P − PQ)x = (P − PQ)(u + v + w)

= u + v + 0− PQu − PQv − PQw

= u + v − 0− Pv − 0

= u + v − v = u
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Orthogonal Projection Operators

Proposition

Let P be an orthogonal projection operator to subspace U and Q
be an orthogonal projection operator to subspace V . Then, U ⊥ V
if and only if PQ = 0

Proof.

Suppose U ⊥ V . Then u ∈ U and v ∈ V imply u′v = 0 Since P
projects to U, each column of P is in U. Since P is an orthogonal
projection operator P = P ′. Hence every row of P is in U. Since
Q is a projection operator to V , every column of Q is in V . Any
entry of PQ is of the form p′q where p is a column of P and q is a
column of Q. But p ∈ U and q ∈ V and U ⊥ V implies
p′q = 0.
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Orthogonal Projection Operators

Proposition

If P and Q are orthogonal projection operators, then PQ = 0 if
and only if QP = 0

Proof.

Suppose PQ = 0. Then

PQ = P ′Q ′

= (QP)′

Hence, PQ = 0 implies (QP)′ = 0.
And, (QP)′ = 0 implies QP = 0.
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Orthogonal Projection Operators

Proposition

Let P be an orthogonal projection operator to subspace U and Q
be an orthogonal projection operator to subspace V . If U ⊥ V
then P + Q is the orthogonal projection operator to U ⊕ V .

Proof.

Since U ⊥ V , PQ = QP = 0. Then,

(P + Q)(P + Q) = PP + PQ + QP + QQ

= P + 0 + 0 + Q = P + Q

(P + Q)′ = P ′ + Q ′

= P + Q
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Orthogonality

Proposition

If x ⊥ y then {z | for some α, β, z = αx = βy} = {0}

Proof.

If x = 0 or y = 0 then it is clearly true. Without loss of generality,
suppose y 6= 0.

αx = βy

(βy)′αx = (βy)′(βy)

αβy ′x = β2||y ||2

0 = β2||y ||2

Since y 6= 0, ||y ||2 > 0. Hence β = 0. And this implies that

{z | for some α, β, z = αx = βy} = {0}
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Orthogonality

Corollary

Let A and B be symmetric N × N matrices. If Col(A) ⊥ Col(B),
then AB = BA = 0

Proof.

Since Col(A) ⊥ Col(B), A′B = 0. But A = A′. Therefore AB = 0.
Similarly, BA = 0.
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Orthogonality

Proposition

Let A and B be subspaces of a vector space V . Then(
A ∩ (A ∩ B)⊥

)
⊥
(
B ∩ (A ∩ B)⊥

)
Proof.

(
A ∩ (A ∩ B)⊥

)
∩
(
B ∩ (A ∩ B)⊥

)
=

(
(A ∩ B) ∩ (A ∩ B)⊥

)
= {0}
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Orthogonal Projection Operators

Proposition

Let A and B be N × N symmetric matrices satisfying AB = BA. If
Col(A) ∩ Col(B) = {0}, then AB = 0

Proof.

Let x ∈ RN . Since AB = BA, ABx ∈ Col(A) and ABx ∈ Col(B).
This implies that ABx ∈ Col(A) ∩ Col(B). But
Col(A) ∩ Col(B) = {0}. Hence, ABx = 0. Now if for any matrix
C , Cx for every x , C = 0. Therefore, AB = 0. If AB = 0, and
A = A′ then Col(A) ⊥ Col(B) and hence
Col(A) ∩ Col(B) = {0}

Corollary

Let P and Q be orthogonal projection operators with
Col(P) ∩ Col(Q) = {0}. If PQ = QP, then PQ = 0
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Orthogonal Projection Operators

Proposition

Let P and Q be orthogonal projection operators and V = Col(P) ∩ Col(Q). If
PQ = QP, then Col(P) ∩ V⊥ ⊥ Col(Q) ∩ V⊥.

Proof.

Let S be the orthogonal projection operator onto V , R be the orthogonal
projection operator onto Col(P) ∩ S⊥, and T be the orthogonal projection
operator onto Col(Q) ∩ S⊥. Then P = S + R, Q = S + T . RS = SR = 0
since Col(S) ⊥ Col(R), and ST = TS = 0 since Col(S) ⊥ Col(T ). By
construction, Col(R) = Col(P) ∩ V⊥ and Col(T ) = Col(Q) ∩ V⊥.

PQ = QP

(S + R)(S + T ) = (S + T )(S + R)

SS + ST + RS + RT = SS + SR + TS + TR

RT = TR

By the previous corollary, Col(R) ∩ Col(T ) = {0} By the previous proposition,
RT = TR, R = R ′ and Col(R) ∩ Col(T ) = {0} imply RT = 0. Since R = R ′,
this implies that Col(R) ⊥ Col(T ) and hence
Col(P) ∩ V⊥ ⊥ Col(Q) ∩ V⊥.
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Norm Inequalities

||
J∑

j=1

Ajx ||2 ≤

 J∑
j=1

||Ajx ||

2

 J∑
j=1

||Ajx ||

2

≤ J
J∑

j=1

||Ajx ||2

||x − Px ||2 = ||x ||2 − ||Px ||2, for orthogonal projection operator P
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Iterated Products of Projection Operators

Iterated Products of orthogonal projection operators converge to
an orthogonal projection operator that projects onto the subspace
that is common to all the projection operators. The earliest result
for more than two projection operators in the iterations is by
Nakano and Kakutani who published in Japanese in 1940. However
Halperin is more commonly known whose book appeared in 1962.

Anupan Netyanun and Donald Solmon, Products of Projections in Hilbert
Space, The American Mathematical Monthly, Vol. 113, No. 7, 2006,
644-648.
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Iterated Products of Projection Operators

Proposition

Let P1, ...,PN be N orthogonal Projection operators. Let T = P1P2 . . .PN .
Then for any x , limk→∞ ||T kx − T k+1x ||2 = 0.

Proof.

Let Q0 = I and Qj = PjQj−1 so that QN = T . Then,

||T kx − T k+1x ||2 = ||
N−1∑
n=1

(QnT
kx − Qn+1T

kx)||2

≤

(
N−1∑
n=1

||QnT
kx − Qn+1T

kx ||

)2

≤ N
N−1∑
n=0

||QnT
kx − Qn+1T

kx ||2

≤ N
N−1∑
n=0

||(QnT
kx)− Pn(QnT

kx)||2

≤ N
N−1∑
n=1

||QnT
kx ||2 − ||Pn(QnT

kx)||2

Netyanum and Solomon, Products of Projections in Hilbert Space, American
Mathematical Monthly, Vol 113, no 7. 2006.
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Proof Continued

Proof.

||T kx − T k+1x ||2 ≤ N
N−1∑
n=1

||QnT
kx ||2 − ||Pn(QnT

kx)||2

≤ N
N−1∑
n=1

||QnT
kx ||2 − ||Qn+1T

kx ||2

≤ N
(
||Q0T

kx ||2 − ||QNT
kx ||2

)
≤ N

(
||T kx ||2 − ||T k+1x ||2

)
Since for any projection operator P, ||Px || ≤ ||x ||, the sequence
< ||T 0x ||2, ||Tx ||2, ||T 2x ||2, . . . , ||TKx ||2, . . . > is a decreasing sequence.
Furthermore, it is bounded below by zero. Therefore, it converges. Hence,

lim
k→∞

||T kx |2 − ||T k+1x ||2 = 0

And this implies that
lim

k→∞
||T kx − T k+1x ||2 = 0
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Iterated Products of Projection Operators

Theorem

Let P1, . . . ,PN be orthogonal projection operators onto subspaces
M1, . . . ,MN , of a vector space V , respectively. Let P be the
orthogonal projection operator onto M = ∩Nn=1Mn. Let
T = P1P2 . . .PN . Then limk→∞ T k = P.
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Common Subspaces

Theorem

Let Pk , k = 1, . . . ,K be orthogonal projection operators to subspaces
S1, . . . ,SK Let S = ∩Kk=1Sk . Let Γ =

∑K
k=1 akPk where 0 < ak < 1 and∑K

k=1 ak = 1. Then the orthogonal projection operator P onto S is given
by P = TT ′, where the columns of T are the eigenvectors of Γ having
eigenvalue 1.

Proof.

Suppose v ∈ S . Then v ∈ Col(Pk), k = 1, . . . ,K . Then

Γv =
K∑

k=1

akPkv =
K∑

k=1

akv = v

C.W. Therrien, Eigenvalue Properties of Projection Operators and Their
Application to the Subspace Method of Feature Extraction, IEEE Transactions
on Computers, September 1975, pp. 944-948.
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Proof Continued

Proof.

Let ψ be an eigenvector of Γ with eigenvalue 1. Then,

ψ = Γψ =
K∑

k=1

akPkψ =
K∑

k=1

akψk

If there exists any k such that Pkψ = ψk where ||ψk || < ||ψ||

||ψ|| = ||
K∑

k=1

akψk ||

≤
K∑

k=1

ak ||ψk || <
K∑

k=1

ak ||ψ|| = ||ψ||#

If the columns of T are the eigenvectors with eigenvalue 1, then
TT ′ is the orthogonal projection operator onto S .
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Direct Sum of Subspaces

Theorem

Let Pk , k = 1, . . . ,K be orthogonal projection operators to subspaces
S1, . . . , SK of an N-dimensional vector space. Let S = ⊕K

k=1Sk . Let
Γ =

∑K
k=1 akPk where 0 < ak < 1 and

∑K
k=1 ak = 1. Then the orthogonal

projection operator P onto S is given by P = I −TT ′, where the columns of T
are the eigenvectors of Γ having eigenvalue 0.

Proof.

Let T be a matrix whose columns are the eigenvectors of Γ associated with
eigenvalue 0. Without loss of generality we take these eigenvectors to be those
indexed by M, . . . ,N. Then

Col(T ) = ∩N
n=MS⊥n

and TT ′ is the orthogonal projection operator onto ∩N
n=MS⊥n . Since

⊕N
n=MSn =

(
∩N

n=MS⊥n

)⊥
I − TT ′ is the orthogonal projection operator onto ⊕N

n=MSn.
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Subtracting Overlapped Subspaces

Let Pm, m = 1, . . . ,M be the M orthogonal projection
operators for classes c1, . . . , cM

Let them project on subspaces S1, . . . ,SM , respectively

Let Tm = Sm ∩ (⊕k 6=mSk)

Let Rm be the orthogonal projection operator onto Sm ∩ T⊥m

Then Qm = Pm − Rm

Assign x to class cm if x ′Qmx ≥ x ′Qkx , k = 1, . . . ,M.

Satosi Watanabe, Subspace Method in Pattern Recognition, Proceedings First
International Joint Conference Pattern Recognition, Washington D.C. 1973,
pp. 25-32.
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Using Covariance Matrix

Let µm,Σm, m = 1, . . . ,M be the estimated mean and covariance
matrices from the training data for class cm.

Let λm1 ≥ λm2 ≥ . . . λmD be the eigenvalues of Σm. Given σ,
0 < σ < 1, determine the number Jm of directions for class cm by,∑Jm−1

j=1 λmj∑D
j=1 λ

m
j

< σ ≤
∑Jm

j=1 λ
m
j∑D

j=1 λ
m
j

Let Pm be the orthogonal projection operator onto the space
spanned by the first Jm eigenvectors of Σm.

Assign x to class cm where

||(I − Pm)(x − µm)|| ≤ ||(I − Pj)(x − µj)||, j = 1, . . . ,M

Jorma Laaksonen and Erkki Oja, Density Function Interpretation of Subspace
Classification Methods, Proceedings of SCIA ’97, Lappenranta, Finland, June
1997, pp. 487-492.
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Local Subspace Classifier

For each class cm, m=1,. . . ,M

Find the closest Dm + 1 vectors, Dm < D, to x of the training
set for class cm

Denote them by µ0m, . . . , µDmm

Form the basis Bm = {µ1m − µ0m, . . . , µDmm − µ0m}
Calculate the orthogonal projection operator Pm onto the
space spanned by Bm

The linear manifold for class cm is
Lm = {x | x = Bmα + µ0m for some α}
Assign x to class cm when the projection to the orthogonal
complement space of Lm is smallest

||(I − Pm)(x − µ0m)|| < ||(I − Pj)(x − µ0j)||, j = 1, . . . ,M

Jorma Laaksonen, Local Subspace Classifier, Proceedings of WSOM’97,
Espoo, Finland, June 1997, pp. 32-37.
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