Subspace Classifiers

Robert M. Haralick

Computer Science, Graduate Center
City University of New York



Euclidean Distance

The Squared Euclidean Distance Between x and y is defined by

Ix =yl = (x=y)(x=y)

It is called the Ly norm




L; norm with a symmetric positive definite matrix

Definition

The squared Ly norm of x — y with respect to a symmetric positive
definite matrix A is given by

Ix—ylla = (x—y)Alx—y)




Orthonormal

Definition

A square matrix T is orthonormal if and only if
@ Each column of T has norm 1

@ Every pair of different columns of T is orthogonal
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Eigen Decomposition

Definition
The Eigen Decomposition of a real square matrix A is given by

A = TAT

where T is an orthonormal matrix and A is a diagonal matrix.
@ The columns of T are the eigenvectors
@ The diagonals of A are the eigenvalues

@ The it column of T and the i*" diagonal element of A
constitute an eigenvector eigenvalue pair

If t; is the it" column of T and ); is the it eigenvalue of A, then

At; = A\t
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Eigenvector Eigenvalue

Definition
t is an eigenvector of A and A is the corresponding eigenvalue if
and only if

At = At



Eigenvector Eigenvalue

Suppose that an N x N matrix A= TAT. Then the it" column of
T, t;, and the ith diagonal element, A;, of A constitute an
eigenvector eigenvalue pair

Proof

Since A= TAT', we can write

At; = T/\T/t,'
ty
tl
- TAl ? |4
ty
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Eigenvector Eigenvalue

But every pair of different columns of A are orthogonal

At; = T/\T/t,'
= TA(0,0,...,1,...0)
0
0
=T X\
0
0
At; = \jt;



Positive Definite Matrix

Definition

A square matrix A is called positive definite if and only if all its
eigenvalues of positive




L, norm with respect to square matrix A

The Ly norm of (x — y) with respect to positive definite square
matrix A is

(x=y)Alx —y)=(x—y) TAT (x — y)
= (x—y) TAAATT'(x — y)
= [(x — y) TAS]AS T (x — y)]
= AT (x = )N T (x — y)]
= [|IA2 T'(x = p)]|I2

This has a geometric meaning. An orthonormal matrix is either a
rotation matrix or a rotation matrix with a reflection. So (x — y)

gets rotated by T’ and scaled by Az. After rotating and scaled, the
norm is the standard Ly norm (with respect to the identity matrix).



Mahalanobis Distance

Definition

The Mahalanobis distance between x and y with respect to
covariance matrix X is defined by

D(x—y) = \/(x —y)T1(x — y)

If ¥ has the Eigen Decomposition ¥ = TAT’, then X! has the
Eigen Decomposition ¥~ = TA™LT’, where

AL D/ag( e /2V> and A 2—D/ag(

) Hence,

..70_

= I TG - I

and means rotate (x — y) by T’ and then normalize by the
standard deviations in the rotated space.
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Definition

The ellipse in standard rotation is given by

(x — Xo)2 (y — yo)2
a2 b2

=1

The center of the ellipse is (xo, yo)

The leftmost point of the ellipse is at (xo — a, y0)
The rightmost point of the ellipse is at (xo + a, yo)
The extent of the ellipse axis along the x-axis is 2a
The bottommost point of the ellipse is at (xg, yo — b)
The topmost point of the ellipse is at (xo, yo + b)

e 6 6 6 o o o

The extent of the ellipse along the y-axis is 2b



Mahalanobis Distance

(x=y)Alx—y) =

Specifies an elipse

(x—y)Ax—y) <6

Specifies the insides of an ellipse

(x =T x—p)=0
(x =) TAT (x —p) =0

_1
N 2T (x = p)|? =6



The Hyperellipsoid

_1
A3 T (x = p)|[2 =1

Is the equation of an hyperellipsoid

Whose center is

Which has been rotated by T’
And scaled by A~3

The nt" column of T is t,

The n*" component of y is i,

A
On

The maximum point of the ellipse in the t, direction is u, + op

@ The nt" diagonal entry of A2 is
°

@ The minimum point of the ellipse in the t, direction is p, — op
@ The extent of the ellipse in the t, direction is 20,

14 /54



The Rotated Ellipsoid
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The Gaussian Classifier

p1  mean of class 1
f2  mean of class 2
21 covariance matrix of class 1
Y>> covariance matrix of class 2

Then \/(x — 1)1 (x — p1) is the distance between x and the
distribution with mean p; and covariance ;.

When |X1| = |Z2| and P(c!) = P(c?), then assign vector x to
class ¢! when
(x—p) Tt (x—m) < (x— )T (x — pa)

Else assign to class c?



The Fisher Linear Discriminant

V=T (1 — p2)
Assign x to class 1 if

/

vix > 0

(s — p2)) x > 0
(11— ) Ey'x > 6
(11— ) Tyyx > 0
< 6

(p2 — ,Ul)lzale

When X1 = ¥,, the Gaussian classifier is a linear classifier and
identical to the Fisher Linear Discriminant Classifier since
Yyw=X1=1Xp
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High Dimensional Spaces

@ When the set of features becomes large
@ There are dependencies between features

@ Dependencies cause covariance matrices to be singular



Singular Covariance Matrices

@ The Gaussian classifier is not stable
@ The Fisher Linear Discriminant Classifier is not stable

@ The support of the class conditional density function is in a
translated subspace

@ Regularize the covariance, for a > 0

2+ Y +al



Subspace Classifier

@ The subspace classifier was introduced by Satosi Watanabe
@ It assumes that the covariance matrices are near singular

@ Works in the dense subspaces



Entropy Multivariate Gaussian Distribution

The entropy of a K-dimensional N(u,X) density is

K
H = (1 + log(2m)) Zlog)\k

where \1 > A\» > ... > Ak are the eigenvalues of ¥



Class Featuring Information Compression

CLAFIC
@ M classes
@ L,, feature vectors from class ¢,
@ D — dimensional

m m
o X{"y. .y X[

o N= Zn’\f:l Ly Total number of vectors

@ 1 Global mean
@ y,” Transformed feature vectors
1M Ln
Ho= NZZX’T
m=1 k=1
Y = X —

Satosi Watanabe, Feature Compression, Advances in Information Sciences,
Vol 3, Julius Tou (ed.), Plenun Press, New York, 1970, pp.63-111.



Class Featuring Information Compression

L
1 m

Smo= > VRO
m =1

Eigenvalues of S, AT >N >... =2\

Corresponding Eigenvectors t, .t

Given o, 0 < 0o < 1,

The J,, most important directions for class m are
AN il

where b J
>l AT D Al
D ym <0< =p \m
> i1 j > i1 ¥



Class Featuring Information Compression

Assign x to class ¢, where

Im Ji
> ((tj”)'x)2 >y ((tj‘)’x)z k=1,....M
J=1 j=1



Orthogonal Projection Operator

Let T,, be a matrix whose columns are orthonormal.

Tm

I
St
3

s N“g
<3

Then P, is the orthogonal projection operator onto the subspace
spanned by Col(T™)

PmPm = [T™(TTYIT™(T™)]=T"(T™)T"(T™)
— Tm(Tm)/ — Pm
P,/-n — [Tm(Tm)/]/ _ Tm(Tm)/ _ Pm




Orthogonal Projection Operator

Assign x to class ¢, where
|Pmx|? > [1Pix[[?j =1,..., M

This is equivalent to
Assign x to class ¢, where

X' Prmx ZX/ij,j: 1,....M



Two Class Case

Use a threshold 0

Assign x to class ¢ if

x'P1x S0

x'Pyx

Else assign x to class ¢



Angle Between x and a Subspace

Let P be an orthogonal projection operator to a subspace V
Let 0 be the angle between x and V
Then

x' Px

x'x

cos?f) =
Assign x to class ¢, when
X'mezx’ij, j=1....M

is the equivalent to Assign x to class ¢, when

x' P, x - x'Pjx

- > — J=1....M
x'x x'x

cos’0,, > cos20j,j:1,...,M
Om < 05, j=1,....M



Let Py the orthogonal projection operator to subspace S1, and P,
the orthogonal projection operator to subspace S;. If S1 C Sy,
then P1P> = PP = Py

Since S; C S;, S5+ C Si-. Let x be an arbitrary vector. Then
x=u+v+wwhereuc S, veESNSt, we S5,

PiPox = PiPy(u+v+w)=PiPu+ PiPv+ PiPow
= Piu+Piv+0=u+0=u
P,Pix = PoPi(ut+v+w)=PPiu+ PPiv+ PPiw
= Pu+0+0=u
Pix = Pi(u+v+w)=Pu+Pv+Pw
= u=0+0=u
Therefore PP, = PPy = Py

O
T g e



Definition

Let U and V be subspaces. Then the Direct Sum of U and V is
denoted by U @ V and is defined by

UV ={x]|forsomeuec U,veV,x=u+v}




Orthogonal Projection Operators

Let P and Q be orthogonal projection operators. If PQ = QP, then PQ
is an orthogonal projection operator onto Col(P) N Col(Q)

Suppose PQ = QP. Then
(PR)(PQ) = P(QP)Q = P(PQ)Q

(PP)(QQ) = PQ

Since P and Q are orthogonal projection operators, P = P’ and Q = Q'.
Hence,

(PQ) = QP =@P




Proof Continued

Proof.

Let x € RN, Then PQx € Col(P) and QPx € Col(®). Since

PQ = QP, PQx € Col(P) N Col(Q).

Let x € Col(P) N Col(Q). Then Px = x and Qx = x. This implies
that PQx = Px = x Hence every element of Col(P) N Col(Q) is
left invariant under the operator PQ. Let y € Col(P)*. Then
QPy = Q0 = 0. Likewise if y € Col(Q), PQy = P0 = 0.

Let u € Col(P)* and v € Col(Q)* .

PQ(u+v) = PQu+ PQv = PQu
= QPu=0

So y € Col(P)*: @ Col(Q)™* implies PQy = 0.




Orthogonal Projection Operators

Let P be an orthogonal projection operator to subspace V and @
be an orthogonal projection operator to subspace W. If PQ = QP,
then P — PQ is the orthogonal projection operator to subspace
vnwt

Proof.

(P—PQ)(P—PQ) = PP—PPQ— PQP+ PQPQ
— P—PQ - QPP+ PPQQ
— P-PQ-QP+PQ
— P—PQ-PQ+PQ=P—PQ
(P—PQY = P —(PQY =P —QP
= P-QP=P-PQ




Proof Continued

Let x be arbitrary. Then x = u+ v + w, where u € V N w+,
veVNW, and we VL.

(P—PQ)x = (P—PQ)(u+v+w)
= u+v+0—PQu—PQv— PQw
= u+v—-0—Pv-0

= uUu+t+v—-—v=u




Orthogonal Projection Operators

Let P be an orthogonal projection operator to subspace U and Q
be an orthogonal projection operator to subspace V. Then, U 1. V
if and only if PQ =0

Suppose U L V. Thenu € U and v € V imply u'v =0 Since P
projects to U, each column of P is in U. Since P is an orthogonal
projection operator P = P’. Hence every row of P is in U. Since
Q is a projection operator to V, every column of Q is in V. Any
entry of PQ is of the form p'q where p is a column of P and q is a
column of Q. But pe U and g € V and U L V implies

p'qg=0. O

v




Orthogonal Projection Operators

If P and Q are orthogonal projection operators, then PQ = 0 if
and only if QP =0

Suppose PQ = 0. Then

PQ = P
= (@)
Hence, PQ = 0 implies (QP) = 0.
And, (QP) = 0 implies QP = 0. 0




Orthogonal Projection Operators

Let P be an orthogonal projection operator to subspace U and Q
be an orthogonal projection operator to subspace V. If U L V
then P + Q is the orthogonal projection operator to U ® V.

Since U LV, PQ = QP = 0. Then,

(P+Q)(P+Q) = PP+PQR+QP+QQ
= P+0+0+Q=P+Q

(P+Q) = P +¢

= P+Q




Orthogonality

If x Ly then {z | for some a, 3,z = ax = By} = {0}

Proof.
If x =0 ory =0 then it is clearly true. Without loss of generality,
suppose y #~ 0.

ax = Py
(By)ax = (By)(By)
afy'x = Byl

0 = Ayl

Since y # 0, ||y||> > 0. Hence 3 = 0. And this implies that

{z | for some o, 3,z = ax = By} = {0}

l:‘)




Orthogonality

Corollary

Let A and B be symmetric N x N matrices. If Col(A) L Col(B),
then AB=BA =0

Since Col(A) L Col(B), AB =0. But A= A’. Therefore AB = 0.
Similarly, BA = 0. Ol

V.




Orthogonality

Let A and B be subspaces of a vector space V. Then

<Am (AN B)i) L (Bm (AN B)¢>

(Am (AN B)L) N (B N(AN B)L)

((A NB)N(AN B)l)
-




Orthogonal Projection Operators

Proposition

Let A and B be N x N symmetric matrices satisfying AB = BA. If
Col(A) N Col(B) = {0}, then AB =0

Proof.

Let x € RN. Since AB = BA, ABx € Col(A) and ABx € Col(B).
This implies that ABx € Col(A) N Col(B). But

Col(A) N Col(B) = {0}. Hence, ABx = 0. Now if for any matrix
C, Cx for every x, C = 0. Therefore, AB=10. If AB =0, and

A = A’ then Col(A) L Col(B) and hence

Col(A) N Col(B) = {0} O

Let P and Q be orthogonal projection operators with
Col(P) N Col(Q) = {0}. If PQ = QP, then PQ =0
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Orthogonal Projection Operators

Let P and Q be orthogonal projection operators and V = Col(P) N Col(Q). If
PQ = QP, then Col(P)N V* L Col(Q)N V= .
Proof.

Let S be the orthogonal projection operator onto V, R be the orthogonal
projection operator onto Col(P) N S, and T be the orthogonal projection
operator onto Col(Q)NS*. ThenP=S+R, Q=S+ T. RS=SR=0
since Col(S) L Col(R), and ST = TS = 0 since Col(S) L Col(T). By
construction, Col(R) = Col(P) NV and Col(T) = Col(Q) N V= .

PQ = QP
(S+R)(S+T) (S+ T)S+R)

SS+ST + RS +RT SS+SR+ TS+ TR
RT = TR

By the previous corollary, Col(R) N Col(T) = {0} By the previous proposition,
RT = TR, R =R’ and Col(R) N Col(T) = {0} imply RT =0. Since R=R’,
this implies that Col(R) L Col(T) and hence

Col(P)Nn V* L Col(Q)N V*. O




Norm Inequalities

2
J J
1D AP < | D 1A
=1 =1
J 2 J
DolAX | < I AP
=i =i
llx — Px|[> = ||x||*> = ||Px]||?, for orthogonal projection operator P



Iterated Products of Projection Operators

Iterated Products of orthogonal projection operators converge to
an orthogonal projection operator that projects onto the subspace
that is common to all the projection operators. The earliest result
for more than two projection operators in the iterations is by
Nakano and Kakutani who published in Japanese in 1940. However
Halperin is more commonly known whose book appeared in 1962.

Anupan Netyanun and Donald Solmon, Products of Projections in Hilbert
Space, The American Mathematical Monthly, Vol. 113, No. 7, 2006,
644-648.
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Iterated Products of Projection Operators

Let Pi, ..., Py be N orthogonal Projection operators. Let T = P1Ps ... Py.
Then for any x, limy_ o HTkX — THIXH2 =0.

Let Qo = I and Q; = P;Qj—1 so that Qu = T. Then,
N—1
IT = TP = [|D (@aT x = Qua TX)|I?

n=1

N—1 2
< <Z||Qnrkxon+1rkx||>
n=1
N—1
< N QT x — Quaa THx|P?
n=0
N—1
< N (@ T %) = Po(Qu T )|
n=0
N—1
< N QT X = [|Pa(Qu T )|

n=1
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Proof Continued

N—-1

1T = T2 < N QTP = [IP(Qu TX)II?
n=1

N—-1

< N QTP = || Qua T X

n=1
N (IlQoT*xI = l|QuT*I?)
< N(ITIP = 1IT1P)

IA

Since for any projection operator P, ||Px|| < ||x||, the sequence
< | T%| 1%, | 7|13 1| 7212, - . ., || T®x|[?, ... > is a decreasing sequence.
Furthermore, it is bounded below by zero. Therefore, it converges. Hence,
lim || T*x|> — || T*"'x|> = 0
k— oo
And this implies that
lim || T"x — T""x|> =0
k— o0

|




Iterated Products of Projection Operators

Let P1,..., Py be orthogonal projection operators onto subspaces

My, ..., My, of a vector space V, respectively. Let P be the
orthogonal projection operator onto M = ﬂ,’)’le,,. Let
T =PiPs...Py. Then limy_o TK = P.
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Common Subspaces

Let Px,k =1,..., K be orthogonal projection operators to subspaces
Sty Sk Let S=nNE_ S LetT = Zszl axPx where 0 < a, <1 and
Zle ax = 1. Then the orthogonal projection operator P onto S is given
by P = TT’, where the columns of T are the eigenvectors of I having
eigenvalue 1.

Suppose v € S. Then v € Col(Px),k =1,...,K. Then

K K
v = g akka:E axv =v
k=1 k=1

C.W. Therrien, Eigenvalue Properties of Projection Operators and Their
Application to the Subspace Method of Feature Extraction, IEEE Transactions
on Computers, September 1975, pp. 944-948.



Proof Continued

Let ¥ be an eigenvector of I with eigenvalue 1. Then,

K K
o= TY=> aPup =) axthi
k=1 k=1

If there exists any k such that Pxi) = 1 where ||| < [|¥]]

K
DX
k=1

K K
S aullwnll < 3 aellll = [l
k=1 k=1

|11

IN

If the columns of T are the eigenvectors with eigenvalue 1, then
TT' is the orthogonal projection operator onto S. [




Direct Sum of Subspaces

Let P,k =1,...,K be orthogonal projection operators to subspaces
Si,...,Sk of an N-dimensional vector space. Let S = &K ,S,. Let

r= Zle axPx where 0 < ax < 1 and Zle ax = 1. Then the orthogonal
projection operator P onto S is given by P = | — TT', where the columns of T
are the eigenvectors of I having eigenvalue 0.

Let T be a matrix whose columns are the eigenvectors of [ associated with
eigenvalue 0. Without loss of generality we take these eigenvectors to be those
indexed by M, ..., N. Then

Col(T) = NS

and TT' is the orthogonal projection operator onto N_,,S:-. Since

&S, = (Must)”

| — TT' is the orthogonal projection operator onto &"_,Sn. O

o




Subtracting Overlapped Subspaces

@ Let P, m=1,..., M be the M orthogonal projection

operators for classes ci,...,cy
@ Let them project on subspaces Sy, ..., Sy, respectively
@ Let T, = S N (PhtmSk)
o Let R, be the orthogonal projection operator onto S, N T::
@ Then Qpn = P, — Ry
Assign x to class ¢, if X Qmx > X' Qex, k=1,..., M.

Satosi Watanabe, Subspace Method in Pattern Recognition, Proceedings First
International Joint Conference Pattern Recognition, Washington D.C. 1973,
pp. 25-32.
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Using Covariance Matrix

Let pum,2m, m=1,..., M be the estimated mean and covariance
matrices from the training data for class c,.

Let AT" > A" > ... A be the eigenvalues of ¥ ,. Given o,
0 < o0 < 1, determine the number J,, of directions for class ¢, by,

Im—1 Im
2z A niE A

D = D
> j=1 7 > j=1 i

Let P, be the orthogonal projection operator onto the space
spanned by the first J,, eigenvectors of ¥ ,.

Assign x to class ¢, where

(T = Pm)(x = sl < I/ = PYx = )], S =1,..., M

Jorma Laaksonen and Erkki Oja, Density Function Interpretation of Subspace
Classification Methods, Proceedings of SCIA ’97, Lappenranta, Finland, June
1997, pp. 487-492.



Local Subspace Classifier

@ For each class ¢,;;, m=1,... M

@ Find the closest D, + 1 vectors, D, < D, to x of the training
set for class ¢,

@ Denote them by pom, ..., 4D,m

e Form the basis By, = {1t1m — oms - - - s Dpym — HOm )

@ Calculate the orthogonal projection operator P, onto the
space spanned by B,

@ The linear manifold for class ¢, is
Ly = {x | x = Bma + pom for some o}

@ Assign x to class ¢, when the projection to the orthogonal
complement space of L, is smallest

(7 = Pan)(x = prom)l| < 110/ = P)(x = pop)ll, 4 =1,..., M

Jorma Laaksonen, Local Subspace Classifier, Proceedings of WSOM’97,
Espoo, Finland, June 1997, pp. 32-37.



