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The Problem

When there are many variables, the sample size is often
too small
When the sample size is too small, the class conditional
joint probability cannot be estimated directly
There must be some assumptions made to allow low order
marginals to be combined in some manner to form class
conditional joint probabilities to be used in the classification



The Markov Assumption

p(y1 | y2 . . . yN) = P(y1 | y2)

p(y2 | y3 . . . yN) = P(y2 | y3)

...

P(yN−2 |yN−1, yN) = P(yN−2 | yN−1)

In general,

P(yn | yn+1 . . . yN) = P(yn | yn+1),n = 1, . . .N − 1



Conditional Probability

Now,

P(x1 . . . xN) = P(x1 |x2 . . . xN)P(x2 . . . xN)

= P(x1 |x2 . . . xN)P(x2 | x3 . . . xN)P(x3 . . . xN)

Repeating the pattern,

P(x1 . . . xN) =

N−1∏
n=1

P(xn |xn+1 . . . xN)

P(xN)



Under the Markov Assumption

P(xn | xn+1 . . . xN) = P(xn | xn+1), n = 1, . . .N − 1

Hence,

P(x1 . . . xN) =

N−1∏
n=1

P(xn |xn+1 . . . xN)

P(xN)

=

N−1∏
n=1

P(xn |xn+1)

 P(xN)



The Markov Classifier

Assign (x1, . . . xN) to class c∗ when

P(x1 . . . xN | c∗) > P(x1 . . . xN | c), c , c∗N−1∏
n=1

P(xn |xn+1, c∗)

P(xN |c∗) >

N−1∏
n=1

P(xn |xn+1, c)

P(xN |c)

for all other c



The General Markov Classifier

Let i1, . . . , iN be a permutation of 1, . . . ,N. Assign (x1, . . . xN) to
class c∗ when

P(x1 . . . xN | c∗) > P(x1 . . . xN | c), c , c∗N−1∏
n=1

P(xin |xin+1 , c
∗)

P(xiN |c
∗) >

N−1∏
n=1

P(xin |xin+1 , c)

P(xiN |c)

for all other c



Conditional Independence Assumption

Under the Markov assumption

P(xi , xi+1, | xi+2 . . . , xN) =
P(xi , . . . xN)

P(xi+2 . . . xN)

=
P(xi |xi+1 . . . xN)P(xi+1 . . . xN)

P(xi+2 . . . xN)

=
P(xi |xi+1)P(xi+1 . . . xN)

P(xi+2 . . . xN)

=
P(xi |xi+1)P(xi+1 | xi+2)P(xi+2 . . . xN)

P(xi+2 . . . xN)

= P(xi |xi+1)P(xi+1 | xi+2)



The General Markov Classifier

How To Choose the Permutation

Use the training data to estimate P(xi |xj , c), i , j
For permutation i1, . . . , iN
Use the first half of testing data to estimate the expected
gain using P(xin |xin+1 , c)
Search for the permutation having the largest estimated
expected gain
For the best permutation, get an unbiased estimate of the
estimated expected gain using the second half of the
testing data



First Order Dependence Trees

x1

x2

x3 x4

x5

P(x1, x2, x3, x4, x5) = p(x1 | x2)P(x5 | x2)P(x3 | x1)P(x4 | x1)P(x2)



First Order Dependence Trees

1 =
∑
x1

∑
x2

∑
x3

∑
x4

∑
x5

P(x1, x2, x3, x4, x5)∑
x1

∑
x2

∑
x3

∑
x4

∑
x5

p(x1 | x2)P(x5 | x2)P(x3 | x1)P(x4 | x1)P(x2)∑
x2

P(x2)
∑
x1

P(x1 | x2)
∑
x5

P(x5 | x2)
∑
x4

P(x4 | x1)
∑
x3

P(x3 | x1)

= 1



First Order Dependence Trees

x1

x2

x3 x4

x5

Precedence Function

i j(i)
1 2
5 2
3 1
4 1



First Order Dependence Tree

x1

x2

x3 x4

x5 P(x1, x2, x3, x4, x5) = p(x1 | x2)P(x5 | x2)P(x3 | x1)P(x4 | x1)P(x2)

[N] = {1, . . . ,N}
M ⊂ [N] j : M → N
G = ([N],E)

E = {{j(m),m} | m ∈ M}

P(x1, . . . , xN) = P(xm : m ∈ [N] −M)
∏
m∈M

P(xm | xj(m))



The Optimal Dependence Tree

Of all possible dependence trees, is there an optimal one?

The probabilities we are interested in are all conditional on class

To save writing longer expression, we omit the class

The probabilities in our dependence tree are order 2 P(xa, xb)

The joint probability formed from the dependence tree product
must be an extension of the marginal forming it

The probability we want the product form to approximate is
unknown

The dependence tree product we seek must be as close to it as
possible

Given the complete set of the order 2 marginals,

The closest dependence tree product we can construct
must use the marginals with largest entropy
But finding that out is a combinatorial problem



Dependence Tree Optimization

There are two papers In 1968 Chow and Liu published a major
paper Approximating Discrete Probability Distributions with
Dependence Trees in the IEEE Transactions on Information
Theory.
The Lewis paper, published in Information And Control,
appeared in 1959 and had the title Approximating Probability
Distributions to Reduce Storage Requirements
proved that

If we are just given low order marginals
Whose product is a probability and extension of the
marginals
And we are approximating an unknown joint distribution
Then the best we can do is a minimum information
extension



Dependence Tree Optimization

In 1968 Chow and Liu published a major paper Approximating
Discrete Probability Distributions with Dependence Trees in the
IEEE Transactions on Information Theory. The paper gave the
algorithm for forming the maximum mutual information
extension.

For every order two marginal, compute its Mutual
Information

The Mutual Information between to variables x and y is
defined by

I(x , y) =
∑
x ,y

P(x , y) log
P(x , y)

P(x)P(y)

Make a graph whose nodes are labeled by the variable
name
Connect every pair of nodes, say node x with node y , with
an edge
Weight the edge by I(x , y)
Use Kruskal’s algorithm to find the maximum weighted
spanning tree
The tree has a precedence function
Form the product extension from the precedence function



Kruskal’s Maximal Spanning Tree Algorithm

Sort the edges by decreasing weight
Select the first edge as having the largest Mutual
Information
Select the next largest successive edge, that does not form
a loop with the edges that have been previously chosen
Stop when there are N − 1 edges where N is the number of
nodes

Kruskal proved that when the algorithm stopped, the result was
a spanning tree. Further the spanning tree was maximal.



Conditional Probability Products

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6 | x3)P(x3)

Does this product make a probability function?
If it does, is the probability function an extension of these
conditional probabilities?



Summing

Define,

Q(x1, . . . , x6) = P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)P(x5 | x6)

P(x2, x6 | x3)P(x3)

Q(x2, . . . , x6) =
∑
x1

Q(x1, . . . , x6)

=
∑
x1

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

= P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6 | x3)P(x3)



Summing

Q(x2, x3, x5, x6) =
∑
x4

Q(x2, . . . , x6)

=
∑
x4

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6 | x3)P(x3)

= P(x5 | x6)P(x2, x6 | x3)P(x3)



Summing

Q(x2, x3, x6) = =
∑
x5

Q(x2, x3, x5, x6)

=
∑
x5

P(x5 | x6)P(x2, x6 | x3)P(x3)

= P(x2, x6 | x3)P(x3)

= P(x2, x3, x6)∑
x2,x3,x6

Q(x2, x3, x6) =
∑

x2,x3,x6

P(x2, x3, x6)

= 1



Weak Extension

Define,

Q(x1, . . . , x6) = P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)P(x5 | x6)

P(x2, x6 | x3)P(x3)

Is,

Q(x1 | x2, x3, x4) = P(x1 | x2, x3, x4)

Q(x4 |x2, x5, x6) = P(x4 | x2, x5, x6)

Q(x5 | x6) = P(x5 | x6)

Q(x2, x6 | x3) = P(x2, x6 | x3)

Q(x3) = P(x3)



Strong Extension

Define,

Q(x1, . . . , x6) = P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)P(x5 | x6)

P(x2, x6 | x3)P(x3)

Is,

Q(x1, x2, x3, x4) = P(x1, x2, x3, x4)

Q(x4, x2, x5, x6) = P(x4, x2, x5, x6)

Q(x5, x6) = P(x5, x6)

Q(x2, x3, x6) = P(x2, x3, x6)

Q(x3) = P(x3)



Extension
Define,

Q(x1, . . . , x6) = P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

Is

Q(x1 | x2, x3, x4) =
Q(x1, x2, x3, x4)

Q(x2, x3, x4)

Find expressions for Q(x1, x2, x3, x4) and Q(x2, x3, x4)

Q(x1, x2, x3, x4) =
∑
x5

∑
x6

Q(x1, . . . , x6)

=
∑
x5

∑
x6

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

= P(x1 | x2, x3, x4)
∑
x5

∑
x6

P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)



Extension

Q(x2, x3, x4) =
∑
x1

Q(x1, x2, x3, x4)

=
∑
x1

P(x1 | x2, x3, x4)
∑
x5

∑
x6

P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

=
∑
x5

∑
x6

P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)



Weak Extension

Q(x1 | x2, x3, x4) =
Q(x1, x2, x3, x4)

Q(x2, x3, x4)

=
P(x1 | x2, x3, x4)

∑
x5

∑
x6

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x3, x6)∑
x5

∑
x6

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x3, x6)

= P(x1 | x2, x3, x4)

So we have shown a weak extension for one conditional
probability.



Conditional Independence

Definition
Random variables X and Y are conditionally independent given
random variable Z if and only if for all values x , y , z in the
domain of the respective variables X ,Y ,Z

P(X = x ,Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)

For the sake of compactness, we write
P(x , y |z) for P(X = x ,Y = y | Z = z)



Conditional Independence Notation

If random variables X and Y are conditionally independent of
random variable Z we write

X y Y | Z
Let {X1, . . . ,XN } be a set of random variables.
If Xi is conditionally independent of Xj given Xk we write

i y j | k
Let A,B,C ⊂ {1, . . . ,N} with

A ∩ B = ∅

A ∩ C = ∅

B ∩ C = ∅

If {Xi : i ∈ A} is conditionally independent of {Xj : j ∈ B} given
{Xk : k ∈ C}, then we write

A y B | C



Conditional Independence Characterization Theorem

Theorem

P(x , y |z) = P(x |z)P(y |z) if and only if P(x |y , z) = P(x |z)

Proof.

Suppose P(x , y |z) = P(x |z)P(y |z). Consider P(x |y , z)

P(x |y , z) =
P(x , y , z)
P(y , z)

=
P(x , y |z)P(z)

P(y , z)

=
P(x |z)P(y |z)P(z)

P(y , z)
= P(x |z)

Suppose P(x |y , z) = P(x |z). Consider P(x , y |z).

P(x , y |z) =
P(x , y , z)

P(z)
=

P(x |y , z)P(y , z)
P(z)

=
P(x |z)P(y , z)

P(z)
= P(x |z)P(y |z)

�



Conditional Independence

Can we see if x5 is conditionally independent of x2 given x6. Is
P(x5 | x2, x6) = P(x5 | x6)?

Q(x2, x4, x5, x6) =
∑
x1

∑
x3

Q(x1, . . . , x6)

=
∑
x1

∑
x3

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

= P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6)



Extension

Q(x2, x5, x6) =
∑
x4

Q(x2, x4, x5, x6)

=
∑
x4

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6)

= P(x5 | x6)P(x2, x6)



Extension

Q(x5, x6) =
∑
x1

∑
x2

∑
x3

∑
x4

Q(x1, . . . , x6)

=
∑
x1

∑
x2

∑
x3

∑
x4

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

=
∑
x2

∑
x3

∑
x4

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x3, x6)

=
∑
x2

∑
x3

P(x5 | x6)P(x2, x3, x6)

= P(x5 | x6)P(x6) = P(x5, x6)



Conditional Independences

Q(x2, x5, x6) = P(x5 | x6)P(x2, x6)

Q(x2, x6) =
∑
x5

Q(x2, x5, x6)

=
∑
x5

P(x5 | x6)P(x2, x6)

= P(x2, x6)

Q(x5 | x2, x6) =
Q(x2, x5, x6)

Q(x2, x6)

=
P(x5 | x6)P(x2, x6)

P(x2, x6)
= P(x5 | x6)



Conditional Independence

Now,
Q(x5 | x2, x6) = P(x5 | x6)

But,
Q(x5, x6) = P(x5, x6)

Hence,
Q(x5 | x6) = P(x5 | x6)

Therefore,
Q(x5 | x2, x6) = Q(x5 |x6)

x5 y x2 | x6



Conditional Independence

Suppose, x5 y x2 | x6

Q(x5 | x2, x6) = Q(x5 | x6)

Then,
Q(x5, x2 |x6) = Q(x5 | x6)Q(x2 | x6)

Q(x5, x2 | x6) =
Q(x2, x5, x6)

Q(x6)

=
Q(x5 | x2, x6)Q(x2, x6)

Q(x6)

=
Q(x5 | x6)Q(x2, x6)

Q(x6)

= Q(x5 | x6)Q(x2 | x6)



Additional Relationships You Work Out

Q(x4 | x2, x5, x6) =
Q(x2, x4, x5, x6)

Q(x2, x5, x6)

=
P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x6)

P(x5 | x6)P(x2, x6)

= P(x4 | x2, x5, x6)



Additional Relationships You Work Out

Q(x2, x3, x6) =
∑
x1

∑
x4

∑
x5

Q(x1, . . . , x6)

=
∑
x1

∑
x4

∑
x5

P(x1 | x2, x3, x4)P(x4 | x2, x5, x6)

P(x5 | x6)P(x2, x6 | x3)P(x3)

=
∑
x4

∑
x5

P(x4 | x2, x5, x6)P(x5 | x6)P(x2, x3, x6)

=
∑
x5

P(x5 | x6)P(x2, x3, x6)

= P(x2, x3, x6)



Graphical Models

Graphical Models associates a graph, called the conditional
independence graph, from which the all the conditional
independencies can be easily seen.

When the conditional independence graph is triangulated, then
the joint probability function can be expressed with a probability
product form.

The product form can be read off the graph
The product form is a strong extension of the marginal
terms of the product



Graphs

Definition
A graph G = (N ,E) where N is an index set and E , the edge
set, is a collection of subsets of N where each subset has
exactly 2 elements of N.



Graphs

Here, G = (N ,E) where

N = {1,2,3,4}
E = {{1,2}, {2,4}, {3,4}, {3,1}}



Boundary

Definition
Let G = (N ,E) be a graph and i ∈ N. The boundary of i is
defined by

bndry(i) = {j ∈ N | {i , j} ∈ E}

bndry(1) = {2,3}
bndry(2) = {1,4}
bndry(3) = {1,4}
bndry(4) = {2,3}



Conditional Independence Graph: Definition

Definition
A graph (N ,E) is called a Conditional Independence Graph of a
random variable set X = {X1, . . . ,XM } if and only if
N = {1, . . . ,M}, the index set for the variables in X, and

Ec = {{i , j} | Xi y Xj | X − {Xi ,Xj }}

All graphs we discuss will be conditional independence graphs.



Conditional Independence Graph

Nodes correspond to indexes of variables in the variable set
X = {X1, . . . ,X6}

{i , j} not in the edge set means Xi y Xj | X − {Xi ,Xj }



Conditional Independence Graph

{Y ,Z1} and {Y ,Z2} not in edge set means

Y y Z1 | {X ,Y ,Z1,Z2} − {Y ,Z1}

Y y Z2 | {X ,Y ,Z1,Z2} − {Y ,Z2}

Y y Z1 | {X ,Z2}

Y y Z2 | {X ,Z1}

Y X

Z1

Z2



Block Independence Theorem

Y is conditionally independent of the block {Z1,Z2} given X

Theorem
Suppose that for any values for any group of joint variables, the
joint probability is greater than zero. Y y Z1,Z2 | X if and only if
Y y Z1 | X ,Z2 and Y y Z2 | X ,Z1.

Y X

Z1

Z2



Reduction Theorem

Theorem
Suppose that for any values for any group of joint variables, the joint
probability is greater than zero.

Y y Z1,Z2 | X if and only if Y y Z1 | X ,Z2 and Y y Z2 | X ,Z1.

Y y Z1,Z2 | X implies Y y Z1 | X and Y y Z2 | X.

Y1

Y2

X

Z1

Z2

Y1 y Z1 | X , Y1 y Z2 | X , Y2 y Z1 | X , Y2 y Z2 | X

Y1,Y2 y Z1 | X , Y1,Y2 y Z2 | X , Y1,Y2 y Z1,Z2 | X

Z1,Z2 y Y1 | X , Z1,Z2 y Y2 | X



Paths

Definition
Let (G,E) be a graph and g1, . . . ,gN ∈ G. < g1, . . . ,gN > is a
path in (G,E) if and only if {gn,gn+1} ∈ E for every
n ∈ {1, . . . ,N − 1}.



Connectedness

Definition
Let (G,E) be a graph and A,B be subsets of G. A and B are
said to be connected if and only if for some a ∈ A and b ∈ B,
there is a path < a,g1, . . . ,gN ,b > in G.



Separation

Definition
Let (G,E) be a graph and A,B,S be non-empty subsets of G.
S separates A from B if and only if for every a ∈ A and b ∈ B,
every path in G that begins with a and ends with b has at least
one node in S.



Separation Theorem

A separates B ∪ {i} from C ∪ {j}
N = A ∪ B ∪ C ∪ {i , j}

Then i y j | A

i j

pq

B C

A



Separation Theorem

Theorem
Let G = (N ,E) be a connected conditional independence graph for a set of random

variables whose joint probability is positive. If A ⊂ N is any node set that separates two

nodes i and j, then i y j | A.

i j

pq

B C

A

Proof.
Let B be the set of nodes that either connect to i directly or through A. Let C be the set
of nodes that either connect to j directly or through A. Hence, {A,B,C, {i , j}} form a
partition of N. By construction of the conditional independence graph, i y j | N − {i , j}
and i y p | N − {i ,p}. Application of the block independence theorem yields
i y j ,p | N − {i , j ,p}. Application of the reduction theorem yields i y j | N − {i , j ,p}.
Repeated application using the remaining nodes of C yields i y j | N − {i , j} − C.
Similarly for using q. Repeated application yields i y j | N − {i , j} − B − C. But
N − {i , j} − B − C = A. Therefore i y j | A. �



Local Markov Property

All conditional independences can be read off the Conditional
Independence Graph.

Corollary

Let G = (N ,E) be a conditional independence graph and
n ∈ N. Define B = N − {n} − bndry(n). Then n y B | bndry(n).

Proof.
The set bndry(n) separates n from B. �

Definition
Let G = (N ,E) be a conditional independence graph and
n ∈ N. The Markov Blanket of node n is bndry(n).



Complete Graphs

Definition
A graph G = (N ,E) is complete if and only if

E = {{i , j} | i , j ∈ N , i , j}

Figure: The Complete Graph on 4 Nodes



Graph Restriction

Definition
Let G = (N ,E) be a graph and A ⊂ N. The graph of G
restricted to A, G |A, is defined by

G |A= (A,E |A)

where
E |A= {{i , j} ∈ E | i , j ∈ A}



Completeness

Definition
Let G = (N ,E) be a graph. Let a subset of nodes A ⊂ N be
given. We say A is complete if and only if G |A is a complete
graph.



Maximally Complete

Definition
A subset of nodes A ⊂ N is maximally complete if and only if

G |A is complete
B ⊃ A and G |B complete implies B = A



Clique

Definition
Let G = (N ,E) be a graph. A maximally complete subset A ⊂ N
is called a clique of G.



Chordal Graphs

Definition
A graph is chordal (triangulated, decomposable) if and only if
every cycle of length 4 or more has a chord.

Figure: Non-chordal



Non-Chordal Graphs

Definition
A graph is chordal (triangulated, decomposable) if and only if
every cycle of length 4 or more has a chord.

Figure: Non-chordal



Decomposable Graphs

Definition
A Graph G = (N ,E) is Decomposable if and only if

G is chordal
The cliques of G can be put in running intersection order
C1, . . . ,CK with separators S2, . . .SK where

Sk = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K − 1

such that Sk is complete.



Example

a

b

c

d

e

f

g h

i

j

C1 = {a,b, c,d ,g}
C2 = {c,d , f ,g} S2 = C2 ∩ C1 = {c,d ,g}
C3 = {f ,g,h, i} S3 = C3 ∩ (C1 ∪ C2) = {f ,g}
C4 = {d ,e, f , j} S4 = C4 ∩ (C1 ∪ C2 ∪ C3) = {d , f }



Notation

Let I be an index subset. If I = {1,3,7}, then

P(xi : i ∈ I) = P(x1, x3, x7)



Decomposable Graph

I = {1,2,3,4,5}
C1 = {1,2,5} 1 y 4 | 2,5
C2 = {2,3,5} 1 y 3 | 2,5
C3 = {3,4,5} 2 y 4 | 3,5
S2 = {2,5} 1 y 4 | 3,5
S3 = {3,5} 1 y 4 | 2,3,5

1

2 5

3 4

P(xi : i ∈ I) =
P(xi : i ∈ C1)P(xi : i ∈ C2)P(xi : i ∈ C3)

P(xi : i ∈ S2)P(xi : i ∈ S3)

= P(xi : i ∈ C1)P(xi : i ∈ C2 − S2 | S2)P(xi : i ∈ C3 − S3 | S3)



Decomposable Graphs

Theorem
If G is a decomposable graph with cliques in running
intersection order C1, . . . ,CK and separators S2, . . . ,SK then

P(x1, . . . , xN) =

∏K
k=1 P(xi : i ∈ Ck )∏K
m=2 P(xj : j ∈ Sm)

= P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )



Example

Cliques in running intersection order: {1,2,3,4}, {2,3,4,5}, {5,6}
Separators: {2,3,4}, {5}

P(x1, . . . , x6) =
P(x1, x2, x3, x4)P(x2, x3, x4, x5)P(x5, x6)

P(x2, x3, x4)P(x5)

= P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x2, x3, x4, x5)P(x1 | x2, x3, x4)P(x6 | x5)



Product Form

The product form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

is an extension of the marginals
P(x1, x2, x3, x4)

P(x2, x3, x4, x5)

P(x5, x6)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x1, x2, x3, x4) =
∑
x5

∑
x6

Q(x1, . . . , x6)

=
∑
x5

∑
x6

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x1, x2, x3, x4)
∑
x5

P(x5 | x2, x3, x4)
∑
x6

P(x6 | x5)

= P(x1, x2, x3, x4)
∑
x5

P(x5 | x2, x3, x4)

= P(x1, x2, x3, x4)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x2, x3, x4, x5) =
∑
x1

∑
x6

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x5 | x2, x3, x4)
∑
x1

P(x1, x2, x3, x4)
∑
x6

P(x6 | x5)

= P(x5 | x2, x3, x4)P(x2, x3, x4) = P(x2, x3, x4, x5)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x2, x3, x4, x5, x6) =
∑
x1

Q(x1, . . . , x6)

=
∑
x1

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x2, x3, x4, x5)P(x6 | x5)

Q(x5, x6) =
∑
x2

∑
x3

∑
x4

P(x2, x3, x4, x5)P(x6 | x5)

= P(x5)P(x6 | x5) = P(x5, x6)



Decomposable Graphs

Sk = Ck

⋂
(
k−1⋃
i=1

Ci), k = 2, . . . ,K

P(x1, . . . , xN) = P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

Proposition

(Ck − Sk ) ∩ (
⋃k−1

i=1 Ci) = ∅

Proof.

(Ck − Sk ) ∩ (∪k−1
i=1 Ci) = (Ck − (Ck ∩ (∪k−1

i=1 Ci)) ∩ (∪k−1
i=1 Ci)

= (Ck − (∪
k−1
i=1 Ci)) ∩ (∪k−1

i=1 Ci)

= ∅

�



Decomposable Graphs: Summability

Sk = Ck ∩ (∪k−1
i=1 Ci ), k = 2, . . . ,K

P(x1, . . . , xN) = P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

(Ck − Sk ) ∩ (∪k−1
i=1 Ci ) = ∅

Proposition∑
x1

∑
x2
· · ·
∑

xN
P(xi : i ∈ C1)

∏K
k=2 P(xi : i ∈ Ck − Sk | Sk ) = 1

Proof.

S =
∑
x1

∑
x2

· · ·
∑
xN

P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

=
∑
C1

∑
C2−S2

· · ·
∑

CK −SK

P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

=
∑
C1

P(xi : i ∈ C1)
∑

C2−S2

P(xi : i ∈ C2 − S2 | S2) · · ·
∑

CK −SK

P(xi : i ∈ CK − SK | SK )

= 1

�



Summability Example

1

23

4 5

6

7

8

9

C1 = {1,2,3,5}
C2 = {2,3,4,5} S2 = {2,3,5}
C3 = {1,5,6} S3 = {1,5}
C4 = {5,6,7} S4 = {5,6}
C5 = {6,7,8,9} S5 = {6,7}

S =
∑

x1
· · ·
∑

x9
P(x1x2x3x5)P(x4 |x2x3x5)P(x6 |x1x5)P(x7 |x5x6)P(x9 |x6x7)

=
∑

x1x2x3x5 P(x1x2x3x5)
∑

x4
P(x4 |x2x3x5)

∑
x6

P(x6 |x1x5)
∑

x7 P(x7 |x5x6)
∑

x8x9
P(x8x9 |x6x7)

= 1



Separators

Definition
Let G = (V ,E) be a connected graph. A non-empty subset
S ⊂ V is called a Separator of G if and only if G(V − S,E |V−S)
is not connected. Let A,B, and S be disjoint non-empty subsets
of V . S is a Separator of A from B in graph G if and only if in
the restricted graph G|V−S, there exists no a ∈ A and b ∈ B such
that {a,b} ∈ E |V−s.
A separator S is called a Minimal Separator if and only if T a
separator with T ⊂ S implies T = S.

Theorem
A graph is triangulated if and only if each minimal separator is
maximally complete.



Triangulated Graphs

Theorem
G is a triangulated graph if and only if the vertices of G can be
partitioned into three nonempty subsets A, S, and B, such that

G|A∪S and G|B∪S are triangulated subgraphs of G
S separates A from B

This is one of the reasons that triangulated graphs are called
decomposable graphs.



Triangulated Graphs

Definition
Let G(V ,E) be a graph and {A,B,S} be a non-trivial partition of
V . (A,B,S) is called a Decomposition of G into GA∪S and GB∪S
if and only if

S separates A from B in G
GS is a complete graph
GA∪S and GB∪S are each triangulated



Decomposable Graphs

Theorem
A graph is decomposable if and only if either G is complete or
there exists a decomposition (A,B,S) of G into GA∪S and GB∪S.



Triangulated Graphs

Definition
A Perfect Elimination Ordering in a graph is an ordering of the
vertices of the graph such that, for each vertex v , v and the
neighbors of v that occur after v in the ordering form a
maximally complete graph.

Theorem
A graph is triangulated if and only if it has a perfect elimination
ordering.

Theorem
A graph is triangulated if and only if its cliques can be put in
running intersection order.



Triangulated Graphs and Clique Finding

A triangulated graph can have only linearly many cliques, while
non-chordal graphs may have exponentially many. Therefore
clique finding in triangulated graphs can be done in polynomial
time.



Triangulated Graphs

Theorem
If a graph G is triangulated graph and C1, . . . ,CK are the
cliques of G put in running intersection order with separators
S2, . . . ,SK ,

Sk = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K

then

P(x1, . . . , xN) =

∏K
k=1 P(xi : i ∈ Ck )∏K
k=2 P(xi : i ∈ Sk )



Conditional Independence Graphs

Theorem
Let P(x1, . . . , xN) > 0 and G be the conditional independence
graph of P. If {A,B,S} is a non-trivial partition of {1, . . . ,N} and
S is a separator of A from B in G, then A y B | S

P(xi : i ∈ A ∪ B|xj : j ∈ S) = P(xi : i ∈ A|xj : j ∈ S)P(xi : i ∈ B|xj : j ∈ S)



Generalized Products

What happens if the conditional independence graph is not
triangulated? Can the joint probability distribution be written in
a product form?



Generalized Products

Theorem
Let f be a probability distribution. Then X is Conditionally Independent of Y
given Z if and only if

f (x , y , z) = g(x , z)h(y , z)

Proof.

By definition of conditional independence, X is conditionally independent of
Y given Z if and only if

f (x , y |z) = f (x |z)f (y |z)

Hence X is conditionally independent of Y given Z if and only if

f (x , y , z) = f (x |z)f (y |z)f (z)

= [f (x |z)][f (y |z)f (z)]

= [f (x |z)][f (y , z)]

Take g(x , z) = f (x |z) and h(y , z) = f (y , z) �



Generalized Products

Definition
Let B1, . . . ,BK be index subsets of {1,. . . ,N}. The product form∏K

k=1 ak (xi : i ∈ Bk ) is called a generalized product form if and
only if for some probability function P(x1, . . . , xN)

P(x1, . . . , xN) =
∏K

k=1 ak (xi : i ∈ Bk )

P(x1, . . . , xN) is an extension of P(xi : i ∈ Bk ), k = 1, . . . ,K



Generalized Products

Let B1, . . . ,BK be index subsets of {1,. . . ,N}. Given marginal
probability functions P(xi : i ∈ Bk ), k = 1, . . . ,K find functions
ak (xi : i ∈ Bk ) such that

P(x1, . . . , xN) =
∏K

k=1 ak (xi : i ∈ Bk )

P(x1, . . . , xN) is an extension of P(xi : i ∈ Bk ), k = 1, . . . ,K



Decomposable Graph

I = {1,2,3,4,5}
C1 = {1,2,5} 1 y 4 | 2,5
C2 = {2,3,5} 1 y 3 | 2,5
C3 = {3,4,5} 2 y 4 | 3,5
S2 = {2,5} 1 y 4 | 3,5
S3 = {3,5} 1 y 4 | 2,3,5

1

2 5

3 4

P(xi : i ∈ I) =
P(xi : i ∈ C1)P(xi : i ∈ C2)P(xi : i ∈ C3)

P(xi : i ∈ S2)P(xi : i ∈ S3)

= P(xi : i ∈ C1)P(xi : i ∈ C2 − S2 | S2)P(xi : i ∈ C3 − S3 | S3)



Decomposable Graph

In the conditional independence graph, there is no edge
between node i and j if and only if Xi and Xj are conditionally
independent given the rest of the variables.

1

2 5

3 4

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P15(x1, x5)P2|15(x2 | x1, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)



System Diagram 1

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P15(x1, x5)P2|15(x2 | x1, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System H



System Diagram 2

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P25(x2, x5)P1|25(x1 | x2, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System G



System Diagram 3

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P12(x1, x2)P5|12(x5 | x1, x2)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System I



System Diagram 4

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P4|35(x4 | x3, x5)P35(x3, x5)

Figure: 2: System E



System Diagram 5

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P3|45(x3 | x4, x5)P45(x4, x5)

Figure: 2:System L



System Diagram 6

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P5|34(x5 | x3, x4)P34(x3, x4)

Figure: 2: System A



System Diagram 7

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P2|35(x2 | x3, x5)P35(x3, x5)

Figure: 3:System E



System Diagram 8

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P3|25(x3 | x2, x5)P25(x2, x5)

Figure: 3:System G



System Diagram 9

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P5|23(x5 | x2, x3)P23(x2, x3)

Figure: 3:System J



Feed Forward System Conditional Independences

PA
12345(x1, x2, x3, x4, x5) = P45(x4, x5)P3|45(x3|x4, x5)P1|25(x1|x2, x5)P2|35(x2|x3, x5)

PE
12345(x1, x2, x3, x4, x5) = P35(x3, x5)P4|35(x4|x3, x5)P1|25(x1|x2, x5)P2|35(x2|x3, x5)

PG
12345(x1, x2, x3, x4, x5) = P25(x2, x5)P3|25(x3|x2, x5)P1|25(x1|x2, x5)P4|35(x4|x3, x5)

PH
12345(x1, x2, x3, x4, x5) = P15(x1, x5)P2|15(x2|x1, x5)P3|25(x3|x2, x5)P4|35(x4|x3, x5)

P I
12345(x1, x2, x3, x4, x5) = P12(x1, x2)P5|12(x5|x1, x2)P3|25(x3|x2, x5)P4|35(x4|x3, x5)

PJ
12345(x1, x2, x3, x4, x5) = P23(x2, x3)P1|25(x1|x2, x5)P5|23(x5|x2, x3)P4|35(x4|x3, x5)

PL
12345(x1, x2, x3, x4, x5) = P34(x3, x4)P1|25(x1|x2, x5)P2|35(x2|x3, x5)P5|34(x5|x3, x4)

These decompositions correspond to the same Decomposable Graphical
Model

P12345(x1, x2, x4, x4, x5) =
P345(x3, x4, x5)P125(x1, x2, x5)P235(x2, x3, x5)

P25(x2, x5)P35(x3, x5)



Feedforward Systems: Bayesian Networks

System A Associated Bayesian Network

1

2 5

3 4

System A P(x1 , x2 , x3 , x4 , x5) = P45(x4 , x5)P3|45(x3 | x4 , x5)P2|35(x2 | x3 , x5)P1|25(x1 | x2 , x5)
Bayesian Network P(x1 , x2 , x3 , x4 , x5) = P4(x4)P5(x5)P3|45(x3 | x4 , x5)P2|35(x2 | x3 , x5)P1|25(x1 | x2 , x5)



Causal Structure

System A:
4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

J1 = {3,4,5}

I1 = {4,5}

O1 = {3}

J2 = {1,2,5}

I2 = {2,5}

O2 = {1}

J3 = {2,3,5}

I3 = {3,5}

O3 = {2}



Causal Structure

System A

X4,X5 is the direct cause of X3
X2,X5 is the direct cause of X1
X3,X5 is the direct cause of X2
X4 is an indirect cause of X1
X1 has no causal influence on X3: X1 9 X3
X3 has causal influence on X1: X3 → X1
Given X2,X5, X3 has no causal influence on X1: X3 9 X1 | X2,X5
Given X2,X5, X3 is conditionally independent of X1: X3 y X1 | X2,X5



Conditional Independence Structure

System A

X4,X5 is the direct cause of X3
X2,X5 is the direct cause of X1
X3,X5 is the direct cause of X2
X4 is an indirect cause of X1
Given its parents, each variable is conditionally independent

of its non-descendants
Given X3 and X5, X2 is conditionally independent X4: X2,y X4 | X3,X5



Conditional Independence Structure

P12345(x1, x2, x4, x4, x5) =
P345(x3, x4, x5)P125(x1, x2, x5)P235(x2, x3, x5)

P25(x2, x5)P35(x3, x5)

P24|35(x2, x4 | x3, x5) =
∑
x1

P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)P35(x3, x5)

=
P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)P35(x3, x5)
P25(x2, x5)

=
P235(x2, x3, x5)P345(x3, x4, x5)

P35(x3, x5)P35(x3, x5)

= P2|35(x2 | x3, x5)P4|35(x4 | x3, x5)



Possible Causal System Structure

Let us consider all the possibilities where each subsystem has
exactly one output variable and no two different subsystems
produce the same output variables.

System subsystem output subsystem output subsystem output
A 345 3 235 2 125 1
B 345 3 235 2 125 5
C 345 3 235 5 125 1
D 345 3 235 5 125 2
E 345 4 235 2 125 1
F 345 4 235 2 125 5
G 345 4 235 3 125 1
H 345 4 235 3 125 2
I 345 4 235 3 125 5
J 345 4 235 5 125 1
K 345 4 235 5 125 2
L 345 5 235 2 125 1
M 345 5 235 3 125 1
N 345 5 235 3 125 2



System Diagrams

(a) System A: Feedfoward (b) System B: Feedback

(c) System C: Feedback (d) System D: Feedback



System Diagrams

(e) System E: Feedfoward (f) System F: Feedback

(g) System G: Feedfoward (h) System H: Feedfoward



System Diagrams

(i) System I: Feedfoward (j) System J: Feedfoward

(k) System K: Feedback (l) System L: Feedfoward


