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Quantizing

@ Each dimension (feature) has the same quantizer
@ The number of quantizing levels for each dimension can be different
@ Quantizers are independent of class
@ Limitations
@ Determine the number N of observations for the smallest
class
e Determine the size M of memory that can used for the
class conditional probability tables
@ M < N/10 The variety in the memory must be much smaller
than the variety in the training data
e The Memory size M times the number of classes K must
satisfy MK < available memory
@ Once M is known, how to choose the number of quantizing levels for
each dimension?
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Quantizing

Quantizing

@ Data is real-valued

@ Data is integer valued with large max value
@ To use a discrete Bayes rule the data has to be quantized
e Quantize each dimension to 10 or fewer quantized intervals
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Quantizing

The Problem

@ Assume input data in each dimension is discretely valued:

e 0-255
e 0-1023

@ And now it must be quantized

@ Determine the Number of Quantizing levels for each
dimension

@ Determine the Quantizing interval boundaries

@ Determine the Probability associated with each quantizing
bin
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Quantizing

Simple Quantizer and Bins

@ J dimensions

@ L quantized values per dimension

@ [/ bins in discrete measurement space

@ Each bin has a class conditional probability
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Quantizing

The Quantizer

Definition

A quantizer q is a monotonically increasing function that takes
in a real number and produces a non-negative integer between
0 and K — 1 where K is the number of quantizing levels.

@ The bin associated with 0 is the first bin
@ The bin associated with K — 1 is the K bin
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Quantizing

Quantizing Interval

Definition
The quantizing interval Qx associated with the integer k is
defined by

Qk = {x19(x) =k}

Qo Q; Qo Qs




Quantizing

Table Lookup

@ Letz = (z,...,2y) be a measurement tuple

@ Let g; be the quantizing function for the j dimension
@ The quantized tuple for zis (g1(z1),...,qu(2y))

@ The address for quantized z is a(q1(z1), ..., qu(zy))

° P(a(qi(z1)....,qu(2s)) I ¢) = P(qi(21),...,qu(2J) | ©)
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Determine Number of Quantizing Levels

Entropy Definition

Definition
If py1,..., Pk is a discrete probability function, its Entropy H is

K
H=->" pclogapx
k=1
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Determine Number of Quantizing Levels

Entropy Meaning

@ Person A chooses an index from {1, ..., K} in accordance
with probabilities py, ..., px
@ Person B is to determine the index chosen by Person A by
guessing
@ Person B can ask any question that can be answered Yes
or No
Assuming that Person B is clever in formulating the questions, it
will take on the average H questions to correctly determine the
index Person A chose.

11/54



Determine Number of Quantizing Levels

=plige]e)%

K

H=- Z Pk l0gopk
k=1

If a message is sent composed of index choices sampled from
a distribution with probabilities py, ..., pk, the average
information in the message is H bits per symbol.
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Determine Number of Quantizing Levels

Entropy Estimation

@ We need to estimate the entropy of the probability
distribution in each dimension independent of class

@ We need to do this to determine the number of quantizing
levels being given to each dimension

@ We do this by setting a large number N of quantizing
levels, but not as large as the training set size

@ N < available memory
@ We do this for one dimension at a time
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Determine Number of Quantizing Levels

Entropy Estimation

Data is discrete
Observe x1,...,Xn, Where each x, € {1,...,K}
Count the number of occurrences

My = #{n| xp = Kk}

Estimate the probability

Pk = N
Number of zero counts ng = #{k | my = 0}
Unbiased estimate of entropy

A -1
H= Z Prlogep + S5 2N/0992

G. Miller, Note On The Bias Of Information Estimates, In H. Quastler (Ed.) Information theory in psychology II-B,
Free Press, Glencoe, IL, 1955, pp. 95-100.
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Determine Number of Quantizing Levels

Number of Quantizing Levels

@ J dimensions
@ Each observation is a tuple z = (zy, ..., zy)
@ Each z is discretely valued

@ Let M be the total number of quantizing bins over J
dimensions

@ How to determine the number L; of bins for the j#
dimension?

o M=TIL,L
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Determine Number of Quantizing Levels

The Entropy Solution

Let I:I, be the entropy of the j component of Z.
Let L; be the number of bins for the Jj component of Z.

Define
H:
= =
J
Z,‘:1 Hi
L = M
J J
]—[L, - ]—[Mff
]:1 j:1
MZ}/:1f/




Determine Number of Quantizing Levels

The Number of Quantizing Bins

Let FI, be the entropy of the j component of Z.
Let L; be the number of bins for the j component of Z.

Define
5
=
2/21 Hi
L = [Mi7

Now we have solved for the number of quantizing bins for each
dimension.
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Determine Number of Quantizing Levels

How to Determine The Probabilities

Memory size for each class conditional probability is M
@ Real Valued Data

o If the number of observations is N
e Equal Interval Quantize each component to N/10 Levels

@ Digitized Data

o If each data item is / bits
e Set the number of quantized levels to 2

@ Determine the probability for each quantized level for each component
@ Determine the entropy H; for each component j € J
@ Set the number of quantized levels for component j to be L; = [M/]
H:
°li=wm
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Determine Initial Quantizing Boundaries

Initial Quantizing Interval Boundary

@ The sampleis z1,...,2N

@ Each tuple has J components

@ Component j has L; quantized levels

@ The n' observed tuple: Z, = (zp1...., Zny)

@ Let z1y;,..., Zn) be the N values of the j* component of
the observed tuples, ordered in ascending order.

@ The left quantizing interval boundaries are:




Determine Initial Quantizing Boundaries

Initial Quantizing Interval Boundary

Equal Probability Quantizing

The sample is zi,..., ZN

Each tuple has J components
Component j has L; quantized levels

The n'" observed tuple: z, = (zp1, ..., ZnJ)

Let z1). ..., Z); be the N values of the j* component of the
observed tuples, ordered in ascending order.

@ The left quantizing interval boundaries are:
| | | |
I I .. | |

0 A+ 2441 A% 1) 1023
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Determine Initial Quantizing Boundaries

Example

@ Suppose N = 12, Data is 10 bits, and L; = 4.
@ ;™ component zij, ..., Ziz
@ ordered values of j component: z). . .. Z12);
(<) f’\l’ +1=4
° %’ +1=7
() %’ +1=10
The quantizing intervals are:
[0, (4)

(2())> Z(7y)

[27)> 2(10)7)

[2(10)/', 1023)
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Determine Initial Quantizing Boundaries

Initial Quantizing Interval Boundary

@ The sampleis z1,...,2n
@ The n'" observed tuple: z, = (Zn1, ..., Zn)

@ Let z4);,...,2n); be the N values of the j component of
the observed tuples, ordered in ascending order

@ k indexes quantizing interval: k =1,...,L;

@ The k' quantizing interval [cy;, di;) for the j% component is
defined by

Forke{2,...,Lj -1}

Cki = Z((k-1)N/Lj+1)j
g = Z(kNjLi+1))
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Determine Initial Quantizing Boundaries

Non-uniform Quantization

23/54



Bin Probability

Maximum Likelihood Probability Estimation

@ The sampleis z1,...,2yn

@ The n'" observed tuple: z, = (Zn1, ..., Zn)

@ The quantized tuple for z, is (q1(2Zn1), - -, qu(Zny))
@ The address for z, is a(q1(zn1), - .., Qu(Zny))

@ The bins are numbered 0,..., M -1

@ The number of observations falling into bin mis ty,

@ The maximum likelihood estimate of the probability for bin
mis pm

tm = #{n | a(q1(zn1),---’QJ(ZnJ)) = m}

_ I
l)n7 - N

24/54



Bin Probability

Density Estimation Using Fixed Volumes

@ Total count N
@ Fix a volume v
@ Count the number k of observations in the volume v

@ Density is mass divided by volume
k/N

@ Estimate the density of each point in the volume by ~~
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Bin Probability

Density Estimation Using Fixed Counts

@ Total count N
@ Fix a count k*

@ Find the smallest volume v around the point having a
count k just greater than k*

@ Density is mass divided by volume

@ Estimate the density of each point in the volume by %X

%
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Bin Probability

Smoothed Estimates

@ If the sample size is not large enough, the MLE probability
estimates may not be representative.
@ bin smoothing
@ Let bin m have volume v, and count f,,
e Let my,..., m; be the indexes of the / closest bins to bin m

satisfying
/ 1-1
Ditmzk D tm <k
i=1 i=1

® by = Z:/I':1 tm
° Vfwkv = 21{21 Vm,
@ Density of each point in bin m: abpy/V},
@ Set a so that the density integrates to 1
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Bin Probability

Smoothed Estimates

@ Density of each point in bin m: abpy/V},
@ Volume of bin m: vy,

@ Probability of bin m: pm = (abm/ V) Vim
e Total probability: 1 = XM . abyvm/ Vi,

]
Q= —F"7"-—
M bmvm/v

@ pPm= bmVm/ Vp,

T kak/V
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Bin Probability

Smoothed Estimates

1
B Yy brvi/ V;

lfvm=v, m=1,...,M,then V;, = Inv

Pm bmVm/Vpy,

bmVv/Inv
Z,’g’ﬂ bxv/Ikv

bm/ Im
So b/l

Pm =
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Optimization

Optimization

@ Fixed Sample Size N

@ Sample Z,..., 2y

@ Total number of bins M

@ Calculate the quantizer

@ Determine the probability for each bin

@ Smooth the bin probabilities using smoothing k

@ Calculate a decision rule maximizing expected gain
@ Everything depends on M and k
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Optimization

Memorization and Generalization

@ k is too small: memorization, over-fitting
@ k is too large: over-generalization, under-fitting
@ M is too large: memorization, over-fitting
@ M is too small: over-generalization, under-fitting
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Optimization

Optimize The Probability Estimation Parameters

@ Split the ground truthed sample into three parts

@ Use the first part to calculate the quantizer and bin
probabilities

@ Calculate the discrete Bayes decision rule

@ Apply the decision rule to the second part so that an
unbiased estimate of the expected economic gain given
the decision rule can be computed

@ Brute force optimization to find the values of M and k to
maximize the estimated expected gain

@ With M and k fixed, use the third part to determine an
estimate for the expected gain for the optimization

32/54



Optimization

Optimize The Probability Estimation Parameters

Once the parameters M and k have been optimized, the
quantizer boundaries can be optimized.
Repeat until no change
@ Use training data part 1
e Choose a dimension
e Choose a boundary
e Change the boundary
e Determine the adjusted probabilities
e Determine the discrete Bayes decision rule
@ Use training data part 2
o Calculate the Expected Gain
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Optimization

Optimize The Quantizer Boundaries
| | | |

|
0 Z+1y Zugny (N4) 1023
bij b b bk-1j by

Repeat until no change
Randomly choose a component j and quantizing interval k
Randomly choose a small pertubation ¢ (6 can be positive or negative)
Randomly choose a small integer M (No collision with neighboring boundaries)
lﬁ;ew = lnd —-6(Aﬂ + 1)
For(m=0;m<2M+1;m++)
o sz@w < bV +6
@ Compute New Probabilities
@ Recompute Bayes Rule
@ Save expected gain
@ Replace by; by the boundary position associated with the highest gain
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Optimization

Optimize The Quantizer Boundaries

2(1); 241 Zoagy SN ) 2y
b1j sz bkj bK—U be

@ Greedy Algorithm has a random component
o Multiple runs will produce different answers

@ Repeat greedy algorithm T times
@ Keep track of best result so far
@ After T times, use the best result
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Laplace Probability

Bayesian Perspective

@ Bayesians use the prior probability

e Here prior probability is the prior probability of the bin

e For each bin before we observe the data, the Bayesian
must guess a prior density for the bin

e What is the prior density for the bin being considered to be
1357

@ MLE: start bin counters from 0
@ Bayesian: start bin counters from 3, 3> 0
@ Where does 8 come from?
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Laplace Probability

The Observation

There are K bins. Each time an observation is made, the
observation falls into exactly one of the K bins. The unknown
probability that an observation falls into bin k is p,. To estimate
the bin probabilities p1, ..., pk, we take a random sample of /
observations. We find that of the / observations,

Iy observations fall into bin 1
> observations fall into bin 2

Ix observations fall into bin K
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Laplace Probability

Multinomial

Under the protocol of the random sampling, the probability of
observing counts 14,..., Ix given the bin probabilities p1, ..., px
is given by the multinomial

I
P(/1,---,/K|P1,--',PK):WP?“'P;?
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Laplace Probability

Bayesian Bin Probability

We have observed /4, ..., Ix we would like to determine the
probability that an observation falls in bin k.

@ Denote by di the event that an observation falls into bin k
@ We wish to determine P(dk | h,..., Ixk)
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Laplace Probability

K — 1 Simplex

To do this we will need to evaluate two integrals over the
K — 1-simplex

S={(g91,---,9x) | 0<gk<1,k=1,....,Kand
G+g+...+gxk=1}

@ 0 Simplex: point

@ 1 Simplex: line segment
@ 2 Simplex: triangle

@ 3 Simplex: Tetrahedron
@ 4 Simplex: Pentachoron
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Laplace Probability

K — 1 Simplex

Definition
A K -1 Simplex is a (K — 1)-dimensional polytope which is the
convex hull of its K vertices.

S={(g1,.--,9x) | 0<gk<1,k=1,...,Kand
G+q+...+gk=1}

The K vertices of S are the K — tuples (1,0,...,0),
(0,1,0,...,0), (0,0,1,0,...,0), ..., (0,...,0,1)
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Laplace Probability

The K — 1 Simplex

S=1{(g,....9x) | 0<gx<1,k=1,...,Kand
Qi +q@+...+gk=1}
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Laplace Probability

Two Integrals

They are:

.....




Laplace Probability

Gamma Function

rz) = f t? e ldt
0
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Laplace Probability

Derivation

The derivation goes as follows: Prob(dy | 1, ..., Ik)
Prob(dk, /1 yeey /K)
Prob(h, ..., Ixk)
f(m peyes Prob(di. h..... I, pi. ... pk)dpr . .. dpk

,,,,,

f(q1 """" a)<S Prob(h,...,lk,q1,...,Qk)dq: ... dgk
f(ph_“pK)Es Prob(d, I, ..., Ik | P1, ... pk)P(P1, ..., Px)dps ... dok
f(quK)es Prob(h,... Ik | q1,...qx)P(a,- .., qk)dq . .. dgk
H5:1 In! K I |
J(‘p1 """" Pk )ES I Hm:1 pmpk(K - 1)dp1 te de

K7 In- -
Jearares " Ty am(K = 1)!day ... dak
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Laplace Probability

Derivation

PI’Ob(dk | /1, ey IK)

I+1 Akt

I A Ie— l/
Dorepiyes P1P2 > PRSP B - PPy -+ dlo

.....

IV e f_4 !(Ik+1)!/k+1 [ Ry S
(I+K)!
I ! Ik !
(IHK-1)!
I +1

I+ K
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Laplace Probability

Prior Distribution

The prior distribution over the K-Simplex does not have to be
taken as uniform. The natural prior distribution over the
K-Simplex is the Dirichlet distribution.

Zk 1ak) l_[ ay—1

P(p1,..., Pklat, ..., ak) =
i




Laplace Probability

Dirichlet Distribution Properties

@k
Elp] =
ZjK:1 @j
E 1-E
Vi = [Pk K [23))
1+ Zj:1 aj
—E[pi]Elpj]
Clpipl = ——f
T4 2poy ak
Ifax>1,k=1,..., K, the maximum density occurs at
ag — 1
Pk ="
(ZjK:1 ) - K
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Laplace Probability

The Uniform

The uniform distribution on the K — 1-Simplex is a special case
of the Dirichlet distribution where ax =1, k=1,..., K.

rK o) &5 Lo
P(p1""’pK|a1a-"’aK) — :I_[(Kk—r1(a/l:())l—|'pkk1
k=1 k=1
M(K)
P(p1,....px1,...,1) = %Hpg
k=1




Laplace Probability

The Beta Distribution

The Beta distribution is a special case of the Dirichlet
distribution for K = 2.

wherep>0andg>0and0<y<1

r(p)r(q)

BP9 = o1 q)
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Laplace Probability

Dirichlet Prior

In the case of the Dirichlet prior distribution, the derivation goes in a similar manner.
Prob(dk | h,...,Ik)

~ Prob(dy. ... Ix)
B FVOb(h,...,h()
f(P1-~-,PK)€S Prob(dk, l1, ..., k. p1,....Pk)dps ... dpk
f(q1 ayes FrobCh ... Ik @1, qk)dgy ... dak

. j&ph___pK)gsPrOb(l1s"'7IK—1slk+1!lk+1""!lK|p19"'pK)P(p1!""pK)dp1 de
f(q1,4.,q,<)es Prob(h,... Ik 1 a1,...qk)P(q1, .. 9k)dqs ... dgk
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Laplace Probability

Dirichlet Prior

Prob(h..... Ix) :f Prob(h,.... I, ... k)dan ... dgk
(941G )€S
H§:1 In! K }[ Zn 1 a” 2 am=1
_ qr g, |dai,....dgk
*f(“ﬁ ,,,,, qK)eS[ N rln:[1 H;{ 4 F(an m=1
K7 /,-,! I K, (075} 3
_ | (Zn_1 ) qr’;)"+‘ym_1 ags,..., dqk

I Hf 1 I(an) Jgr...ax)e S i

Hn 1 dn! T(Zney @n) Ty (b + o = 1)!
Il Ty F(an) (1-14 2k a)!
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Laplace Probability

Dirichlet Prior

Prob(dk, I, . .., Ik) :j(‘ ) SProb(dk,I1,...,IK,q1,...,qK)dq1 ...dgk
K )e

_ f( Prob(di)Prob(h, ..., Ikqs. ... Gk)

Prob(q1,...,qK)dq1,...,qK

1_[5:1 In! = [ n 1@n) =
= q—=" gz | dgy, . .., gk
j; aes ! 1_[ 15, M (an) [ e

m=1

Hn 1 r(zn 1“'7) Im+am—-1
= o | | gn """ day,. ... dax
I T T(en) Jiranes HEL 1

I W TS ) (et @) T (f+ a0 = 1)!
N T Fen) (T4 2 an)(I =1+ Z5; an)!
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Laplace Probability

Dirichlet Prior

K TEE ) () K (I +an—1)!
Prob(dy, Iy, ..., lIk) = Hn?: (5:”:1 en) _(h +K0/k) o +aK )
Y Tae Ten) (4 Znoy @n)(I =14+ X5y an)!
_ Ty In! T(Ery @n) TTRy (e + ax = 1)!
T Fen) (=14 Zi ax)!
(+ek) TTK_, Untap-1)!
(2K, @) (1438 ap)!

H5:1 (In+an-1)!
(142K )

I + ax
K
I+ Y5 an

PfOb(/1,..., /K)

PfOb(dk| I1,...,IK) =
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