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Quantizing

Each dimension (feature) has the same quantizer
The number of quantizing levels for each dimension can be different
Quantizers are independent of class

Limitations

Determine the number N of observations for the smallest
class
Determine the size M of memory that can used for the
class conditional probability tables
M ≤ N/10 The variety in the memory must be much smaller
than the variety in the training data
The Memory size M times the number of classes K must
satisfy MK ≤ available memory

Once M is known, how to choose the number of quantizing levels for
each dimension?
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Quantizing

Data is real-valued
Data is integer valued with large max value
To use a discrete Bayes rule the data has to be quantized

Quantize each dimension to 10 or fewer quantized intervals
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The Problem

Assume input data in each dimension is discretely valued:
0 − 255
0 − 1023

And now it must be quantized
Determine the Number of Quantizing levels for each
dimension
Determine the Quantizing interval boundaries
Determine the Probability associated with each quantizing
bin
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Simple Quantizer and Bins

J dimensions
L quantized values per dimension
LJ bins in discrete measurement space
Each bin has a class conditional probability
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The Quantizer

Definition
A quantizer q is a monotonically increasing function that takes
in a real number and produces a non-negative integer between
0 and K − 1 where K is the number of quantizing levels.

The bin associated with 0 is the first bin
The bin associated with K − 1 is the K th bin
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Quantizing Interval

Definition
The quantizing interval Qk associated with the integer k is
defined by

Qk = {x | q(x) = k }

0 1 2 3

0.0 3.0 4.0 8.0 10.0
Q0 Q1 Q2 Q3

8 / 54



Quantizing
Determine Number of Quantizing Levels
Determine Initial Quantizing Boundaries

Bin Probability
Optimization

Laplace Probability

Table Lookup

Let z = (z1, . . . , zJ) be a measurement tuple
Let qj be the quantizing function for the j th dimension
The quantized tuple for z is (q1(z1), . . . ,qJ(zJ))

The address for quantized z is a(q1(z1), . . . ,qJ(zJ))

P(a(q1(z1), . . . ,qJ(zJ)) | c) = P(q1(z1), . . . ,qJ(zJ) | c)
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Entropy Definition

Definition
If p1, . . . ,pK is a discrete probability function, its Entropy H is

H = −
K∑

k=1

pk log2pk

10 / 54



Quantizing
Determine Number of Quantizing Levels
Determine Initial Quantizing Boundaries

Bin Probability
Optimization

Laplace Probability

Entropy Meaning

Person A chooses an index from {1, . . . ,K } in accordance
with probabilities p1, . . . ,pK

Person B is to determine the index chosen by Person A by
guessing
Person B can ask any question that can be answered Yes
or No

Assuming that Person B is clever in formulating the questions, it
will take on the average H questions to correctly determine the
index Person A chose.
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Entropy

H = −
K∑

k=1

pk log2pk

If a message is sent composed of index choices sampled from
a distribution with probabilities p1, . . . ,pK , the average
information in the message is H bits per symbol.
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Entropy Estimation

We need to estimate the entropy of the probability
distribution in each dimension independent of class
We need to do this to determine the number of quantizing
levels being given to each dimension
We do this by setting a large number N of quantizing
levels, but not as large as the training set size
N ≤ available memory
We do this for one dimension at a time
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Entropy Estimation
Data is discrete
Observe x1, . . . , xN , where each xn ∈ {1, . . . ,K }
Count the number of occurrences

mk = #{n | xn = k }

Estimate the probability
pk =

mk

N
Number of zero counts n0 = #{k | mk = 0}
Unbiased estimate of entropy

Ĥ = −
K∑

k=1

pk log2pk +
n0 − 1

2Nloge2

G. Miller, Note On The Bias Of Information Estimates, In H. Quastler (Ed.) Information theory in psychology II-B,
Free Press, Glencoe, IL, 1955, pp. 95-100.
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Number of Quantizing Levels

J dimensions
Each observation is a tuple z = (z1, . . . , zJ)

Each zj is discretely valued
Let M be the total number of quantizing bins over J
dimensions
How to determine the number Lj of bins for the j th

dimension?
M =

∏J
j=1 Lj
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The Entropy Solution

Let Ĥj be the entropy of the j th component of Z .
Let Lj be the number of bins for the j th component of Z .
Define

fj =
Ĥj∑J

i=1 Ĥi

Lj = M fj

J∏
j=1

Lj =
J∏

j=1

M fj

= M
∑J

j=1 fj

= M
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The Number of Quantizing Bins

Let Ĥj be the entropy of the j th component of Z .
Let Lj be the number of bins for the j th component of Z .
Define

fj =
Ĥj∑J

i=1 Ĥi

Lj = dM fj e

Now we have solved for the number of quantizing bins for each
dimension.
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How to Determine The Probabilities

Memory size for each class conditional probability is M

Real Valued Data

If the number of observations is N
Equal Interval Quantize each component to N/10 Levels

Digitized Data

If each data item is I bits
Set the number of quantized levels to 2I

Determine the probability for each quantized level for each component

Determine the entropy Hj for each component j ∈ J

Set the number of quantized levels for component j to be Lj = dM fj e

fj =
Ĥj∑J

i=1 Ĥi

18 / 54



Quantizing
Determine Number of Quantizing Levels
Determine Initial Quantizing Boundaries

Bin Probability
Optimization

Laplace Probability

Initial Quantizing Interval Boundary

The sample is z1, . . . , zN

Each tuple has J components
Component j has Lj quantized levels
The nth observed tuple: Zn = (zn1, . . . , znJ)

Let z(1)j , . . . , z(N)j be the N values of the j th component of
the observed tuples, ordered in ascending order.
The left quantizing interval boundaries are:

z(1)j z( N
Lj
+1)j z( kN

Lj
+1)j

z(
(Lj−1)N

Lj
+1

)
j z(N)j
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Initial Quantizing Interval Boundary

Equal Probability Quantizing

The sample is z1, . . . , zN

Each tuple has J components

Component j has Lj quantized levels

The nth observed tuple: zn = (zn1, . . . , znJ)

Let z(1)j , . . . , z(N)j be the N values of the j th component of the
observed tuples, ordered in ascending order.

The left quantizing interval boundaries are:

0 z( N
Lj
+1)j z( kN

Lj
+1)j z(

(Lj−1)N
Lj

+1
)
j 1023
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Example

Suppose N = 12, Data is 10 bits, and Lj = 4.

j th component z1j , . . . , z12j

ordered values of j th component: z(1)j , . . . z(12)j

N
Lj

+ 1 = 4

2N
Lj

+ 1 = 7

3N
Lj

+ 1 = 10

The quantizing intervals are:

[0, z(4)j )

[z(4)j , z(7)j )

[z(7)j , z(10)j )

[z(10)j ,1023)
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Initial Quantizing Interval Boundary

The sample is z1, . . . , zN

The nth observed tuple: zn = (zn1, . . . , znJ)

Let z(1)j , . . . , z(N)j be the N values of the j th component of
the observed tuples, ordered in ascending order
k indexes quantizing interval: k = 1, . . . ,Lj

The k th quantizing interval [ckj ,dkj) for the j th component is
defined by

For k ∈ {2, . . . ,Lj − 1}

ckj = z((k−1)N/Lj+1)j

dkj = z(kN/Lj+1)j
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Non-uniform Quantization

23 / 54



Quantizing
Determine Number of Quantizing Levels
Determine Initial Quantizing Boundaries

Bin Probability
Optimization

Laplace Probability

Maximum Likelihood Probability Estimation

The sample is z1, . . . , zN

The nth observed tuple: zn = (zn1, . . . , znJ)

The quantized tuple for zn is (q1(zn1), . . . ,qJ(znJ))

The address for zn is a(q1(zn1), . . . ,qJ(znJ))

The bins are numbered 0, . . . ,M − 1
The number of observations falling into bin m is tm
The maximum likelihood estimate of the probability for bin
m is pm

tm = #{n | a(q1(zn1), . . . ,qJ(znJ)) = m}

pm =
tm
N
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Density Estimation Using Fixed Volumes

Total count N
Fix a volume v
Count the number k of observations in the volume v
Density is mass divided by volume
Estimate the density of each point in the volume by k/N

v
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Density Estimation Using Fixed Counts

Total count N
Fix a count k∗

Find the smallest volume v around the point having a
count k just greater than k∗

Density is mass divided by volume
Estimate the density of each point in the volume by k/N

v
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Smoothed Estimates

If the sample size is not large enough, the MLE probability
estimates may not be representative.
bin smoothing

Let bin m have volume vm and count tm
Let m1, . . . ,mI be the indexes of the I closest bins to bin m
satisfying

I∑
i=1

tmi ≥ k
I−1∑
i=1

tmi < k

bm =
∑I

i=1 tmi

V ∗m =
∑I

i=1 vmi

Density of each point in bin m: αbm/V ∗m
Set α so that the density integrates to 1
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Smoothed Estimates

Density of each point in bin m: αbm/V ∗m
Volume of bin m: vm

Probability of bin m: pm = (αbm/V ∗m)vm

Total probability: 1 =
∑M

m=1 αbmvm/V ∗m
α = 1∑M

m=1 bmvm/V ∗m

pm = 1∑M
k=1 bk vk /V ∗k

bmvm/V ∗m
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Smoothed Estimates

pm =
1∑M

k=1 bkvk/V ∗k
bmvm/V ∗m

If vm = v , m = 1, . . . ,M, then V ∗m = Imv

pm =
bmv/Imv∑M

k=1 bkv/Ikv

=
bm/Im∑M

k=1 bk/Ik
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Optimization

Fixed Sample Size N
Sample Z1, . . . ,ZN

Total number of bins M
Calculate the quantizer
Determine the probability for each bin
Smooth the bin probabilities using smoothing k
Calculate a decision rule maximizing expected gain
Everything depends on M and k
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Memorization and Generalization

k is too small: memorization, over-fitting
k is too large: over-generalization, under-fitting
M is too large: memorization, over-fitting
M is too small: over-generalization, under-fitting
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Optimize The Probability Estimation Parameters

Split the ground truthed sample into three parts
Use the first part to calculate the quantizer and bin
probabilities
Calculate the discrete Bayes decision rule
Apply the decision rule to the second part so that an
unbiased estimate of the expected economic gain given
the decision rule can be computed
Brute force optimization to find the values of M and k to
maximize the estimated expected gain
With M and k fixed, use the third part to determine an
estimate for the expected gain for the optimization
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Optimize The Probability Estimation Parameters

Once the parameters M and k have been optimized, the
quantizer boundaries can be optimized.
Repeat until no change

Use training data part 1
Choose a dimension
Choose a boundary
Change the boundary
Determine the adjusted probabilities
Determine the discrete Bayes decision rule

Use training data part 2
Calculate the Expected Gain
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Optimize The Quantizer Boundaries

0 z(N
K +1)j z( kN

K +1)j
z(

(K−1)N
K +1

)
j 1023

b1j b2j bkj bK−1j bKj

Repeat until no change
Randomly choose a component j and quantizing interval k
Randomly choose a small pertubation δ (δ can be positive or negative)
Randomly choose a small integer M (No collision with neighboring boundaries)
bnew

kj = bkj − δ(M + 1)

For (m = 0;m ≤ 2M + 1;m ++)

bnew
kj ← bnew

kj + δ

Compute New Probabilities
Recompute Bayes Rule
Save expected gain

Replace bkj by the boundary position associated with the highest gain
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Optimize The Quantizer Boundaries

z(1)j z(N
K +1)j z( kN

K +1)j
z(

(K−1)N
K +1

)
j z(N)j

b1j b2j bkj bK−1j bKj

Greedy Algorithm has a random component
Multiple runs will produce different answers

Repeat greedy algorithm T times
Keep track of best result so far
After T times, use the best result
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Bayesian Perspective

Bayesians use the prior probability
Here prior probability is the prior probability of the bin
For each bin before we observe the data, the Bayesian
must guess a prior density for the bin
What is the prior density for the bin being considered to be
.135?

MLE: start bin counters from 0
Bayesian: start bin counters from β, β > 0
Where does β come from?
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The Observation

There are K bins. Each time an observation is made, the
observation falls into exactly one of the K bins. The unknown
probability that an observation falls into bin k is pk . To estimate
the bin probabilities p1, . . . ,pK , we take a random sample of I
observations. We find that of the I observations,

I1 observations fall into bin 1
I2 observations fall into bin 2

.

.

.
IK observations fall into bin K
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Multinomial

Under the protocol of the random sampling, the probability of
observing counts I1, . . . , IK given the bin probabilities p1, . . . ,pK
is given by the multinomial

P(I1, . . . , IK | p1, . . . ,pK ) =
I!

I1! · · · IK !
pI1

1 · · · p
IK
K
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Bayesian Bin Probability

We have observed I1, . . . , IK we would like to determine the
probability that an observation falls in bin k .

Denote by dk the event that an observation falls into bin k
We wish to determine P(dk | I1, . . . , IK )
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K − 1 Simplex

To do this we will need to evaluate two integrals over the
K − 1-simplex

S = { (q1, . . . ,qK ) | 0 ≤ qk ≤ 1, k = 1, . . . ,K and
q1 + q2 + . . . + qK = 1 }

0 Simplex: point
1 Simplex: line segment
2 Simplex: triangle
3 Simplex: Tetrahedron
4 Simplex: Pentachoron
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K − 1 Simplex

Definition
A K − 1 Simplex is a (K − 1)-dimensional polytope which is the
convex hull of its K vertices.

S = { (q1, . . . ,qK ) | 0 ≤ qk ≤ 1, k = 1, . . . ,K and
q1 + q2 + . . . + qK = 1 }

The K vertices of S are the K − tuples (1,0, . . . ,0),
(0,1,0, . . . ,0), (0,0,1,0, . . . ,0), . . . , (0, . . . ,0,1)
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The K − 1 Simplex

S = { (q1, . . . ,qK ) | 0 ≤ qk ≤ 1, k = 1, . . . ,K and
q1 + q2 + . . . + qK = 1 }
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Two Integrals

They are:

∫
(q1,...,qK )∈S

dq1, . . . ,dqK =
1

(K − 1)!

∫
(q1,...,qK )∈S

K∏
k=1

qIk
k dq1, . . . ,dqK =

∏K
k=1 Ik !

(I + K − 1)!

where
K∑

k=1

Ik = I
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Gamma Function

Γ(z) =

∫ ∞

0
tz−1e−tdt

Γ(n) = (n − 1)!
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Derivation
The derivation goes as follows: Prob(dk | I1, . . . , IK )

=
Prob(dk , I1, . . . , IK )

Prob(I1, . . . , IK )

=

∫
(p1,...,pK )∈S

Prob(dk , I1, . . . , IK ,p1, . . . ,pK )dp1 . . . dpK∫
(q1,...,qK )∈S

Prob(I1, . . . , IK ,q1, . . . ,qK )dq1 . . . dqK

=

∫
(p1,...pK )∈S

Prob(dk , I1, . . . , IK | p1, . . .pK )P(p1, . . . ,pK )dp1 . . . dpK∫
(q1...,qK )∈S

Prob(I1, . . . IK | q1, . . .qK )P(q1, . . . ,qK )dq1 . . . dqK

=

∫
(p1,...,pK )∈S

∏K
n=1 In!
I!

∏K
m=1 pIm

m pk (K − 1)!dp1 · · · dpK∫
(q1...,qK )∈S

∏K
n=1 In!
I!

∏K
m=1 qIm

m (K − 1)!dq1 . . . dqK
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Derivation

Prob(dk | I1, . . . , IK )

=

∫
p1,...,pK )∈S

pI1
1 pI2

2 , · · · p
Ik−1
k−1pIk+1

k pIk+1

k+1 · · · p
IK
K dp1 · · · dpK∫

(q1,...,qK )∈S
qI1

1 qI2
2 · · · q

IK
K dq1 · · · dqK

=

I1!I2!···Ik−1!(Ik+1)!Ik+1!···IK
(I+K )!

I1!I2!···IK !
(I+K−1)!

=
Ik + 1
I + K
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Prior Distribution

The prior distribution over the K -Simplex does not have to be
taken as uniform. The natural prior distribution over the
K -Simplex is the Dirichlet distribution.

P(p1, . . . ,pK |α1, . . . , αK ) =
Γ(

∑K
k=1 αk )∏K

k=1 Γ(αk )

K∏
k=1

pαk−1
k

αk > 0

0 < pk < 1, k = 1, . . . ,K
K−1∑
k=1

pk < 1

pK = 1 −
K−1∑
k=1

pk
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Dirichlet Distribution Properties

E [pk ] =
αk∑K

j=1 αj

V [pk ] =
E [pk ](1 − E [pk ])

1 +
∑K

j=1 αj

C[pi ,pj ] =
−E [pi ]E [pj ]

1 +
∑K

k=1 αk

If αk > 1, k = 1, . . . ,K , the maximum density occurs at

pk =
αk − 1

(
∑K

j=1 αj) − K
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The Uniform

The uniform distribution on the K − 1-Simplex is a special case
of the Dirichlet distribution where αk = 1, k = 1, . . . ,K .

P(p1, . . . ,pK |α1, . . . , αK ) = =
Γ(

∑K
k=1 αk )∏K

k=1 Γ(αk )

K∏
k=1

pαk−1
k

P(p1, . . . ,pK |1, . . . ,1) =
Γ(K )

Γ(1)

K∏
k=1

p0
k

= (K − 1)!
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The Beta Distribution

The Beta distribution is a special case of the Dirichlet
distribution for K = 2.

P(y) =
1

B(p,q)
yp−1(1 − y)q−1

where p > 0 and q > 0 and 0 ≤ y ≤ 1

B(p,q) =
Γ(p)Γ(q)

Γ(p + q)
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Dirichlet Prior

In the case of the Dirichlet prior distribution, the derivation goes in a similar manner.
Prob(dk | I1, . . . , IK )

=
Prob(dk , I1, . . . , IK )

Prob(I1, . . . , IK )

=

∫
(p1 ,...,pK )∈S Prob(dk , I1, . . . , IK ,p1, . . . ,pK )dp1 . . . dpK∫
(q1 ,...,qK )∈S Prob(I1, . . . , IK ,q1, . . . ,qK )dq1 . . . dqK

=

∫
(p1 ,...pK )∈S Prob(I1, . . . , Ik−1, Ik + 1, Ik+1, . . . , IK | p1, . . .pK )P(p1, . . . ,pK )dp1 . . . dpK∫

(q1 ...,qK )∈S Prob(I1, . . . IK | q1, . . .qK )P(q1, . . . ,qK )dq1 . . . dqK
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Dirichlet Prior

Prob(I1, . . . , IK ) =

∫
(q1 ,...,qK )∈S

Prob(I1, . . . , IK ,q1, . . . ,qK )dq1 . . . dqK

=

∫
(q1 ,...,qK )∈S

∏K
n=1 In!

I!

K∏
m=1

qIm
m


 Γ(

∑K
n=1 αn)∏K

n=1 Γ(αn)

K∏
m=1

qαm−1
m

 dq1, . . . ,dqK

=

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏K

n=1 Γ(αn)

∫
(q1 ,...,qK )∈S

K∏
m=1

qIm+αm−1
m dq1, . . . ,dqK

=

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏N

n=1 Γ(αn)

∏K
k=1(Ik + αk − 1)!

(I − 1 +
∑K

k=1 αk )!

52 / 54



Quantizing
Determine Number of Quantizing Levels
Determine Initial Quantizing Boundaries

Bin Probability
Optimization

Laplace Probability

Dirichlet Prior

Prob(dk , I1, . . . , IK ) =

∫
(q1 ,...,qK )∈S

Prob(dk , I1, . . . , IK ,q1, . . . ,qK )dq1 . . . dqK

=

∫
(q1 ,...,qK )∈S

Prob(dk )Prob(I1, . . . , IK |q1, . . . ,qK )

Prob(q1, . . . ,qK )dq1, . . . ,qK

=

∫
(q1 ,...,qK )∈S

qk

∏K
n=1 In!

I!

K∏
m=1

qIm
m

 Γ(
∑K

n=1 αn)∏K
n=1 Γ(αn)

K∏
m=1

qαm−1
m

 dq1, . . . ,dqK

=

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏K

n=1 Γ(αn)

∫
(q1 ,...,qK )∈S

qk

K∏
m=1

qIm+αm−1
m dq1, . . . ,dqK

=

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏N

n=1 Γ(αn)

(Ik + αk )
∏K

n=1(In + αn − 1)!

(I +
∑K

n=1 αn)(I − 1 +
∑K

n=1 αn)!
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Prob(dk , I1, . . . , IK ) =

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏N

n=1 Γ(αn)

(Ik + αk )
∏K

n=1(In + αn − 1)!

(I +
∑K

n=1 αn)(I − 1 +
∑K

n=1 αn)!

Prob(I1, . . . , IK ) =

∏K
n=1 In!

I!
Γ(

∑K
n=1 αn)∏N

n=1 Γ(αn)

∏K
k=1(Ik + αk − 1)!

(I − 1 +
∑K

k=1 αk )!

Prob(dk | I1, . . . , IK ) =

(Ik+αk )
∏K

n=1(In+αn−1)!

(I+
∑K

k=1 αk )(I−1+
∑K

k=1 αk )!∏K
n=1(In+αn−1)!

(I−1+
∑K

k=1 αk )!

=
Ik + αk

I +
∑K

n=1 αn
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