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Cartesian Products

Definition
The Cartesian Product of sets A1, . . . ,AK is written as

A1 × A2 × . . .× AK

and is defined by

A1×A2×. . .×AK =




x1
x2
...

xK


∣∣∣∣∣ x1 ∈ A1, x2 ∈ A2, . . . , xK ∈ AK


The set AK is called the K -fold Cartesian Product of A.

AK = A× A×, . . . ,×A︸ ︷︷ ︸
K times
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Euclidean Space

Definition
R represents the set of all real numbers

Definition
An N-dimensional Euclidean Space is the set of all N-tuples of
real numbers written as RN

Definition

TheDimension of RN is N

All the spaces we work with are Euclidean Spaces
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Subspace Example

First we have to know what is a space or subspace

A three dimensional Euclidean Space has three kinds of
subspaces:

The zero dimensional point at the origin
A one dimensional line

of infinite extent
of arbitrary orientation
containing the origin

A two dimensional plane
of infinite extent
of arbitrary orientation
containing the origin
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Scalars and Linear Spaces

Definition
A Scalar is any number from R

Definition
A space L is called a Linear Space if and only if for every scaler
α and β

x ∈ L and y ∈ L implies that αx + βy ∈ L

Any x ∈ L is called a point or vector of L
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Subspace

Definition
A subset V ⊆ L is called a Linear subspace of L if and only if
for every scalars α and β

x ∈ V and y ∈ V implies that αx + βy ∈ V

We are only interested in spaces and subspaces that are linear
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Representing Subspaces

b1

b2

2-Dimensional Space

1-Dimensional Subspace V

V = {x | for some α1, x = α1b1}
V = {x | b′2x = 0}
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Linear Combination

Definition
A vector x from a subspace V is said to be a linear combination
of vectors x1, . . . , xK if and only if for some scalars α1, . . . , αK

x =
N∑

n=1

αkxk (1)
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Linear Independence

Definition
A set of vectors {x1, x2, . . . , xK} from a subspace V is said to be
Linearly Independent if and only if for every set of scalars
{α1, . . . , αK}, not all zero,

K∑
k=1

αkxk 6= 0

The vectors

 1
2
3

 ,

 0
0
1

 are linearly independent
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Linear Dependence

Definition
A set of vectors {x1, . . . , xK} is said to be Linearly Dependent if
and only if it is not linearly independent.

The vectors

 1
2
3

 ,

 3
6
9

 are linearly dependent
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Linear Dependence

Proposition

A set of vectors{x1, x2, . . . , xK} from a subspace V is Linearly
Dependent if for some set of scalars {α1, . . . , αK}, not all zero,

K∑
k=1

αkxk = 0
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Span

Definition
The Span of a set B,

B = {b1, . . . ,bK | bk ∈ RN , k = 1, . . . ,K}

is the set of all linear combinations of vectors from B

We denote the span of B by Span{B}
There is no constraint on K relative to N
Span{B} is a subspace of RN
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Basis

Definition
A set B of vectors

B = {b1, . . . ,bK}

is called a Basis for the subspace Span{B} if and only if B is a
linearly independent set

The vectors a =

 1
1
0

 ,b =

 0
1
1

 are linearly independent

and constitute a basis for the subspace Span{a,b}
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Dimension

Definition
The Dimension of a subspace V is the smallest integer K such
that the span of {b1, . . . ,bK | bk ∈ V, k = 1, . . . ,K} satisfies

Span{b1, ...,bK} = V

Proposition
The dimension of a subspace V is the largest number of
vectors from V such that the vectors are linearly independent.
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Inner Product

Definition
The Inner Product between two vectors a and b from subspace
V is denoted by a · b.

Let a =


a1
a2
...

aK

 and b =


b1
b2
...

bK


Then, a · b =

∑K
k=1 akbk

The dot product between vectors a and b can also be written in
matrix notation

a · b = a′b

16 / 75



Projection Operators
Principal Components
Subspace Classifiers

Orthogonality

Definition
Two vectors a,b ∈ V are said to be orthogonal if and only if

a · b = 0

We express that two vectors a and b are orthogonal by a ⊥ b.

Two spaces V andW are said to be orthogonal if and only if for
every v ∈ V and every w ∈ W

v · w = 0

We express that two subspaces V andW are orthogonal by
V ⊥ W
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Direct Sum

Definition
Let V andW be subspaces of S. The Direct Sum of subspaces
V andW, denoted by V ⊕W, is defined by
V ⊕W = {x ∈ S | for some v ∈ V and some w ∈ W, x = v + w}
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Orthogonal Complement

Definition
Let V be a subspace of S. The orthogonal complement of V
with respect to S is denoted by V⊥ and is defined by

V⊥ = {w ∈ S | for every v ∈ V, w ⊥ v}
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Orthogonal Complement Subspace

Definition
Let V andW be two subspaces of S. W is called the
orthogonal complement of V if and only ifW = V⊥

Proposition
Let V be a subspace of S. Then

V ⊥ V⊥

V ⊕ V⊥ = S
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Orthogonal Basis

Definition
A basis B for a subspace V is said to be an orthogonal basis if
and only for every x , y ∈ B, x 6= y , x ⊥ y
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Orthogonal Projection

Definition
Let V be a subspace of S. Let x ∈ S and x = v + w where
v ∈ V and w ∈ V⊥. Then v is called the orthogonal projection
of x onto V

The orthogonal projection of x is unique.

Proposition
Let V be a subspace of S. Let x ∈ S and x = v1 + w1 = v2 + w2
where v1, v2 ∈ V and w1,w2 ∈ V⊥ Then v1 = v2
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Proposition
Let V be a subspace of S and x ∈ S. Let x = v + w where
v ∈ V w ∈ V⊥. Then ||x ||2 = ||v ||2 + ||w ||2.

Proof.
Since x = v + w,

||x ||2 = ||v + w ||2

= (v + w)′(v + w)

= v ′v + v ′w + w ′v + w ′w
= v ′v + w ′w

= ||v ||2 + ||w ||2

23 / 75



Projection Operators
Principal Components
Subspace Classifiers

Projection Operator

Definition
A square matrix P is said to be a projection operator if and only
if

P2 = P

A square matrix P is said to be an orthogonal projection
operator if and only if

P2 = P
P = P ′
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Projection Operator Examples

Definition

P is called a projection operator if and only if P2 = P

(
.3 .7
.3 .7

)(
.3 .7
.3 .7

)
=

(
.3 .7
.3 .7

)
(

1 −1
0 0

)(
1 −1
0 0

)
=

(
1 −1
0 0

)
(
.2 .4
.4 .8

)(
.2 .4
.4 .8

)
=

(
.2 .4
.4 .8

)
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Orthogonal Projection Operator Example

Consider the orthogonal projection operator onto the space
spanned by

1
5

(
3
4

)
P =

1
5

(
3
4

)
1
5

(3 4) =
1
25

(
9 12

12 16

)

1
25

(
9 12

12 16

)
=

( 3
5
−4
5

4
5

3
5

)(
1 0
0 0

)( 3
5

4
5

−4
5

3
5

)
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Orthogonal Projection Operator

Proposition

Let {b1,b2, ...,bK} be an orthonormal basis for subspace V,
which is a subspace of an N-dimensional space S. Then the
orthogonal projection operator P onto the K -dimensional
subspace V can be constructed by

PN×N = BN×K B′ K×N

where

B =


...

...
...

b1 b2 . . . bK
...

...
...


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Proposition
Let b1, . . . ,bK be an orthonormal basis for the subspace V Let
B be a matrix whose columns are the basis elements. Then,
BB′ is an orthogonal projection operator onto Col

Proof.

(BB′)(BB′) = B(B′B)B=BB′

(BB′)′ = BB′

Finally, since any vector x that BB′ operates on results in a
linear combination of the columns of B, the space that BB′

projects to is Col(B) and the columns of B are the orthonormal
basis vectors for the subspace V. Hence BB′ is the orthogonal
projection operator onto the space V.
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Orthogonal Projection Operators are Unique

Proposition
Let Q and P be orthogonal projection operators to the same
subspace V. Then Q = P

Proof.
Since both P and Q are orthogonal projection operators to the
same subspace V, the columns of P and the columns of Q lie
in V. Hence PQ = Q and QP = P Since Q is an orthogonal
projection operator Q = Q′ and PQ = Q. Therefore,

Q = Q′ = (PQ)′ = Q′P ′ = QP = P
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Another Form For Orthogonal Projection Operators

Proposition

Let b1, . . .bK be an orthonormal basis for V. Then
∑K

k=1 bkb′k is
an orthogonal projection operator onto the subspace V.

Proof.
K∑

j=1

bjb′j
K∑

k=1

bk b′k =
K∑

j=1

K∑
k=1

bj (b′j bk )b′k

=
K∑

j=1

bk b′k

(
K∑

k=1

bk b′k

)′
=

K∑
k=1

(bk b′k )′ =
K∑

k=1

bk b′k

It is clear that whenever
∑K

k=1 bk b′k operates on x, the result is a linear
combination of the basis vectors for V.
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Orthogonal Projection Minimizes Error

Theorem
Let V be a subspace of S. Let f : S → V and x ∈ S.

min
f

(x − f (x))
′
(x − f (x))

is achieved when f is the orthogonal projection operator from S
to V
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Proof: Orthogonal Projection Minimizes Error

Proof.
Let x ∈ S. Then there exists v ∈ V and w ∈ V⊥ such that x = v + w .
Consider

ε2 = ‖x − f (x)‖2

= (x − f (x))′(x − f (x))

= x ′x − (v + w)′f (x)− f (x)′(v + w) + f (x)′f (x)

But f (x) ∈ V and w ∈ V⊥. Hence w ′f (x) = 0, therefore
ε2 = x ′x − v ′f (x) + f (x)′v + f (x)′f (x)

= (v + w)′(v + w)− v ′f (x)− f (x)′v + f (x)′f (x)

= v ′v + w ′w − v ′f (x)− f (x)′v + f (x)′f (x)

= (v − f (x))′(v − f (x)) + w ′w

ε2 is minimized by making f (x) = v , the orthogonal projection of x
into V.
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Dimensional Reduction by Orthogonal Projection

Corollary

Let x1, . . . , xK ∈ S. Let V be a subspace of S. Then

min
f :S→V

K∑
k=1

‖xk − f (xk ))‖2

is achieved when f is the orthogonal projection operator from S to V

Proof.

The best f can do for each xk is for f (xk ) = vk , the orthogonal
projection of xk onto V. Therefore,

min
f :S→V

K∑
k=1

(xk − f (xk ))′(xk − f (xk ))

is achieved when f is the orthogonal projection operator onto V.
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Trace

Definition
The Trace of a K × K square matrix A = (aij) is defined by

Trace(A) =
K∑

k=1

akk

Proposition
Let A,B,A1, . . . ,AK be square N × N matrices and
α, β, α1, . . . αK be scalars. Then

Trace(AB) = Trace(BA)

Trace is a linear operator
Trace(αA + βB) = αTrace(A) + βTrace(B)

Trace(
∑K

k=1 αk Ak ) =
∑K

k=1 αk Trace(Ak )
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Trace of Orthogonal Projection Operator

Proposition

Let P be an orthogonal projection operator to the M dimensional
subspace V. Then Trace(P) = M

Proof.

Let b1, . . . ,bM be an orthonormal basis for V. Then P =
∑M

m=1 bmb
′

m

Trace(P) = Trace(
M∑

m=1

bmb
′

m)

=
M∑

m=1

Trace(bmb
′

m) =
M∑

m=1

Trace(b
′

mbm)

=
M∑

m=1

Trace(1) =
M∑

m=1

1 = M
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Kernel and Range

Definition
The Kernel of a matrix operator A is

Kernel(A) = {x |Ax = 0}

The Range of a matrix operator A is

Range(A) = {y | for some x , y = Ax}
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Definition
The Column Space of a matrix A is denoted by Col(A) is
defined by the Span of its columns.

Proposition

The Range(A) = Col(A)
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Minkowski Sum

Definition
The Minkowski Sum or simply Sum of two subsets A and B of S
is defined by

A⊕ B = {x ∈ S | for some a ∈ A and for some b ∈ B, x = a + b}
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Kernel and Range

Proposition
Let P be a projection operator onto subspace V of S. Then

Range(P)⊕ Ker(P) = S

Proof.
Let x ∈ S. Px + (I − P)x = Px + x − Px = x. Certainly
Px ∈ Range(P). Consider (I − P)x.
P[(I − P)x ] = Px − PPx = Px − Px = 0 Therefore, by definition
of Kernel(P), (I − P)x ∈ Kernel(P).
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Kernel and Range of Orthogonal Projection Operator

Proposition
Let P be an orthogonal projection operator. Then
Range(P) ⊥ Kernel(P)

Proof.
Let x ∈ Range(P) and y ∈ Kernel(P). Then for some u,
x = Pu. Consider x ′y.

x ′y = (Pu)′y = u′P ′y = u′Py

But y ∈ Kernel(P) so that Py=0. Therefore x ′y = 0.
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Range And Kernel of Orthogonal Projection Operator

2-Dimensional Space S
Range(P) = {x ∈ S | for some y, x = P(y)}

Kernel(P) = {x ∈ S | Px = 0}

b1
b2

P = b1b′1P(αb2) = b1b′1(αb2) = 0 P(αb1) = b1b′1(αb1) = αb1

x

Px
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Projection Operator to V⊥

Proposition
Let P be a projection operator onto the subspace V. (Not
necessarily an orthogonal projection operator) Then I −P is the
projection operator onto the subspace V⊥.

Proof.

(I − P)(I − P) = I − P − P + P2

= I − 2P + P = I − P

I − P is also a projection operator. But what space does it
project to?
V⊥ = Kernel(P). Let x ∈ V⊥. Then Px = 0. Consider
(I − P)x = x − Px = x
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Orthogonal Projection Operator to V⊥

Proposition
Let P be the orthogonal projection operator onto the subspace
V. Then I − P is the orthogonal projection operator onto the
subspace V⊥.

Proof.
We already know that (I − P)(I − P) = I − P. We just have to
show that I − P is symmetric and that I − P projects to the V⊥.

(I − P)′ = I′ − P ′ = I − P

V⊥ = Kernel(P). Let x ∈ V⊥. Then Px = 0. Consider
(I −P)x = x −Px = x Every x ∈ V⊥ gets projected to itself.
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Covariance Matrix and Expected Value of Squared
Length

Definition

The Covariance Matrix of a distribution is defined by

Σ = E [(x − µ)(x − µ)′]

Proposition

Trace (Σ) = E [||x − µ||2]

Proof.

Trace (Σ) = Trace
(
E [(x − µ)(x − µ)′]

)
= E [Trace

(
x − µ)(x − µ)′

)
]

= E [Trace
(
(x − µ)′(x − µ)

)
]

= E [(x − µ)′(x − µ)]

= E [||x − µ||2]
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Covariance Matrix and Sum of Squared Vector
Lengths

Given a sample x1, . . . , xM of N-dimensional vectors, the
unbiased estimated of the covariance matrix Σ is given by

Σ =
1

M − 1

M∑
m=1

(xm − µ)(xm − µ)′

where the estimated mean µ is given by

µ =
1
M

M∑
m=1

xm

Then

Trace(Σ) =
1

M − 1

M∑
m=1

||xm − µ||2
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Covariance and Sum of Squared Vector Lengths

Proposition
Let Σ be the unbiased estimated covariance matrix. Then

Trace(Σ) =
1

M − 1

M∑
m=1

||xm − µ||2

Proof.

Trace(Σ) = Trace

 1

M − 1

M∑
m=1

(xm − µ)(xm − µ)′

 =
1

M − 1
Trace

 M∑
m=1

(xm − µ)(xm − µ)′


=

1

M − 1

M∑
m=1

Trace
(

(xm − µ)(xm − µ)′
)

=
1

M − 1

M∑
m=1

Trace
(

(xm − µ)′(xm − µ)
)

=
1

M − 1

M∑
m=1

(xm − µ)′(xm − µ) =
1

M − 1

M∑
m=1

||xm − µ||2
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Covariance and Sum of Squared Vector Lengths

The covariance matrix Σ gives information about the spread of
the vectors composing it. Trace(Σ) is a measure of the total
variance. The sum

1
M − 1

M∑
m=1

||xm − µ||2

is a normalized sum of the squared length of the xm vectors to
the mean µ.
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Sum of Squared Vector Lengths

µ

1
M − 1

M∑
m=1

||xm − µ||2
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Eigen Decomposition of Covariance Matrix

Proposition

Let Σ be the covariance matrix. Let the Eigenvalue Eigenvector
decomposition of Σ be Σ = T ΛT ′ where Λ = Diagonal(λ1, . . . , λN)
Then,

Trace(Σ) =
N∑

n=1

λn

Proof.

Trace(Σ) = Trace(T ΛT ′) = Trace(ΛTT ′)
= Trace(Λ)

=
N∑

n=1

λn
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Eigen Decomposition of Covariance Matrix

Proposition

Let Σ be the covariance matrix of random vector x. Let the
Eigenvalue Eigenvector decomposition of Σ be Σ = T ΛT ′ where
Λ = Diagonal(λ1, . . . , λN). Let the nth column of T be tn. Let
σ2

n = V [t ′nx ]. Then,
σ2

n = λn

Proof.

σ2
n = V [t ′nx ] = E [(t ′nx − E [t ′nx)2]

= E [(t ′n(x − µ))((x − µ)′tn)]

= t ′nE [(x − µ)(x − µ)′]tn = t ′nΣtn
= t ′nT ΛT ′tn = (0 . . . 010 . . . 0)Λ(0 . . . 010 . . . 0)′

= λn
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But if Σ and µ are estimated from the data,

Trace(Σ) =
1

M − 1

N∑
n=1

||xm − µ||2

Therefore, we can conclude that

N∑
n=1

σ2
n =

1
M − 1

M∑
m=1

||xm − µ||2

The sum of the Eigenvalues of the Covariance Matrix is the
total variance and is equal to the 1

M−1 of the sum of the squared
length of the (xm − µ) vectors.
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Projecting to Subspaces

Principal Components projects the original data from the larger
dimensional space in which it resides to a smaller dimensional
space.

If the decision is to project to a subspace of dimension K,
which subspace should be chosen?
With Principal Components, the K-dimensional space is
found that minimizes the sum of the squared distances
between the original data vectors and their projection in the
K-dimensional subspace.
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Space Squeezing: Dimensionality Reduction

N-Dimensional Space

x̂1

x̂2

M-Dimensional Subspace

x1

x2
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Principal Components and Orthogonal Projection
Operators

Consider the case for an orthogonal projection operator. It
projects a data point or vector to that place in the subspace that
is closest to the original point.

Suppose the original data points are N-dimensional. The
projection operator projects each point to the closest point to it
in the K-dimensional subspace determined by the range of the
orthogonal projection operator.

For some subspaces of dimension K the overall distances
between the original data points and their projections will be the
smallest. This is the one that Principal Components
determines.

54 / 75



Projection Operators
Principal Components
Subspace Classifiers

The Simplest Orthonormal Projection Operators

The simplest othogonal projection operator is a diagonal matrix
with some of the entries on the diagonal being 1’s and the other
entries on the diagonal being 0’s.

For example, examine the orthogonal projection operator that
projects the data to its first two components, all other
components of the projected vector being 0.

P =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

...
... 0 0

0 0 . . . 0 0


Clearly P = P2 and P = P ′ making it an orthogonal projection
operator.
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The Orthonormal Matrix
Definition

A square matrix Q is said to be Orthonormal if its columns each have norm 1
and each column is orthogonal to every other column.

Proposition

The transpose of an orthonormal matrix is its inverse.

Proof.

Let T be an N × N orthonormal matrix with columns t1, . . . , tN Then

T ′T =


. . . t ′1 . . .
. . . t ′2 . . .
...

...
...

. . . t ′N . . .




...
... . . .

...
t1 t2 . . . tN
...

... . . .
...

 = I

T ′T = I so that T ′TT−1 = T−1 Hence,

T ′ = T−1
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The General Orthogonal Projection Operator

Proposition
If Q is an orthonormal matrix and P is an orthogonal projection
operator, then QPQ′ is an orthogonal projection operator.

Proof.
We have to show that QPQ′ is idempotent and symmetric.
Consider

(QPQ′)(QPQ′) = QP(Q′Q)PQ′

= QPPQ′

= QPQ′

(QPQ′)′ = QP ′Q′

= QPQ′
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The General Orthogonal Projection Operator

Proposition
Let P be an orthonormal projection operator. Let Q be an
orthonormal matrix. Then QPQ′ projects to a subspace of the
same dimension as P

Proof.
Since the dimension of the space an orthonormal projection
operator projects to is the trace of the operator, we just have to
show that Trace(P) = Trace(QPQ′)

Trace(QPQ′) = Trace(PQQ′)
= Trace(P(QQ′))

= Trace(P)
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The Orthogonal Projection Operator In Diagonalized
Form

Proposition

The form QPQ′ can orthogonally project to any given subspace V
with P being a diagonal matrix have ones and zeros on the diagonal.

Proof.

Without loss of generality, we take PN×N to be a diagonal matrix with
the first M < N entries being ones and the remaining diagonal entries
zero. The proof is by construction. Let q1, . . . ,qM be an orthonormal
basis for V. Extend this orthonormal basis to qM+1, . . . ,qN . Define the
matrix Q to have columns of q1, . . . ,qN . Define the orthogonal
projection operator P to be a diagonal matrix whose first M diagonal
entries are one and all the remaining diagonal entries are zero.
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Proof Continued

Consider QPQ′.

QPQ′ =


...

...
...

q1 . . . qM
...

...
...




. . . q′1 . . .

. . . q′2 . . .
...

...
...

. . . q′M . . .


=

M∑
m=1

qmq′m

And this is the orthogonal projection operator onto the
subspace V

60 / 75



Projection Operators
Principal Components
Subspace Classifiers

The Principal Component Technique

Let x1, . . . , xK be the observed N × 1 data vectors. First center
the data around the mean by subtracting the sample mean
vector µ from each of the original data points.

µ =
1
K

K∑
k=1

xk

Define the sample unbiased covariance matrix Σ by

Σ =
1

K − 1

K∑
k=1

(xk − µ)(xk − µ)′
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Eigenvector Eigenvalue Decomposition

Σ is an N × N real symmetric positive semidefinite matrix.
Consider the eigenvalue eigenvector decomposition of Σ

Σ = UΛU ′

where Λ is a diagonal matrix of eigenvalues and U is an
orthonormal matrix. Since Σ is a real symmetric positive
semidefinite matrix the eigenvalues are non-negative.
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Total Variance

The total variance is given by the trace of Σ. It has the meaning
that it is 1

K−1 times the squared distance between the observed
data to the centroid given by the mean.
Note that the trace of Σ is equal to the trace of Λ

Trace(Σ) = Trace(UΛU ′)
= Trace(ΛUU ′)
= Trace(Λ)
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Total Variance

Without loss of generality, we suppose that the diagonal entries
are ordered from largest to smallest. Since the eigenvalues are
ordered in descending order, the first column of U is that
subspace that would have the smallest distance between the
observations and the mean vector in the subspace defined by
the span of the first eigenvector. Alternatively it is also the
subspace whose squared projected lengths is maximal.
The span of the second column of U would be that subspace,
orthogonal to the first having the next most smallest squared
distance between the observations and the mean vector. And
so on.
Because the total variance is fixed, the sum of the squared
distances between the data points and their projection are
minimized.
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Principal Components
Theorem
Let x1, . . . , xK ∈ S an N-dimensional vector space and Q be an
orthogonal projection operator of rank M. Then

∑K
k=1 xk Qxk is

maximized when Q projects to the M-Dimensional subspace spanned
by the M eigenvectors of

∑K
k=1 xk x

′

k having largest eigenvalues.
Proof.

Let
∑K

k=1 xk x
′

k = TDT
′

and Q∗ = T
′
QT. Without loss of generality we

assume that the diagonal entries are ordered dii ≥ djj , i < j . Then
maxQ∗ Trace(Q∗D) =

∑M
m=1 dmm, where the maximum is taken over

all Q∗ satisfying Q∗ = Q∗Q∗ and Q∗ = Q∗
′
. Thus, the first M diagonal

entries of Q∗ are one and the remaining diagonal entries 0. Since∑N
i=1
∑N

j=1 q2
ij = M, and there are M ones on the diagonal, the

remaining elements of Q∗ are 0. This implies Q = TQ∗T
′

is the
orthogonal projection operator onto the space spanned by the first M
eigenvectors of

∑K
k=1 xk x

′

k for these are the eigenvectors having
largest eigenvalues.
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Choice of Best Subspace

In Principal Components the researcher calculates the
successive sums of the eigenvalues and compares them to the
total sum of the eigenvalues, which is the Trace(Λ), and then
sets the threshold. Calculate the running sum

vn =
n∑

i=1

λn
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Choice of Best Subspace

Choose the smallest n such that vn
vN

just exceeds the selected
threshold θ. For example the threshold could be set to .85. n is
chosen to be the smallest value satisfying

vn

VN
> θ

The subspace projected to is spanned by the first n columns of
U. Suppose these n-columns are u1, . . .un Then the orthogonal
projection operator P is defined by

P =
n∑

i=1

uiu′i
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Relative Coordinates

Suppose every data point is an N-dimensional
measurement from space S
Let PN×N be a projection operator to M-dimensional
subspace V ⊂ S
Suppose b1, . . .bM is any orthonormal basis for V
The projection operator P is given by

PN×N =
M∑

m=1

bmb′m

yN×1 = PN×NxN×1 is the projection of x into V
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Relative Coordinates

Although y lies in a M-dimensional subspace V, y is an
N-dimensional vector
Since y ∈ V, we can write y =

∑M
n=1 αmbm since

b1, . . . ,bM is a basis for V
The tuple (α1, . . . , αM) is called the relative coordinates of
the projection of x
Let BN×M be a matrix whose M columns are the basis
vectors b1, . . . ,bM

The coefficients can be obtained by (α1, . . . , αM)′ = B′x
Then the following calculation can produce the orthogonal
projection y

yN×1 = BN×M(α1, . . . , αM)′ M×1 = BB′x = Px
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Principal Components

Disregarding the class labels, Principle Components
selects that K-dimensional subspace having the best fit to
the observed measurement vectors
For each measurement vector, Principal Components
computes its relative coordinates in the subspace
Classification is done using the relative coordinates
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Making The Class Assignment

If the distribution were multivariate normal
With known mean and known covariance matrix
d2

c has a χ2 distribution with Ec degrees of freedom
If the mean is estimated from data with a known
covariance matrix d2

c has a χ2 distribution with Ec − 1
degrees of freedom
Assign x to the class c with the smallest squared
Mahalanobis distance d2

c , providing that d2
c < stail,c
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Problem With Using The Mahalanobis Distance
P-value

It does not include the possibility maximizing economic gain

Maximizing economic gain is easy with the Discrete Bayes Rule

The Mahalanobis Distance P-value

Produces a real value between 0 and 1
The real value has to be converted to an integer to address
the class conditional probability table
Solution is to quantize the Mahalanobis p-value for each
class

Quantizing

Equal Interval Quantizing
Equal Probability Quantizing
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Equal Interval Quantizing

Suppose we want K quantizing intervals
The interval [0,1] is divided in equal subintervals of size 1

K

The quantizing boundaries are 〈0, 1
K ,

2
K , . . . ,

K−1
K ,1〉

Let p be a p-value
If k

K ≤ p < k+1
K the quantizing index is k

If K−1
K ≤ p ≤ 1 the quantizing index is K

73 / 75



Projection Operators
Principal Components
Subspace Classifiers

Equal Probability Quantizing

Suppose we want K quantizing intervals
The indexes of the quantizing intervals range are in the set
{0,1, . . . ,K − 1}
The Training Sequence has Z tuples
Z is a multiple of K : for some natural integer m, Z = mK
Order the p-values in ascending order p(1),p(2), . . .p(Z )

The quantizing boundaries are
〈b0 = 0,b1,b2, . . . ,bK−1,bK = 1〉
Where bk = p(kZ/K ), k ∈ {1, . . . ,K − 1}
If for some k ∈ {0, . . . ,K − 1}, bk ≤ p < bk+1, the
quantizing index is k
If p ≥ p(K−1) the quantizing index is K − 1
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Non-uniform Equal Probability Quantization
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