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The Multivariate Normal Density Function

Expected Value (£)
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The Density Function

1 1 _
I = [ e 00— T (x - )
x [2r ||z

Lety =x—pu

1 1
= / ——— exp(—5y'=y)dy
ylenz|x|z 2
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The Density Function

Now by the eigenvalue eigenvector decomposition of ¥,
Y = T'DT, where T is orthonormal and D is diagonal. Hence,

y' = (7'DT)~!
_ T‘1D_1(T’)_1
= T'D'T
— T'D-:D 3T

so that




The Density Function

2|Z‘§

| = [ (0 T (O Ty
y |2n]

Let z = D=2 Ty so that y = T'Dzz. The Jacobian is &

g}Z/ — T'D?

oy . Tl

|55 = IT'D7 ]
= |T'| |Dz|
= |D|z
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The Density Function

— [ e (DY (O )y
y |2m|z[X|z

Hence,

I = [y ea(-Z2)|Dlicz
- enlf )
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The Density Function

Recall,
Yy = TDT
x| = |T'DT|
= |T'|IDI|T|
= |D|

Hence, |Z|z = |DJz.
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The Density Function
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Lety = x — pu.
Note that odd functions integrated over even limits result in
Zero.

1
Elx] = / y+u)eX|o(—§yZ 'y)dy
y [27|2 |zy
1,
= / Tyexp(—éy’i 'y)dy +
v |2n|E|Z )%

:
/1u p(—gy y)dy
1272 |Z|2

1 1
= 0+u / ——— exp(—5y'=y)dy
ylenz|x|z 2

11/67



The Covariance

Cov(x) = El(x—m)(x — ]
1 / / 1 Iy —1
= —— [ (x—p)(x —p) exp(—5(x — p)' T (x — p))dx
T L e ) el T
Lety=x—pu
Cov(x) = 1 /yy’ 1 exp(—ly’Z_‘y)dy
j2n| #|Z|2 Jy 7 |2n|2|T)2 2
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The Covariance

Letz= D 2Ty. Then y = T'Dzz so that

Cov(x) = /T’Dzz T’Dzz) exp(—lz'Z)|Z|2dz
!27r| pall 2

= /T’Dzzz D2Texp(—1z/z)|Z]2dz

— T'Dz <2|,3,z|;/zz’exp(—;z’z)|2\;dz> Dz T
T z

- ' _rp (/ 27 exp(—1 ’z)dz) DT
27| 2 z 2
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The Covariance

Cov(x) = 1 N T' D2 (/ zZ exp(—1z’z)dz> D:T
272 z 2
- ' _pp (|27r\¥/) DT
2n|2
— T'D:D:T
= T'DT
= ¥
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Isodensity Contours

1 1

X) = ——— exp(—5 (X — p)E 1 (x — 1))
en|Z|xz 2

@ ;. mean vector
@ X covariance matrix

The isodensity contours are defined by the sets
{x | p(x) = constant}. If p(x) = constant, this implies that for
some r,

(X =)= (x —p)=1r?

This is an equation of the surface of an ellipsoid with center .
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The Ellipsoid

(X | (x =)= (x = p) = r?}
= {X|(x—u)T'D'T(x - p) = r?}
= {x|[D2T(x - W [D"2 T(x — p)] = r?}

h‘d1>d2andD—1:<d1 0 )




The Gaussian Classifier

The Gaussian Classifier assumes that the class conditional
density functions are Multivariate Normal. It assigns a vector x
to class ¢! when

1 < 1 I5—1 1
B V. (X—m)) P(c') >
[2r|¥ x4 2 2 1

1 ( 1 Iv—1 2
————exp | —=(x— )X (x — ,u2)> P(c?)
2|2 |%5)2 2 :
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The Gaussian Classifier

Since log is monotonically increasing we can take the log on
both sides of the inequality and maintain the inequality.
Assign vector x to class ¢; when

1 _ 1
—5 (X — )T (X = ) — 5 log || +log P(c") >
1 _ 1
—5 (X = 12)' T3 (x — p2) — 5 log |%o| + log P(c?)
Assign vector x to class ¢; when

(x = 1) E7 (X — 1) + log [Z4| — 2log P(c') <
(X — p2)' 5 (X — p12) + log |X2| — 2log P(c?)
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The Gaussian Classifier

When |Z1| = |X2| and P(c') = P(c?), then assign vector x to
class ¢ when

(=) ST (= ) < (X — ) T3 (x — p2)

The left hand side is the Mahalanobis distance between x and 4.
The right hand side is the Mahalanobis distance between x and .
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The Gaussian Classifier

When ¥ = ¥, = ¥ and P(c') = P(c?), then assign vector x to

class ¢ when

(x = p1) = (x = 1)

XX = 2pi T x + ph T g
—2p4 T X+ T g

2(pup — p1)' T x

(2 — p1)' T 'x

_ e+ p
(2 — )T 1 (x - 12 2)

AN N AN ANA

VAN

(x = p2) T (x = pia)

XX =2 x4+ o g
24T X + pp X pip
T o — Py T s

(1o — )T (1 12)

0
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Fisher Linear Discriminant

V=" (11 — p2)
Assign x to class 1 if

vVix > 6
71 /

(ZW (1 —M2)> x >0
(m1 — )Ty’ > 0
(11— p2) Ty x > 0
(h2 — 1) Ty'x < 6

When ¥ = Y5, the Gaussian classifier is a linear classifier and
identical to the Fisher Linear Discriminant Classifier since
Sw=31=2,
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The Gaussian Classifier

When ¥ = /, assign vector x to class ¢; when

M +M2)

(12 — 1) (x > < 0

The dashed line represents the hyperplane passing through %
and perpendicular to its normal po — py.

When x is to the left of the hyperplane, classify to class 1.

When x is to the right of the hyperplane, classify to class 2.
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Pearson Distribution System

9 ogp) = —— =2
ax gp b2X2+b1X—|—bo
| =
og p(x) /b2X2+b1X+b0d s
p(x) = f b2X2+b1 X+by o

Assuming b. # 0, use partial fraction expansion

a+ay a+as ] dx

p(x) = Keffm[xﬂ’ﬁ*“az
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Pearson Type |

a <0< a
p(x) = K(x—a;)™(a—x)™, a1 <x < ap
m — _atar
L b(ag—a1)
m a+ ap
2 = —_—— —
b(ag—a1)

Translating and scaling to put 0 < x < 1

1

p(x) = WX”HU—X)’"H
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Pearson Type |l

a<0<aandm=m =mp

p(x) = K(x—a)"(a—x)" a <x<ap

Translating and scaling to put 0 < x < 1

p(x) = fo'7—1(1_x)m—1
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Pearson Type |l

b2:0andb17£0

ilo (x) = __x-a
ax gp N bix + by
_ |1 _atb/b
N b4 bo + by x
1 a+ by /b
| = = || =m==———
og p(x) b, e ax+ A

. atby /by G

p(X) = Ke_ f b171 bg+bqx

= K(bg +b1x)’"e"‘/b1, X > —ZO, when by > 0
1

m = by '(bob;" + a)
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Pearson Type |l

Translating and scaling so that x > 0

1 A—1 —x
<
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Pearson Type IV

Roots are complex

9 ogp) = ——— =12
dx P T T @ byx + by
X—a

o+ bo(x + )2

1 Xt

a+cq n
p(x) = Koo+ bo(x + c1)2] @) 'eVEs " Veorks

Translating and scaling,




Pearson Type V

box? + by x + by is a perfect square

a logp(x) = __X-a
ax 8P  bo(x+0)?
p(x) = K(x+ c)_biz ebz‘mc), X>-c
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Pearson Type VI

Roots of box? + by x + by are real and negative; a; < a < 0

p(x) = K((x—a)™(x—a)™, x> a
m = < —1
m+m < 0
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Pearson Type VII

b4 :a:0,b0,b2>0

a9 log p(x) =

dx  box2 + by

p(x) = K(bo+box?)
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The Metric

A function d is called a metric on a set X if and only if for every
xX,y,ze X
° d(x y) >
d(x, )—Olfandonlylfx—y
° d(X y)=d(y,x)
@ d(x,y) <d(x,z)+d(z,y)

The space (X, d) is called a metric space.
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Norm

Definition

The norm of a vector x is defined by

[IXI = vx'x
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The Schwarz Inequality

|a'b| < ||al| ||b]] \

Proof:
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Schwarz Inequality




Schwarz Inequality

N 2 N N B N N
i=1 1

=1 j= i=1 /:1

N N
< Y &)y b

=il j=1

(@b < |lall? ||bl[?
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Norm

lla-+ bl| <|lall + [|bl]

Proof:

lla+ blf?

(a+b)'(a+b)=4da+2db+bb
1al? +2&'b+ [|b]|?

1all? + 2|d'b| + ||b][?

1all? + 2llal| [1bl] + [[b][?
(llall + 11b11)?

VARRVANNVAN
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Norms and Metrics

The norm of a vector difference is a metric. Define
d(x,y) = ||x — y||.- Then d is a metric.

dix,y) = llx=yll=vx-y)(x-y)=0
0 = ||x—yl||lifandonlyif x—y =0
dix,y) = lx=yll=v(x-y)(x—-y)

VI =x)(y —x)=d(y,x)
X =yl =1l(x = 2)+ (2= y)ll
[[X = z|| + [|z = y|| = d(x,2) + d(z,y)

d(x,y)

IA
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Quadratic Forms and Metrics

Let A be a positive definite symmetric matrix. Define
p(x,y) = V/(x — yYA(x — y), then p is a metric.

Proof: Let A= T'DT. Then

PPxy) = (x— y)’A(x y) ( —y)T'DT(x —y)

= (D%T( y)) (DéT(x—y))
= (02T = (D2 Ty)) ((D2Tx) — (DETy))
d? (D2 Tx, Dz Ty)
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Quadratic Forms and Metrics

p(x,y) = d(D% Tx, D> Ty)
(1)

Since d(u, v) > 0 for every u, v,
d(D2 Tx, D2 Ty) > 0 so that p(x, y) > O.

p(x,y) = 0 if and only if d(Dz Tx, Dz Ty) = 0.
And d(Dz Tx, D2 Ty) = 0 if and only if Dz Tx = Dz Ty.
Dz Tx = Dz Ty if and only if x = y.
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Quadratic Forms and Metrics

p(x,y) = d(D? Tx, Dz Ty)

p(x,y) = d(D?Tx,DzTy)
= d(D2Ty,DzTx)
= p(yvx)
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Quadratic Forms and Metrics

p(x,y) = d(D? Tx, Dz Ty)

p(x,y) = d(D?Tx,DzTy)
d(Dz Tx, D2 Tz) + d(D2 Tz, Dz Ty)
p(x,2) +p(z,y)

VARVAN
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Multivariate Normal

1 1 P
p(x) = Wexp(—g()(—#)z '(x = )

1 1 —1)\2
= —xg—7ep(—5p(X, i E)
en|Z || 2

Notice that exp(—%uz) is a monotonically decreasing function of
u. The Multivariate Normal density is just one density that
converts a distance to a density through a monotonically
decreasing function.
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General Ellipsoidally Symmetric Multivariate Forms

Let f be any non-negative decreasing function in its tail and A a
symmetric positive definite matrix. Then

P = Kt (/o= A= )

with an appropriate value for K is a multivariate density function.
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General Ellipsoidally Symmetric Multivariate Forms

f: [0, 00] — [0, o0] monotonically decreasing in its tail with

/r’\’+1f(r)dr < 00

r

Define

If [ p(x)dx =1, then

r(N/2) 1
K = A
27rN/2 frr’\Hf(r)dr| &

[, PNFE(r)dr -

N [ rN=1f(r)dr

A =
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Ellipsoidally Symmetric Multivariate Forms

f K A
2 1 _
o @y Al2 L
2\— r(m) 1 1
(1+us)=™ N/2r(m N/2) |A|2 Sm—N—3 &
2m—-N-2>0
1 o r(N/2) 1 (Ngm—1)(N+m—2) —— 1
umte™ g vrm ) Al N >
N+m—-1>0
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Functional Forms

f(x,m)=k(m)/(1+x**2)**m

2

) —

f(x)
9(x)
h(x)

)
) ——

f(x,m)




Gamma Distribution

f(x,m)




N
PManhattan(X, Y) = Z |Xn — Ynl
n=1

PEuclidean(X,Y) = |[|x — y”2
PChebyshev(Xa y) = N r?aXN |Xn — ¥nl

=1,...,
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Manhattan Metric

N
PManhattan(X, Y) = Z |Xn — ¥nl

n=1

Also called the taxi cab metric and the city block metric.




Chebyshev

pChebyshev(Xv y)= :maXN |Xn — ¥nl

Also called the chess board distance.

—

S —




Minkowski Distance

N 5
PMinkowski(X; ¥) = <Z |Xn — }’n|p>

n=1
@ p =1 Manhattan
@ p =2 Euclidean
@ p — oo Chebyshev

52/67



Minkowski Distance

1

PMinkowski (X, ¥) = <Z |Xn — yn|p>




Minkowski Distance

1

PMinkowski(X, ¥) = (Z |Xn — yn|p>

Let Xk — yk| > [Xn—ynl, n=1,...,Nand n# k

1

Jim_ Z|x |P = |xk — yi| lim EN: o — yal \P|”
| n — yn - k yk P00 o ’Xk —yk‘

=[xk — Y«
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General Parametric Probability Densities

Let fx be a strictly monotonically decreasing function whose
(N+2) order moment exists. Define

p(x | ¢) = myfe(pr(, 1))

Assign a vector x to class ¢; when

mifi(p1 (X, 11))P(c") > maba(pa(x, p2)) P(c?)
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Using Only Distance Functions

Consider
< p1(X, 1) )
p2(X, p2)

to be a feature vector.
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Training Data: 2D Features

< X1,...,Xy > class 1 x, € RY
<VYi,...,yn>cClass 2 y, e RY

Form the class 1 feature vectors

(e )= (et} )

Form the class 2 feature vectors

(e ) (mens))
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Let g; be a quantizer for feature J.

Class 1 feature vectors

( a1(p1(x1, 1)) )7”.7< a1(p1(Xm, 111)) >

G2(p2(X4, p2)) G2(p2(xm, p12))

Class 2 feature vectors

( q1(p1(y1,11)) ) ( a1(p1(Yns 111)) )
Q2(p2(y1,122)) )77\ Ge(p2(Yns p2))

Use discrete probability Bayesian classification methodology
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Training Data: 1D Features

< X{,...,Xy > class 1
<¥,...,yn > class 2

Form the class 1 feature values

(o1 (X1, 1)) 5 -« -5 (p1 (Xmr, 1))

Form the class 2 feature values

(p2(¥1,12)) 5 - - -5 (p2(YNs 112))
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Same quantizer g for both classes

Form the class 1 feature values

(Q(p1(x1,121))) 5 - - -5 (Q(p1 (Xm, p1)))

Form the class 2 feature values

(Q(p2(y1,122))) 5 - - -5 (Q(p2(YN; 12)))
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Non-parametric Probability Model

@ Quantize the feature values for class 1 and class 2

@ Construct the histogram h;y for the class 1 feature values
@ Construct the histogram h, for the class 2 feature values
@ Normalize histograms so that they each sum to 1

o P(c',x) = hi(q(p(x, 1n1)))P(c’)
P(c?,x) = ha(q(p(x, n2)))P(c?)
@ Use discrete probability Bayesian classification
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The Euclidean Distance Geometry

@ In2-D, {x | g(p(x,n)) = k} is aring around v

@ InN-D, {x | q(p(x, 1)) = k} is a spherical shell around 1
e That spherical shell associated with k has a probability
P(q(p(x, 1) = k) There are many patterns the probability
can cover
@ When k is small the probability that a point x falls in the
spherical shell can be large
@ As k increases the probability can grow small
@ Like the Mahalanobis distance of x to
@ But after a while of growing smaller with increasing k it can
grow larger and then smaller
@ Probability can be large near p or near a spherical shell
associated with a k of intermediate distance to p
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The Euclidean Distance Geometry

@ Let h be the normalized histogram obtained from the
training data

@ h(k) is the probability of an x falling into the spherical shell
associated with k

@ P(q(p(x,n) = k) = h(k) says that the probability of an x
falling into the spherical shell associated with k is h(k)

@ When his computed from the training set its values are
governed from the training set and can be arbitrary not
following any pre-given pattern
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Viewing the Quantized Space

We consider looking the quantized distance to spherical shells for
class 1 and quantized distance to spherical shells for class 2

@ g is equal interval quantizing
@ x-axis is q(p(x, s11))
@ y-axis is q(p(X, p2))
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Euclidean Distance: Spherical Shells

@ q(p(x, 1)) =i
e x is in the i spherical shell for

® q(p(x,p2)) =]
e x is in the j spherical shell for y

@ This does not state that the spherical shells intersect

@ The spherical shells for the quantized range may never
intersect
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Max Distance: Hyperbox Shells

® q(p(x, 1)) =i
e x is in the i hyperbox shell for 14

® q(p(x,p2)) =]
e x is in the j hyperbox shell for

@ This does not state that the hyperbox shells intersect

@ The hyperbox shells for the quantized range may never
intersect
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Quantized Class Conditional Probabilities

® g(P(x|ci)) =i
e P(x | cy)is in the i quantized probability interval for given
class ¢
® q(P(x|cz)) =]
e P(x | c)is in the j quantized probability interval for given
class ¢
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