Parametric Probability Models

Robert M. Haralick

Computer Science, Graduate Center City University of New York

Outline

The Multivariate Normal Density Function

$$p(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))$$

$$I = \int_{X} \frac{1}{|2\pi|^{\frac{N}{2}} |\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(X-\mu)'\Sigma^{-1}(X-\mu)) dX$$

Let
$$\mathbf{y} = \mathbf{x} - \boldsymbol{\mu}$$

$$I = \int_{V} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}y'\Sigma^{-1}y)dy$$

Now by the eigenvalue eigenvector decomposition of Σ , $\Sigma = T'DT$, where T is orthonormal and D is diagonal. Hence,

$$\Sigma^{-1} = (T'DT)^{-1}$$

$$= T^{-1}D^{-1}(T')^{-1}$$

$$= T'D^{-1}T$$

$$= T'D'^{-\frac{1}{2}}D^{-\frac{1}{2}}T$$

so that

$$I = \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-y'T'D'^{-\frac{1}{2}}D^{-\frac{1}{2}}Tydy$$
$$= \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-(D^{-\frac{1}{2}}Ty)'(D^{-\frac{1}{2}}Ty))dy$$

$$I = \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-(D^{-\frac{1}{2}}Ty)'(D^{-\frac{1}{2}}Ty))dy$$

Let $z = D^{-\frac{1}{2}}Ty$ so that $y = T'D^{\frac{1}{2}}z$. The Jacobian is $\frac{\partial y}{\partial z}$.

$$\frac{\partial y}{\partial z} = T'D^{\frac{1}{2}}$$

$$|\frac{\partial y}{\partial z}| = |T'D^{\frac{1}{2}}|$$

$$= |T'||D^{\frac{1}{2}}|$$

$$= |D|^{\frac{1}{2}}$$

$$I = \int_{Y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-(D^{-\frac{1}{2}}Ty)'(D^{-\frac{1}{2}}Ty))dy$$

Hence,

$$I = \int_{Z} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-z'z) |D|^{\frac{1}{2}} dz$$

Recall,

$$\Sigma = T'DT$$

$$|\Sigma| = |T'DT|$$

$$= |T'||D||T|$$

$$= |D|$$

Hence, $|\Sigma|^{\frac{1}{2}} = |D|^{\frac{1}{2}}$.

$$I = \int_{z} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-z'z)|D|^{\frac{1}{2}}dz$$

$$= \int_{z} \frac{1}{|2\pi|^{\frac{N}{2}}} \exp(-z'z)dz$$

$$= \prod_{n=1}^{N} \int_{z_{n}} \frac{1}{(2\pi)^{\frac{1}{2}}} \exp(-z_{n}^{2})dz_{n}$$

$$= \prod_{n=1}^{N} 1$$

$$= 1$$

The Mean

$$p(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))$$

$$E[x] = \int_{x} xp(x)dx$$

$$= \int_{x} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} x \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))dx$$

The Mean

Let $y = x - \mu$.

Note that odd functions integrated over even limits result in zero.

$$E[x] = \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} (y+\mu) \exp(-\frac{1}{2}y'\Sigma^{-1}y) dy$$

$$= \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} y \exp(-\frac{1}{2}y'\Sigma^{-1}y) dy +$$

$$\int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \mu \exp(-\frac{1}{2}y'\Sigma^{-1}y) dy$$

$$= 0 + \mu \int_{y} \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}y'\Sigma^{-1}y) dy$$

$$= \mu$$

The Covariance

$$Cov(x) = E[(x - \mu)(x - \mu)']$$

$$= \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \int_{X} (x - \mu)(x - \mu)' \exp(-\frac{1}{2}(x - \mu)'\Sigma^{-1}(x - \mu)) dx$$

Let
$$y = x - \mu$$

$$Cov(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \int_{y} yy' \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}y'\Sigma^{-1}y) dy$$

The Covariance

Let $z = D^{-\frac{1}{2}}Ty$. Then $y = T'D^{\frac{1}{2}}z$ so that

$$Cov(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \int_{Z} T' D^{\frac{1}{2}} z(T' D^{\frac{1}{2}}z)' \exp(-\frac{1}{2}z'z) |\Sigma|^{\frac{1}{2}} dz$$

$$= \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \int_{Z} T' D^{\frac{1}{2}} zz' D^{\frac{1}{2}} T \exp(-\frac{1}{2}z'z) |\Sigma|^{\frac{1}{2}} dz$$

$$= T' D^{\frac{1}{2}} \left(\frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \int_{Z} zz' \exp(-\frac{1}{2}z'z) |\Sigma|^{\frac{1}{2}} dz \right) D^{\frac{1}{2}} T$$

$$= \frac{1}{|2\pi|^{\frac{N}{2}}} T' D^{\frac{1}{2}} \left(\int_{Z} zz' \exp(-\frac{1}{2}z'z) dz \right) D^{\frac{1}{2}} T$$

The Covariance

$$Cov(x) = \frac{1}{|2\pi|^{\frac{N}{2}}} T' D^{\frac{1}{2}} \left(\int_{Z} zz' \exp(-\frac{1}{2}z'z) dz \right) D^{\frac{1}{2}} T$$

$$= \frac{1}{|2\pi|^{\frac{N}{2}}} T' D^{\frac{1}{2}} \left(|2\pi|^{\frac{N}{2}} I \right) D^{\frac{1}{2}} T$$

$$= T' D^{\frac{1}{2}} D^{\frac{1}{2}} T$$

$$= T' D T$$

$$= \Sigma$$

Isodensity Contours

$$p(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))$$

- \bullet μ mean vector
- Σ covariance matrix

The isodensity contours are defined by the sets $\{x \mid p(x) = constant\}$. If p(x) = constant, this implies that for some r,

$$(x-\mu)'\Sigma^{-1}(x-\mu)=r^2$$

This is an equation of the surface of an ellipsoid with center μ .

The Ellipsoid

$$\{x \mid (x - \mu)' \Sigma^{-1} (x - \mu) = r^2 \}$$

$$= \{x \mid (x - \mu)' T' D^{-1} T (x - \mu) = r^2 \}$$

$$= \{x \mid [D^{-\frac{1}{2}} T (x - \mu)]' [D^{-\frac{1}{2}} T (x - \mu)] = r^2 \}$$

If
$$d_1 > d_2$$
 and $D^{-1} = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$

The Gaussian Classifier assumes that the class conditional density functions are Multivariate Normal. It assigns a vector x to class c^1 when

$$\begin{split} &\frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma_{1}|^{\frac{1}{2}}}\exp\left(-\frac{1}{2}(x-\mu_{1})'\Sigma_{1}^{-1}(x-\mu_{1})\right)P(c^{1}) > \\ &\frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma_{2}|^{\frac{1}{2}}}\exp\left(-\frac{1}{2}(x-\mu_{2})'\Sigma_{2}^{-1}(x-\mu_{2})\right)P(c^{2}) \end{split}$$

Since log is monotonically increasing we can take the log on both sides of the inequality and maintain the inequality. Assign vector x to class c_1 when

$$-\frac{1}{2}(x-\mu_1)'\Sigma_1^{-1}(x-\mu_1) - \frac{1}{2}\log|\Sigma_1| + \log P(c^1) >$$

$$-\frac{1}{2}(x-\mu_2)'\Sigma_2^{-1}(x-\mu_2) - \frac{1}{2}\log|\Sigma_2| + \log P(c^2)$$

Assign vector x to class c_1 when

$$\begin{aligned} &(x-\mu_1)' \Sigma_1^{-1} (x-\mu_1) + \log |\Sigma_1| - 2 \log P(c^1) &< \\ &(x-\mu_2)' \Sigma_2^{-1} (x-\mu_2) + \log |\Sigma_2| - 2 \log P(c^2) \end{aligned}$$

When $|\Sigma_1| = |\Sigma_2|$ and $P(c^1) = P(c^2)$, then assign vector x to class c_1 when

$$(x - \mu_1)' \Sigma_1^{-1} (x - \mu_1) < (x - \mu_2)' \Sigma_2^{-1} (x - \mu_2)$$

The left hand side is the Mahalanobis distance between x and μ_1 . The right hand side is the Mahalanobis distance between x and μ_2 .

When $\Sigma_1 = \Sigma_2 = \Sigma$ and $P(c^1) = P(c^2)$, then assign vector x to class c_1 when

$$(x - \mu_{1})' \Sigma^{-1} (x - \mu_{1}) < (x - \mu_{2})' \Sigma^{-1} (x - \mu_{2})$$

$$x' \Sigma^{-1} x - 2\mu'_{1} \Sigma^{-1} x + \mu'_{1} \Sigma^{-1} \mu_{1} < x' \Sigma^{-1} x - 2\mu'_{2} \Sigma^{-1} x + \mu'_{2} \Sigma^{-1} \mu_{2}$$

$$-2\mu'_{1} \Sigma^{-1} x + \mu'_{1} \Sigma^{-1} \mu_{1} < -2\mu'_{2} \Sigma^{-1} x + \mu'_{2} \Sigma^{-1} \mu_{2}$$

$$2(\mu_{2} - \mu_{1})' \Sigma^{-1} x < \mu'_{2} \Sigma^{-1} \mu_{2} - \mu'_{1} \Sigma^{-1} \mu_{1}$$

$$(\mu_{2} - \mu_{1})' \Sigma^{-1} x < (\mu_{2} - \mu_{1})' \Sigma^{-1} (\frac{\mu_{1} + \mu_{2}}{2})$$

$$(\mu_{2} - \mu_{1})' \Sigma^{-1} (x - \frac{\mu_{1} + \mu_{2}}{2}) < 0$$

Fisher Linear Discriminant

$$v = \Sigma_W^{-1}(\mu_1 - \mu_2)$$

Assign x to class 1 if

When $\Sigma_1=\Sigma_2$, the Gaussian classifier is a linear classifier and identical to the Fisher Linear Discriminant Classifier since $\Sigma_W=\Sigma_1=\Sigma_2$

When $\Sigma = I$, assign vector x to class c_1 when

$$(\mu_2 - \mu_1)'(x - \frac{\mu_1 + \mu_2}{2}) < 0$$

The dashed line represents the hyperplane passing through $\frac{\mu_1+\mu_2}{2}$ and perpendicular to its normal $\mu_2-\mu_1$.

When x is to the left of the hyperplane, classify to class 1. When x is to the right of the hyperplane, classify to class 2.

Pearson Distribution System

$$\frac{d}{dx} \log p(x) = -\frac{x - a}{b_2 x^2 + b_1 x + b_0}$$

$$\log p(x) = -\int \frac{x - a}{b_2 x^2 + b_1 x + b_0} dx + A$$

$$p(x) = Ke^{-\int \frac{x - a}{b_2 x^2 + b_1 x + b_0} dx}$$

Assuming $b_2 \neq 0$, use partial fraction expansion

$$p(x) = Ke^{-\int \frac{1}{b(a_1-a_2)} \left[\frac{a+a_1}{x-a_1} - \frac{a+a_2}{x-a_2}\right] dx}$$

Pearson Type I

$$a_1 < 0 < a_2$$

$$p(x) = K(x - a_1)^{m_1} (a_2 - x)^{m_2}, \ a_1 \le x \le a_2$$

$$m_1 = \frac{a + a_1}{b(a_2 - a_1)}$$

$$m_2 = -\frac{a + a_2}{b(a_2 - a_1)}$$

Translating and scaling to put $0 \le x \le 1$

$$p(x) = \frac{1}{B(m,n)} x^{m-1} (1-x)^{n-1}$$

Pearson Type II

$$a_1 < 0 < a_2 \text{ and } m = m_1 = m_2$$

$$p(x) = K(x - a_1)^m (a_2 - x)^m, \ a_1 \le x \le a_2$$

Translating and scaling to put $0 \le x \le 1$

$$p(x) = \frac{1}{B(m,m)}x^{m-1}(1-x)^{m-1}$$

Pearson Type III

$$\begin{array}{lll} b_2 = 0 \text{ and } b_1 \neq 0 \\ \\ \frac{d}{dx} \log p(x) & = & -\frac{x-a}{b_1x+b_0} \\ & = & -\left[\frac{1}{b_1} - \frac{a+b_0/b_1}{b_0+b_1x}\right] \\ \log p(x) & = & -\int \frac{1}{b_1} - \frac{a+b_0/b_1}{b_0+b_1x} dx + A \\ \\ p(x) & = & Ke^{-\int \frac{1}{b_1} - \frac{a+b_0/b_1}{b_0+b_1x} dx} \\ & = & K(b_0+b_1x)^m e^{-x/b_1}, \ x \geq -\frac{b_0}{b_1}, \ \text{when } b_1 > 0 \\ \\ m & = & b_1^{-1}(b_0b_1^{-1}+a) \end{array}$$

Pearson Type III

Translating and scaling so that $x \ge 0$

$$p(x) = \frac{1}{\Gamma(\lambda)} x^{\lambda-1} e^{-x}, \ \lambda > 0, \ 0 \le x$$

Pearson Type IV

Roots are complex

$$\frac{d}{dx} \log p(x) = -\frac{x - a}{b_2 x^2 + b_1 x + b_0}$$
$$= -\frac{x - a}{c_0 + b_2 (x + c_1)^2}$$

$$p(x) = K[c_0 + b_2(x + c_1)^2]^{-(2b_2)^{-1}} e^{\frac{a+c_1}{\sqrt{b_2c_0}} \tan^{-1} \frac{x+c_1}{\sqrt{c_0/b_2}}}$$

Translating and scaling,

$$p(x) = K \left(1 + \frac{x^2}{\sigma^2}\right)^{-m} e^{-\nu \tan^{-1} \frac{x}{\sigma}}$$

Pearson Type V

$$b_2x^2 + b_1x + b_0$$
 is a perfect square

$$\frac{d}{dx}\log p(x) = -\frac{x-a}{b_2(x+c)^2}$$

$$p(x) = K(x+c)^{-\frac{1}{b_2}}e^{\frac{a+c}{b_2(x+c)}}, x \ge -c$$

Pearson Type VI

Roots of $b_2x^2 + b_1x + b_0$ are real and negative; $a_1 < a_2 < 0$

$$p(x) = K(x - a_1)^{m_1}(x - a_2)^{m_2}, x > a_2$$
 $m_1 = < -1$
 $m_1 + m_2 < 0$

Pearson Type VII

$$b_1 = a = 0, b_0, b_2 > 0$$

$$\frac{d}{dx} \log p(x) = -\frac{x}{b_2 x^2 + b_0}$$

$$p(x) = K(b_0 + b_2 x^2)^{-\frac{1}{2b_2}}$$

The Metric

Definition

A function d is called a metric on a set X if and only if for every $x, y, z \in X$

- $d(x, y) \geq 0$
- d(x, y) = 0 if and only if x = y
- od(x,y) = d(y,x)
- $d(x, y) \leq d(x, z) + d(z, y)$

The space (X, d) is called a metric space.

Norm

Definition

The *norm* of a vector *x* is defined by

$$||x|| = \sqrt{x'x}$$

The Schwarz Inequality

Theorem

$$|a'b| \le ||a|| \, ||b||$$

Proof:

$$\sum_{i=1}^{N} a_i^2 \sum_{j=1}^{N} b_j^2 - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (a_i b_j - b_i a_j)^2$$

$$= \sum_{i=1}^{N} a_i^2 \sum_{j=1}^{N} b_j^2 - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (a_i^2 b_j^2 - 2a_i b_j b_i a_j + b_i^2 a_j^2)$$

Schwarz Inequality

$$= \sum_{i=1}^{N} a_i^2 \sum_{j=1}^{N} b_j^2 - \frac{1}{2} \sum_{i=1}^{N} (a_i^2 \sum_{j=1}^{N} b_j^2 - 2a_i b_i \sum_{j=1}^{N} a_j b_j + b_i^2 \sum_{j=1}^{N} a_j^2)$$

$$= \sum_{i=1}^{N} a_i^2 \sum_{j=1}^{N} b_j^2 - \frac{1}{2} \left(\sum_{i=1}^{N} a_i^2 \sum_{j=1}^{N} b_j^2 - 2 \sum_{i=1}^{N} a_i b_i \sum_{j=1}^{N} a_j b_j + \sum_{i=1}^{N} b_i^2 \sum_{j=1}^{N} a_j^2 \right)$$

$$= \left(\sum_{i=1}^{N} a_i b_i \right)^2$$

Schwarz Inequality

$$\left(\sum_{i=1}^{N} a_{i}b_{i}\right)^{2} = \sum_{i=1}^{N} a_{i}^{2} \sum_{j=1}^{N} b_{j}^{2} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (a_{i}b_{j} - b_{i}a_{j})^{2}$$

$$\leq \sum_{i=1}^{N} a_{i}^{2} \sum_{j=1}^{N} b_{j}^{2}$$

$$(a'b)^{2} \leq ||a||^{2} ||b||^{2}$$

Norm

Theorem

$$||a+b|| \le ||a|| + ||b||$$

Proof:

$$||a+b||^{2} = (a+b)'(a+b) = a'a + 2a'b + b'b$$

$$= ||a||^{2} + 2a'b + ||b||^{2}$$

$$\leq ||a||^{2} + 2|a'b| + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$

$$\leq (||a|| + ||b||)^{2}$$

Norms and Metrics

Theorem

The norm of a vector difference is a metric. Define d(x,y) = ||x-y||. Then d is a metric.

$$d(x,y) = ||x - y|| = \sqrt{(x - y)'(x - y)} \ge 0$$

$$0 = ||x - y|| \text{ if and only if } x - y = 0$$

$$d(x,y) = ||x - y|| = \sqrt{(x - y)'(x - y)}$$

$$= \sqrt{(y - x)'(y - x)} = d(y,x)$$

$$d(x,y) = ||x - y|| = ||(x - z) + (z - y)||$$

$$< ||x - z|| + ||z - y|| = d(x,z) + d(z,y)$$

Theorem

Let A be a positive definite symmetric matrix. Define $\rho(x,y) = \sqrt{(x-y)'A(x-y)}$, then ρ is a metric.

Proof: Let A = T'DT. Then

$$\rho^{2}(x,y) = (x-y)'A(x-y) = (x-y)'T'DT(x-y)
= (x-y)'T'D^{\frac{1}{2}}D^{\frac{1}{2}}T(x-y) =
= (D^{\frac{1}{2}}T(x-y))'(D^{\frac{1}{2}}T(x-y))
= ((D^{\frac{1}{2}}Tx) - (D^{\frac{1}{2}}Ty))'((D^{\frac{1}{2}}Tx) - (D^{\frac{1}{2}}Ty))
= d^{2}(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$

$$\rho(x,y) = d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$
(1)
Since $d(u,v) \ge 0$ for every $u,v,$

$$d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty) \ge 0 \text{ so that } \rho(x,y) \ge 0.$$

$$\rho(x,y) = 0 \text{ if and only if } d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty) = 0.$$
And $d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty) = 0$ if and only if $D^{\frac{1}{2}}Tx = D^{\frac{1}{2}}Ty$.
$$D^{\frac{1}{2}}Tx = D^{\frac{1}{2}}Ty \text{ if and only if } x = y.$$

$$\rho(x,y) = d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$
(2)
$$\rho(x,y) = d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$

$$= d(D^{\frac{1}{2}}Ty, D^{\frac{1}{2}}Tx)$$

$$= \rho(y,x)$$

(3)

$$\rho(x,y) = d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$

$$\rho(x,y) = d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Ty)$$

$$\leq d(D^{\frac{1}{2}}Tx, D^{\frac{1}{2}}Tz) + d(D^{\frac{1}{2}}Tz, D^{\frac{1}{2}}Ty)$$

$$\leq \rho(x,z) + \rho(z,y)$$

Multivariate Normal

$$\rho(x) = \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu))$$

$$= \frac{1}{|2\pi|^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} \exp(-\frac{1}{2}\rho(x,\mu;\Sigma^{-1})^{2})$$

Notice that $\exp(-\frac{1}{2}u^2)$ is a monotonically decreasing function of u. The Multivariate Normal density is just one density that converts a distance to a density through a monotonically decreasing function.

General Ellipsoidally Symmetric Multivariate Forms

Let *f* be any non-negative decreasing function in its tail and *A* a symmetric positive definite matrix. Then

$$p(x) = Kf\left(\sqrt{(x-\mu)'A(x-\mu)}\right)$$

with an appropriate value for K is a multivariate density function.

General Ellipsoidally Symmetric Multivariate Forms

 $f:[0,\infty]\to[0,\infty]$ monotonically decreasing in its tail with

$$\int_{r} r^{N+1} f(r) dr < \infty$$

Define

$$p(x) = Kf\left(\sqrt{(x-\mu)'A(x-\mu)}\right)$$

If
$$\int p(x)dx = 1$$
, then

$$K = \frac{\Gamma(N/2)}{2\pi^{N/2} \int_{r} r^{N-1} f(r) dr} |A|^{\frac{1}{2}}$$

$$A = \frac{\int_{r} r^{N+1} f(r) dr}{N \int_{r} r^{N-1} f(r) dr} \Sigma^{-1}$$

Ellipsoidally Symmetric Multivariate Forms

$$f K A$$

$$e^{-u^2} \frac{1}{(2\pi)^{N/2}} |A|^{\frac{1}{2}} \Sigma^{-1}$$

$$(1+u^2)^{-m} \frac{\Gamma(m)}{\pi^{N/2}\Gamma(m-N/2)} |A|^{\frac{1}{2}} \frac{1}{2m-N-2} \Sigma^{-1}$$

$$2m-N-2>0$$

$$u^{m-1}e^{-u} \frac{\Gamma(N/2)}{2\pi^{N/2}\Gamma(N+m-1)} |A|^{\frac{1}{2}} \frac{(N+m-1)(N+m-2)}{N} \Sigma^{-1}$$

$$N+m-1>0$$

Functional Forms

Gamma Distribution

Metrics

$$\rho_{Manhattan}(x, y) = \sum_{n=1}^{N} |x_n - y_n|$$

$$\rho_{Euclidean}(x, y) = ||x - y||^2$$

$$\rho_{Chebyshev}(x, y) = \max_{n=1,\dots,N} |x_n - y_n|$$

Manhattan Metric

$$\rho_{Manhattan}(x,y) = \sum_{n=1}^{N} |x_n - y_n|$$

Also called the taxi cab metric and the city block metric.

Chebyshev

$$\rho_{Chebyshev}(x,y) = \max_{n=1,\dots,N} |x_n - y_n|$$

Also called the chess board distance.

Minkowski Distance

$$\rho_{Minkowski}(x,y) = \left(\sum_{n=1}^{N} |x_n - y_n|^p\right)^{\frac{1}{p}}$$

- p = 1 Manhattan
- p = 2 Euclidean
- $p \to \infty$ Chebyshev

Minkowski Distance

$$\rho_{Minkowski}(x,y) = \left(\sum_{n=1}^{N} |x_n - y_n|^p\right)^{\frac{1}{p}}$$

Minkowski Distance

$$\rho_{Minkowski}(x,y) = \left(\sum_{n=1}^{N} |x_n - y_n|^p\right)^{\frac{1}{p}}$$

Let $|x_k - y_k| > |x_n - y_n|, \ n = 1, \dots, N$ and $n \neq k$

$$\lim_{p \to \infty} \left(\sum_{n=1}^{N} |x_n - y_n|^p \right)^{\frac{1}{p}} = |x_k - y_k| \lim_{p \to \infty} \left[\sum_{n=1}^{N} \left(\frac{|x_n - y_n|}{|x_k - y_k|} \right)^p \right]^{\frac{1}{p}}$$
$$= |x_k - y_k|$$

General Parametric Probability Densities

Let f_k be a strictly monotonically decreasing function whose (N+2) order moment exists. Define

$$p(x \mid c^k) = m_k f_k(\rho_k(x, \mu_k))$$

Assign a vector x to class c_1 when

$$m_1 f_1(\rho_1(x,\mu_1)) P(c^1) > m_2 f_2(\rho_2(x,\mu_2)) P(c^2)$$

Using Only Distance Functions

Consider

$$\left(\begin{array}{c} \rho_1(\mathbf{X},\mu_1) \\ \rho_2(\mathbf{X},\mu_2) \end{array}\right)$$

to be a feature vector.

Training Data: 2D Features

$$< x_1, \dots, x_M >$$
class 1 $x_m \in \mathbb{R}^J$
 $< y_1, \dots, y_N >$ class 2 $y_n \in \mathbb{R}^J$

Form the class 1 feature vectors

$$\begin{pmatrix} \rho_1(x_1, \mu_1) \\ \rho_2(x_1, \mu_2) \end{pmatrix}, \dots, \begin{pmatrix} \rho_1(x_M, \mu_1) \\ \rho_2(x_M, \mu_2) \end{pmatrix}$$

Form the class 2 feature vectors

$$\begin{pmatrix} \rho_1(y_1, \mu_1) \\ \rho_2(y_1, \mu_2) \end{pmatrix}, \dots, \begin{pmatrix} \rho_1(y_N, \mu_1) \\ \rho_2(y_N, \mu_2) \end{pmatrix}$$

Quantize

Let q_i be a quantizer for feature i.

Class 1 feature vectors

$$\begin{pmatrix} q_1(\rho_1(x_1,\mu_1)) \\ q_2(\rho_2(x_1,\mu_2)) \end{pmatrix}, \dots, \begin{pmatrix} q_1(\rho_1(x_M,\mu_1)) \\ q_2(\rho_2(x_M,\mu_2)) \end{pmatrix}$$

Class 2 feature vectors

$$\begin{pmatrix} q_1(\rho_1(y_1, \mu_1)) \\ q_2(\rho_2(y_1, \mu_2)) \end{pmatrix}, \dots, \begin{pmatrix} q_1(\rho_1(y_N, \mu_1)) \\ q_2(\rho_2(y_N, \mu_2)) \end{pmatrix}$$

Use discrete probability Bayesian classification methodology

Training Data: 1D Features

$$\langle x_1, \dots, x_M \rangle$$
 class 1 $\langle y_1, \dots, y_N \rangle$ class 2

Form the class 1 feature values

$$(\rho_1(x_1,\mu_1)),\ldots,(\rho_1(x_M,\mu_1))$$

Form the class 2 feature values

$$(\rho_2(y_1, \mu_2)), \ldots, (\rho_2(y_N, \mu_2))$$

Quantize

Same quantizer q for both classes

Form the class 1 feature values

$$(q(\rho_1(x_1,\mu_1))),\ldots,(q(\rho_1(x_M,\mu_1)))$$

Form the class 2 feature values

$$(q(\rho_2(y_1,\mu_2))),\ldots,(q(\rho_2(y_N,\mu_2)))$$

Non-parametric Probability Model

- Quantize the feature values for class 1 and class 2
- Construct the histogram h₁ for the class 1 feature values
- Construct the histogram h₂ for the class 2 feature values
- Normalize histograms so that they each sum to 1
- $P(c^1, x) = h_1(q(\rho(x, \mu_1)))P(c^1)$ $P(c^2, x) = h_2(q(\rho(x, \mu_2)))P(c^2)$
- Use discrete probability Bayesian classification

The Euclidean Distance Geometry

- In 2-D, $\{x \mid q(\rho(x,\mu)) = k\}$ is a ring around μ
- In N-D, $\{x \mid q(\rho(x,\mu)) = k\}$ is a spherical shell around μ
 - That spherical shell associated with k has a probability $P(q(\rho(x,\mu)=k)$ There are many patterns the probability can cover
 - When k is small the probability that a point x falls in the spherical shell can be large
 - As k increases the probability can grow small
 - Like the Mahalanobis distance of x to μ
 - But after a while of growing smaller with increasing k it can grow larger and then smaller
 - Probability can be large near μ or near a spherical shell associated with a k of intermediate distance to μ

The Euclidean Distance Geometry

- Let h be the normalized histogram obtained from the training data
- h(k) is the probability of an x falling into the spherical shell associated with k
- $P(q(\rho(x, \mu) = k) = h(k)$ says that the probability of an x falling into the spherical shell associated with k is h(k)
- When h is computed from the training set its values are governed from the training set and can be arbitrary not following any pre-given pattern

Viewing the Quantized Space

We consider looking the quantized distance to spherical shells for class 1 and quantized distance to spherical shells for class 2

- q is equal interval quantizing
- x-axis is $q(\rho(x, \mu_1))$
- y-axis is $q(\rho(x, \mu_2))$

Euclidean Distance: Spherical Shells

- $q(\rho(x,\mu_1)) = i$
 - x is in the i^{th} spherical shell for μ_1
- $q(\rho(x, \mu_2)) = j$
 - x is in the j^{th} spherical shell for μ_2
- This does not state that the spherical shells intersect
- The spherical shells for the quantized range may never intersect

Max Distance: Hyperbox Shells

- $q(\rho(x,\mu_1)) = i$
 - x is in the i^{th} hyperbox shell for μ_1
- $q(\rho(x, \mu_2)) = j$
 - x is in the j^{th} hyperbox shell for μ_2
- This does not state that the hyperbox shells intersect
- The hyperbox shells for the quantized range may never intersect

Quantized Class Conditional Probabilities

- $q(P(x | c_1)) = i$
 - $P(x \mid c_1)$ is in the i^{th} quantized probability interval for given class c_2
- $q(P(x | c_2)) = j$
 - $P(x \mid c_2)$ is in the j^{th} quantized probability interval for given class c_2