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Convex Sets and Linear Functions

Images of linear functions of convex sets are convex.

Proof.

Let C be a convex setand f : C — RN be a linear function. Define
D={ycRN|y=1f(x),xec C} Lety;,y» € Dandlet0 < X < 1.
Then there exists x1, X2 € C such that y; = f(x1) and y» = f(x2).

/\y1 +(1 7)\}/2) = )\f(X1)+(1 7/\)f(X2)
= f(Ax1+(1=MNx)
But x1,x, € C and C is convex. Therefore A\x; + (1 — A\)x2 € C.

Hence, f(Ax1 + (1 — A\)x2) € D. And this makes
Ayi+(1—=Xp)eD O
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Dependence on Prior Class Probabilities

Proposition

Expected economic gain for a decision rule is an affine function
of the expected economic conditional gains with coefficients
P(c'),...,P(cKk).

K
Ele:fl = > Ele|d:fP(c)

K—1 K—1

= Y Ele|d:fIP(d) + E[e| (1 = > P(d))
j=1 j=1
K—1

= Y {Ele|d;fl-Ele| c;M}P() + E[e | c*; 1]

=1

Ol

v
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e Assigned

True | ¢ | &2

c 2 | -

2 | A 2
P(d|c) Measurement
TrueClass | dT [ &2 [ &°
cf 2] 3] 5
c2 15 4 A

K
Eleldifl = > > e(d,d)P(d|d)fy(c)

deD k=1
Measurements Conditional Gain
F1d | ] & | Elelc:f] | E[e|c ]
Mlc [ ] c 2.0 -1.0
Plc [t | 2 5 -7
Blc [ 2] 1.1 2
Al [ 2] 2 -4 5
Pl ] 1.4 5
12| ct| 2 = 8
122 5 1.7
Bl 2| 2| 2 1. 2.0
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Expected Conditional Gain and Expected Gain

K
Ele|c:fl=>" " e(d,cF)P(d | d)fu(c")

deD k=1
K
Ele;fl=> Ele|d;fP(d)
j=1
K—1 K—1
= [Z Ele| cf;f]P(cf)] + [E[e| e =>" P(c/))}
j=1 j=1
K—1
= [Z{E[e | ¢ f]— Ele] cK;f]}P(cf)] + Ele| ¢*; 1]
j=1
Ele;f'l = [2— (-1)]P(c') + (1) = B3.0P(c')—1
E[e;f?] = [5— (=P + (—.7) = 1.2P(c") - .7
Ele;ff] = [11-2]P(c')+.2 = 09P(c')+ .2
Ele;f*] = [-4—-5]P(c')+5 = —09P(c')+.5
Ele;f?] = [1.4—-5]P(c')+.5 = 09P(c')+.5
Ele;%] = [-1-.8]P(c')—.8 = —09P(c')+.8
Ele; ] = [5—1.7]P(c']1.7 = —1.2P(c") +1.7

Ele;f] = [-1.0-20]P(c") +20 = -3.0P(c") +2.0
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Expected Conditional Gain and Expected Gain

Measurements | Expected Conditional Gain | Expected Gain
fld [ a?] & | E[elc’;f] Ele|c?; 1] Ele,f]
fTlc [ ] 2.0 -1.0 3P(c) - .7
Plc ] ¢ 5 -7 1.2P(c") - .7
Bflc 2] 1.1 2 9P(c1) + .2
Alc ] & —.4 5 —9P(¢c1)+ .5
Pl ] 1.4 5 9P(c") + .5
Pl |c | —.1 8 —.9P(c") + .8
71| 5 1.7 —1.2P(c") +1.7
Bl —1. 2.0 —3P(c")+2.0
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Dependence on Prior Class Probabilities

K-1
Ele;fl=> {Ele|d;fl- E[e]| c;}P(c) + E[e| c*: 1]
j=1
Measurements Conditional Gain Expected Gain

fld [dP] & | Elelc’;f] | Ele|c?f] | Ele;f,P(c")]
] ¢ 2.0 -1.0 3P(c’) —1
Plc | & 5 -7 1.2P(c") - .7
flc ] 1.1 2 9P(c") + .2
Al | ] 2 -4 5 —9P(c"Y+ 5
Pl 1.4 5 9P(c") + .5
]| 2 -1 8 —9P(c") + .8
1| 5 1.7 —1.2P(c") +1.7
PlE]E| A -1. 2.0 —3P(c") +2.0
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Dependence on Class Prior Probabilities

Ele; f]
8 1
5 f f
A7
~ 5 | A
L— ,_(/
5 =T )
- ><< /
I ~
= ~

The Bayes Gain is the
upper envelope




Convex Functions

Definition

A function h, h: RN — R, is a convex function if and only if for
every \,0 < A < 1
hA(xa, o xn) + (1= A) (s ) < Ah(xa, - xw) + (1 = A)h(yr, ..o, yn)

w=Au+(1-Nv

(Au+ (1 = X)v, A h(u) + (1 = X)h(v))




Bayes Gain is Convex

Ele; f]
8 1
5 f f
N £7
~ 5| A
L— ,_(/
5 |- ™
I ~
= ~

Bayes Gain is a convex
function of class prior
probabilities




Bayes Gain Is Convex

K
> _Ele| d;fIP(d)]
j=1

Gg = max E|e, f] Bayes Gain

Ele; f]

Let 7, n=1,... N be the N = |C|!P! deterministic decision
rules.
Defineforj=1,....K

an = Ele|d; M
p = P(c)
K
Gs(P(c"),...,P(cX)) = mnaxz Ele| ¢; f"|P(c)
j=1

K
(EE;(I)17 ) ﬂ)f() = nxng :g:: ézﬂ7ﬁh
=1
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Bayes Gain Is Convex

Letp= (p1,...,px) and g = (q1,-..qx). Let0 < X < 1.
Ge(Ap+(1-A)q) < AGs(p)+(1—X)Gs(q)

K
Gs(Ap+(1-2)q) = max_ an(Ap;+ (1 - N)g)

J=1

K K
= max {Azajnpj +(1-2X) Z afnq/}
=

j==1

IA

K K
[mrz;)x A Z a,-,,p,»] + [mfi’X“ =) Z aan/]

J=1 j=1

AGs(p) + (1 = A)Gs(q)

IA

O

<
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Epigraph and Convex Sets

Definition

Let f : RN — R. The epigraph of f, denoted Epi(f) is the set of
points lying on or above the graph of f.

Epi(f) = {(x,u) e RN x R | u > f(x)}
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Epigraph and Convex Sets

If a function is convex then its epigraph is a convex set.

Suppose f is convex. Let (x,u),(y,v) € Epi(f) and0 < X < 1.
Then by definition of Epi(f), f(x) < u, f(y) < v and, therefore,
M(X)+ (1 = XN)f(v) < Au+ (1 — X)v. Since f is convex,

fAx 4+ (1 = N)y) < M(x)+ (1 = N)f(y). But

M(x)+ (1 = XN)f(v) < Au+ (1 — X)v. Now by definition of
Epi(f), (Ax + (1 = ANy, Au+ (1 — \)v) € Epi(f) making Epi(f)
convex. O
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Epigraph and Convex Sets

If the epigraph of a function is a convex set, then the function is
convex.

Suppose Epi(f) is a convex set. Then by definition of Epi(f),
(x, f(x)) € Epi(f) and (y, f(y)) € Epi(f). Since Epi(f) is convex,
A(x, f(x))+ (1 = X)) (v, f(y)) € Epi(f). Hence

(Ax + (1 = A\y), M(x) + (1 — Nf(y)) € Epi(f). By definition of
Epi(f), f(Ax + (1 = A)y) < M(x) + (1 — N)f(y). And by
definition of a convex function, this implies that f is convex. []

o
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Epigraph and Convexity

A function is convex if and only if its epigraph is a convex set.
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Basin sets of Convex Functions

Definition

Let f: RN — R and ¢ € R. A basin set of f is any set of the form

L={xeRN|f(x)<c}

Theorem

Let C be a convex set, h be a convex function on C and
L={ce C|h(c) <b}. Then L is a convex set.

Proof.

Letx,y € L so that h(x) < b and h(y) < bandlet0 < A < 1. Since
X,y € L C C and since C is a convex set, \Xx + (1 — A\)y € C. Then
since h is a convex function,

h(Ox + (1 = A)y) < M(X)+ (1 = Nh(y) <Ab+(1 = A\b=0b

This implies by definition of L that A\x + (1 — X\)y € L. O

‘ \
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Minima Set of A Convex Function is Convex

Corollary

Let C c RN be a closed and bounded convex set. Let
h: C — R be a convex function. Suppose b = minsc¢ h(c).
Then M = {x € C | h(x) = b} is a convex set.

Note that since b = mingcc h(c), M= {x € C| h(x) < b}. C
being closed and bounded is needed because the minima of h
may be on the boundary. O]

V.
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For Convex Functions Local Minima are Global Minima

Let C be a convex set and h be a convex function on C.
Suppose h has a local minima at xo € C. Then for any
x € C, h(xp) < h(x).

Letx € C and1 > « > 0 be sufficiently small so that
(1 —a)xo+ax € C. Then,

h(x)) < h((1 = a)x+ax) < (1 — a)h(xo) + ah(x)
0 < a(h(x) - h(xo))
h(xo) < h(x)
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Dependence on Prior Class Probabilities

K-1
Ele;fl=> {Ele|d;fl- E[e]| c;}P(c) + E[e| c*: 1]
j=1
Measurements Conditional Gain Expected Gain

fld [dP] & | Elelc’;f] | Ele|c?f] | Ele;f,P(c")]
] ¢ 2.0 -1.0 3P(c’) —1
Plc | & 5 -7 1.2P(c") - .7
flc ] 1.1 2 9P(c") + .2
Al | ] 2 -4 5 —9P(c"Y+ 5
Pl 1.4 5 9P(c") + .5
]| 2 -1 8 —9P(c") + .8
1| 5 1.7 —1.2P(c") +1.7
PlE]E| A -1. 2.0 —3P(c") +2.0
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Dependence on Class Prior Probabilities

Ele; f]
8 1
5 f f
A7
~ 5 | A
L— ,_(/
5 =T )
- ><< /
I ~
= ~

Where are the probabilistic
decision rules?

AM+(1-XNg




Probabilistic Decision Rules

@ Pick a prior probability P(c')

@ For decision rule f there is an Expected Gain Efe; f]|
@ For decision rule g there is a Expected Gain E|e; g]
@ For decision rule Af + (1 — \)g, the Expected Gain is

AE[e; fl+ (1 — N)E[e; g]

@ In between the Expected Gain for f and the Expected Gain
for g
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Dependence on Class Prior Probabilities

Ele; f]

8 1
2 |f I P(e) =2
Decision Rules 7 and f!
Examine the blue line
Where are the probabilistic

decision rules?

M
&N

JANAY

{1y
JAVA

S Lines contained in the area
between the lower and
the upper envelopes

1/

-1 P(c")
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Probabilistic Decision Rules Are In Between

Expected gain of a mixed decision rule is the mixture of the
expected gains of the component decision rules.

E[e; f+(1 = Ng,P(c')] = XE[e;f,P(c))]+ (1 - \E[e; g; P(c")]
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A Mixed Decision Rule is an affine function of P(c')

Two Class Case

Let0 < X\ < 1. Letfi and f, be two decision rules and Suppose there are two
classes, then E[e; My + (1 — M)k, P(c')] is an affine function of P(c").

Ele; fi, P(c")] a1 P(c") + B
Ele;f,P(c)] = P(c")+ B2
Ele; My + (1 — A\, P(c")] AMarP(c") + B1) + (1 = A)(e2P(c") + B2)
(Aar + (1 = N)az)P(c') + ABs + (1 = V)52

O

v
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Probabilistic Decision Rules Are In Between

Fix P(c'). LetO < X < 1.
If E[e; f, P(c')] < E[e; g, P(c")] = then

Ele; f,P(c')] < E[e; Mf + (1 — A\)g] < Ele; g, P(c")]

Ele;f,P(c')] = XE[e;f,P(c")]+ (1 —)\)E[e; f, P(c")]
Ele;f,P(c')] < XE[e;f,P(c")]+ (1 —\)E[e; g, P(c")] < E[e; g, P(c")
Ele;f,P(c') < E[e;Af+(1—)\)g] < Ele;g,P(c")]
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Dependence on Class Prior Probabilities

Ele; f]
8 1
5 f f
f7
N~ 5
f : Where are the probabilistic
T L — o
1 ~ decision rules?
5 I —
%] Lines in the area between
I
the lower and the
| — [~
upper envelopes
-1 P(c")
0 5 1
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Dependence on Class Prior Probabilities

Ele; f]
8 1
5 |f f
~_["
N~ 5| A Worst Class Priors
7o =1.014 —T4 P(c') = 4/7 ~ 5714
> ™~ P(c?) = 3/7 ~ .4286
5 —
><| ]
~L |
L1 ™~
-1 P(c")
0 5 5714 1

28/60



Finding Worst Class Priors

Two Class Case
Decision Rules of Mixture are Known

Set Ele; fs; P(c"
9P(c") +.

9P(c')+ .5
—1.2P(c"') +1.7
Ele; f7; P(c")]
—1.2P(c") +1.7;

1.2
12 _4
21 7

3
_ h_ ¥
1—P(c') 5
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Dependence of a Probabilistic Decision Rule on Priors

Suppose we know the deterministic decision rules to make up the mixture: f5 and f;
Since Ele; f] = E[e; ¢!, f]P(c') + Ee; ¢2, f]P(c?)

E[e; 2P+ (1 =X)f] = E[elc"; A + (1 = A7 ]P(c") + E[e|c?; A + (1 — A)f']P(c?)
Since Expectation is a linear operator E[e|c; af + 89] = aEle|c; f] + BE[e|c; g]
Ele; A5 +(1-Nf] = </\E[e|c1;f5] + (1= NEelc'; f7]) P(c') +
(AETele®; ]+ (1 = NEele?; £11) (1 = P(c"))
= {(AE[e\& ]+ (1 — N)E[e|c'; f7]) -
(AE[e|02; 5]+ (1 — \)E[el|c?; f7])} P(c') +
Ele|c®; A + (1 = N)f7]

When there is no dependence on priors, the coefficient of P(c') must be zero

(AElele"s P1+ (1 = NETeles 1) — (AE[ele® ] + (1 = NEfelc® £7]) = 0
The class conditional expected gains must be equal
AE[e|c!: P14+ (1 — N)E[elc'; ] = XE[e|c?; P] + (1 — A\)E[e|c?; ']
Elelc"; M5+ (1 = NE] = E[e|lc®; Ms + (1 — A)F]
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Maximin Decision Rule

E[e|c?; f]
f8

2 bt T 17
f
1.014 s

-1 T \f1 Ele|c'; f]
2
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Dependence of a Probabilistic Decision Rule on Priors

AE[elc"; f°] + (1 — N)Elelc’; '] — ()\E[e|c2; 1+ (1 — \)Ele|c?; f7]> =0

A (E[e|c1 %] — Ele|c'; f7] — E[e|c?; 5] + E[e|c?; f7]> = Ele|c® '] — Ele|c'; ]

E[e|c?; f7] — E[e|c'; ]
E[c!; f3] — E[c!; f'] — E[e|c?; 3] + E[e|c?; 7]
17-5 12 4

14—-5-5+17 21 7
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Require 0 < XA < 1

Ele|c?; '] — E[e|c'; ]

R
El[c'; 5] — E[c'; f"] — E[e|c?; f3] + Ele|c?; ]
A > 0 implies
Sign (E[e|c2; '] — Elelc"; f7]) = Sign (E[c1 . 8] — E[c"; 7] — E[e|c?; 3] + E[e|c?; f7])
A < 1implies

|E[e|c?; f'] — Ele|c’; f']] < |E[c"; O] — E[c"; f'] — E[e|c?; °] + E[e|c?; ]|

If either of these inequality cannot be satisfied, it implies that the mixture of f5 and f7 is wrong
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Expected Gain As A Function of Priors

The Expected economic gain can be related to the class
conditional expected economic gain and prior probabilities.

ZK:E[e | &; f1P(c))

Ele;f] =
= {ZE[ec’f]P }+E[e|c flP(c*)
K71 K—1
= {ZE[ec’f]P }+E[e|c f](1—ZPc,>
K71 —1 )
= { Ele| ¢ f]P(¢ }+E[e|c fl— ZE[e\cK;f]P(c’)
J=1 =1




Expected Gain As A Function Of Priors

K—1
Ele; f, P(c"),..., P(cK=N] = { (E[e|c/;f]_E[e|cK;f])P(cf)}+E[ecK;f]
j=1

Two Class Case

Ele; f, P(c")] (E[e | c': fl]— Ele| ¢ f]) P(c') + E[e | ¢3; ]

= aP(c")+~
Ele:f, P(c))] = a1P(c') +m
Ele;f,P(c))] = axP(c')+

When the expected gains of f; and f, are the same

Ele; f;, P(c")]
ar P(c') + 71

E[e; f,, P(c")]
a21P(c") + 72

(a1 —az)P(C') = -
pc') = om—oe
Y2 — 7
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Three Class Case

Ele: f; P(c"),P(c®)] = anP(c")+apP(c®)+i, i=1,2,3
Ele; f;; P(c'),P(c®)] = Ele;ifs; P(c'),P(c?)], i=1,2

a11P(c") + a12P(c®) + 71 = a31P(c') + a32P(c®) + 73
a1 P(C") + apP(C®) + 72 = agiP(c') +a32P(c?) + 73
< a1 — Q31 Q2 — Q3P ) < P(c!) > _ (71 -3 )
(o1 — Q31 Q22 — Q32 P(c?) Yo — 3
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K Class Case

K—1
Eleif; P(c"),.. ., PN = D awP(c)+ vk k=1,....K
i=1
Ele; fx; P(c'), ..., P(cK )], k=1,..., K —1

Elei fic P(c"), ..., P(c"7T)]

Qg1 — akq Qg2 — QK2 cee QK1 — QK K1 P(c') " =YK
QK11 — QK1 QK 12— QK2 ... QK 1K1~ QKK P(ck=") YK—1 — VK
0 < PUXMY<1, k=1,...,K—1

K
SR = 1
k=1
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Finding The Convex Combination

Two Class Case

AE[elc'; 5] + (1 — N)E[elc; f7] — (\E[e|c?; 5] + (1 — A\)E[e|c?; f7]> - 0
E[g; AP+ (1 =X = Elelc’; A + (1 — N7 1P(c") + E[e|c?; AP + (1 — M) f71P(c?)
Find P(c') that solves a1 P(c') 4 71 = ap P(c') 4 ~2. Call the solution Py(c').
Consider the expected gain of a mixed decision rule that has expected gain

a1 Py(c!) + 72 for any prior P(c').

MaitP(e") + 1) + (1 = N)(e21P(c) +72) = az1Po(c!) +72

a1 Po(c") + 72 = Ay — (1 = M2
az1Po(c!) = A(v1 +2)

Aty + (1= Nazr)P(c")

1
Therefore, Aaq1 + (1 — A)agy =0and A = ﬁ = %
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Finding The Convex Combination

Two Class Case
Identity in P(c') meaning For all P(c")

0< A, <1
A+ =1
M(ar1P(c") +71) + Aa(a21 P(€') +72) = az1Po(c') + 72
(Mgt 4+ deaz)P(c') = az21Po(c') + 92 — Myt — Aoz
This implies
Aoy + Ay = 0
Myt + A2 = agiPo(c!) + 2

M+ = 1
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Finding the Convex Combination

A1 + Azag
A7+ A2
A1+ Ao

Ao =

AM+A =




Finding the Convex Combination: Consistency Check

0< A, A <A

Q
A\ - %2
Q2 — Qq1
Either a1 — aq41 > 0 or <O.
If oy —aqq >0 then
Q21 > O
asy > 0
If oy —aqq <0 then,
g1 < 011
asy < O
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Finding the Convex Combination

Once A\ and )\, are known, the exact value for Py(c') can be

determined.
MY+ (1 =AM = aPo(c!) + 72
My —72) = axPo(c')
)\ _
Po(C1) _ 1('71 ’72)
Qo1
_ azt Y1 — 2
gt — o1 O
_ M-
Qg1 — oy
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Finding The Convex Combination

K Class Case
Identity in P(c")..., P(cK~T)

> M OéikP(Ci)+7k> = ZaK:Po ) + K




Finding The Convex Combination

@ Each component decision rule of the mixture has an
expected gain that is a hyperplane in the axes
P(c")...,P(cK)

@ The first K — 1 rows of the i'h column consists of the
coefficients of P(c')..., P(cK=1) for the i hyperplane

Q14 Qo1 000 K1 )\1 0
o1 Qoo ... QK2 Ao 0

K11 QK12 -.. OK_1K AK—1
1 1 ... 1 AK 1
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Dependence on Class Prior Probabilities

Ele; f]
8 1
> f f
A7
~ 5 | A
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Conditional Expected Gains: All Decision Rules

Ele|c?; f]
f8

2 ¢
T — l g
N\
pal \fM
70 §

\
-1 T \f1 Ele|c'; f]
= 2
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Two Entity Game

The game is played for a large number of trials.
@ Nature chooses class ¢ in accordance with class priors
P(c")...,P(cK)
@ A measurement d is sampled in accordance with P(d | ¢)

@ Bayes chooses decision rule to maximize expected gain
under given class priors

Suppose nature chooses class priors so that the Bayes gain is
minimized. Bayes chooses to maximize expected gain under
worst priors. But suppose nature does not choose ¢ in
accordance with worst priors.
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Maximin Decision Rule

There is a mixed decision rule that guarantees that regardless
of what class priors nature chooses, the expected gain is equal
to the Bayes gain under the worst class priors. This is the
maximin decision rule.
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Dependence on Class Prior Probabilities

Ele; f]
8 1
> f f
f7
N f5 L
n
70 — | |
5 ><< S~
\ \
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Maximin Decision Rule

A decision rule f is a Maximin Decision Rule if and only if

K
min ZE[e| c; f]P(C/) > m|n ZE[e‘ o Q]P(

for any decision rule g where

Ele|d:f] = ZZ e(c,c*)P(d | )fa(c")

deD k=1
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Determining the Maximin Decision Rule

Ele;f] = Ele|c';flP(c") + E[e|c?; f]P(c?)
= Ele|c'; f1P(c") + E[e|c?; f](1 — P(c"))
= (E[e|c'; f] — E[e|c?; f])P(c") + E[e|c?; f]

Since a maximin decision rule has no dependence on the prior
probability, we must have

Ele|c'; f] — E[e|c?; f] 0
Elelc';f] = Ele|c? f]

In this case,

Ele;f] = Ele|c';f]
— Ele|c?;f]
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Maximin Decision Rule

A decision rule f is a maximin decision rule if and only if

= Ugoooy LR

in Ele|cd;f]> min Ele|d
_min [e|c,]7.7m|n,K le]| d,q]

for any decision rule g.
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Maximin Decision Rule

A decision rule f is a maximin decision rule if and only if

i Ele; f, P(c'),..., P(c")] > i Ele; g, P(c"),...,P(c"
. [ (c) ( )]_P(c1)T{[1P(CK) le:g,P(c),..., P(c™)]

for any decision rule g.

Recall

K
Eleif.P(c"),.... P(c")] = Ele:f] = ) _ Ele| ¢ IP(C))
j=1
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Maximin Decision Rule

A decision rule f is a maximin decision rule if and only if the
expected gain of f is the same as the expected gain of the
Bayes rule under the worst possible prior class probabilities.

Let G be the Bayes Economic Gain under the worst prior class
probabilities. Then f is a maximin decision rule if and only if

Ele|d;fl=G, j=1,....K
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Maximin Decision Rule

E[e|c?; f]
f8

2 bt T 17
f
1.014 s

-1 T \f1 Ele|c'; f]
2
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Maximin Decision Rule

Let P(c"),..., P(cX) be given class prior probabilities. Let
fm m=1,...,Mbe M deterministic decision rules satisfying

K
G=) Ele|d;fMP(c), m=1,....M
j=1

Then there exists Am, \;m >0, m=1,..., M, and
zﬂﬁ Am = 1 satisfying

M
G=Ele|d;) AnfM,j=1,....K

m=1
Note:
. M M .
Ele| ;) Anf™ = AmEle| ;"]
m=1 m=1
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Maximin Decision Rule

@ Let P(c"),..., P(cX) be the worst priors
@ Let Gy be the worst Bayes gain
@ Let ™ be deterministic decision rules, m=1,... .M
o Gu=Y[ Ele|d: mP(cl)
@ Find convex combination \q,..., \y
o Gu=FEle| ;XM Anf™ =M AnEle| i, j=1,...,K
o Let aj, = Ele| c/; f™]
@ Find convex combination A1, ..., Ay satisfying

o Gw=2 1 Am@m, j=1,....K
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Existence of Mixed Decision Rule Strategy

Let aj, be a real numbers, j=1,...,K;m=1,... M. Let
p;>0and Y[, pj=1. Suppose

K
G:ijajm, m=1,....M
j=1

Then there exists Am, m=1,...,M, A\ >0and "M_ \, = 1

satisfying
M

G=) amim j=1,....K

m=1
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Dependence on Class Prior Probabilities

Ele; f]
> i i
7
N~ 5| A Worst Class Priors
7 — 1 P(c') = 4/7 ~ 5714
5 [= = ™~ P(c?) = 3/7 ~ .4286
< | L
~_] |
| — [~
-1 P(c")




Maximin Decision Rule

Ele|c'; fy] = E[e|c?; fu]

Ele|c?; f]
f8
2 $~— T 7
N\
fu
7 i \W\ fy =475+ 3f7
5
5 °® \r
IEAY
\
I
-1 Ele|c'; f]
o 5 I 2




