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Convex Sets and Linear Functions

Proposition
Images of linear functions of convex sets are convex.

Proof.
Let C be a convex set and f : C → RN be a linear function. Define
D = {y ∈ RN | y = f (x), x ∈ C} Let y1, y2 ∈ D and let 0 ≤ λ ≤ 1.
Then there exists x1, x2 ∈ C such that y1 = f (x1) and y2 = f (x2).

λy1 + (1− λy2) = λf (x1) + (1− λ)f (x2)

= f (λx1 + (1− λ)x2)

But x1, x2 ∈ C and C is convex. Therefore λx1 + (1− λ)x2 ∈ C.
Hence, f (λx1 + (1− λ)x2) ∈ D. And this makes
λy1 + (1− λy2) ∈ D

2 / 60



Dependence on Prior Class Probabilities

Proposition
Expected economic gain for a decision rule is an affine function
of the expected economic conditional gains with coefficients
P(c1), . . . ,P(cK−1).

Proof.

E [e; f ] =
K∑

j=1

E [e | c j ; f ]P(c j)

=
K−1∑
j=1

E [e | c j ; f ]P(c j) + E [e | cK ; f ](1−
K−1∑
j=1

P(c j))

=
K−1∑
j=1

{E [e | c j ; f ]− E [e | cK ; f ]}P(c j) + E [e | cK ; f ]
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Example
e Assigned

True c1 c2

c1 2 -1
c2 -1 2

P(d | c) Measurement
True Class d1 d2 d3

c1 .2 .3 .5
c2 .5 .4 .1

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j )fd (ck )

Measurements Conditional Gain
f d1 d2 d3 E [e|c1; f ] E [e|c2; f ]
f 1 c1 c1 c1 2.0 -1.0
f 2 c1 c1 c2 .5 -.7
f 3 c1 c2 c1 1.1 .2
f 4 c1 c2 c2 -.4 .5
f 5 c2 c1 c1 1.4 .5
f 6 c2 c1 c2 -.1 .8
f 7 c2 c2 c1 .5 1.7
f 8 c2 c2 c2 -1. 2.0
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Expected Conditional Gain and Expected Gain

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j )fd (ck )

E [e; f ] =
K∑

j=1

E [e | c j ; f ]P(c j )

=

K−1∑
j=1

E [e | c j ; f ]P(c j )

+

E [e | cK ; f ](1−
K−1∑
j=1

P(c j ))


=

K−1∑
j=1

{E [e | c j ; f ]− E [e | cK ; f ]}P(c j )

+ E [e | cK ; f ]

E [e; f 1] = [2− (−1)]P(c1) + (−1) = 3.0P(c1)− 1
E [e; f 2] = [.5− (−.7)]P(c1) + (−.7) = 1.2P(c1)− .7
E [e; f 3] = [1.1− .2]P(c1) + .2 = 0.9P(c1) + .2
E [e; f 4] = [−.4− .5]P(c1) + .5 = −0.9P(c1) + .5
E [e; f 5] = [1.4− .5]P(c1) + .5 = 0.9P(c1) + .5
E [e; f 6] = [−.1− .8]P(c1)− .8 = −0.9P(c1) + .8
E [e; f 7] = [.5− 1.7]P(c1]1.7 = −1.2P(c1) + 1.7
E [e; f 8] = [−1.0− 2.0]P(c1) + 2.0 = −3.0P(c1) + 2.0
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Expected Conditional Gain and Expected Gain

Measurements Expected Conditional Gain Expected Gain
f d1 d2 d3 E [e|c1; f ] E [e|c2; f ] E [e, f ]
f 1 c1 c1 c1 2.0 −1.0 3P(c1)− .7
f 2 c1 c1 c2 .5 −.7 1.2P(c1)− .7
f 3 c1 c2 c1 1.1 .2 .9P(c1) + .2
f 4 c1 c2 c2 −.4 .5 −.9P(c1) + .5
f 5 c2 c1 c1 1.4 .5 .9P(c1) + .5
f 6 c2 c1 c2 −.1 .8 −.9P(c1) + .8
f 7 c2 c2 c1 .5 1.7 −1.2P(c1) + 1.7
f 8 c2 c2 c2 −1. 2.0 −3P(c1) + 2.0
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Dependence on Prior Class Probabilities

E [e; f ] =
K−1∑
j=1

{E [e | c j ; f ]− E [e | cK ; f ]}P(c j) + E [e | cK ; f ]

Measurements Conditional Gain Expected Gain
f d1 d2 d3 E [e|c1; f ] E [e|c2; f ] E [e; f ,P(c1)]

f 1 c1 c1 c1 2.0 -1.0 3P(c1)− 1
f 2 c1 c1 c2 .5 -.7 1.2P(c1)− .7
f 3 c1 c2 c1 1.1 .2 .9P(c1) + .2
f 4 c1 c2 c2 -.4 .5 −.9P(c1) + .5
f 5 c2 c1 c1 1.4 .5 .9P(c1) + .5
f 6 c2 c1 c2 -.1 .8 −.9P(c1) + .8
f 7 c2 c2 c1 .5 1.7 −1.2P(c1) + 1.7
f 8 c2 c2 c2 -1. 2.0 −3P(c1) + 2.0
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2 f 1

f 5f 7

f 8

P(c1)

E [e; f ]

The Bayes Gain is the
upper envelope
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Convex Functions

Definition

A function h, h : RN → R, is a convex function if and only if for
every λ, 0 ≤ λ ≤ 1,

h(λ(x1, . . . , xN) + (1− λ)(y1, . . . , yN)) ≤ λh(x1, . . . , xN) + (1− λ)h(y1, . . . , yN)

(u,h(u))

(v ,h(v))

u v

w = λu + (1− λ)v

w

(λu + (1− λ)v , λh(u) + (1− λ)h(v))

h(w)
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Bayes Gain is Convex

0 .5 1
-1

.5

2 f 1

f 5f 7

f 8

Bayes Gain is a convex

function of class prior

probabilities

P(c1)

E [e; f ]
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Bayes Gain Is Convex

E [e; f ] =
K∑

j=1

E [e | c j ; f ]P(c j)]

GB = max
f

E [e; f ] Bayes Gain

Let f n, n = 1, . . .N be the N = |C||D| deterministic decision
rules.
Define for j = 1, . . . ,K

ajn = E [e | c j ; f n]

pj = P(c j)

GB(P(c1), . . . ,P(cK )) = max
n

K∑
j=1

E [e | c j ; f n]P(c j)

GB(p1, . . . ,pK ) = max
n

K∑
j=1

ajnpj
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Bayes Gain Is Convex

Theorem

Let p = (p1, . . . , pK ) and q = (q1, . . . qK ). Let 0 ≤ λ ≤ 1.

GB(λp + (1− λ)q) ≤ λGB(p) + (1− λ)GB(q)

Proof.

GB(λp + (1− λ)q) = max
n

K∑
j=1

ajn(λpj + (1− λ)qj)

= max
n

λ
K∑

j=1

ajnpj + (1− λ)
K∑

j==1

ajnqj


≤

max
n
λ

K∑
j=1

ajnpj

+

max
n

(1− λ)
K∑

j=1

ajnqj


≤ λGB(p) + (1− λ)GB(q)
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Epigraph and Convex Sets

Definition

Let f : RN → R. The epigraph of f , denoted Epi(f) is the set of
points lying on or above the graph of f.

Epi(f ) = {(x ,u) ∈ RN × R | u ≥ f (x)}
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Epigraph and Convex Sets

Proposition
If a function is convex then its epigraph is a convex set.

Proof.
Suppose f is convex. Let (x ,u), (y , v) ∈ Epi(f ) and 0 ≤ λ ≤ 1.
Then by definition of Epi(f ), f (x) ≤ u, f (y) ≤ v and, therefore,
λf (x) + (1− λ)f (v) ≤ λu + (1− λ)v. Since f is convex,
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y). But
λf (x) + (1− λ)f (v) ≤ λu + (1− λ)v. Now by definition of
Epi(f ), (λx + (1− λ)y , λu + (1− λ)v) ∈ Epi(f ) making Epi(f )
convex.
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Epigraph and Convex Sets

Proposition
If the epigraph of a function is a convex set, then the function is
convex.

Proof.
Suppose Epi(f ) is a convex set. Then by definition of Epi(f ),
(x , f (x)) ∈ Epi(f ) and (y , f (y)) ∈ Epi(f ). Since Epi(f ) is convex,
λ(x , f (x)) + (1− λ)(y , f (y)) ∈ Epi(f ). Hence
(λx + (1− λy), λf (x) + (1− λ)f (y)) ∈ Epi(f ). By definition of
Epi(f ), f (λx + (1− λ)y) < λf (x) + (1− λ)f (y). And by
definition of a convex function, this implies that f is convex.
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Epigraph and Convexity

Theorem
A function is convex if and only if its epigraph is a convex set.
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Basin sets of Convex Functions

Definition

Let f : RN → R and c ∈ R. A basin set of f is any set of the form

L = {x ∈ RN | f (x) ≤ c}

Theorem
Let C be a convex set, h be a convex function on C and
L = {c ∈ C | h(c) ≤ b}. Then L is a convex set.

Proof.

Let x , y ∈ L so that h(x) ≤ b and h(y) ≤ b and let 0 ≤ λ ≤ 1. Since
x , y ∈ L ⊆ C and since C is a convex set, λx + (1− λ)y ∈ C. Then
since h is a convex function,

h(λx + (1− λ)y) ≤ λh(x) + (1− λ)h(y) ≤ λb + (1− λ)b = b

This implies by definition of L that λx + (1− λ)y ∈ L.
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Minima Set of A Convex Function is Convex

Corollary

Let C ⊂ RN be a closed and bounded convex set. Let
h : C → R be a convex function. Suppose b = minc∈C h(c).
Then M = {x ∈ C | h(x) = b} is a convex set.

Proof.
Note that since b = minc∈C h(c), M = {x ∈ C | h(x) ≤ b}. C
being closed and bounded is needed because the minima of h
may be on the boundary.
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For Convex Functions Local Minima are Global Minima

Theorem
Let C be a convex set and h be a convex function on C.
Suppose h has a local minima at x0 ∈ C. Then for any
x ∈ C, h(x0) ≤ h(x).

Proof.
Let x ∈ C and 1 ≥ α > 0 be sufficiently small so that
(1− α)x0 + αx ∈ C. Then,

h(x0) ≤ h((1− α)x0 + αx) ≤ (1− α)h(x0) + αh(x)
0 ≤ α(h(x)− h(x0))

h(x0) ≤ h(x)
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Dependence on Prior Class Probabilities

E [e; f ] =
K−1∑
j=1

{E [e | c j ; f ]− E [e | cK ; f ]}P(c j) + E [e | cK ; f ]

Measurements Conditional Gain Expected Gain
f d1 d2 d3 E [e|c1; f ] E [e|c2; f ] E [e; f ,P(c1)]

f 1 c1 c1 c1 2.0 -1.0 3P(c1)− 1
f 2 c1 c1 c2 .5 -.7 1.2P(c1)− .7
f 3 c1 c2 c1 1.1 .2 .9P(c1) + .2
f 4 c1 c2 c2 -.4 .5 −.9P(c1) + .5
f 5 c2 c1 c1 1.4 .5 .9P(c1) + .5
f 6 c2 c1 c2 -.1 .8 −.9P(c1) + .8
f 7 c2 c2 c1 .5 1.7 −1.2P(c1) + 1.7
f 8 c2 c2 c2 -1. 2.0 −3P(c1) + 2.0
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2 f 1

f 5f 7

f 8

P(c1)

E [e; f ]

Where are the probabilistic
decision rules?

λf + (1− λ)g
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Probabilistic Decision Rules

Pick a prior probability P(c1)

For decision rule f there is an Expected Gain E [e; f ]
For decision rule g there is a Expected Gain E [e;g]
For decision rule λf + (1− λ)g, the Expected Gain is

λE [e; f ] + (1− λ)E [e;g]

In between the Expected Gain for f and the Expected Gain
for g
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2 f 1

f 5f 7

f 8

P(c1)

E [e; f ]

P(c1) = .2
Decision Rules f 7 and f 1

Examine the blue line
Where are the probabilistic

decision rules?

Lines contained in the area
between the lower and

the upper envelopes
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Probabilistic Decision Rules Are In Between

Expected gain of a mixed decision rule is the mixture of the
expected gains of the component decision rules.

E [e;λf + (1− λ)g,P(c1)] = λE [e; f ,P(c1)] + (1− λ)E [e;g;P(c1)]

24 / 60



A Mixed Decision Rule is an affine function of P(c1)

Two Class Case

Proposition

Let 0 ≤ λ ≤ 1. Let f1 and f2 be two decision rules and Suppose there are two
classes, then E [e;λf1 + (1− λ)f2,P(c1)] is an affine function of P(c1).

Proof.

E [e; f1,P(c1)] = α1P(c1) + β1

E [e; f2,P(c1)] = α2P(c1) + β2

E [e;λf1 + (1− λ)f2,P(c1)] = λ(α1P(c1) + β1) + (1− λ)(α2P(c1) + β2)

= (λα1 + (1− λ)α2)P(c1) + λβ1 + (1− λ)β2
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Probabilistic Decision Rules Are In Between

Proposition
Fix P(c1). Let 0 ≤ λ ≤ 1.
If E [e; f ,P(c1)] ≤ E [e; g,P(c1)] = then

E [e; f ,P(c1)] ≤ E [e;λf + (1− λ)g] ≤ E [e; g,P(c1)]

Proof.

E [e; f ,P(c1)] = λE [e; f ,P(c1)] + (1− λ)E [e; f ,P(c1)]

E [e; f ,P(c1)] ≤ λE [e; f ,P(c1)] + (1− λ)E [e; g,P(c1)] ≤ E [e; g,P(c1)

E [e; f ,P(c1) ≤ E [e;λf + (1− λ)g] ≤ E [e; g,P(c1)]
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2 f 1

f 5f 7

f 8

P(c1)

E [e; f ]

Where are the probabilistic
decision rules?

Lines in the area between
the lower and the
upper envelopes
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2

Worst Class Priors
P(c1) = 4/7 ≈ .5714
P(c2) = 3/7 ≈ .4286

71
70 = 1.014

.5714

f 1

f 5f 7

f 8

P(c1)

E [e; f ]
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Finding Worst Class Priors

Two Class Case
Decision Rules of Mixture are Known

E [e; f5;P(c1)] = .9P(c1) + .5
E [e; f7;P(c1)] = −1.2P(c1) + 1.7

Set E [e; f5;P(c1)] = E [e; f7;P(c1)]

.9P(c1) + .5 = −1.2P(c1) + 1.7;
2.1P(c1) = 1.2

P(c1) =
1.2
2.1

=
4
7

P(c2) = 1− P(c1) =
3
7
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Dependence of a Probabilistic Decision Rule on Priors
Suppose we know the deterministic decision rules to make up the mixture: f5 and f7

Since E [e; f ] = E [e; c1, f ]P(c1) + E [e; c2, f ]P(c2)

E [e;λf 5 + (1− λ)f 7] = E [e|c1;λf 5 + (1− λ)f 7]P(c1) + E [e|c2;λf 5 + (1− λ)f 7]P(c2)

Since Expectation is a linear operator E [e|c;αf + βg] = αE [e|c; f ] + βE [e|c; g]

E [e;λf 5 + (1− λ)f 7] =
(
λE [e|c1; f 5] + (1− λ)E [e|c1; f 7]

)
P(c1) +(

λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]
)
(1− P(c1))

=
{(
λE [e|c1; f 5] + (1− λ)E [e|c1; f 7]

)
−(

λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]
)}

P(c1) +

E [e|c2;λf 5 + (1− λ)f 7]

When there is no dependence on priors, the coefficient of P(c1) must be zero

(
λE [e|c1; f 5] + (1− λ)E [e|c1; f 7]

)
−
(
λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]

)
= 0

The class conditional expected gains must be equal

λE [e|c1; f 5] + (1− λ)E [e|c1; f 7] = λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]

E [e|c1;λf5 + (1− λ)f7] = E [e|c3;λf5 + (1− λ)f7]
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Maximin Decision Rule

f 8

f 1

f 5

f 7

fM
1.014

E [e|c1; f ]

E [e|c2; f ]

-1 .5 2
-1

.5

2
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Dependence of a Probabilistic Decision Rule on Priors

λE [e|c1; f 5] + (1− λ)E [e|c1; f 7]−
(
λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]

)
= 0

λ
(

E [e|c1; f 5]− E [e|c1; f 7]− E [e|c2; f 5] + E [e|c2; f 7]
)

= E [e|c2; f 7]− E [e|c1; f 7]

λ =
E [e|c2; f 7]− E [e|c1; f 7]

E [c1; f 5]− E [c1; f 7]− E [e|c2; f 5] + E [e|c2; f 7]

=
1.7− .5

1.4− .5− .5 + 1.7
=

1.2
2.1

=
4
7
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Require 0 ≤ λ ≤ 1

λ =
E [e|c2; f 7]− E [e|c1; f 7]

E [c1; f 5]− E [c1; f 7]− E [e|c2; f 5] + E [e|c2; f 7]

λ ≥ 0 implies

Sign
(

E [e|c2; f 7]− E [e|c1; f 7]
)

= Sign
(

E [c1; f 5]− E [c1; f 7]− E [e|c2; f 5] + E [e|c2; f 7]
)

λ ≤ 1 implies

|E [e|c2; f 7]− E [e|c1; f 7]| ≤ |E [c1; f 5]− E [c1; f 7]− E [e|c2; f 5] + E [e|c2; f 7]|

If either of these inequality cannot be satisfied, it implies that the mixture of f5 and f7 is wrong
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Expected Gain As A Function of Priors

The Expected economic gain can be related to the class
conditional expected economic gain and prior probabilities.

E [e; f ] =
K∑

j=1

E [e | c j ; f ]P(c j)

=


K−1∑
j=1

E [e | c j ; f ]P(c j)

+ E [e | cK ; f ]P(cK )

=


K−1∑
j=1

E [e | c j ; f ]P(c j)

+ E [e | cK ; f ]

1−
K−1∑
j=1

P(cj)


=


K−1∑
j=1

E [e | c j ; f ]P(c j)

+ E [e | cK ; f ]−
K−1∑
j=1

E [e | cK ; f ]P(c j)

E [e; f ,P(c1), . . . ,P(cK−1)] =


K−1∑
j=1

(
E [e | c j ; f ]− E [e | cK ; f ]

)
P(c j )

+ E [e | cK ; f ]
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Expected Gain As A Function Of Priors

E [e; f ,P(c1), . . . ,P(cK−1)] =


K−1∑
j=1

(
E [e | c j ; f ]− E [e | cK ; f ]

)
P(c j )

+ E [e | cK ; f ]

Two Class Case

E [e; f ,P(c1)] =
(

E [e | c1; f ]− E [e | c2; f ]
)

P(c1) + E [e | c2; f ]

= αP(c1) + γ

E [e; f1,P(c1)] = α11P(c1) + γ1

E [e; f2,P(c1)] = α21P(c1) + γ2

When the expected gains of f1 and f2 are the same

E [e; f1,P(c1)] = E [e; f2,P(c1)]

α11P(c1) + γ1 = α21P(c1) + γ2

(α11 − α21)P(c1) = γ2 − γ1

P(c1) =
α11 − α21

γ2 − γ1

35 / 60



Three Class Case

E [e; fi ;P(c1),P(c2)] = αi1P(c1) + αi2P(c2) + γi , i = 1,2,3
E [e; fi ;P(c1),P(c2)] = E [e; f3;P(c1),P(c2)], i = 1,2

α11P(c1) + α12P(c2) + γ1 = α31P(c1) + α32P(c2) + γ3

α21P(c1) + α22P(c2) + γ2 = α31P(c1) + α32P(c2) + γ3

(
α11 − α31 α12 − α32
α21 − α31 α22 − α32

)(
P(c1)
P(c2)

)
=

(
γ1 − γ3
γ2 − γ3

)
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K Class Case

E [e; fk ;P(c1), . . . ,P(cK−1)] =

K−1∑
i=1

αki P(c i ) + γk , k = 1, . . . ,K

E [e; fk ;P(c1), . . . ,P(cK−1)] = E [e; fK ;P(c1), . . . ,P(cK−1)], k = 1, . . . ,K − 1

 α11 − αK 1 α12 − αK 2 . . . α1,K−1 − αK ,K−1
...

αK−1,1 − αK 1 αK−1,2 − αK 2 . . . αK−1,K−1 − αK ,K−1




P(c1)
...

P(cK−1)

=

 γ1 − γK
...

γK−1 − γK



0 ≤ P(xk ) ≤ 1, k = 1, . . . ,K − 1
K∑

k=1

P(ck ) = 1
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Finding The Convex Combination

Two Class Case

λE [e|c1; f 5] +
(

1− λ)E [e|c1; f 7]− (λE [e|c2; f 5] + (1− λ)E [e|c2; f 7]
)

= 0

E [e;λf 5 + (1− λ)f 7] = E [e|c1;λf 5 + (1− λ)f 7]P(c1) + E [e|c2;λf 5 + (1− λ)f 7]P(c2)

Find P(c1) that solves α11P(c1) + γ1 = α21P(c1) + γ2. Call the solution P0(c1).
Consider the expected gain of a mixed decision rule that has expected gain
α21P0(c1) + γ2 for any prior P(c1).

λ(α11P(c1) + γ1) + (1− λ)(α21P(c1) + γ2) = α21P0(c1) + γ2

(λα11 + (1− λ)α21)P(c1) = α21P0(c1) + γ2 − λγ1 − (1− λ)γ2

= α21P0(c1)− λ(γ1 + γ2)

Therefore, λα11 + (1− λ)α21 = 0 and λ = −α21
α11−α21

=
α21P0(c

1)
γ1+γ2
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Finding The Convex Combination

Two Class Case
Identity in P(c1) meaning For all P(c1)

0 ≤ λ1, λ2 ≤ 1
λ1 + λ2 = 1

λ1(α11P(c1) + γ1) + λ2(α21P(c1) + γ2) = α21P0(c1) + γ2

(λ1α11 + λ2α21)P(c1) = α21P0(c1) + γ2 − λ1γ1 − λ2γ2

This implies

λ1α11 + λ2α21 = 0
λ1γ1 + λ2γ2 = α21P0(c1) + γ2

λ1 + λ2 = 1
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Finding the Convex Combination

λ1α11 + λ2α21 = 0
λ1γ1 + λ2γ2 = α21P0(c1) + γ2

λ1 + λ2 = 1

λ2 = −λ1
α11

α21

λ1 + λ2 = λ1(1−
α11

α21
) = 1

λ1 =
α21

α21 − α11
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Finding the Convex Combination: Consistency Check

0 ≤ λ1, λ2 ≤ 1

λ1 =
α21

α21 − α11

Either α21 − α11 > 0 or < 0.
If α21 − α11 > 0 then

α21 > α11

α21 > 0

If α21 − α11 < 0 then,

α21 < α11

α21 < 0
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Finding the Convex Combination

Once λ1 and λ2 are known, the exact value for P0(c1) can be
determined.

λ1γ1 + (1− λ1)γ2 = α21P0(c1) + γ2

λ1(γ1 − γ2) = α21P0(c1)

P0(c1) =
λ1(γ1 − γ2)

α21

=
α21

α21 − α11

γ1 − γ2

α21

=
γ1 − γ2

α21 − α11
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Finding The Convex Combination

K Class Case
Identity in P(c1) . . . ,P(cK−1)

K∑
k=1

λk

(
K−1∑
i=1

αikP(c i) + γk

)
=

K∑
i=1

αKiP0(c i) + γK

K−1∑
i=1

(
K∑

k=1

λkαik

)
P(c i) =

K∑
i=1

αKiP0(c i) + γK −
K∑

k=1

λkγk

Implies

K∑
k=1

λkαik = 0, i = 1, . . . ,K − 1

K∑
k=1

λk = 1
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Finding The Convex Combination

Each component decision rule of the mixture has an
expected gain that is a hyperplane in the axes
P(c1) . . . ,P(cK−1)

The first K − 1 rows of the i th column consists of the
coefficients of P(c1) . . . ,P(cK−1) for the i th hyperplane
α11 α21 . . . αK 1
α21 α22 . . . αK 2

...
αK−1,1 αK−1,2 . . . αK−1,K

1 1 . . . 1




λ1
λ2
...

λK−1
λK

 =


0
0
...
0
1
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Dependence on Class Prior Probabilities
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Conditional Expected Gains: All Decision Rules
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Two Entity Game

The game is played for a large number of trials.
Nature chooses class c in accordance with class priors
P(c1) . . . ,P(cK )

A measurement d is sampled in accordance with P(d | c)
Bayes chooses decision rule to maximize expected gain
under given class priors

Suppose nature chooses class priors so that the Bayes gain is
minimized. Bayes chooses to maximize expected gain under
worst priors. But suppose nature does not choose c in
accordance with worst priors.
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Maximin Decision Rule

There is a mixed decision rule that guarantees that regardless
of what class priors nature chooses, the expected gain is equal
to the Bayes gain under the worst class priors. This is the
maximin decision rule.
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Dependence on Class Prior Probabilities
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Maximin Decision Rule

Definition
A decision rule f is a Maximin Decision Rule if and only if

min
P(c1),...,P(cK )

K∑
j=1

E [e | c j ; f ]P(c j) ≥ min
P(c1),...,P(cK )

K∑
j=1

E [e | c j ;g]P(c j)

for any decision rule g where

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j)fd(ck )

50 / 60



Determining the Maximin Decision Rule

E [e; f ] = E [e|c1; f ]P(c1) + E [e|c2; f ]P(c2)

= E [e|c1; f ]P(c1) + E [e|c2; f ](1− P(c1))

= (E [e|c1; f ]− E [e|c2; f ])P(c1) + E [e|c2; f ]

Since a maximin decision rule has no dependence on the prior
probability, we must have

E [e|c1; f ]− E [e|c2; f ] = 0
E [e|c1; f ] = E [e|c2; f ]

In this case,

E [e; f ] = E [e|c1; f ]
= E [e|c2; f ]
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Maximin Decision Rule

Theorem
A decision rule f is a maximin decision rule if and only if

min
j=1,...,K

E [e | c j ; f ] ≥ min
j=1,...,K

E [e | c j ,g]

for any decision rule g.
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Maximin Decision Rule

Theorem
A decision rule f is a maximin decision rule if and only if

min
P(c1),...,P(cK )

E [e; f ,P(c1), . . . ,P(cK )] ≥ min
P(c1),...,P(cK )

E [e; g,P(c1), . . . ,P(cK )]

for any decision rule g.

Proof.
Recall

E [e; f ,P(c1), . . . ,P(cK )] = E [e; f ] =
K∑

j=1

E [e | c j ; f ]P(c j)
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Maximin Decision Rule

A decision rule f is a maximin decision rule if and only if the
expected gain of f is the same as the expected gain of the
Bayes rule under the worst possible prior class probabilities.

Theorem
Let G be the Bayes Economic Gain under the worst prior class
probabilities. Then f is a maximin decision rule if and only if

E [e | c j ; f ] = G, j = 1, . . . ,K
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Maximin Decision Rule
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Maximin Decision Rule

Let P(c1), . . . ,P(cK ) be given class prior probabilities. Let
f m, m = 1, . . . ,M be M deterministic decision rules satisfying

G =
K∑

j=1

E [e | c j ; f m]P(c j), m = 1, . . . ,M

Then there exists λm, λm ≥ 0, m = 1, . . . ,M, and∑M
m=1 λm = 1 satisfying

G = E [e | c j ;
M∑

m=1

λmf m], j = 1, . . . ,K

Note:

E [e | c j ;
M∑

m=1

λmf m] =
M∑

m=1

λmE [e | c j ; f m]
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Maximin Decision Rule

Let P(c1), . . . ,P(cK ) be the worst priors
Let Gw be the worst Bayes gain
Let f m be deterministic decision rules, m = 1, . . . ,M

Gw =
∑K

j=1 E [e | c j ; f m]P(c j)

Find convex combination λ1, . . . , λM
Gw = E [e | ck ;

∑M
m=1 λmf m] =

∑M
m=1 λmE [e | c j ; f m], j = 1, . . . ,K

Let ajm = E [e | c j ; f m]

Find convex combination λ1, . . . , λM satisfying
Gw =

∑M
m=1 λmajm, j = 1, . . . ,K
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Existence of Mixed Decision Rule Strategy

Theorem
Let ajm be a real numbers, j = 1, . . . ,K ;m = 1, . . . ,M. Let
pj ≥ 0 and

∑K
j=1 pj = 1. Suppose

G =
K∑

j=1

pjajm, m = 1, . . . ,M

Then there exists λm, m = 1, . . . ,M, λm ≥ 0 and
∑M

m=1 λm = 1
satisfying

G =
M∑

m=1

ajmλm, j = 1, . . . ,K
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Dependence on Class Prior Probabilities

0 .5 1
-1

.5

2

Worst Class Priors
P(c1) = 4/7 ≈ .5714
P(c2) = 3/7 ≈ .4286

71
70

4
7

f 1

f 5f 7

f 8

P(c1)

E [e; f ]

59 / 60



Maximin Decision Rule

E [e|c1; fM ] = E [e|c2; fM ]
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