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Odds Ratio

Definition

Let 7 be the probability of an event occurring. The odds ratio R
for the event is the ratio of the probability of the event occurring
to the probability of the event not occurring

s

R =
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Definition
The Logit function is the natural log of the odds ratio.

™

Logit(R) = log(R) = Iog(1 — 7r)
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Logistic Linear Model

@ Xx measurement vector

@ 0 parameter vector

@ 0y parameter scalar

@ ¢' event that true class of measurement vector is ¢!

1 .
log(R(x;0,6p)) = log<1_P(;(C|1X’f;20;O)>

= 0+0x
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Logistic Linear Model

Two classes: ¢! and ¢?

FJ(C1 ]X;Q,Go) ’
[ 0 0
°g<1 = P(c" | x.0,60) oTox
P(c" | x;0,60) eeo+9’x

T P(c | x.0.05)
P(c' [ x:0,00) = [1—P(c'|x;0,00)]e%"

eeo+o’x
P(c' | x;0,00) = ————
1 + e@o-‘re X
]
20 .. _
A | i) = 11 ghot0'x
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Logistic Linear Model

Given the parameter vector 6, 6, and a measurement vector x,

gfo+0'x
1+ efott'x

produces the conditional probability that the true class is ¢!
given that the measurement vector is x.
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Expected Values

Let y be an indicator variable.
@ y = 1 indicates class c'
@ y = 0 indicates class c?

Ely|x;0,a) = 1P(y=1]x;0,a)+0P(y =0/ x;0,a)
Ply=1|x,0,q)
ea+9/X

1+ eatd'x
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If [|v|| = 1, then v’z is the signed length of the orthogonal
projection of z onto v.

vz=v(z+2z) = vzitvz=vz =v(£|zllv)=£lzl|

’
vzl = lizll
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Without loss of generality, we can always scale x so that the #
associated with the scaled x has norm 1.

P(c" | x; 6,60) ;
| = 0 0
°g<1—P(c1|x:e,eo) oFux

/

0
0o + —(x||0
0+ g7 (11611

For convenience we scale x and normalize 0 so that
Xnew = X||0]]

0
Onew = W
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R(x;0,60) = ehot0
R(X + 5, 9, 90) _ e@o-i—@’(x—‘r(;)

— ghot0'xghs

- R(x)e"?

Odds ratio is multiplied by &%
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Let § be a change in x. Define §; and ¢, so that

() 5:5” +0
o 9/5J_ =0
o |0'5) = |1l

R(x;0,60p) = glott'x
R(X +6;0,00) = efo+0' (x+0) _ go+0 (x+6+0.1)
— o+t x gl (+01)
= R(x;0,00)e" 91”0
= R(x;@,&o)e9/5\\

Odds ratio is multiplied by €’ 1.
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R(x+6:0,00) = R(x;0,00)e"

l06(R(X +5,0,00)) = log(R(x;0)) + log(&’ )
— log(R(x; 6,60)) + 66

Log of odds ratio increases by «9'6”.
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Changes in Odds Ratio

Suppose the new odds ratio is multiplied by A as a result in the
change of x. Then, what happens to the probability of the

event?

73new

T new
1 — Thew
T new

1—7m+7A

T new
1—7

T new

RA
T
A
1—7
TA
1 (1 - 7Tnew)
-
TA
1—7
TA
1—7m+7A
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Suppose that R = 9. Then 7 = %5 = 135 = .9
Suppose that e — 3.
I )
T 1 -.94.9(3)
27
- 28
= .9642857
9642857 .
Roew = 964285 _ 9642857 _ 57

1 —.9642857 .0357143
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Odds Ratio Iso-Contours

Hp={x |6 x=n\}

The Isocontours are hyperplanes
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Probability Properties

X1 04
X2 02
X = 9 =
XN On
/
1 690—1-6 X
P(c' [x) = ————
1 + e@o+9 X
Fix X1, X2, ..., Xp_1, Xnt1, - - -, Xn; Vary xp

If 6, > 0 as x, — oo, 'X — 0o
If 6, < 0 as X, — 00, ' X — —00
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Probability Form

Consider 1D case.

eeo+0x

1 + e@o+9X
eG(X+90/9)

1 L eG(X+00/0)

P(c|x) =

Let

y =0(x+6o/0)




Normalized Probability

ey
PE 1Y) = 1o g

Normalized Probability

08 |
> o6}
(6]
=
° 04|
o
02 |
o I
-10 5 0 5 10
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Odd Functions

Fix a point xg. Look at the values of f at points x plus and
minus x: f(xo + x) and f(xp — x). If the differences

f(xo + x) — f(x0) and f(xp) — f(xo — X) are the same for all x,
then function f is said to be odd about (X, f(Xp)).

Definition
A function f : R — R is called an odd function around (xo, f(Xo)
if and only if for all x,

f(Xo + x) — f(Xo) = f(X0) — f(Xo — X)

ey
1+ ey

P(c' | y) =

T+ e is odd around (0,1/2)
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Odd Function

ey
P 1) = ro;

Compare f(y — 0) — £(0) to f(0) — (0 — y)

fly -0)-£(0) =

f(0) — f(0—y)
= f(y —0) - 1(0)

_ eY 1 e —1
1+¢eY 2_2(1+ey)
1 eV 1—e 7Y e —1

2 1+revr 2(1+eV) 2(e+1)
= f(0)—f(0—-y)
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Normalized Probability Derivative

1 e’

P(c \Y)=1+ey
A
ayl+er (1 + e¥)?

o e 21

@W’FO T >
1
T4
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Derivative

y =6(x+60/0)

0 & _ 0 & by
x1+e  9yl+eox
1
= 10
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Translate

It is possible to translate x so that it incorporates the constant

term 6g
/ / 0 0O
posdx = o (e 0 t0)
1611 1161
If
o —xy £ 00
e 1611 {1611
Then

00 + 9/X = Q,Xnew

The combination of first translating and then scaling x means
that without loss of generality, we can examine the properties of
the logistic model assuming that ||f|| = 1 and use the simpler
form 6 x in place of the original form 6y + 6’ x.
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Derivative

N-Dimensional Case

/

69 X
P(C1 |X) = ——=
I 42
(1 + &P ¥)9e? ¥ — & *gef X
(1+e¥'x)2

eeﬁlx
(1+ ef'x)2
1

0
aP(ch)}XZO = -0

9 bt 1) —
—P('|x) =

01




Space Shuttle Challenger

External Tank
] T

Right Solid
Rocket

Left Solid
~  Rocket
Booster




Challenger Space Shuttle: The Cold Snap

@ Evening of January 27 through January 28, 1986
@ Florida experienced a statewide cold snap

e The average low is around 50° F
e The average high is around 72°F

@ The January 28 temperature at the launch pad was 31°F
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Morton Thiokol

@ Cold weather prompted a teleconference between NASA
and Morton Thiokol

@ The engineers recommended not to launch
@ The managers decided to go ahead with the launch
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Approval For Challenger Mission

MTI AsSESSMENT OF TEMPERATURE CONCERN oN SRM-25 (51L)} LAUNcH

0 CALCULATIONS SHOW THAT SRM-25 0=RINGS WILL BE 20° COLDER THAN SRM-15 O-RINGS
0 TEMPERATURE DATA NOT CONCLUSIVE ON PREDICTING PRIMARY 0-RING BLOW-BY
0 ENGINEERING ASSESSMENT 1§ THAT:

0 COLDER O-RINGS WILL HAVE INCREASED EFFECTIVE DUROMETER (“HARDER”)

0  "HARDER” O-RINGS WILL TAKE LONGER TO "SEAT"

0 MORE GAS MAY PASS PRIMARY O-RING BEFORE THE PRIMARY SEAL SEATS
(RELATIVE TO SRM-15)

0 DEMONSTRATED SEALING THRESHOLD 15 3 TIMES GREATER THaN 0.038"
EROSION EXPERIEMCED ON SRM-15

0 IF THE PRIMARY SEAL DOES NOT SEAT, THE SECONDARY SEAL WILL SEAT
0 PRESSURE WILL GET TO SECONDARY SEAL BEFORE THE METAL PARTS ROTATE

0 0-RING PRESSURE LEAK CHECK PLACES SECONDARY SEAL IN OUTBOARD
POSITION WHICH MINIMIZES SEALING TIME

0 MT1 RECOMMENDS STS-51L LAUNCH PROCEED ON 28 JANUARY 1986
0  SRM-25 WILL NOT BE SIGNIFICANTLY DIFFERENT FROM SRM-15

- Z

C. KICMINSTER, VICE PRESTDENT
PACE BOOSTER PROGRAMS

29/7



Space Shuttle Challenger

January 28, 1986




The Whistle Blower

____ -

Roger Boisjoly

@ Roger Boisjoly was one of the Morton Thiokol engineers

@ Became the outspoken whistleblower

@ Six months before he wrote a memo that there would be a
failure of the seals if the weather was cold

@ Testified to the Presidential Commission

@ Gave the Presidential Commission internal Morton Thiokol
documents
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Space Shuttle Challenger Disaster Data

#F Number of O-ring Failures
T Outside Air Temperature

#F T | #F T #F T
0 66| 1 70| 0O 69
0O 68| 0 67| 0 72
0O 73] 0 70| 1 57
1 63| 1 70| 0 78
0 67| 2 53| 0 67
0O 75| 0 70| O 81
0 76| 0 79| 2 75
0O 76| 1 58
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Space Shuttle Challenger Disaster

Damage = 1 or more O-ring failures.

Damage | .

HMoDamage [

|
50 55 60 635 0
Temperature at Launch

Temperature at the Launch pad of January 28, 1986 was 31
Degrees Farenheit.
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Space Shuttle Challenger Disaster

Use the data to estimate the parameters of a logistic regression

log(R(T)) = 25.386—.369T
e25.386—.369T

P(O — RingFailure | x) = 14 o25386 3697

Probability of O-Ring Failure vs Temperature
11—

0.8

06 -

04 -

Prob(O-Ring Failure)

02 -

0 o
50 55 60 65 70 75 80 85 90
Air Temperature
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Economic Gain Matrix

ASSIGNED
c! c?
Fail Success
c' Fail Pr(c'|d) | e(c',c') | e(c',c?)

c® Success Pr(c?|d) | e(c?,c') | c(c? c?)




Economic Gain Matrix

ASSIGNED
Fail Success

Fail 1 -100

Success 1 2

Assign to class ¢! if

e(c?,c?) —e(c?, c")
e(ct,c') — e(c!, c?)
21 1

> —
= 1-(=100) 101

log(R(d))

Y
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Decision Rule

Assign to class Fail if

1

log(R(T)) = 25.386 - 3697 > —

T < 68.77

=.0099

On the day of the launch, January 28, 1986, T = 31° Farenheit.

log(R(31)) = 25.386 — .369 « 31
— 13.947

) 613'947
1,140,526

= 940 527 140,527 =.999999
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Logit Decision Rule

log(R(x; 0p,0)) = 6o + 6 x

Assign class ¢' when

0o+ 0 x > 0O
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Decision Rule

-

N \ N Hn+3
\ ) H 1
* Hpyd Assign class ¢

N DN Hn

" Assign class ¢?

Hy = {x |6 x =n\}
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K Class Logistic Model

690k+9;(x
p(Ck’X) = K—1 _0p: 9/ ] = 1 7K_1

143005 et

1
P(ck|x) = .
( K| ) 1+ZjK:_11 eaoj+9jx

_ Plexx)

R = Bialx)

) = Ook+0kx, k=1,...,K—1
log(Rk(x)) = 1
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General Two Class Logistic Model

log(R(x;8)) = 9(x;B)

eg(xiﬂ)

Halb) = 1 + e9(x:B)
1

P(calx) = 1+ e9(xiB)

Decision Rule

Assign to class ¢! when

9(x;8) > ©

Otherwise assign to class ¢?.
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Logistic Regression

log(R(x;8)) = 9(x;B)

e9(x:B)
Helk 1 + e9(x:h)
1
e 1 + e9(x:B)

Logistic regression is the name given to the method that solves

the estimation problem for g given a training set
< (e1,X1),...,(cn, Xn) >, Where ¢, is the true class label

associated with measurement vector x;,.
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Training Data: Two Class

< (c1,X1),(c2, X2), ..., (cm, Xm) >

Class Label ¢,

@ ¢y = 1forclass 1
@ ¢y = 0 for class 2
Measurement Vector x, € RN
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Maximum Likelihood Estimation

Find 6y and 6 to maximize

P(X1,...7XM|C1,...,CM,90,9)

Conditional Independence Assumption 1
Given the class labels and the parameters, the measurement
vectors are independent.

M
P(x1,....Xm | C1,...,Cum,00,0) = H P(Xm | ¢1,...,cm, b0,0)

m=1

Conditional Independence Assumption 2
No class labels other than ¢, are relevant to measurement xp,

P(Xm | ¢1,...,¢m,60,0) = P(Xm | Cm, 6o, 6)
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Conditional Independence

x is conditionally independent of ¢, given ¢y if and only if

P(x|ci,c) = P(x|c)

Theorem

P(x | ¢1,¢2) = P(x | ¢1) if and only if

P(x,cz2 1) = P(x | c1)P(cz2 | ¢1)
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Conditional Independence

P(x | ¢1,¢c2) = P(x | ¢1) if and only if

P(x,co|c1) = P(x | ¢1)P(ca | ¢1)

= Suppose P(x | ¢1,¢2) = P(x | ¢y). Then

P(x, ¢y, c2)
P(cy)
P(x | c1,c2)P(cy, Co)
P(c)
P(x | ¢1)P(cy, o)
P(c1)
= P(x|cy)P(ca|cy)
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Conditional Independence

P(x | ¢1,¢c2) = P(x | ¢1) if and only if

P(x,co|c1) = P(x | ¢1)P(ca | ¢1)

< Suppose P(x, ¢ |c1) = P(x | ¢1)P(ca2 | ¢1). Then

P(x, ¢y, c2)
P(cy, c)
P(x,c2 | c1)P(c1)
P(cy, c)
P(x | c1)P(c2 | c1)P(c1)
P(cy, c)
= P(x|c)

47/76

P(x | ¢, ¢2)




Maximum Likelihood Estimation

Use the conditional independences to find 8y and 6 to maximize

[:(90,9) = P(X1,...,XM ‘ C1,...,CM,90,9)
Find 6y and 6 to maximize

M
L(00,0) = [ P(Xm | cm,bo,6)
m=1

Y Picm | xm,eo,e)P(xm,eo,a)

Ch7h 907 9)

I
—

m=1

Assume x,, and (6, #) are independent and ¢, and (6, 0) are
independent so that

P(Xm,00,0) = P(xm)P(6o,0)
P(Cm,00,0) = P(cm)P(0o,0)
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Maximum Likelihood Estimation

Then

P(Crm|Xm. 60, 0) P(Xm, 60, 6)
P(cm, 6o,0)

P(Xm | cm,00,0) =

P(Cm | Xm. 0. 0)P(60. 6)P(Xm)
P(6o,0)P(cm)
_ P(Cm’)(m,eo7 ) (Xm)
- P(cm)
so that
lM[ P(Xm | ¢m, 60,0 H P(cm | xm,eo,e)P(Xm)




Maximum Likelihood Estimation

=

L(0o,0) =

3
[N

P(cm | Xm,00,0)P(xm)
P(cm)

I
=

g

m

Since x1,...,Xxy and ¢y, ..., cy are given, each P(xn) and
P(cm) are fixed so that the (6, #) that maximizes £(6y, 6)
maximizes

M

m=1
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Maximum Likelihood Estimation

Find the (6, #) to maximize

——— ifep=0
=1 1+e90+9 Xm Crm

Y Y ehotom o g
_efotm
11 Plem | xm,60,6) = H e
m=1
e’m

M (0040 Xm)
- 1 1+ glo+0'xm

m=
= [*

~—~~

007 9)
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Log Likelihood

Since the log function is strictly monotonically increasing, the
parameters that maximize £* maximize log £*.
Find 6, 8 to maximize

M cm(6o+6 x,,,)
log £ (60,0) = log([] ~—————

0o+0" X,
m:11+e0 m

M
= ) Cmlfo + 0'Xm) — log(1 + €T xm)
n=1
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Log Likelihood

Transformation of Variables

1 o
X4 91
Xnew = X2 Hnew = 92
XN On
Then
M /
log L%(6p,0) = Z Cm(OnewXnew m) — log(1 + @FnewXnew m)
m=1
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Log Likelihood

6 maximizes
log £°(0) = > cm(0 Xm) — log(1 + &’ *m)
if and only if

2 log £*(0) = 0
o 0 log L*(0) is negative definite

0 1 o' x
log £*(0) = CmXm — ————€ ""Xm =0
90 og L(0) n; mm = s m
2 M o' x M i
’ e’ m XmXm
log £*(0) = -— XmX, =
2009 °° () - " (1 + ef'xm)2 231 2 4 g xm 4 g—0'xm




Positive and Negative Definite

A matrix B is positive definite if and only if for every x # 0,
X Bx >0
A matrix B is negative definite if and only if for every x £ 0,

x'Bx <0

B is negative definite if and only if —B is positive definite

Proof.

XBx = <0
X(-B)x = >0
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Log Likelihood

/

2

M
log £ (6
2000 °° .5 ee P g

m=1

negative definite?

Is

/

M
rnz_;2+eexm+eexm

positive definite?
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Log Likelihood

l

2

M
_ | *
o906 8~ (0 Zg+eexm+eGXm

m=1

Examine — 50 log £*(6) and fix 6.

2

M
0 * _ 2
— 5907 108 L(0) = > XXk,

m=1

M
= Z KmXm) kam

m=1
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Positive Definite

M
’
m:1

(X kmXm) (KmX X))

M=

3
I

(kmxllﬂx)(kmxllnx)

M=M=

(ka;nX )2

<7

>

if and only if 2%21 (KmXm)(KmXm)' is of full rank
if and only if < xy,...,xy > spans RN
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Maximum Likelihood Estimation

Find 6 so that
M /
log £°(0) = > cm(0' xm) — log(1 + &’ *m)
n=1

is maximized. This happens if and only if

) Y 1 /
* _ HXm _
0 log £*(0) = Z CmXm — 41 n GG/Xme Xm =10
m=1
and < xq,...,Xy > spans RN
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Maximum Likelihood Estimation

Find 6 so that

—log £*(6 (0 Xm) + log(1 + &7 *m)

HM§

is minimized. This happens if and only if

M

0 1 !
— = IOg ﬁ*( ) = —CmXm + 7,69 Xme = ON><1
80 1 Ak ee Xm
m=1
M 1
= Z —Cme + —9/X Xm = ON><1
m=1 1 +e "
and < x1,...,xy > spans RN
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Root Finding

Given a function f(0), find 6 so that f(#) =0
Newton’s Method 1D

f(Xke1) = F(xk) + Xkt — Xk)f/(Xk)
X1 = X+ f(Xk?, zx;)f (%)

f(Xk)

Want f(xx1) = 0. Hence, Xx11 = X — 7 (x0)

3




Root Finding

N-Dimensional: xV*1, f(x)Nx

f(Xk1) = f(x) + %f(z)‘z:xk(xkﬂ — Xk)

f(xk) + J(Xk) (X1 — Xk)

Set f(xkr1) =0
Xk+1 = Xk — A (Xk)f(Xk)

The way it is actually solved: Set z = —J~" (xx)f(xk)
Find z to satisfy
—f(xx) = J(xk)z

Define
Xk+1 = Z + Xk
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Maximum Likelihood: Logistic Regression

Represented as a minimization problem.

M
—log L*(0) = —cm(0' Xm) + log(1 + €7 *m)
n=1
f(o) = _2| L£(0) = 3 —CmXm + 1
= o0 og = P G T o0 xm
52 M XX,
0) = — | *(0) = m
SO = ot @) =X s

Find z to satisfy
—f(@k) = J(9k+1 )Z

Set
Ok11 = Z + O
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Metabolic Marker Data

@ g Group index

@ Xg Metabolic Marker Value

@ ng Number Patients died

@ Ny Total Number Patients

@ pobs(g) = ng/Ng Observed Proportion died
Xg | Ng | Ng | pobs(9)

0.75 7182 | .0385

1.25 | 27 | 233 116

1.75 | 44 | 224 .196

225 | 91| 236 .386

2.75 | 130 | 225 578

3.25 | 168 | 215 .781

3.75 | 194 | 221 .878

4.25 | 191 | 200 .955

4.75 | 260 | 264 .985
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Grouped Data Calculations

Xg 1D
= Bound; ePhas a value

B
G, . N
— g 1+e7%
f__Z:<Xg”g>jL 2 ( o )

{g | ty>—B} 1+elg

Ny XgNg
J = Z 24el91elo 2+e’g+e—’9
XgNg X5Ng

{9 | —B<itg<B} 2+el9+e 9 24el9relo
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Metabolic Marker Data

Metabolic Marker Data
1 T T T T

Prob(Die | x)




Model Questions

@ Does the model fit the data well enough?
@ Does the fitted model generalize to unseen data?

@ Would the model fitting on chance data produce as good a
fit as it did on the real data?
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Goodness of Fit

Grouped Data
@ G groups
Xg Vector Value for group g
K Dimension of vector

°
°
@ ny Observed number who died for group g (need ny > 5)
@ Ny Total number in group g

°

Pexp(g) = 1/(1 + €~ %9) Logistic Mode! probability

@
22 Z (ng — Ng * Pexp(g))2
obs = Ny * Pexp(9)
Pvaluve = PrOb(X2 > X(zpbs | G— K)

If pyae is too small, then reject the hypothesis that the model
fits the data.
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Goodness of Fit

G
Ng — Ng * Pexp(9))?
G = 3 (5N pon(9)

= Ng * Pexp(9)

Xg | Ng | Ng | Pexp(9) | NgPexp(9)
0.75 7| 182 .044 8.04
125 | 27 | 233 .099 22.98
1.75 | 44 | 224 .206 46.10
225 | 91 | 236 .380 89.73

2.75 | 130 | 225 592 133.26
3.25 | 168 | 215 775 166.57
3.75 | 194 | 221 .891 196.83
4.25 | 191 | 200 .951 190.14
4.75 | 260 | 264 979 258.34

© o0 ~NO O WN=Q

Prob(x3 > x2,s = 1.098) = .993



Distribution Free Test

Real Data

Xg Value for group g
Ng  Number of people in group g

ng  Number of people in group g in class @
Use xg, Ng, ng in logistic regression to estimate the parameters
6o, 6
1
Pexp(9) = 1+ e fotx

Use Ny, ng, Pexp(g) to determine goodness of fit statistics X2.

G . 2
Xg _ Z(”g Ny * Pexp(9))

g1 Ng * pexp(g)
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Distribution Free Test

MonteCarlo Experiment

Let rq1, ..., rem be independent U(0,1) random variables.
Define

Use xg, Ny, Ny in logistic regression to estimate the parameters

6o, 0.

1
Ponl0) = 1 g-m=rs

Use Ny, Pexn(9), Ng to determine X2 statistic.
Repeat Z times generating X2, X2, ... X2

#{z | X2 > X}
Pvalue = 7

Reject the hypothesis that the model fits the data if py4e is t00
small.
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Estimating Parameter Variances

MonteCarlo Experiment

Z trials estimating  60p : 691,602, .- .,007
0: 91,92,...,92

plo) = 5D b




Estimating Parameter Confidence Intervals

MonteCarlo Experiment

Z trials estimating 0o : 0o1,602,...,007
0 : 91,92,...,«92
Order them from smallest to largest.

90 5 9(0’1) < (9(072) <...< 9(0’2)
0: 9(1)§9(2)§§9(Z)

100£-2m% central confidence interval for:

to is (9(o,m)a9(o,z—m))
0 is  (Om),0z—m))
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Does the Fitted Model Generalize

Cross Validation

X is measurement vector
cis class

Data Set < (¢y,x1),...,(cn, XN) >

@ Partition Data set into K blocks

@ Estimate Model parameters from K — 1 blocks
@ Test goodness of fit on K block

@ Rotate K times

@ Aggregate goodness of fit results
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Goodness of Model Fit on Chance Data

What does chance data mean?

It cannot mean data that comes from an underlying model with
structure because then we certainly expect a fit to be good
modulo the degree of noise perturbation.

It must mean data that comes from a model with no structure,
meaning no underlying relationship between the class and the
measurement vector.
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Goodness of Model Fit on Chance Data

Permutation Test
Let 7 =< mq,mo,..., 7 > be a random permutation of
<1,2,....M>

Observed data: < (¢y,X1),--.,(Cm, Xpm) >
Randomly permuted data: < (Cx,, X1), (Crps X2), - - -, (Crpys Xm1) >

Perform the model fitting on the observed data and get a
goodness of fit X2.

Perform a model fitting on randomly permuted data Z times
getting goodness of fits X2, ..., X2.

pale_#{Z\X§>X5}+%#{ZIX§=X§}
value —
Z

If pyaive is too small reject the hypothesis that the fitted model is
statistically significant.
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