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Odds Ratio

Definition
Let π be the probability of an event occurring. The odds ratio R
for the event is the ratio of the probability of the event occurring
to the probability of the event not occurring

R =
π

1− π

π =
R

1 +R
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Logit

Definition
The Logit function is the natural log of the odds ratio.

Logit(R) = log(R) = log(
π

1− π
)
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Logistic Linear Model

x measurement vector
θ parameter vector
θ0 parameter scalar
c1 event that true class of measurement vector is c1

log(R(x ; θ, θ0)) = log

(
P(c1 | x ; θ, θ0)

1− P(c1 | x ; θ, θ0)

)
= θ0 + θ

′
x
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Logistic Linear Model

Two classes: c1 and c2

log

(
P(c1 | x ; θ, θ0)

1− P(c1 | x ; θ, θ0)

)
= θ0 + θ

′
x

P(c1 | x ; θ, θ0)

1− P(c1 | x ; θ, θ0)
) = eθ0+θ

′
x

P(c1 | x ; θ, θ0) = [1− P(c1 | x ; θ, θ0)]eθ0+θ
′
x

P(c1 | x ; θ, θ0) =
eθ0+θ

′
x

1 + eθ0+θ
′x

P(c2 | x ; θ, θ0) =
1

1 + eθ0+θ
′x
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Logistic Linear Model

Given the parameter vector θ, θ0 and a measurement vector x ,

eθ0+θ
′
x

1 + eθ0+θ
′x

produces the conditional probability that the true class is c1

given that the measurement vector is x .
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Expected Values

Let y be an indicator variable.
y = 1 indicates class c1

y = 0 indicates class c2

E [y | x ; θ, α] = 1P(y = 1 | x ; θ, α) + 0P(y = 0 | x ; θ, α)

= P(y = 1 | x ; θ, α)

=
eα+θ

′
x

1 + eα+θ
′x
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Projection

v

z

z⊥z‖

If ||v || = 1, then v
′
z is the signed length of the orthogonal

projection of z onto v .

v
′
z = v

′
(z‖ + z⊥) = v

′
z‖ + v

′
z⊥ = v

′
z‖ = v

′
(±||z‖||v) = ±||z‖||

|v ′z| = ||z‖||
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Scaling x

Without loss of generality, we can always scale x so that the θ
associated with the scaled x has norm 1.

log

(
P(c1 | x ; θ, θ0)

1− P(c1 | x ; θ, θ0)

)
= θ0 + θ

′
x

= θ0 +
θ
′

||θ||
(x ||θ||)

For convenience we scale x and normalize θ so that

xnew = x ||θ||

θnew =
θ

||θ||
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Changes in x

R(x ; θ, θ0) = eθ0+θ
′
x

R(x + δ; θ, θ0) = eθ0+θ
′
(x+δ)

= eθ0+θ
′
xeθ

′
δ

= R(x)eθ
′
δ

Odds ratio is multiplied by eθ
′
δ.
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Changes in x

Let δ be a change in x . Define δ‖ and δ⊥ so that
δ = δ‖ + δ⊥

θ
′
δ⊥ = 0
|θ′δ‖| = ||δ‖||

R(x ; θ, θ0) = eθ0+θ
′
x

R(x + δ; θ, θ0) = eθ0+θ
′
(x+δ) = eθ0+θ

′
(x+δ‖+δ⊥)

= eθ0+θ
′
xeθ

′
(δ‖+δ⊥)

= R(x ; θ, θ0)eθ
′
δ‖eθ

′
δ⊥

= R(x ; θ, θ0)eθ
′
δ‖

Odds ratio is multiplied by eθ
′
δ‖ .
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Changes in x

R(x + δ; θ, θ0) = R(x ; θ, θ0)eθ
′
δ‖

log(R(x + δ; θ, θ0)) = log(R(x ; θ)) + log(eθ
′
δ‖)

= log(R(x ; θ, θ0)) + θ
′
δ‖

Log of odds ratio increases by θ
′
δ‖.

13 / 76



Changes in Odds Ratio

Suppose the new odds ratio is multiplied by λ as a result in the
change of x . Then, what happens to the probability of the
event?

Rnew = Rλ
πnew

1− πnew
=

π

1− π
λ

πnew =
πλ

1− π
(1− πnew )

πnew
1− π + πλ

1− π
=

πλ

1− π

πnew =
πλ

1− π + πλ
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Changes in x

Suppose that R = 9. Then π = R
1+R = 9

1+9 = .9

Suppose that eθ
′
δ = 3.

πnew =
.9(3)

1− .9 + .9(3)

=
2.7
2.8

= .9642857

Rnew =
.9642857

1− .9642857
=
.9642857
.0357143

= 27
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Odds Ratio Iso-Contours

Hn

Hn+1

Hn+2

Hn+3

R
Reλ
Re2λ
Re3λ

λ

Hn = {x | θ′x = nλ}

The Isocontours are hyperplanes
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Probability Properties

x =


x1
x2
...

xN

 θ =


θ1
θ2
...
θN



P(c1 | x) =
eθ0+θ

′
x

1 + eθ0+θ
′x

Fix x1, x2, . . . , xn−1, xn+1, . . . , xN ; Vary xn

If θn > 0 as xn →∞, θ
′
x →∞

If θn < 0 as xn →∞, θ
′
x → −∞
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Probability Form

Consider 1D case.

P(c1 | x) =
eθ0+θx

1 + eθ0+θx

=
eθ(x+θ0/θ)

1 + eθ(x+θ0/θ)

Let
y = θ(x + θ0/θ)

P(c1 | y) =
ey

1 + ey
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Normalized Probability

P(c1 | y) =
ey

1 + ey
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Odd Functions

Fix a point x0. Look at the values of f at points x0 plus and
minus x : f (x0 + x) and f (x0 − x). If the differences
f (x0 + x)− f (x0) and f (x0)− f (x0 − x) are the same for all x ,
then function f is said to be odd about (x0, f (x0)).

Definition
A function f : R → R is called an odd function around (x0, f (x0)
if and only if for all x ,

f (x0 + x)− f (x0) = f (x0)− f (x0 − x)

P(c1 | y) =
ey

1 + ey

ey

1 + ey is odd around (0,1/2)
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Odd Function

P(c1 | y) =
ey

1 + ey

Compare f (y − 0)− f (0) to f (0)− f (0− y)

f (y − 0)− f (0) =
ey

1 + ey −
1
2

=
ey − 1

2(1 + ey )

f (0)− f (0− y) =
1
2
− e−y

1 + e−y =
1− e−y

2(1 + e−y )
=

ey − 1
2(ey + 1)

⇒ f (y − 0)− f (0) = f (0)− f (0− y)
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Normalized Probability Derivative

P(c1 | y) =
ey

1 + ey

∂

∂y
ey

1 + ey =
(1 + ey )ey − eyey

(1 + ey )2

∂

∂y
ey

1 + ey

∣∣
y=0 =

2− 1
22

=
1
4
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Derivative

y = θ(x + θ0/θ)

∂

∂x
ey

1 + ey =
∂

∂y
ey

1 + ey
∂y
∂x

=
1
4
θ
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Translate

It is possible to translate x so that it incorporates the constant
term θ0

θ0 + θ
′
x = θ

′
(

x +
θ

||θ||
θ0

||θ||

)

If
xnew = x +

θ

||θ||
θ0

||θ||
Then

θ0 + θ
′
x = θ

′
xnew

The combination of first translating and then scaling x means
that without loss of generality, we can examine the properties of
the logistic model assuming that ||θ|| = 1 and use the simpler
form θ

′
x in place of the original form θ0 + θ

′
x .
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Derivative

N-Dimensional Case

P(c1 | x) =
eθ
′
x

1 + eθ
′x

∂

∂x
P(c1 | x) =

(1 + eθ
′
x )θeθ

′
x − eθ

′
xθeθ

′
x

(1 + eθ
′x )2

=
θeθ

′
x

(1 + eθ
′x )2

∂

∂x
P(c1 | x)

∣∣
x=0 =

1
4
θ

=
1
4


θ1
θ2
...
θN
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Space Shuttle Challenger
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Challenger Space Shuttle: The Cold Snap

Evening of January 27 through January 28, 1986
Florida experienced a statewide cold snap

The average low is around 50◦ F
The average high is around 72◦F

The January 28 temperature at the launch pad was 31◦F
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Morton Thiokol

Cold weather prompted a teleconference between NASA
and Morton Thiokol
The engineers recommended not to launch
The managers decided to go ahead with the launch
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Approval For Challenger Mission
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Space Shuttle Challenger

January 28, 1986
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The Whistle Blower

Roger Boisjoly

Roger Boisjoly was one of the Morton Thiokol engineers
Became the outspoken whistleblower
Six months before he wrote a memo that there would be a
failure of the seals if the weather was cold
Testified to the Presidential Commission
Gave the Presidential Commission internal Morton Thiokol
documents
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Space Shuttle Challenger Disaster Data

#F Number of O-ring Failures
T Outside Air Temperature

#F T #F T #F T
0 66 1 70 0 69
0 68 0 67 0 72
0 73 0 70 1 57
1 63 1 70 0 78
0 67 2 53 0 67
0 75 0 70 0 81
0 76 0 79 2 75
0 76 1 58
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Space Shuttle Challenger Disaster

Damage = 1 or more O-ring failures.

Temperature at the Launch pad of January 28, 1986 was 31
Degrees Farenheit.
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Space Shuttle Challenger Disaster

Use the data to estimate the parameters of a logistic regression

log(R(T )) = 25.386− .369T

P(O − RingFailure | x) =
e25.386−.369T

1 + e25.386−.369T
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Economic Gain Matrix

ASSIGNED
c1 c2

Fail Success

T c1 Fail PT (c1|d) e(c1, c1) e(c1, c2)
R
U
E c2 Success PT (c2|d) e(c2, c1) c(c2, c2)

K∑
j=1

e(c j , ck )PT (c j |d)
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Economic Gain Matrix

ASSIGNED
Fail Success

T Fail 1 -100
R
U
E Success 1 2

Assign to class c1 if

log(R(d)) ≥ e(c2, c2)− e(c2, c1)

e(c1, c1)− e(c1, c2)

≥ 2− 1
1− (−100)

=
1

101
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Decision Rule

Assign to class Fail if

log(R(T )) = 25.386− .369T ≥ 1
101

= .0099

T ≤ 68.77

On the day of the launch, January 28, 1986, T = 31◦ Farenheit.

log(R(31)) = 25.386− .369 ∗ 31
= 13.947

P(Fail |31) =
e13.947

1 + e13.947

=
1,140,526
1,140,527

= .999999
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Logit Decision Rule

log(R(x ; θ0, θ)) = θ0 + θ
′
x

Assign class c1 when

θ0 + θ
′
x ≥ Θ
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Decision Rule

Hn

Hn+1

Hn+3

R
Reλ

Re3λ

λ

Assign class c1

Assign class c2

Hn = {x | θ′x = nλ}
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K Class Logistic Model

p(ck |x) =
eθ0k+θ

′
k x

1 +
∑K−1

j=1 eθ0j+θ
′
j x
, k = 1, . . . ,K − 1

P(cK |x) =
1

1 +
∑K−1

j=1 eθ0j+θ
′
j x

Rk (x) =
P(ck |x)

P(cK |x)

log(Rk (x)) = θ0k + θ
′

kx , k = 1, . . . ,K − 1
log(RK (x)) = 1
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General Two Class Logistic Model

log(R(x ;β)) = g(x ;β)

P(c1|x) =
eg(x ;β)

1 + eg(x ;β)

P(c2|x) =
1

1 + eg(x ;β)

Decision Rule

Assign to class c1 when

g(x ;β) > Θ

Otherwise assign to class c2.
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Logistic Regression

log(R(x ;β)) = g(x ;β)

P(c1|x) =
eg(x ;β)

1 + eg(x ;β)

P(c2|x) =
1

1 + eg(x ;β)

Logistic regression is the name given to the method that solves
the estimation problem for β given a training set
< (c1, x1), . . . , (cN , xN) >, where cn is the true class label
associated with measurement vector xn.

42 / 76



Training Data: Two Class

< (c1, x1), (c2, x2), . . . , (cM , xM) >

Class Label cm

cm = 1 for class 1
cm = 0 for class 2

Measurement Vector xm ∈ RN
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Maximum Likelihood Estimation

Find θ0 and θ to maximize

P(x1, . . . , xM | c1, . . . , cM , θ0, θ)

Conditional Independence Assumption 1
Given the class labels and the parameters, the measurement
vectors are independent.

P(x1, . . . , xM | c1, . . . , cM , θ0, θ) =
M∏

m=1

P(xm | c1, . . . , cM , θ0, θ)

Conditional Independence Assumption 2
No class labels other than cm are relevant to measurement xm

P(xm | c1, . . . , cM , θ0, θ) = P(xm | cm, θ0, θ)
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Conditional Independence

Definition
x is conditionally independent of c2 given c1 if and only if

P(x | c1, c2) = P(x | c1)

Theorem
P(x | c1, c2) = P(x | c1) if and only if

P(x , c2 |c1) = P(x | c1)P(c2 | c1)
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Conditional Independence

Theorem
P(x | c1, c2) = P(x | c1) if and only if

P(x , c2 |c1) = P(x | c1)P(c2 | c1)

Proof.
⇒ Suppose P(x | c1, c2) = P(x | c1). Then

P(x , c2 |c1) =
P(x , c1, c2)

P(c1)

=
P(x | c1, c2)P(c1, c2)

P(c1)

=
P(x | c1)P(c1, c2)

P(c1)

= P(x | c1)P(c2 | c1)
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Conditional Independence

Theorem
P(x | c1, c2) = P(x | c1) if and only if

P(x , c2 |c1) = P(x | c1)P(c2 | c1)

Proof.
⇐ Suppose P(x , c2 |c1) = P(x | c1)P(c2 | c1). Then

P(x | c1, c2) =
P(x , c1, c2)

P(c1, c2)

=
P(x , c2 | c1)P(c1)

P(c1, c2)

=
P(x | c1)P(c2 | c1)P(c1)

P(c1, c2)

= P(x | c1)
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Maximum Likelihood Estimation

Use the conditional independences to find θ0 and θ to maximize

L(θ0, θ) = P(x1, . . . , xM | c1, . . . , cM , θ0, θ)

Find θ0 and θ to maximize

L(θ0, θ) =
M∏

m=1

P(xm | cm, θ0, θ)

=
M∏

m=1

P(cm | xm, θ0, θ)P(xm, θ0, θ)

P(cm, θ0, θ)

Assume xm and (θ0, θ) are independent and cm and (θ0, θ) are
independent so that

P(xm, θ0, θ) = P(xm)P(θ0, θ)

P(cm, θ0, θ) = P(cm)P(θ0, θ)
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Maximum Likelihood Estimation

Then

P(xm | cm, θ0, θ) =
P(cm|xm, θ0, θ)P(xm, θ0, θ)

P(cm, θ0, θ)

=
P(cm | xm, θ0, θ)P(θ0, θ)P(xm)

P(θ0, θ)P(cm)

=
P(cm | xm, θ0, θ)P(xm)

P(cm)

so that

M∏
m=1

P(xm | cm, θ0, θ) =
M∏

m=1

P(cm | xm, θ0, θ)P(xm)

P(cm)
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Maximum Likelihood Estimation

L(θ0, θ) =
M∏

m=1

P(xm | cm, θ0, θ)

=
M∏

m=1

P(cm | xm, θ0, θ)P(xm)

P(cm)

Since x1, . . . , xM and c1, . . . , cM are given, each P(xm) and
P(cm) are fixed so that the (θ0, θ) that maximizes L(θ0, θ)
maximizes

M∏
m=1

P(cm | xm, θ0, θ)
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Maximum Likelihood Estimation

Find the (θ0, θ) to maximize

M∏
m=1

P(cm | xm, θ0, θ) =
M∏

m=1

 eθ0+θ
′
xm

1+eθ0+θ
′ xm

if cm = 1
1

1+eθ0+θ
′ xm

if cm = 0

=
M∏

m=1

ecm(θ0+θ
′
xm)

1 + eθ0+θ
′xm

= L∗(θ0, θ)
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Log Likelihood

Since the log function is strictly monotonically increasing, the
parameters that maximize L∗ maximize logL∗.
Find θ0, θ to maximize

logL∗(θ0, θ) = log(
M∏

m=1

ecm(θ0+θ
′
xm)

1 + eθ0+θ
′xm

)

=
M∑

n=1

cm(θ0 + θ
′
xm)− log(1 + eθ0+θ

′
xm )
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Log Likelihood

Transformation of Variables

xnew =


1
x1
x2
...

xN

 θnew =


θ0
θ1
θ2
...
θN


Then

logL∗(θ0, θ) =
M∑

m=1

cm(θ
′
newxnew m)− log(1 + eθ

′
new xnew m )
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Log Likelihood

θ maximizes

logL∗(θ) =
M∑

n=1

cm(θ
′
xm)− log(1 + eθ

′
xm )

if and only if
∂
∂θ logL∗(θ) = 0
∂2

∂θ∂θ logL∗(θ) is negative definite

∂

∂θ
logL∗(θ) =

M∑
m=1

cmxm −
1

1 + eθ
′xm

eθ
′
xmxm = 0

∂2

∂θ∂θ
logL∗(θ) = −

M∑
m=1

xmx
′
m

eθ
′
xm

(1 + eθ
′xm )2

=
M∑

m=1

−xmx
′
m

2 + eθ
′xm + e−θ

′xm
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Positive and Negative Definite

Definition
A matrix B is positive definite if and only if for every x 6= 0,

x
′
Bx > 0

A matrix B is negative definite if and only if for every x 6= 0,

x
′
Bx < 0

Theorem
B is negative definite if and only if −B is positive definite

Proof.

x
′
Bx = < 0

x
′
(−B)x = > 0
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Log Likelihood

Is

∂2

∂θ∂θ
logL∗(θ) = −

M∑
m=1

xmx
′
m

2 + eθ
′xm + e−θ

′xm

negative definite?

Is
M∑

m=1

xmx
′
m

2 + eθ
′xm + e−θ

′xm

positive definite?
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Log Likelihood

− ∂2

∂θ∂θ
logL∗(θ) =

M∑
m=1

xmx
′
m

2 + eθ
′xm + e−θ

′xm

Examine − ∂2

∂θ∂θ logL∗(θ) and fix θ.

− ∂2

∂θ∂θ
logL∗(θ) =

M∑
m=1

xmx
′
mk2

m

=
M∑

m=1

(kmxm)(kmxm)
′
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Positive Definite

x
′

M∑
m=1

(kmxm)(kmxm)
′
x =

M∑
m=1

(x
′
kmxm)(kmx

′
mx)

=
M∑

m=1

(kmx
′
mx)(kmx

′
mx)

=
M∑

m=1

(kmx
′
mx)2

> 0

if and only if
∑M

m=1(kmxm)(kmxm)
′

is of full rank
if and only if < x1, . . . , xM > spans RN
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Maximum Likelihood Estimation

Find θ so that

logL∗(θ) =
M∑

n=1

cm(θ
′
xm)− log(1 + eθ

′
xm )

is maximized. This happens if and only if

∂

∂θ
logL∗(θ) =

M∑
m=1

cmxm −
1

1 + eθ
′xm

eθ
′
xmxm = 0

and < x1, . . . , xM > spans RN

59 / 76



Maximum Likelihood Estimation

Find θ so that

− logL∗(θ) =
M∑

n=1

−cm(θ
′
xm) + log(1 + eθ

′
xm )

is minimized. This happens if and only if

− ∂

∂θ
logL∗(θ) =

M∑
m=1

−cmxm +
1

1 + eθ
′xm

eθ
′
xmxm = 0N×1

=
M∑

m=1

−cmxm +
1

1 + e−θ
′xm

xm = 0N×1

and < x1, . . . , xM > spans RN
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Root Finding

Given a function f (θ), find θ so that f (θ) = 0
Newton’s Method 1D

f (xk+1) = f (xk ) + (xk+1 − xk )f
′
(xk )

xk+1 = xk +
f (xk+1)− f (xk )

f ′(xk )

Want f (xk+1) = 0. Hence, xk+1 = xk − f (xk )

f ′ (xk )

61 / 76



Root Finding

N-Dimensional: xN×1, f (x)N×1

f (xk+1) = f (xk ) +
∂

∂z
f (z)

∣∣
z=xk

(xk+1 − xk )

= f (xk ) + J(xk )(xk+1 − xk )

Set f (xk+1) = 0

xk+1 = xk − J−1(xk )f (xk )

The way it is actually solved: Set z = −J−1(xk )f (xk )
Find z to satisfy

−f (xk ) = J(xk )z

Define
xk+1 = z + xk
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Maximum Likelihood: Logistic Regression

Represented as a minimization problem.

− logL∗(θ) =
M∑

n=1

−cm(θ
′
xm) + log(1 + eθ

′
xm )

f (θ) = − ∂

∂θ
logL∗(θ) =

M∑
m=1

−cmxm +
1

1 + e−θ
′xm

xm

J(θ) = − ∂2

∂θ∂θ
logL∗(θ) =

M∑
m=1

xmx
′
m

2 + eθ
′xm + e−θ

′xm

Find z to satisfy
−f (θk ) = J(θk+1)z

Set
θk+1 = z + θk
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Metabolic Marker Data

g Group index
xg Metabolic Marker Value
ng Number Patients died
Ng Total Number Patients
pobs(g) = ng/Ng Observed Proportion died

g xg ng Ng pobs(g)

1 0.75 7 182 .0385
2 1.25 27 233 .116
3 1.75 44 224 .196
4 2.25 91 236 .386
5 2.75 130 225 .578
6 3.25 168 215 .781
7 3.75 194 221 .878
8 4.25 191 200 .955
9 4.75 260 264 .985
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Grouped Data Calculations

xg 1 D
tg = θ0 + θxg

B = Bound; eBhas a value

f = −
G∑

g=1

(
ng

xgng

)
+

∑
{g | tg>−B}

( Ng

1+e−tg
xgNg

1+e−tg

)

J =
∑

{g | −B<tg<B}

 Ng

2+etg+e−tg
xgNg

2+etg+e−tg

xgNg

2+etg+e−tg

x2
g Ng

2+etg+e−tg
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Metabolic Marker Data

66 / 76



Model Questions

Does the model fit the data well enough?
Does the fitted model generalize to unseen data?
Would the model fitting on chance data produce as good a
fit as it did on the real data?
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Goodness of Fit

Grouped Data
G groups
xg Vector Value for group g
K Dimension of vector
ng Observed number who died for group g (need ng > 5)
Ng Total number in group g

pexp(g) = 1/(1 + e−θ
′
xg ) Logistic Model probability

χ2
obs =

G∑
g=1

(ng − Ng ∗ pexp(g))2

Ng ∗ pexp(g)

pvalue = Prob(χ2 > χ2
obs | G − K )

If pvalue is too small, then reject the hypothesis that the model
fits the data.
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Goodness of Fit

χ2
obs =

G∑
g=1

(ng − Ng ∗ pexp(g))2

Ng ∗ pexp(g)

g xg ng Ng pexp(g) Ngpexp(g)

1 0.75 7 182 .044 8.04
2 1.25 27 233 .099 22.98
3 1.75 44 224 .206 46.10
4 2.25 91 236 .380 89.73
5 2.75 130 225 .592 133.26
6 3.25 168 215 .775 166.57
7 3.75 194 221 .891 196.83
8 4.25 191 200 .951 190.14
9 4.75 260 264 .979 258.34

Prob(χ2
7 > χ2

obs = 1.098) = .993
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Distribution Free Test

Real Data

xg Value for group g
Ng Number of people in group g
ng Number of people in group g in class c1

Use xg ,Ng ,ng in logistic regression to estimate the parameters
θ0, θ

pexp(g) =
1

1 + e−θ0−θxg

Use Ng ,ng ,pexp(g) to determine goodness of fit statistics X 2
0 .

X 2
0 =

G∑
g=1

(ng − Ng ∗ pexp(g))2

Ng ∗ pexp(g)
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Distribution Free Test

MonteCarlo Experiment

Let r11, . . . , rGM be independent U(0,1) random variables.
Define

n̂g = #{j | rgj ≤ ng/Ng}, g = 1, . . . ,G

Use xg ,Ng , n̂g in logistic regression to estimate the parameters
θ0, θ.

pexp(g) =
1

1 + e−θ0−θxg

Use Ng ,pexp(g), n̂g to determine X 2 statistic.
Repeat Z times generating X 2

1 ,X
2
2 , . . .X

2
Z

pvalue =
#{z | X 2

z ≥ X 2
0 }

Z

Reject the hypothesis that the model fits the data if pvalue is too
small.
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Estimating Parameter Variances

MonteCarlo Experiment

Z trials estimating θ0 : θ01, θ02, . . . , θ0Z
θ : θ1, θ2, . . . , θZ

µ(θ0) =
1
Z

Z∑
z=1

θ0z

µ(θ) =
1
Z

Z∑
z=1

θz

σ2(θ0) =
1

Z − 1

Z∑
z=1

(θ0z − µ(θ0))2

σ2(θ) =
1

Z − 1

Z∑
z=1

(θz − µ(θ))2
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Estimating Parameter Confidence Intervals

MonteCarlo Experiment

Z trials estimating θ0 : θ01, θ02, . . . , θ0Z
θ : θ1, θ2, . . . , θZ

Order them from smallest to largest.

θ0 : θ(0,1) ≤ θ(0,2) ≤ . . . ≤ θ(0,Z )

θ : θ(1) ≤ θ(2) ≤ . . . ≤ θ(Z )

100Z−2m
Z % central confidence interval for:
θ0 is (θ(0,m), θ(0,Z−m))
θ is (θ(m), θ(Z−m))
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Does the Fitted Model Generalize

Cross Validation

x is measurement vector
c is class

Data Set < (c1, x1), . . . , (cN , xN) >

Partition Data set into K blocks
Estimate Model parameters from K − 1 blocks
Test goodness of fit on K th block
Rotate K times
Aggregate goodness of fit results
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Goodness of Model Fit on Chance Data

What does chance data mean?

It cannot mean data that comes from an underlying model with
structure because then we certainly expect a fit to be good
modulo the degree of noise perturbation.

It must mean data that comes from a model with no structure,
meaning no underlying relationship between the class and the
measurement vector.
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Goodness of Model Fit on Chance Data

Permutation Test
Let π =< π1, π2, . . . , πM > be a random permutation of
< 1,2, . . . ,M >

Observed data: < (c1, x1), . . . , (cM , xM) >
Randomly permuted data: < (cπ1 , x1), (cπ2 , x2), . . . , (cπM , xM) >

Perform the model fitting on the observed data and get a
goodness of fit X 2

0 .
Perform a model fitting on randomly permuted data Z times
getting goodness of fits X 2

1 , . . . ,X
2
Z .

pvalue =
#{z | X 2

z > X 2
0 }+ 1

2#{z | X 2
z = X 2

0 }
Z

If pvalue is too small reject the hypothesis that the fitted model is
statistically significant.
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