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Solving Complex Computational Problems

Break global problem into smaller subproblems
Each of which can be solved independently
Optimally solve the subproblems
Combine the solutions to the subproblems to obtain the
solution to the global problem



Decompositions

Maximize the Dependencies within each of the smaller
problems
Maximize the Independence between each of the smaller
problems



Decompositions

Recursive Decomposition
Data Decomposition
Functional Decompositions
Search Space Decompositions



Decompositions and Optimality

Sometimes the Solution to the decomposed problem is
optimal
Sometimes the Solution to the decomposed problem is
sub-optimal
The Solution obtained by decomposition can be close to
optimal



The Subspace Classifier

Definition
A Subspace Classifier is one that projects the measurement
tuple to one or more subspaces where the projected tuple is
processed and then the processed projected tuples are
combined in a way to form an assigned classification.

It is typical for the projection operators to be orthogonal
projection operators. It is not unusual for the projection
operators to be axis aligned.



N-Tuple Method - Bledsoe and Browning -

(a) Bledsoe (b) Browning

Developed For Printed Character Recognition
Each character is contained in an image of I × J pixels
Each pixel is a binary 1 or a binary 0
Designed for table lookup hardware

W.W. Bledsoe and I. Browning, Pattern Recognition and Reading by Machine, Proceeding Eastern Joint
Computer Conference, Boston, 1959, 232-255.



Climate and the Affairs of Men



N-Tuple Method

N Randomly Chosen Pixel Positions



N-Tuple Method

A small number of pixel positions are randomly selected
Have multiple sets of such randomly selected pixel
positions
Each of the pixel positions has been thresholded and
contains a binary 0 or a binary 1
Concatenate all the binary values to form a binary number
Use this number to access an address in a memory array
For each character class

Have as many memory arrays as there are different
randomly selected position sets



N-Tuple Method

M pattern sets of N randomly selected pixel positions
A printed character produces M N-digit binary numbers
b1, . . . ,bM

K character classes
Tmk lookup table for pattern set m and class k
Tmk (bm) holds the fraction of times a character in the
training set of class k has the binary number bm for the mth

pattern set
Compute

yk =
∏M

m=1 Tmk (bm)

yk =
∑M

m=1 Tmk (bm)

yk =
∑M

m=1 logTmk (bm)

Assign the character to unique class k ∗, if there is one, for
which yk ∗ > 0 is highest
Otherwise reserve decision



N-Tuple Method Alternative

M pattern sets of N randomly selected pixel positions
A printed character produces M binary numbers b1, . . . ,bM

K character classes
Tm lookup table for pattern set m
Tm(bm) holds the set of classes associated with the binary
number bm for the mth pattern set
Compute

Y = ∩M
m=1Tm(bm)

Assign the character to unique class k ∗, if there is one,
where k ∗ ∈ Y and |Y | = 1
Otherwise reserve decision



The N-tuple Calculation for Class k
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The N-tuple Class Index Generator

y1

y2

y3

yK

Class Scores

Argmax k ∗

Class Index

if yk ∗ > yi + ε, i , k ∗), k ∗ = Argmax{y1, y2, . . . , yK }

else k ∗ = reserved decision



The Need For The Indexed Tuple

Consider the five dimensional measurement vector (a,b, c,d ,e)
where

a is the value produced by feature f1
b is the value produced by feature f2
...

e is the value produced by feature f5



The Need For the Indexed Tuple

Project the measurement vector (a,b, c,d ,e) to the third
and fifth feature
The resulting tuple is (c,e).
But now we have lost from which features c and e came.

In the database world, every value comes from a field and the
connection between field and value is never lost.



The Indexed Tuple

Index Sets serve as Field Names
The tuple (a,b, c,d ,e) is written as
({1,2,3,4,5}, (a,b, c,d ,e))
(c,d) is written as ({3,4}, (c,d)
(a,b,e) is written as {1,2,5}, (a,b,e))
A tuple list R=<(a,b,e),(q,r,s),(t,x,z)> is written as
({1,2,5},R)

First component is an index set for the features
Second component is a set of tuples
Each component of a tuple is the value of the
corresponding indexed features



The Tuple Projection Operator

Suppose that S is a tuple list with respect to the index set I
(I,S)

Let J ⊂ I.
The projection of (I,S) from the space indexed by I to the
subspace indexed by J

πJ(I,S) = (J ,R)



Projection

X1

X2

R

π{1}({1,2},R)

π{2}({1,2},R)



N-tuple Method: 2 Class Case

Index Set I = {1, . . . ,V }
f1, . . . , fV are the V quantized features
L1, . . . ,LV are the corresponding range sets

Xv ∈ Lv , v = 1, . . . ,V
Measurement SpaceM =

�
i∈I Li

< (I, x1), . . . , (I, xZ ) | xz ∈ M > Training Set for Class 1
< (I, y1), . . . , (I, yZ ) | yz ∈ M > Training Set for Class 2
J1, . . . , JM ⊂ I are the M pattern sets
πJm(I, xz) = (Jm,uz), uz ∈

�
j∈Jm Lj

πJm(I, yz) = (Jm,wz), wz ∈
�

j∈Jm Lj



N-tuple Method

Tables For Each Index Set and Class
Tm1(Jm,u) = |{z | (Jm,u) = πJm(I, xz)}|/Z
Tm2(Jm,w) = |{z | (Jm,w) = πJm(I, yz)}|/Z

Scores For Each Class
Sk (I,q) =

∑M
m=1 Tmk (πJm(I,q))

Identification
Assign class 1 if S1(I,q) > S2(I,q) + ε
Assign class 2 if S2(I,q) > S1(I,q) + ε
Otherwise Assign reserve decision



Scanning N-tuple Classifier

0 1 2 3 4 5 6 7 8 9

S.M. Lucas and A. Amiri, Recognition of Chain-coded Handwritten Characters With the Scanning N-Tuple Method,
Electronics Letters, vol. 31, no. 24, 1995, pp. 2088-2089.



Scanning N-tuple Classifier Index Sets

J0 = {0,1,2}
J1 = {1,2,3}
...

J9 = {7,8,9}



N-tuple Subspace Classifier Summary

M Measurement Space
K Number of classes
J Collection of M Index Sets
T Collection of MK tables
T Classification Function

The one stage subspace classifier C using quantized features
can be written as a 5-tupleZ

C = (M,J ,T ,K ,M ,T )



Universal Approximator Conjecture

The N-tuple Subspace Classifier is a kind of universal
approximator.

Conjecture

LetM =
�V

v=1 Ld be the V-dimensional measurement space.
Let f :M→ {0,1} be a given classification function associating
every measurement tuple with a class index 0 or a 1. Let P be
a probability distribution onM. If f is ‘zzz’ simple, then for every

ε > 0, there exists K << V and M <

(
V
K

)
and a two class

N-tuple subspace classifier C = (M,J ,T ,K ,M ,T ) such that

P({x ∈ M | f (x) , T (x)} < ε



Neural Net and N-tuple Comparison

Neural Networks
Neural Net signal lines take floating point values
Each unit computes a weighted linear combination of its
input

The weights are initially set at random
The linear combination is input to an activation function

The activation function has bounded output
And is non-linear

There can be multiple units in any one layer
The original form of the neural network had only one inner
layer
Layers can be cascaded
The geometry of the cascading is hand designed
There is an iterative training algorithm that optimizes the
weights for a given data set



Neural Net and N-tuple Comparison

N-tuple Classifier
The first stage in any N-tuple Classifier unit is a quantization
Each unit has a table look up memory to produce an output
from the quantized values which are used to form an
address
The values in the table lookups are determined in one pass
through the data
There can be multiple units in any one layer
The original form of the N-tuple classifier had only one
inner layer
Layers can be cascaded
The geometry of the cascading is initiated at random
There is an iterative algorithm for optimizing the index sets
defining the projections

Therefore the geometry of the cascading is automated

There is an iterative algorithm for optimizing the
quantization functions



Neural Net and N-tuple Classifier Comparison

The Neural Network
A choice of activation function must be made for each unit
in the Neural Network
Usually the same activation function is employed in each
unit, but the theory does not require this
The activation function has parameters which must be set
by design
The activation function is non-linear
The activation function bounds and compresses the unit’s
output

The N-tuple Classifier
The quantization function is different for the lines on each
layer
The quantization function is non-linear
The quantization function bounds and compresses the
values so that they can be used for form an address to the
unit’s memory



Neural Network and N-tuple Classifier Comparison

Modulo the quantization
The N-tuple classifier can do everything the Neural
Network does
But the N-tuple classifier is more general



N-tuple vs Decision Tree

Any decision tree can be put in N-tuple form.



Decision Trees: Binary Recursive Partitioning

Definition
A Decision tree is a classifier whose structural form is a tree.

Each node of the tree corresponds to a mutually exclusive
subset of measurement space
The nodes of the tree are either decision nodes or leaf
nodes
At each decision node of the tree a distinction is made that
partitions its subset of measurement space
Each leaf node is associated with an assigned class



Advantages

Understandable rules
Quick On-line computation
Continuous or categorical variables.
Provide a clear indication of which dimensions are most
relevant for accurate classification



Disjunction of Conjunctions

On any branch down the tree, the decision region is
specified by the conjunction of the constraints of the nodes
in the branch
There are many branches, each of which represents a
disjunction of these conjunctions



Where Did the Olives Come From?

Classes
Northern Italy
Southern Italy
Sardinia

Fatty Acid Measurements
Eicosenoic: x1
Linoleic: x2



Olives

Eicosenoic

Linoleic



Olives

Eicosenoic

Linoleic



Decision Tree

SardiniaN. Italy

S. Italy

x1 ≥ 0.07

YN

x2 ≥ 10.5

YN

SardiniaN. Italy

S. Italy



Binary Quantization



Olives



The N-tuple Calculation for Class k
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Non-uniform Quantization

Q1

Q2



The N-tuple Calculation for Class k
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The N-tuple Class Index Generator

y1

y2

y3

yK

Class Scores

Argmax k

Class Index

if yk > yi , i , k), k = Argmax{y1, y2, . . . , yK }

else k = reserved decision



Optimizing the N-tuple Classifier

Quantization
Optimize the number of quantized levels for each feature
Find the Optimal Quantizer boundaries

Projections
Find the Optimal Index Sets

Tables
Find the Optimal Values for all Table Entries

Combiner
Find the Optimal way to Combine Scores

Class Index
Optimize the way the Class Index is Determined



N-tuple Subspace Method Using Probability of Class
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Conditional Probability of Class Given Projected Tuple

Tmk (Jm,u) = P̂rob((Jm,u) | k)

P̂rob(Jm,u) =

K∑
k ′=1

P̂rob((Jm,u) | k ′)P(k ′)

P̂rob(k | (Jm,u)) =
P̂rob((Jm,u) | k)P(k)∑K

k ′=1 P̂rob((Jm,u) | k ′)P(k ′)

Tmk (πJm(I, x)) = P̂rob(πJm(I, x) | k)

P̂rob(k | πJm(I, x)) =
P̂rob(πJm(I, x) | k)P(k)∑K

k ′=1 P̂rob(πJm(I, x) | k ′)P(k ′)



Discrete Bayes Rule in Subspace Indexed by Jm

P(1)P(2) P(K )

P̂robm(πJm (I, x) | 1)
Tm1

P̂robm(πJm (I, x) | 2)
Tm2

P̂robm(πJm (I, x) | K )
TmK

P̂robm(1 | πJm (I, x)) = Qm1

P̂robm(2 | πJm (I, x)) = Qm2

P̂robm(K | πJm (I, x)) = QmK

Conditional
Probability
Converter

Qmk = P̂robm(k | πJm(I, x)) =
P̂robm(πJm (I,x) | k)P(k)∑K

k′=1 P̂robm(πJm (I,x) | k ′)P(k ′)

Assign to class k ∗ when Qmk ∗ > Qmk , k , k ∗



Score Generator

P̂rob(k | πJ1 (I, x))

P̂rob(k | πJ2 (I, x))

P̂rob(k | πJ3 (I, x))

P̂rob(k | πJM (I, x))

Conditional Probabilities
Class Given Projected Measurement

Score Generator

Σ
Sk

Class Score

Sk =
∑M

m=1 P̂(k | πJm (I, x))



Class Assignment

If Sk∗ > Sk , k , k ∗

Assign class k ∗ to (I, x)
Else

Assign Reserve Decision to (I, x)



N-tuple Subspace Classifier With Bleaching

Bleaching Threshold b
Sk (I, x) = |{m ∈ [1,M] | Tmk (πJm(I, x) ≥ b}|
If Sk ∗(I, x) > Sk (I, x), k , k ∗

Assign class k ∗ to (I, x)
Else

Assign class Reserve Decision to (I, x)



Hardware N-tuple Method Diagram


