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Cartesian Products

The Cartesian Product of sets Aq, ..., Ak is written as
A x A x ... x Ak

and is defined by

X1
X2

A xAox... XAk = . Xy €A1, X € Ao, ..., Xk € Ak
XK

The set AX is called the K -fold Cartesian Product of A.




Projection Operators

Euclidean Space

Definition
R represents the set of all real numbers

Definition

An N-dimensional Euclidean Space is the set of all N-tuples of
real numbers written as RN

Definition
TheDimension of RN is N

All the spaces we work with are Euclidean Spaces
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Projection Operators

Subspace Example

First we have to know what is a space or subspace

A three dimensional Euclidean Space has three kinds of
subspaces:

@ The zero dimensional point at the origin
@ A one dimensional line

o of infinite extent

o of arbitrary orientation

e containing the origin
@ A two dimensional plane

o of infinite extent

o of arbitrary orientation

e containing the origin
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Projection Operators

Scalars and Linear Spaces

Definition
A Scalar is any number from R

Definition

A space L is called a Linear Space if and only if for every scaler
aand g
@ xe Land y € L implies that ax + 8y € L

Any x € L is called a point or vector of £
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Projection Operators

Subspace

Definition
A subset V C L is called a Linear subspace of L if and only if
for every scalars o and

@ x e Vandy e Vimplies that ax + 8y € V

We are only interested in spaces and subspaces that are linear
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Projection Operators

Representing Subspaces

1-Dimensional Subspace V

’/
’/
”
’/
b -
t)1, - -
-
-
”
/”
”
”
B V = {x | for some o, x = a1 by}
.- Y = {x| byx = 0}

2-Dimensional Space
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Projection Operators

Linear Combination

A vector x from a subspace V is said to be a linear combination
of vectors xq, ..., Xk if and only if for some scalars as, ..., ak
N
X=X (1)
n=1

V.

9/97



Projection Operators

Linear Independence

Definition

A set of vectors {xq, X2, ..., Xk } from a subspace V is said to be
Linearly Independent if and only if for every set of scalars
{aq,...,ax}, not all zero,

K
Zaka 75 0

k=1

1 0
The vectors ( 2 ) , ( 0 ) are linearly independent
3 1
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Projection Operators

Linear Dependence

Definition
A set of vectors {xy, ..., Xk} is said to be Linearly Dependent if
and only if it is not linearly independent.

1 3
The vectors ( 2 ) , ( 6 ) are linearly dependent
3 9
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Projection Operators

Linear Dependence

A set of vectors{xq, Xz, ..., Xk } from a subspace V is Linearly
Dependent if for some set of scalars {1, . ..,ak}, not all zero,

K
Z Ok Xk = 0
k=1
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Projection Operators

Definition
The Span of a set B,

B={by,....bx | by e RN k=1,... K}

is the set of all linear combinations of vectors from B

@ We denote the span of B by Span{B}
@ There is no constraint on K relative to N
@ Span{B} is a subspace of RV
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Projection Operators

Definition
A set B of vectors

B={bi,... by}

is called a Basis for the subspace Span{B} if and only if B is a
linearly independent set

1 0

The vectorsa=| 1 |,b= ( 1 | are linearly independent
0 1

and constitute a basis for the subspace Span{a, b}
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Projection Operators

Dimension

The Dimension of a subspace V is the smallest integer K such
that the span of {by,...,bx | by € V,k =1,..., K} satisfies

Span{by,...bx} =V

The dimension of a subspace V is the largest number of
vectors fromV such that the vectors are linearly independent.
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Inner Product

The Inner Product between two vectors a and b from subspace
)V is denoted by a- b.

a b1

a b
Leta= _2 and b = .2

ak bK

Then, a-b= 2,521 ay by
The dot product between vectors a and b can also be written in
matrix notation

a-b=4ab
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Orthogonality

Two vectors a, b € V are said to be orthogonal if and only if
a-b=0
We express that two vectors a and b are orthogonal by a L b.

Two spaces V and W are said to be orthogonal if and only if for
every v € V and every w € W

v-w=0

We express that two subspaces V and W are orthogonal by
V1w
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Projection Operators

Direct Sum

Definition
Let ¥V and W be subspaces of S. The Direct Sum of subspaces

Y and W, denoted by V & W, is defined by
VoW ={xe S|forsomeveVandsomew c W,x =v+w}
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Projection Operators

Orthogonal Complement

Definition
Let V be a subspace of S. The orthogonal complement of ¥V
with respect to S is denoted by V' and is defined by

Vi={weS|foreveryveV, wlv}
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Projection Operators

Orthogonal Complement Subspace

Let ¥V and W be two subspaces of S. W is called the
orthogonal complement of V if and only if W = Y+

Proposition

| \

LetV be a subspace of S. Then
oy Lyt
e VaVt=Ss

A\
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Projection Operators

Orthogonal Basis

Definition

A basis B for a subspace V is said to be an orthogonal basis if
andonly forevery x,y e B, x £y, x L y
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Projection Operators

Orthogonal Projection

Definition

Let V be a subspace of S. Let x € S and x = v + w where

v e Vand w € V', Then v is called the orthogonal projection
of x onto V

The orthogonal projection of x is unique.

Proposition

LetV be a subspace of S. Letx € S and x = vi + wq = Vo + W»
where vi,vo € V and wy, wo € V- Then vi = v,
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LetV be a subspace of S and x € S. Let x = v + w where
veVvwe Vvt Then||x|? = |Iv|P? + |w]2.

Since x = v+ w,

[Ix|2 = ||v + wl?
= (v+w)(v+w)
=Vvv+vw+wv+ww
=Vvv+ww

2 2
[IVIIZ + [[wl]

Ol

v
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Projection Operators

Projection Operator

Definition
A square matrix P is said to be a projection operator if and only
if

=2
A square matrix P is said to be an orthogonal projection
operator if and only if

=2

P=F
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Projection Operators

Projection Operator Examples

Definition

P is called a projection operator if and only if P> = P




Projection Operators

Orthogonal Projection Operator Example

Consider the orthogonal projection operator onto the space
spanned by
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Orthogonal Projection Operator

Proposition

Let{by,bo, ..., bk} be an orthonormal basis for subspace V,
which is a subspace of an N-dimensional space S. Then the
orthogonal projection operator P onto the K -dimensional
subspace V can be constructed by

NxN _ pNxKpr KxN
P =B B

where

B=|b by ... by
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Projection Operators
Principal Ci >

Subspace Cla:

Proposition

Let by,..., bk be an orthonormal basis for the subspace V Let
B be a matrix whose columns are the basis elements. Then,
BB’ is an orthogonal projection operator onto Col

Proof.

(BB')(BB') = B(B'B)B-BB'
(BBY = BB

Finally, since any vector x that BB' operates on results in a
linear combination of the columns of B, the space that BB’
projects to is Col(B) and the columns of B are the orthonormal
basis vectors for the subspace V. Hence BB’ is the orthogonal
projection operator onto the space V. O

v
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Projection Operators

s

Orthogonal Projection Operators are Unique

Proposition
Let Q and P be orthogonal projection operators to the same
subspace V. Then Q = P

Proof.

Since both P and Q are orthogonal projection operators to the
same subspace V, the columns of P and the columns of Q lie
inV. Hence PQ = Q and QP = P Since Q is an orthogonal
projection operator Q = Q' and PQ = Q. Therefore,

Q=Q=(PQY=QP =QP=P
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Projection Operators
Principal C
Subspac

Another Form For Orthogonal Projection Operators

Let by, ... bk be an orthonormal basis for V. Then Z,’f:1 bkb) is
an orthogonal projection operator onto the subspace V.

Zb,b Zbkbk = ZZb, (b} bx) b

/1k1

= Z by by
=1
K ! K K
<Z bm;) =D (bebi) =D bubk
k=1 k=1 k=1

It is clear that whenever ", bybj, operates on x, the result is a linear
combination of the basis vectors for V. my
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Projection Operators

Orthogonal Projection Minimizes Error

Theorem
LetV be a subspace of S. Letf:S —V and x € S.

min(x — (x) (x = £(x))

is achieved when f is the orthogonal projection operator from S
toV

v
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Proof: Orthogonal Projection Minimizes Error

Let x € S. Then there exists v € V and w € V= such that x = v + w.
Consider

€ = |Ix — f(x)|I?
— (x = (X)) (x — (x))
=xX'x — (v+w)f(x)—f(x)(v+ w)+ f(x)f(x)
But f(x) € V and w € V*. Hence w'f(x) = 0, therefore
€ = x'x — V'f(x) + f(x)'v + f(x)f(x)
= (v+w)(v+w)—Vix)—f(x)v+ f(x)f(x)
=Vv+ww—VI§x)—f(x)v+f(x)f(x)
= (v—f(x))(v—f(x))+ww

€? is minimized by making f(x) = v, the orthogonal projection of x

N



Projection Operators

Dimensional Reduction by Orthogonal Projection

Corollary

Letxqy,...,xx € S. LetV be a subspace of S. Then
K
2 _ 2
min > 1% — f(x0)]

k=1
is achieved when f is the orthogonal projection operator from S to V

The best f can do for each x is for f(xx) = vk, the orthogonal
projection of xx onto V. Therefore,

K

(i, 206~ 1000) o = x0)

is achieved when f is the orthoaonal ﬁroi'ection oierator onto V. O




The Trace of a K x K square matrix A = (aj) is defined by

Trace(A) = Z Ak

k=1
LetA, B, Ay,...,Ax be square N x N matrices and
a, B,aq,...ax be scalars. Then
@ Trace(AB) = Trace(BA)
@ Trace is a linear operator
e Trace(aA+ B) = aTrace(A) + S Trace(B)
o Trace(SK_, akAx) = S5, ax Trace(Ax)
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Projection Operators
Principal ( S
Subspac

Trace of Orthogonal PrOJectlon Operator

Proposition

Let P be an orthogonal projection operator to the M dimensional
subspace V. Then Trace(P) = M

Letby,...,by be an orthonorrﬁal basis for V. Then P = 2%21 bmb;,,
Trace(P) = Trace(  bmby,)

m=1

M
Trace(bmby,) = Y Trace(by,bm)

M
= =
Y Trace(1)=> 1=M




Projection Operators

Kernel and Range

@ The Kernel of a matrix operator A is

Kernel(A) = {x |Ax = 0}

@ The Range of a matrix operator A is

Range(A) = {y | for some x,y = Ax}
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Projection Operators

Definition

The Column Space of a matrix A is denoted by Col(A) is
defined by the Span of its columns.

Proposition
The Range(A) = Col(A)
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Projection Operators

Minkowski Sum

Definition
The Minkowski Sum or simply Sum of two subsets A and B of S
is defined by

A@ B={x €S |forsome ac Aandforsome b e B,x =a+ b}
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Projection Operators
Pr S
IS

Kernel and Range

Let P be a projection operator onto subspace V of S. Then

Range(P) & Ker(P) =S

Proof.

Letx € S. Px + (I — P)x = Px + x — Px = x. Certainly

Px € Range(P). Consider (I — P)x.

P[(! — P)x] = Px — PPx = Px — Px = O Therefore, by definition
of Kernel(P), (I — P)x € Kernel(P). O

<
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Projection Operators
Pr S
IS

Kernel and Range of Orthogonal Projection Operator

Proposition

Let P be an orthogonal projection operator. Then
Range(P) L Kernel(P)
Proof.

Let x € Range(P) and y € Kernel(P). Then for some u,
x = Pu. Consider x'y.

Xy = (Pu)y=UPy=UPy

Buty € Kernel(P) so that Py=0. Therefore x'y = 0. O
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Projection Operators

Range And Kernel of Orthogonal Projection Operator
P(abs) = bibi(ab2) =0 P =bib, P(ab;) = bibj(abi) = ab

\ X -
\ Phe
\ - -
\ - g
\ -
b, _-~ Px
t)1, -
PR A
Phg \
Phe \
Phe \
- g \
Phe \
- - \
P \
-
-

\

Kernel(P) = {x € S | Px =0}
Range(P) = {x € S | for some y, x = P(y)}

2-Dimensional Space S
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Projection Operators
Principal S

Subspace C

Projection Operator to VL

Let P be a projection operator onto the subspace V. (Not
necessarily an orthogonal projection operator) Then | — P is the
projection operator onto the subspace V.

Proof
(I-P)(I-P)=I-P—-P+P?
=/-2P+P=1-P

I — P is also a projection operator. But what space does it
project to?

L = Kernel(P). Let x € V*. Then Px = 0. Consider
(I-—P)x=x—-Px=x O
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Projection Operators

s

Orthogonal Projection Operator to V+

Proposition

Let P be the orthogonal projection operator onto the subspace
V. Then | — P is the orthogonal projection operator onto the
subspace V.

Proof.

We already know that (I — P)(I — P) = | — P. We just have to
show that | — P is symmetric and that | — P projects to the V.

(I—PY=/-P =I-P

V+ = Kernel(P). Let x € V. Then Px = 0. Consider
(I - P)x = x — Px = x Every x € V* gets projected to itself. []
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P S
Principal Components

Subspace Classifiers

Covariance Matrix and Expected Value of Squared

Length

Definition

The Covariance Matrix of a distribution is defined by

£ = E[(x — u)(x — )]

Proposition

Trace (X) = E[||x — pl[?]

Proof.

Trace (¥) = Trace (E[(x — p)(x — 1)'])
— E[Trace (x — u)(x — )]
— E[Trace ((x — ) (x — )]
= E[(x — )’ (x — p)]
= E[||lx — u 2




Principal Components

Covariance Matrix and Sum of Squared Vector
Lengths

Given a sample xy, ..., xy of N-dimensional vectors, the
unbiased estimated of the covariance matrix X is given by

M
1
M= Z(Xm — 1) (Xm — n)’
m=1
where the estimated mean  is given by
;M
m=1
Then

Trace(~ Z 1 — w2
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Projection Operators
Principal Components
Subspace Class

Covariance and Sum of Squared Vector Lengths

Let X be the unbiased estimated covariance matrix. Then

2
Trace(T) = 7 Z Xm =
Proof

M M
Trace() — Trace (ﬁ > (tm — 1)t — u)’) = Tace (Z(xm — )t — m’)
= 2 -

m=1
1 1 M

= Ve > Trace ((Xm — ) (xm — u)') S > Trace ((x,,7 — ) (xm — u))
- om=t = m=1

<

I 1
= S m = 1) m = 1) = —— S |1xm — pl?
M71m:1 M71m:1

(m}

<

46/97



Principal Components

Covariance and Sum of Squared Vector Lengths

The covariance matrix X gives information about the spread of
the vectors composing it. Trace(X) is a measure of the total
variance. The sum

] M
M_1 Z [1Xm — il [P
m=1

is a normalized sum of the squared length of the x, vectors to
the mean p.
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Principal Components

Sum of Squared Vector Lengths

1 M
M—1 Z |[Xm — MHZ
m=1
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Principal Components

Subspace Classifiers

Eigen Decomposition of Covariance Matrix

Proposition

Let ¥ be the covariance matrix. Let the Eigenvalue Eigenvector
decomposition of X be ¥ = TAT' where N = Diagonal(\+, . .., AN)

Then,
N

Trace(X) = Y A,

n=1

Trace(X) = Trace(TAT') = Trace(ATT')
= Trace(N)

N
=2
n=1




Principal Components

Subspace Classifiers

Eigen Decomposition of Covariance Matrix

Proposition

Let X be the covariance matrix of random vector x. Let the
Eigenvalue Eigenvector decomposition of - be ¥ = TAT' where
A = Diagonal(\y, ..., \n). Let the n'' column of T be t,. Let

o2 = V[t\x]. Then,

U%:)\n

Proof.

on = VItrx] = E[(tpx — E[tx)?]
= E[(ta(x — m)((x — p)'ta)]
= GE[(X — p)(x — 1) ta = 72ty
=t/ TAT't,=(0...010...0)A(0...010...0)
= An
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Principal Components

But if X and u are estimated from the data,
Trace(Y) = v— ZHXm pllP
Therefore, we can conclude that
N ] M
2 2
Zgn V-1 Z |[Xm — gl
n=1 m=1

The sum of the Eigenvalues of the Covariance Matrix is the
total variance and is equal to the ;- of the sum of the squared
length of the (x, — 1) vectors.
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Principal Components

Projecting to Subspaces

Principal Components projects the original data from the larger
dimensional space in which it resides to a smaller dimensional

space.
@ If the decision is to project to a subspace of dimension K,
which subspace should be chosen?

@ With Principal Components, the K-dimensional space is
found that minimizes the sum of the squared distances
between the original data vectors and their projection in the
K-dimensional subspace.
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Principal Components

Space Squeezing: Dimensionality Reduction

N-Dimensional Space




Principal Components

Principal Components and Orthogonal Projection
Operators

Consider the case for an orthogonal projection operator. It
projects a data point or vector to that place in the subspace that
is closest to the original point.

Suppose the original data points are N-dimensional. The
projection operator projects each point to the closest point to it
in the K-dimensional subspace determined by the range of the
orthogonal projection operator.

For some subspaces of dimension K the overall distances
between the original data points and their projections will be the
smallest. This is the one that Principal Components
determines.
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Principal Components

The Simplest Orthonormal Projection Operators

The simplest othogonal projection operator is a diagonal matrix
with some of the entries on the diagonal being 1’s and the other
entries on the diagonal being 0’s.

For example, examine the orthogonal projection operator that
projects the data to its first two components, all other
components of the projected vector being 0.

10 0 ... 0
01 0 ... 0
p—-| 00 O ... O
- 0 O
00 ... 0O

Clearly P = P? and P = P’ making it an orthogonal projection

oEerator.



Projection Operators
Principal Components
Subspace Classifiers

The Orthonormal Matrix

A square matrix Q is said to be Orthonormal if its columns each have norm 1
and each column is orthogonal to every other column.

The transpose of an orthonormal matrix is its inverse.

Proof.

Let T be an N x N orthonormal matrix with columns t,, . .., Iy Then

ti
R S 5 8 ooo ¢
T/ T= . . . t L ... ty =1
tn
T'T=1Isothat T'TT~' = T~ Hence,

T =T7"
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P S
Principal Components

Subspace Classifiers

The General Orthogonal Projection Operator

If Q is an orthonormal matrix and P is an orthogonal projection
operator, then QPQ' is an orthogonal projection operator.
Proof.

We have to show that QPQ' is idempotent and symmetric.
Consider

(QPQ)(QPQ) = QP(Q'Q)PQ
— QPPQY
— QPQ
(QPQY = QP @
- QPQ




Subspace Classifiers

The General Orthogonal Projection Operator

Proposition
Let P be an orthonormal projection operator. Let Q be an

orthonormal matrix. Then QPQ’ projects to a subspace of the
same dimension as P

Proof.

Since the dimension of the space an orthonormal projection
operator projects to is the trace of the operator, we just have to
show that Trace(P) = Trace(QPQ')

Trace(QPQ') = Trace(PQQ')
= Trace(P(QQ))
= Trace(P)




Principal Components
Subspace Classifiers

The Orthogonal Projection Operator In Diagonalized
Form

The form QPQ’ can orthogonally project to any given subspace V
with P being a diagonal matrix have ones and zeros on the diagonal.

Proof.

Without loss of generality, we take PN*N to be a diagonal matrix with
the first M < N entries being ones and the remaining diagonal entries
zero. The proof is by construction. Let qy, ..., qu be an orthonormal
basis for V. Extend this orthonormal basis to qu.1, - . ., Qn- Define the
matrix Q to have columns of g4, ..., qn. Define the orthogonal
projection operator P to be a diagonal matrix whose first M diagonal
entries are one and all the remaining diagonal entries are zero. O

<
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Principal Components

Proof Continued

Consider QPQ'.
: : : qq
4 o 0 . (7/
QPQ = qr ... Qm : :2

: : : qu

M
c%ﬂcbn

m=1

And this is the orthogonal projection operator onto the
subspace V
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Principal Components

The Principal Component Technique

Let x1, ..., Xk be the observed N x 1 data vectors. First center
the data around the mean by subtracting the sample mean
vector i, from each of the original data points.

1 K
= K 2
k=1

Define the sample unbiased covariance matrix £ by
K
/
K 3 kz_; Xk — 1) (Xk — )
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Principal Components

Eigenvector Eigenvalue Decomposition

Y is an N x N real symmetric positive semidefinite matrix.
Consider the eigenvalue eigenvector decomposition of ©

Y = UNU

where A is a diagonal matrix of eigenvalues and U is an
orthonormal matrix. Since X is a real symmetric positive
semidefinite matrix the eigenvalues are non-negative.
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Principal Components

Total Variance

The total variance is given by the trace of ¥. It has the meaning
that it is ﬁ times the squared distance between the observed
data to the centroid given by the mean.

Note that the trace of ¥ is equal to the trace of A

Trace(Y) = Trace(UNU')
= Trace(ANUU")
= Trace(N)
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Principal Components

Total Variance

Without loss of generality, we suppose that the diagonal entries
are ordered from largest to smallest. Since the eigenvalues are
ordered in descending order, the first column of U is that
subspace that would have the smallest distance between the
observations and the mean vector in the subspace defined by
the span of the first eigenvector. Alternatively it is also the
subspace whose squared projected lengths is maximal.

The span of the second column of U would be that subspace,
orthogonal to the first having the next most smallest squared
distance between the observations and the mean vector. And
SO on.

Because the total variance is fixed, the sum of the squared
distances between the data points and their projection are
minimized.
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Projection Operators
Principal Components
Subspace Classifiers

Principal Components
Theorem

Let x1,...,xx € S an N-dimensional vector space and Q be an
orthogonal projection operator of rank M. Then Z,’fﬂ Xk QX is
maximized when Q projects to the M-Dimensional subspace spanned
by the M eigenvectors of Z,’fﬂ xkx,; having largest eigenvalues.
Proof.

LetSSX_, xxx, = TDT and Q* = T'QT. Without loss of generality we
assume that the diagonal entries are ordered dj; > dj, i < j. Then
maxq- Trace(Q*D) = 2%21 dmm, where the maximum is taken over
all Q* satisfying @* = Q*Q* and Q* = Q*'. Thus, the first M diagonal
entries of Q* are one and the remaining diagonal entries 0. Since
SV, Zj'i 1 95 = M, and there are M ones on the diagonal, the
remaining elements of Q* are 0. This implies Q = TQ*T  is the
orthogonal projection operator onto the space spanned by the first M
eigenvectors of Zf:1 xkx, for these are the eigenvectors having

Iariest eicI}enva/ues. O




Principal Components

Choice of Best Subspace

In Principal Components the researcher calculates the
successive sums of the eigenvalues and compares them to the
total sum of the eigenvalues, which is the Trace(A), and then
sets the threshold. Calculate the running sum

n
Vy = Z An
i—1
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Principal Components

Choice of Best Subspace

Choose the smallest n such that “,’—;’, just exceeds the selected
threshold 6. For example the threshold could be set to .85. nis
chosen to be the smallest value satisfying

Vn

Yo o g
Vy

The subspace projected to is spanned by the first n columns of
U. Suppose these n-columns are ujy, ... uy Then the orthogonal
projection operator P is defined by

n
P=>"uuyj
i
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Subspace Classifiers

Relative Coordinates

@ Suppose every data point is an N-dimensional
measurement from space S

@ Let PN*N be a projection operator to M-dimensional
subspace V C S

@ Suppose by, ... by is any orthonormal basis for V
@ The projection operator P is given by

M
PNN =" bmb,
m=1

o yNVx1 = pNxNxNx1 g the projection of x into V
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Subspace Classifiers

Relative Coordinates

@ Although y lies in a M-dimensional subspace V, y is an
N-dimensional vector

@ Since y € V, we can write y = Z,,M:1 ambm since
by,..., by is abasis for V

@ The tuple (a1, ..., ap) is called the relative coordinates of
the projection of x

@ Let BN*M pbe a matrix whose M columns are the basis

vectors by, ..., by
@ The coefficients can be obtained by (a4, ..., ay) = B'x
@ Then the following calculation can produce the orthogonal
projection y
yNt =BV My, ay) M = BB'x = Px
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Subspace Classifiers

Principal Components

@ Disregarding the class labels, Principle Components
selects that K-dimensional subspace having the best fit to
the observed measurement vectors

@ For each measurement vector, Principal Components
computes its relative coordinates in the subspace

@ Classification is done using the relative coordinates
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Subspace Classifiers

Feature Selection

@ Feature Selection is the oldest form of subspace classifiers

@ There are many papers describing ways of doing feature
selection

@ From one point of view, the problem of Feature Selection is
to select a fixed number of features that will maximize the
classification accuracy.

@ The problem of selecting the best K of N features for the
classification task is NP-Hard

@ The three oldest techniques are

e Forward Search
e Backward Search
@ Combinatorial Search
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Subspace Classifiers

Forward Feature Selection Greedy Approach

@ Check every feature one at time
@ Construct a classifier using the candidate feature

@ Select the candidate feature with the highest classification
accuracy

@ Check every one of the remaining features

@ Construct a classifier using the previously selected
features and the current candidate selection

@ Stop when there are no more improvements
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Subspace Classifiers

Backward Feature Selection Greedy Approach

@ Determine the classification accuracy using all the features

@ Then check the classification accuracy by leaving out a
feature

@ Select that feature to leave out which decreases the
classification the least

@ lterate checking what happens when you leave out a
feature from the current set of features

@ Continue the process until the classification accuracy
decreases too much.
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Combinatorial Feature Selection

@ If there are N features there are 2N — 1 nonempty sets of
features

@ Go through all combinations of subsets of features

@ For each combination determine the classification
accuracy

@ Choose that combination whose classification accuracy is
highest
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Feature Selection Is An Application of A Projection
Operator

@ Whatever the feature selection methodology
@ |t results in a selection of a subset of features

@ In essence, it does a relative coordinate orthogonal
projection to a subset of features

@ And leaves out the remaining features
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Non-relevant Features

@ Suppose that one or more of the features have nothing to
do with class ¢

@ They provide no information relative to class ¢

@ The range of these useless features can be large
@ Using Principle Components cannot help

o Useless features with a large range will dominate
e Principle Components would then include it
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Alternatives

@ N Features indexed by (1,...,N)
@ Go through all features
@ Go through all classes

@ With respect to each class, determine the classification
accuracy using each feature alone

@ This results in a table whose rows are the classes and
whose columns are the features.

@ If for some feature, the classification accuracy for class c is
too small, mark the feature as nonessential for class ¢

@ Compute the covariance matrix X for class ¢ using only
essential features
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Details

@ Let there be N features and K classes

@ Take the features one by one and build a classifier using the Training
Sequence

@ Use the Test Sequence to determine how well the classifier does with
each feature for each class

@ Let d(f, x) be the class that the classifier assigns to x when only using
feature f

Let (x1,...xz) be the Test Sequence of N-tuples, with corresponding true
class tags (ci, . .., cz) then the resulting N row by K column table A is
defined by

_ Hze1,Z2]| d(f, xz) = c and ¢; = ¢ when feature f is used}|
{ze[1.2]] c: = c}

A(f,c)

Given class ¢, A(f, c) is the probability of correct identification when using
feature f
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Details

@ Let 0 be the threshold that determines when classification
accuracy is large enough

@ If for any class c and feature f, A(f, c) > 0, then feature f
can be used in playing a role in the classification for class
c.
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Project To Essential Features

@ Suppose there are 6 features
@ Features 1,4, and 5 are essential; Q = (1,4,5)
@ Relative Coordinate Project to components 1,4 and 5

@ The relative coordinate projection of tuple
X = (X1 , X2, X3, X4, X5, XS) is (X1 ) X4, X5)
@ We can write the projection in a general way
Let Q be the index list of essential features
e In the example above Q = (1,4,5)
e The indices are ordered in ascending order
e The relative coordinate projection of tuple (x, ..., xy) onto
the essential features specified in Q is given by
7TQ(X1,...,XN) = (X,‘ e Q)
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Finding Subspaces

@ For each class ¢

@ Use the relative coordinate projection of the training set to
determine the class covariance matrix .

@ Use X to do a Principle Components
@ E.is selected so that the eigenvalue fraction

25021 On
N
Zn:1 On

is just greater than the user specified fraction f

@ Define the class subspace to be the span of the first E
eigenvectors of ¥ ¢
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Known Mean and Covariance Matrix

@ [f the distribution were multivariate normal
@ With known mean p and known covariance matrix
@ The Mahalanobis distance of x to u is given by
o af = (x—pu)T'(x—p)
@ a2 has a x? distribution with £, degrees of freedom

@ If the mean is estimated from data with a known
covariance matrix

@ 02 has a y? distribution with E; — 1 degrees of freedom
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The 2 Distribution

@ The mean of a Chi Square distribution is its degrees of
freedom

@ Chi Square distributions are positively skewed (skewed to
the right)

@ Degree of skew decreases with increasing degrees of
freedom

@ As the degrees of freedom increases, the Chi Square
distribution approaches a normal distribution

o Density function: - (k)xz e~z
22
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The 2 Distribution

Chi-Square

0.20
0.15
0.10 =—df =35
0%
0.00

02 4 6 8 1012 14 16 18 20 22 24

For critical value 16.75, the Prob(x2 > 16.75) = .005
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The 2 Distribution

Chi-Square Digtnbution (OF = 12)

i y "
£ iy ",

= ! S

B 8

g / ™,

8 ,f . plif > 23.6) = 0.023.

Lhi-Square YWalus

For critical value 23.6, the Prob(x3s > 23.6) = 0.023
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Making The Class Assignment

@ If the distribution were multivariate normal

@ With known mean and known covariance matrix

@ 02 has a y? distribution with £ degrees of freedom

@ If the mean is estimated from data with a known
covariance matrix dg has a x? distribution with E, — 1
degrees of freedom

@ Prob (Xi‘c > Scritical,c(po)) = po, Po = -005 or .01

@ Consider assigning x to only those classes in S:
S={ceC| d§ < Scritical,c(Po) }

@ Assign x to that class ¢ € S with the smallest squared
Mahalanobis distance
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Making The Class Assignment

@ For each class ¢

@ Determine T, the matrix with orthonormal columns
defined by the first E. eigenvectors of ¥

@ Choose pg

@ Define Scritical,c(po) by PrOb(XZEcq > Scr/'ticahc(po)) = Po
@ For each x in training set
@ Using the relative coordinates of the subspace

e The columns of SY*E are defined by the first £,
eigenvectors of ¥,

e Do an orthogonal projection to the subspace associated
with the class ¢: y = SL(x — )

e y has covariance matrix S,X.S; which is a E; x E; matrix
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Covariance Matrix of y&ex"

Y yEC><1

@ We need its covariance matrix so that we can use its
inverse in the Mahalanobis distance calculation

zy = S/CZSC
= (SLT,)N(TLS:)
EoxEe EcxN—Eo) ANXN [FexFe
= (I cxt=e Qe c)/\ < ON—ECXEC >
= Diagonal(\, Az, . .., \E,)

The inverse covariance matrix 2;1

v, = Diagonal(A\;', 051, .. AE)
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Mahalanobis Distance for y

0Z(y) = y'Diagonal(\;", A\, ..., Ag))y

@ [f the distribution were multivariate normal

® di(y) has X,

o If d2(y) > Scritical,c(Po), X cannot be assigned to class ¢
@ Assign x to allowable class c for which d2(y) is minimal
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What if x is not Multivariate Normal

@ y=S.x
@ Training sequence for class cis (y1,...Yz,)
@ Corresponding list of Squared Mahalanobis distances

o (dZ(y1),...d5(yz,))
@ Order them in ascending order

° <d(21)7 .. d(22¢)>
@ Choose pg = £
° Scrit/ca/,c(po) = déc_z
o If d2(y) > Scritical,c(Po), class ¢ is not allowable for x
@ Assign x to allowable class ¢ for which d2(y) is minimal
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Review 1

@ Forclass ¢

@ Leave out components of x whose associated
classification accuracy is too low

@ The covariance matrix of the reduced x is ¥
@ Eigenvector Eigenvalue decomposition X = TA T/
@ Choose a fraction f of the variance to be preserved

Ec
@ E. is the smallest number satisfying % > f

n=1 ¢n

@ Define S¢ to be the first E; columns of T,

@ y=3Sx

@ y has covariance matrix S;X:S; = Diagonal(A¢1, . . . AcE,)
e The inverse covariance matrix is Diagonal(\;{ ..., A\Z.)
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Review 2

@ Squared Mahalanobis distance
o d2(y) = y'Diagonal(\', ..., ;2 )y
@ Training sequence for class ¢

o (X1,...,Xz,)
@ y=3S.x
o <y1,...,yzc>

o (dZ(y1),..-dE(yz))
° Ascendmg order <d(1)’ e d(220)>

° po=7%
° Scritical,c(po) = d(zzc,z)
@ New x, y = Six
o If d2(y) > Scritical,c C€lass ¢ is not allowable for x
@ Assign x to allowable class ¢ for which d2(y) is minimal
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Making The Class Assignment

@ If the distribution were multivariate normal
@ With known mean and known covariance matrix
@ 02 has a y? distribution with £ degrees of freedom

@ If the mean is estimated from data with a known
covariance matrix d2 has a x? distribution with £, — 1
degrees of freedom

@ Assign x to the class ¢ with the smallest squared
Mahalanobis distance a2, providing that d2 < St ¢
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Problem With Using The Mahalanobis Distance
P-value

@ It does not include the possibility maximizing economic gain
@ Maximizing economic gain is easy with the Discrete Bayes Rule

@ The Mahalanobis Distance P-value

e Produces a real value between 0 and 1

e The real value has to be converted to an integer to address
the class conditional probability table

e Solution is to quantize the Mahalanobis p-value for each
class

@ Quantizing

e Equal Interval Quantizing
e Equal Probability Quantizing
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Equal Interval Quantizing

@ Suppose we want K quantizing intervals

@ The interval [0, 1] is divided in equal subintervals of size &
@ The quantizing boundaries are (0, %, 2, ..., 521, 1)

@ Let p be a p-value

o If £ < p < &5 the quantizing index is k

o If 21 < p < 1 the quantizing index is K
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Equal Probability Quantizing

@ Suppose we want K quantizing intervals

@ The indexes of the quantizing intervals range are in the set
{0,1,...,K -1}

@ The Training Sequence has Z tuples

@ Zis a multiple of K: for some natural integer m, Z = mK

@ Order the p-values in ascending order p), P2, - - - P(z)

@ The quantizing boundaries are
(bp =0,b1,bo,...,bx_1,bx = 1)

@ Where by = pkz/ky, k€ {1,...,K -1}

@ If forsome k € {0,...,K — 1}, by < p < b1, the
quantizing index is k

@ If p > pk—4) the quantizing index is K — 1
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Non-uniform Equal Probability Quantization
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