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Graphical Models

Graphical Models associates a graph, called the conditional
independence graph, from which the all the conditional
independencies can be easily seen.

When the conditional independence graph is triangulated, then
the joint probability function can be expressed with a probability
product form.

The product form can be read off the graph
The product form is a strong extension of the marginal
terms of the product



Graphs

Definition
A graph G = (N ,E) where N is an index set and E , the edge
set, is a collection of subsets of N where each subset has
exactly 2 elements of N.



Graphs

Here, G = (N ,E) where

N = {1,2,3,4}
E = {{1,2}, {2,4}, {3,4}, {3,1}}



Boundary

Definition
Let G = (N ,E) be a graph and i ∈ N. The boundary of i is
defined by

bndry(i) = {j ∈ N | {i , j} ∈ E}

bndry(1) = {2,3}
bndry(2) = {1,4}
bndry(3) = {1,4}
bndry(4) = {2,3}



Conditional Independence Graph: Definition

Definition
A graph (N ,E) is called a Conditional Independence Graph of a
random variable set X = {X1, . . . ,XM } if and only if
N = {1, . . . ,M}, the index set for the variables in X, and

Ec = {{i , j} | Xi y Xj | X − {Xi ,Xj }}



Conditional Independence Graph

Nodes correspond to indexes of variables in the variable set
X = {X1, . . . ,X6}

{i , j} not in the edge set means Xi y Xj | X − {Xi ,Xj }



Conditional Independence Graph

{Y ,Z1} and {Y ,Z2} not in edge set means

Y y Z1 | {X ,Y ,Z1,Z2} − {Y ,Z1}

Y y Z2 | {X ,Y ,Z1,Z2} − {Y ,Z2}

Y y Z1 | {X ,Z2}

Y y Z2 | {X ,Z1}

Y X

Z1

Z2



Block Independence Theorem

Y is conditionally independent of the block {Z1,Z2} given X

Theorem
Suppose that for any values for any group of joint variables, the
joint probability is greater than zero. Y y Z1,Z2 | X if and only if
Y y Z1 | X ,Z2 and Y y Z2 | X ,Z1.

Y X

Z1

Z2



Reduction Theorem

Theorem
Suppose that for any values for any group of joint variables, the joint
probability is greater than zero.

Y y Z1,Z2 | X if and only if Y y Z1 | X ,Z2 and Y y Z2 | X ,Z1.

Y y Z1,Z2 | X implies Y y Z1 | X and Y y Z2 | X.

Y1

Y2

X

Z1

Z2

Y1 y Z1 | X , Y1 y Z2 | X , Y2 y Z1 | X , Y2 y Z2 | X

Y1,Y2 y Z1 | X , Y1,Y2 y Z2 | X , Y1,Y2 y Z1,Z2 | X

Z1,Z2 y Y1 | X , Z1,Z2 y Y2 | X



Paths

Definition
Let (G,E) be a graph and g1, . . . ,gN ∈ G. < g1, . . . ,gN > is a
path in (G,E) if and only if {gn,gn+1} ∈ E for every
n ∈ {1, . . . ,N − 1}.



Connectedness

Definition
Let (G,E) be a graph and A,B be subsets of G. A and B are
said to be connected if and only if for some a ∈ A and b ∈ B,
there is a path < a,g1, . . . ,gN ,b > in G.



Separation

Definition
Let (G,E) be a graph and A,B,S be non-empty subsets of G.
S separates A from B if and only if for every a ∈ A and b ∈ B,
every path in G that begins with a and ends with b has at least
one node in S.



Separation Theorem

A separates B ∪ {i} from C ∪ {j}
N = A ∪ B ∪ C ∪ {i , j}

Then i y j | A
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Separation Theorem

Theorem
Let G = (N ,E) be a connected conditional independence graph for a set of random

variables whose joint probability is positive. If A ⊂ N is any node set that separates two

nodes i and j, then i y j | A.

i j

pq

B C

A

Proof.
Let B be the set of nodes that either connect to i directly or through A. Let C be the set
of nodes that either connect to j directly or through A. Hence, {A,B,C, {i , j}} form a
partition of N. By construction of the conditional independence graph, i y j | N − {i , j}
and i y p | N − {i ,p}. Application of the block independence theorem yields
i y j ,p | N − {i , j ,p}. Application of the reduction theorem yields i y j | N − {i , j ,p}.
Repeated application using the remaining nodes of C yields i y j | N − {i , j} − C.
Similarly for using q. Repeated application yields i y j | N − {i , j} − B − C. But
N − {i , j} − B − C = A. Therefore i y j | A. �



Local Markov Property

All conditional independences can be read off the Conditional
Independence Graph.

Corollary

Let G = (N ,E) be a conditional independence graph and
n ∈ N. Define B = N − {n} − bndry(n). Then n y B | bndry(n).

Proof.
The set bndry(n) separates n from B. �

Definition
Let G = (N ,E) be a conditional independence graph and
n ∈ N. The Markov Blanket of node n is bndry(n).



Complete Graphs

Definition
A graph G = (N ,E) is complete if and only if

E = {{i , j} | i , j ∈ N , i , j}

Figure: The Complete Graph on 4 Nodes



Graph Restriction

Definition
Let G = (N ,E) be a graph and A ⊂ N. The graph of G
restricted to A, G |A, is defined by

G |A= (A,E |A)

where
E |A= {{i , j} ∈ E | i , j ∈ A}



Completeness

Definition
Let G = (N ,E) be a graph. Let a subset of nodes A ⊂ N be
given. We say A is complete if and only if G |A is a complete
graph.



Maximally Complete

Definition
A subset of nodes A ⊂ N is maximally complete if and only if

G |A is complete
B ⊃ A and G |B complete implies B = A



Clique

Definition
Let G = (N ,E) be a graph. A maximally complete subset A ⊂ N
is called a clique of G.



Chordal Graphs

Definition
A graph is chordal (triangulated, decomposable) if and only if
every cycle of length 4 or more has a chord.

Figure: Non-chordal



Chordal Graphs

Definition
A graph is chordal (triangulated, decomposable) if and only if
every cycle of length 4 or more has a chord.

Figure: Non-chordal



Decomposable Graphs

Definition
A Graph G = (N ,E) is Decomposable if and only if

G is chordal
The cliques of G can be put in running intersection order
C1, . . . ,CK with separators S2, . . .SK where

Sk = Ck

⋂
(
k−1⋃
i=1

Ci), k = 2, . . . ,K − 1

such that Sk is complete.



Example

a

b

c

d

e

f

g h

i

j

C1 = {a,b, c,d ,g}
C2 = {c,d , f ,g} S2 = C2 ∩ C1 = {c,d ,g}
C3 = {f ,g,h, i} S3 = C3 ∩ (C1 ∪ C2) = {f ,g}
C4 = {d ,e, f , j} S4 = C4 ∩ (C1 ∪ C2 ∪ C3) = {d , f }



Decomposable Graph

I = {1,2,3,4,5}
C1 = {1,2,5} 1 y 4 | 2,5
C2 = {2,3,5} 1 y 3 | 2,5
C3 = {3,4,5} 2 y 4 | 3,5
S2 = {2,5} 1 y 4 | 3,5
S3 = {3,5} 1 y 4 | 2,3,5

1

2 5

3 4

P(xi : i ∈ I) =
P(xi : i ∈ C1)P(xi : i ∈ C2)P(xi : i ∈ C3)

P(xi : i ∈ S2)P(xi : i ∈ S3)

= P(xi : i ∈ C1)P(xi : i ∈ C2 − S2 | S2)P(xi : i ∈ C3 − S3 | S3)



Notation

Let I be an index subset. If I = {1,3,7}, then

P(xi : i ∈ I) = P(x1, x3, x7)



Decomposable Graphs

Theorem
If G is a decomposable graph with cliques in running
intersection order C1, . . . ,CK and separators S2, . . . ,SK then

P(x1, . . . , xN) =

∏K
k=1 P(xi : i ∈ Ck )∏K
m=2 P(xj : j ∈ Sm)

= P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )



Example

Cliques in running intersection order: {1,2,3,4}, {2,3,4,5}, {5,6}
Separators: {2,3,4}, {5}

P(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)



Product Form

The product form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

is an extension of the marginals
P(x1, x2, x3, x4)

P(x2, x3, x4, x5)

P(x5, x6)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x1, x2, x3, x4) =
∑
x5

∑
x6

Q(x1, . . . , x6)

=
∑
x5

∑
x6

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x1, x2, x3, x4)
∑
x5

P(x5 | x2, x3, x4)
∑
x6

P(x6 | x5)

= P(x1, x2, x3, x4)
∑
x5

P(x5 | x2, x3, x4)

= P(x1, x2, x3, x4)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x2, x3, x4, x5) =
∑
x1

∑
x6

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x5 | x2, x3, x4)
∑
x1

P(x1, x2, x3, x4)
∑
x6

P(x6 | x5)

= P(x5 | x2, x3, x4)P(x2, x3, x4) = P(x2, x3, x4, x5)



Product Form

Q(x1, . . . , x6) = P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

Q(x2, x3, x4, x5, x6) =
∑
x1

Q(x1, . . . , x6)

=
∑
x1

P(x1, x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x2, x3, x4)P(x5 | x2, x3, x4)P(x6 | x5)

= P(x2, x3, x4, x5)P(x6 | x5)

Q(x5, x6) =
∑
x2

∑
x3

∑
x4

P(x2, x3, x4, x5)P(x6 | x5)

= P(x5)P(x6 | x5) = P(x5, x6)



Decomposable Graphs

Sk = Ck

⋂
(
k−1⋃
i=1

Ci), k = 2, . . . ,K

P(x1, . . . , xN) = P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

Proposition

(Ck − Sk ) ∩ (
⋃k−1

i=1 Ci) = ∅

Proof.

(Ck − Sk ) ∩ (∪k−1
i=1 Ci) = (Ck − (Ck ∩ (∪k−1

i=1 Ci)) ∩ (∪k−1
i=1 Ci)

= (Ck − (∪
k−1
i=1 Ci)) ∩ (∪k−1

i=1 Ci)

= ∅

�



Decomposable Graphs: Summability

Sk = Ck ∩ (∪k−1
i=1 Ci ), k = 2, . . . ,K

P(x1, . . . , xN) = P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

(Ck − Sk ) ∩ (∪k−1
i=1 Ci ) = ∅

Proposition∑
x1

∑
x2
· · ·
∑

xN
P(xi : i ∈ C1)

∏K
k=2 P(xi : i ∈ Ck − Sk | Sk ) = 1

Proof.

S =
∑
x1

∑
x2

· · ·
∑
xN

P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

=
∑
C1

∑
C2−S2

· · ·
∑

CK −SK

P(xi : i ∈ C1)
K∏

k=2

P(xi : i ∈ Ck − Sk | Sk )

=
∑
C1

P(xi : i ∈ C1)
∑

C2−S2

P(xi : i ∈ C2 − S2 | S2) · · ·
∑

CK −SK

P(xi : i ∈ CK − SK | SK )

= 1

�



Summability Example

1

23

4 5

6

7

8

9

C1 = {1,2,3,5}
C2 = {2,3,4,5} S2 = {2,3,5}
C3 = {1,5,6} S3 = {1,5}
C4 = {5,6,7} S4 = {5,6}
C5 = {6,7,8,9} S5 = {6,7}

S =
∑

x1
· · ·
∑

x9
P(x1x2x3x5)P(x4 |x2x3x5)P(x6 |x1x5)P(x7 |x5x6)P(x9 |x6x7)

=
∑

x1x2x3x5 P(x1x2x3x5)
∑

x4
P(x4 |x2x3x5)

∑
x6

P(x6 |x1x5)
∑

x7 P(x7 |x5x6)
∑

x8x9
P(x8x9 |x6x7)

= 1



Separators

Definition
Let G = (V ,E) be a connected graph. A non-empty subset
S ⊂ V is called a Separator of G if and only if G(V − S,E |V−S)
is not connected. Let A,B, and S be disjoint non-empty subsets
of V . S is a Separator of A from B in graph G if and only if in
the restricted graph G|V−S, there exists no a ∈ A and b ∈ B such
that {a,b} ∈ E |V−s.
A separator S is called a Minimal Separator if and only if T a
separator with T ⊂ S implies T = S.

Theorem
A graph is triangulated if and only if each minimal separator is
maximally complete.



Triangulated Graphs

Theorem
G is a triangulated graph if and only if the vertices of G can be
partitioned into three nonempty subsets A, S, and B, such that

G|A∪S and G|B∪S are triangulated subgraphs of G
S separates A from B

This is one of the reasons that triangulated graphs are called
decomposable graphs.



Triangulated Graphs

Definition
Let G(V ,E) be a graph and {A,B,S} be a non-trivial partition of
V . (A,B,S) is called a Decomposition of G into GA∪S and GB∪S
if and only if

S separates A from B in G
GS is a complete graph
GA∪S and GB∪S are each triangulated



Decomposable Graphs

Theorem
A graph is decomposable if and only if either G is complete or
there exists a decomposition (A,B,S) of G into GA∪S and GB∪S.



Triangulated Graphs

Definition
A Perfect Elimination Ordering in a graph is an ordering of the
vertices of the graph such that, for each vertex v , v and the
neighbors of v that occur after v in the ordering form a
maximally complete graph.

Theorem
A graph is triangulated if and only if it has a perfect elimination
ordering.

Theorem
A graph is triangulated if and only if its cliques can be put in
running intersection order.



Triangulated Graphs and Clique Finding

A triangulated graph can have only linearly many cliques, while
non-chordal graphs may have exponentially many. Therefore
clique finding in triangulated graphs can be done in polynomial
time.



Triangulated Graphs

Theorem
If a graph G is triangulated graph and C1, . . . ,CK are the
cliques of G put in running intersection order with separators
S2, . . . ,SK ,

Sk = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K

then

P(x1, . . . , xN) =

∏K
k=1 P(xi : i ∈ Ck )∏K
k=2 P(xi : i ∈ Sk )



Conditional Independence Graphs

Theorem
Let P(x1, . . . , xN) > 0 and G be the conditional independence
graph of P. If {A,B,S} is a non-trivial partition of {1, . . . ,N} and
S is a separator of A from B in G, then A y B | S

P(xi : i ∈ A ∪ B|xj : j ∈ S) = P(xi : i ∈ A|xj : j ∈ S)P(xi : i ∈ B|xj : j ∈ S)



Decomposable Graph

I = {1,2,3,4,5}
C1 = {1,2,5} 1 y 4 | 2,5
C2 = {2,3,5} 1 y 3 | 2,5
C3 = {3,4,5} 2 y 4 | 3,5
S2 = {2,5} 1 y 4 | 3,5
S3 = {3,5} 1 y 4 | 2,3,5

1

2 5

3 4

P(xi : i ∈ I) =
P(xi : i ∈ C1)P(xi : i ∈ C2)P(xi : i ∈ C3)

P(xi : i ∈ S2)P(xi : i ∈ S3)

= P(xi : i ∈ C1)P(xi : i ∈ C2 − S2 | S2)P(xi : i ∈ C3 − S3 | S3)



Decomposable Graph

In the conditional independence graph, there is an edge
between node i and j if and only if Xi and Xj are conditionally
independent given the rest of the variables.

1

2 5

3 4

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P15(x1, x5)P2|15(x2 | x1, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)



System Diagram 1

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P15(x1, x5)P2|15(x2 | x1, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System H



System Diagram 2

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P25(x2, x5)P1|25(x1 | x2, x5)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System G



System Diagram 3

{235 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P12(x1, x2)P5|12(x5 | x1, x2)P3|25(x3 | x2, x5)P4|35(x4 | x3, x5)

Figure: 1:System I



System Diagram 4

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P4|35(x4 | x3, x5)P35(x3, x5)

Figure: 2: System E



System Diagram 5

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P3|45(x3 | x4, x5)P45(x4, x5)

Figure: 2:System L



System Diagram 6

{125 : 25}, {235 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P2|35(x2 | x3, x5)P5|34(x5 | x3, x4)P34(x3, x4)

Figure: 2: System A



System Diagram 7

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P2|35(x2 | x3, x5)P35(x3, x5)

Figure: 3:System E



System Diagram 8

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P3|25(x3 | x2, x5)P25(x2, x5)

Figure: 3:System G



System Diagram 9

{125 : 25}, {345 : 35}

P12345(x1, x2, x3, x4, x5) =
P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)

= P1|25(x1 | x2, x5)P4|35(x4 | x3, x5)P5|23(x5 | x2, x3)P23(x2, x3)

Figure: 3:System J



Feed Forward System Conditional Independences

PA
12345(x1, x2, x3, x4, x5) = P45(x4, x5)P3|45(x3|x4, x5)P1|25(x1|x2, x5)P2|35(x2|x3, x5)

PE
12345(x1, x2, x3, x4, x5) = P35(x3, x5)P4|35(x4|x3, x5)P1|25(x1|x2, x5)P2|35(x2|x3, x5)

PG
12345(x1, x2, x3, x4, x5) = P25(x2, x5)P3|25(x3|x2, x5)P1|25(x1|x2, x5)P4|35(x4|x3, x5)

PH
12345(x1, x2, x3, x4, x5) = P15(x1, x5)P2|15(x2|x1, x5)P3|25(x3|x2, x5)P4|35(x4|x3, x5)

P I
12345(x1, x2, x3, x4, x5) = P12(x1, x2)P5|12(x5|x1, x2)P3|25(x3|x2, x5)P4|35(x4|x3, x5)

PJ
12345(x1, x2, x3, x4, x5) = P23(x2, x3)P1|25(x1|x2, x5)P5|23(x5|x2, x3)P4|35(x4|x3, x5)

PL
12345(x1, x2, x3, x4, x5) = P34(x3, x4)P1|25(x1|x2, x5)P2|35(x2|x3, x5)P5|34(x5|x3, x4)

These decompositions correspond to the same Decomposable Graphical
Model

P12345(x1, x2, x4, x4, x5) =
P345(x3, x4, x5)P125(x1, x2, x5)P235(x2, x3, x5)

P25(x2, x5)P35(x3, x5)



Feedforward Systems: Bayesian Networks

System A Associated Bayesian Network

1

2 5

3 4

System A P(x1 , x2 , x3 , x4 , x5) = P45(x4 , x5)P3|45(x3 | x4 , x5)P2|35(x2 | x3 , x5)P1|25(x1 | x2 , x5)
Bayesian Network P(x1 , x2 , x3 , x4 , x5) = P4(x4)P5(x5)P3|45(x3 | x4 , x5)P2|35(x2 | x3 , x5)P1|25(x1 | x2 , x5)



System Structure and Decompositions

J = {1, . . . ,N}
Input set of subsystem k is Ik
Output set of subsystem k is Ok

Ik ∪Ok = Jk

Ik ∩Ok = ∅

Om ∩On = ∅, m , n
The system structure is defined by {(Ik ,Ok ,Pk )}

K
k=1

Input Set Ik
Output Set Ok

Behavior Pk

P(xj : j ∈ J) = P(xm : m ∈ J−∪K
k=1Ok )

K∏
k=1

Pk (xo : o ∈ Ok | xi : i ∈ Ik )

The System Structure is Causal Structure



Causal Structure

System A:
4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

J1 = {3,4,5}

I1 = {4,5}

O1 = {3}

J2 = {1,2,5}

I2 = {2,5}

O2 = {1}

J3 = {2,3,5}

I3 = {3,5}

O3 = {2}



Causal Structure

System A:
4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

J1 = {3,4,5}

I1 = {4,5}

O1 = {3}

J2 = {1,2,5}

I2 = {2,5}

O2 = {1}

J3 = {2,3,5}

I3 = {3,5}

O3 = {2}



Causal Structure

System A

X4,X5 is the direct cause of X3
X2,X5 is the direct cause of X1
X3,X5 is the direct cause of X2
X4 is an indirect cause of X1
X1 has no causal influence on X3: X1 9 X3
X3 has causal influence on X1: X3 → X1
Given X2,X5, X3 has no causal influence on X1: X3 9 X1 | X2,X5
Given X2,X5, X3 is conditionally independent of X1: X3 y X1 | X2,X5



Conditional Independence Structure

System A

X4,X5 is the direct cause of X3
X2,X5 is the direct cause of X1
X3,X5 is the direct cause of X2
X4 is an indirect cause of X1
Given its parents, each variable is conditionally independent

of its non-descendants
Given X3 and X5, X2 is conditionally independent X4: X2,y X4 | X3,X5



Conditional Independence Structure

P12345(x1, x2, x4, x4, x5) =
P345(x3, x4, x5)P125(x1, x2, x5)P235(x2, x3, x5)

P25(x2, x5)P35(x3, x5)

P24|35(x2, x4 | x3, x5) =
∑
x1

P125(x1, x2, x5)P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)P35(x3, x5)

=
P235(x2, x3, x5)P345(x3, x4, x5)

P25(x2, x5)P35(x3, x5)P35(x3, x5)
P25(x2, x5)

=
P235(x2, x3, x5)P345(x3, x4, x5)

P35(x3, x5)P35(x3, x5)

= P2|35(x2 | x3, x5)P4|35(x4 | x3, x5)



Digraphs, Feedforward, Feedback Systems

Let {(Ik ,Ok ,Rk )}
K
k=1 be a system.

Input Set Ik
Output Set Ok

Behavior Pk

Define the associated system digraph (J ,E) by

J = ∪K
k=1Ik ∪Ok

E = ∪K
k=1Ik ×Ok

Definition
A system {(Ik ,Ok ,Rk )} is called a feedforward system if and
only if the digraph (J ,E) is acyclic. A system that is not
feedforward is called a feedback system.



Possible Causal System Structure

Let us consider all the possibilities where each subsystem has
exactly one output variable and no two different subsystems
produce the same output variables.

System subsystem output subsystem output subsystem output
A 345 3 235 2 125 1
B 345 3 235 2 125 5
C 345 3 235 5 125 1
D 345 3 235 5 125 2
E 345 4 235 2 125 1
F 345 4 235 2 125 5
G 345 4 235 3 125 1
H 345 4 235 3 125 2
I 345 4 235 3 125 5
J 345 4 235 5 125 1
K 345 4 235 5 125 2
L 345 5 235 2 125 1
M 345 5 235 3 125 1
N 345 5 235 3 125 2



System Diagrams

(a) System A: Feedfoward (b) System B: Feedback

(c) System C: Feedback (d) System D: Feedback



System Diagrams

(e) System E: Feedfoward (f) System F: Feedback

(g) System G: Feedfoward (h) System H: Feedfoward



System Diagrams

(i) System I: Feedfoward (j) System J: Feedfoward

(k) System K: Feedback (l) System L: Feedfoward



System Diagrams

(m) System M: Feedback (n) System N: Feedfoward



Analysing Feedback Systems

Remove any subsystem not part of the feedback loop
Break the feedback loop

This prevents the output variable y of the feedback loop to
connect to a prior subsystem input variable x .
This makes the system a feedforward system

Calculate the feedforward system behavior
Add the equation x = y
Calculate the new results



Feedback Systems

System C System C with subsystem 125
removed and feedback loop broken

output variable 3 renamed to 6

3
2

4

5

6
235

456

Variable xk has Nk possible values
Fix variables x2 = a2 and x4 = a4

Use a matrix notation



Matrix Notation Conventions

P6|
N6×1
x2 = a2
x4 = a4

is the vector of probabilities for variable x6 over its N6 values

with x2 fixed at the value a2 and x4 fixed at the value a4

P5|23|
N5×N3
x2 = a2

is the matrix of conditional probabilities of variable x5 given x3

with variable x2 fixed at the value a2

P6|45|
N6×N5
x4 = a4

is the matrix of conditional probabilities of variable x6 given x5

with variable x4 fixed at the value a4

P3|
N3×1

x2 = a2
x4 = a4

is the vector of probabilities for variable x3 over its N3 values

with x2 fixed at the value a2 and x4 fixed at the value a4



Reduced Feedforward System

3
2

4

5

6
235

456

The feedforward matrix equation relating the output variable x6
to the input variable x3 when input variable x2 is fixed to value
a2 and input variable x4 is fixed to value a4 is then

P6|
N6×1
x2 = a2
x4 = a4

= P6|45|
N6×N5
x4 = a4

P5|23|
N5×N3
x2 = a2

P3|
N3×1
x2 = a2
x4 = a4



Connecting The Feedback Loop

Set variable x6 = x3, noting that N6 = N3 and that variable x6
and x3 have the same range sets. The resulting matrix equation
is

P3|
N3×1
x2 = a2
x4 = a4

= P3|45|
N3×N5
x4 = a4

P5|23|
N5×N3
x2 = a2

P3|
N3×1
x2 = a2
x4 = a4

This equation can be easily solved for P3 since it is the
eigenvector corresponding to eigenvalue of 1 of the matrix

P3|45|
N3×N5
x4 = a4

P5|23|
N5×N3
x2 = a2



Computing Joint Probability

Thus for each different value of the externally set input variables x2 and x4,
there will be different distribution for x3. Once, the distribution of x3 is known,
the joint distribution of all variables, can be calculated by means of the
corresponding conditional probabilities.

P3|
N3×1

x2 = a2
x4 = a4

is really the conditional probability P3|24(x3|a2,a4).

P12345(x1, x2, x3, x4, x5) = P1|25(x1|x2, x5)P3|24(x3, |x2, x4)P5|23(x5|x2, x3)P24(x2, x4)



Multiple Connected Feedback Loops

345

125

235

3

2

5

Fix the external variables x1 = a1 and x4 = a4

Take the combined variable (x2, x3) as the feedback variable

The conditional probability matrix for (x2, x3) given x5 is N2N3 × N5.

P23|5|
N2N3×N5
x1 = a1
x4 = a4

= P2|15|
N2×N5
x1 = a1

⊗P3|45|
N3×N5
x4 = a4

where ⊗ is the kronecker matrix product and simply allows us to denote a
conditional probability matrix where one of the variables is the joint variable

(x2, x3).



Multiple Connected Feedback Loops

345

125

236

3

2

6

5

5

First we break the feedback loops and rename the output
variable x5 to x6. Now we can write

P6|
N6×1
x1 = a1
x4 = a4

= P6|23|
x1 = a1
x4 = a4

N6×N2N3P23|5|
N2N3×N5
x1 = a1
x4 = a4

P5|
N5×1

x1 = a1
x4 = a4

Now we connect the feedback loop. We set variable x6 = x5,
noting that N6 = N5 and that variable x6 and x5 have the same
range sets. The resulting matrix equation is

P5|
N5×1

x1 = a1
x4 = a4

= P5|23|
x1 = a1
x4 = a4

N5×N2N3P23|5|
N2N3×N5

x1 = a1
x4 = a4

P5|
N5×1

x1 = a1
x4 = a4



Multiple Connected Feedback Loops

345

125

235

3

2

5

P5|
N5×1

x1 = a1
x4 = a4

= P5|23|
x1 = a1
x4 = a4

N5×N2N3P23|5|
N2N3×N5

x1 = a1
x4 = a4

P5|
N5×1

x1 = a1
x4 = a4

As before, this equation is easily solved as P5|
N5×1

x1 = a1
x4 = a4

is just the

eigenvector having eigenvalue 1 of the matrix

P5|23|
x1 = a1
x4 = a4

N5×N2N3P23|5|
N2N3×N5

x1 = a1
x4 = a4



Multiple Connected Feedback Loops: Joint Probability

345

125

235

3

2

5

P5|
N5×1

x1 = a1
x4 = a4

is the conditional probability P5|14(x5|a1,a4)

P12345(x1, x2, x3, x4, x5) = P5|14(x5|x1, x4)P14(x1, x4)P2|15(x2|x1, x5)P3|45(x3|x4, x5)


