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Preface

The problem of clustering is perhaps one of the most widely studied in the data mining and machine
learning communities. This problem has been studied by researchers from several disciplines over
five decades. Applications of clustering include a wide variety of problem domains such as text,
multimedia, social networks, and biological data. Furthermore, the problem may be encountered in
a number of different scenarios such as streaming or uncertain data. Clustering is a rather diverse
topic, and the underlying algorithms depend greatly on the data domain and problem scenario.

Therefore, this book will focus on three primary aspects of data clustering. The first set of chap-
ters will focus on the core methods for data clustering. These include methods such as probabilistic
clustering, density-based clustering, grid-based clustering, and spectral clustering. The second set
of chapters will focus on different problem domains and scenarios such as multimedia data, text
data, biological data, categorical data, network data, data streams and uncertain data. The third set
of chapters will focus on different detailed insights from the clustering process, because of the sub-
jectivity of the clustering process, and the many different ways in which the same data set can be
clustered. How do we know that a particular clustering is good or that it solves the needs of the
application? There are numerous ways in which these issues can be explored. The exploration could
be through interactive visualization and human interaction, external knowledge-based supervision,
explicitly examining the multiple solutions in order to evaluate different possibilities, combining
the multiple solutions in order to create more robust ensembles, or trying to judge the quality of
different solutions with the use of different validation criteria.

The clustering problem has been addressed by a number of different communities such as pattern
recognition, databases, data mining and machine learning. In some cases, the work by the different
communities tends to be fragmented and has not been addressed in a unified way. This book will
make a conscious effort to address the work of the different communities in a unified way. The book
will start off with an overview of the basic methods in data clustering, and then discuss progressively
more refined and complex methods for data clustering. Special attention will also be paid to more
recent problem domains such as graphs and social networks.

The chapters in the book will be divided into three types:

• Method Chapters: These chapters discuss the key techniques which are commonly used for
clustering such as feature selection, agglomerative clustering, partitional clustering, density-
based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and non-
negative matrix factorization.

• Domain Chapters: These chapters discuss the specific methods used for different domains
of data such as categorical data, text data, multimedia data, graph data, biological data, stream
data, uncertain data, time series clustering, high-dimensional clustering, and big data. Many of
these chapters can also be considered application chapters, because they explore the specific
characteristics of the problem in a particular domain.

• Variations and Insights: These chapters discuss the key variations on the clustering process
such as semi-supervised clustering, interactive clustering, multi-view clustering, cluster en-
sembles, and cluster validation. Such methods are typically used in order to obtain detailed
insights from the clustering process, and also to explore different possibilities on the cluster-
ing process through either supervision, human intervention, or through automated generation

xxi
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of alternative clusters. The methods for cluster validation also provide an idea of the quality
of the underlying clusters.

This book is designed to be comprehensive in its coverage of the entire area of clustering, and it is
hoped that it will serve as a knowledgeable compendium to students and researchers.
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2 Data Clustering: Algorithms and Applications

1.1 Introduction

The problem of data clustering has been widely studied in the data mining and machine learning
literature because of its numerous applications to summarization, learning, segmentation, and target
marketing [46, 47, 52]. In the absence of specific labeled information, clustering can be considered
a concise model of the data which can be interpreted in the sense of either a summary or a generative
model. The basic problem of clustering may be stated as follows:

Given a set of data points, partition them into a set of groups which are as similar as possible.

Note that this is a very rough definition, and the variations in the problem definition can be sig-
nificant, depending upon the specific model used. For example, a generative model may define
similarity on the basis of a probabilistic generative mechanism, whereas a distance-based approach
will use a traditional distance function for quantification. Furthermore, the specific data type also
has a significant impact on the problem definition.

Some common application domains in which the clustering problem arises are as follows:

• Intermediate Step for other fundamental data mining problems: Since a clustering can
be considered a form of data summarization, it often serves as a key intermediate step for
many fundamental data mining problems such as classification or outlier analysis. A compact
summary of the data is often useful for different kinds of application-specific insights.

• Collaborative Filtering: In collaborative filtering methods, the clustering provides a summa-
rization of like-minded users. The ratings provided by the different users for each other are
used in order to perform the collaborative filtering. This can be used to provide recommenda-
tions in a variety of applications.

• Customer Segmentation: This application is quite similar to collaborative filtering, since
it creates groups of similar customers in the data. The major difference from collaborative
filtering is that instead of using rating information, arbitrary attributes about the objects may
be used for clustering purposes.

• Data Summarization: Many clustering methods are closely related to dimensionality reduc-
tion methods. Such methods can be considered a form of data summarization. Data summa-
rization can be helpful in creating compact data representations, which are easier to process
and interpret in a wide variety of applications.

• Dynamic Trend Detection: Many forms of dynamic and streaming algorithms can be used
to perform trend detection in a wide variety of social networking applications. In such appli-
cations, the data is dynamically clustered in a streaming fashion and can be used in order to
determine important patterns of changes. Examples of such streaming data could be multidi-
mensional data, text streams, streaming time-series data, and trajectory data. Key trends and
events in the data can be discovered with the use of clustering methods.

• Multimedia Data Analysis: A variety of different kinds of documents such as images, audio
or video, fall in the general category of multimedia data. The determination of similar seg-
ments has numerous applications, such as the determination of similar snippets of music or
similar photographs. In many cases, the data may be multimodal and may contain different
types. In such cases, the problem becomes even more challenging.

• Biological Data Analysis: Biological data has become pervasive in the last few years, be-
cause of the success of the human genome effort and the increasing ability to collect different
kinds of gene expression data. Biological data is usually structured either as sequences or as
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networks. Clustering algorithms provide good ideas of the key trends in the data, as well as
the unusual sequences.

• Social Network Analysis: In these applications, the structure of a social network is used in
order to determine the important communities in the underlying network. Community detec-
tion has important applications in social network analysis, because it provides an important
understanding of the community structure in the network. Clustering also has applications to
social network summarization, which is useful in a number of applications.

The aforementioned list of applications is not exhaustive by any means; nevertheless it represents
a good cross-section of the wide diversity of problems which can be addressed with clustering
algorithms.

The work in the data clustering area typically falls into a number of broad categories;

• Technique-centered: Since clustering is a rather popular problem, it is not surprising that nu-
merous methods, such as probabilistic techniques, distance-based techniques, spectral tech-
niques, density-based techniques, and dimensionality-reduction based techniques, are used
for the clustering process. Each of these methods has its own advantages and disadvantages,
and may work well in different scenarios and problem domains. Certain kinds of data types
such as high dimensional data, big data, or streaming data have their own set of challenges
and often require specialized techniques.

• Data-Type Centered: Different applications create different kinds of data types with different
properties. For example, an ECG machine will produce time series data points which are
highly correlated with one another, whereas a social network will generated a mixture of
document and structural data. Some of the most common examples are categorical data, time
series data, discrete sequences, network data, and probabilistic data. Clearly, the nature of the
data greatly impacts the choice of methodology used for the clustering process. Furthermore,
some data types are more difficult than others because of the separation between different
kinds of attributes such as behavior or contextual attributes.

• Additional Insights from Clustering Variations: A number of insights have also been de-
signed for different kinds of clustering variations. For example, visual analysis, supervised
analysis, ensemble-analysis, or multiview analysis can be used in order to gain additional in-
sights. Furthermore, the issue of cluster validation is also important from the perspective of
gaining specific insights about the performance of the clustering.

This chapter will discuss each of these issues in detail, and will also discuss how the organization of
the book relates to these different areas of clustering. The chapter is organized as follows. The next
section discusses the common techniques which are used in cluster analysis. Section 1.3 explores
the use of different data types in the clustering process. Section 1.4 discusses the use of different
variations of data clustering. Section 1.5 offers the conclusions and summary.

1.2 Common Techniques Used in Cluster Analysis

The clustering problems can be addressed using a wide variation of methods. In addition, the
data preprocessing phase requires dedicated techniques of its own. A number of good books and
surveys discuss these issues [14, 20, 31, 37, 46, 47, 48, 52, 65, 80, 81]. The most common techniques
which are used for clustering are discussed in this section.
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1.2.1 Feature Selection Methods

The feature selection phase is an important preprocessing step which is needed in order to en-
hance the quality of the underlying clustering. Not all features are equally relevant to finding the
clusters, since some may be more noisy than other. Therefore, it is often helpful to utilize a pre-
processing phase in which the noisy and irrelevant features are pruned from contention. Feature
selection and dimensionality reduction are closely related. In feature selection, original subsets of
the features are selected. In dimensionality reduction, linear combinations of features may be used
in techniques such as principal component analysis [50] in order to further enhance the feature se-
lection effect. The advantage of the former is greater interpretability, whereas the advantage of the
latter is that a lesser number of transformed directions is required for the representation process.
Chapter 2 of this book will discuss such feature selection methods in detail. A comprehensive book
on feature selection may be found in [61].

It should be noted that feature selection can also be integrated directly into the clustering al-
gorithm to gain better locality specific insights. This is particularly useful, when different features
are relevant to different localities of the data. The motivating factor for high dimensional subspace
clustering algorithms is the failure of global feature selection algorithms. As noted in [9]: “. . . in
many real data examples, some points are correlated with respect to a given set of dimensions and
others are correlated with respect to different dimensions. Thus, it may not always be feasible to
prune off too many dimensions without at the same time incurring a substantial loss of informa-
tion” p.61. Therefore, the use of local feature selection, by integrating the feature selection process
into the algorithm, is the best way of achieving this goal. Such local feature selections can also be
extended to the dimensionality reduction problem [8, 19] and are sometimes referred to as local
dimensionality reduction. Such methods are discussed in detail in Chapter 9. Furthermore, Chapter
2 also discusses the connections of these classes of methods to the problem of feature selection.

1.2.2 Probabilistic and Generative Models

In probabilistic models, the core idea is to model the data from a generative process. First, a
specific form of the generative model (e.g., mixture of Gaussians) is assumed, and then the parame-
ters of this model are estimated with the use of the Expectation Maximization (EM) algorithm [27].
The available data set is used to estimate the parameters in such as way that they have a maximum
likelihood fit to the generative model. Given this model, we then estimate the generative probabil-
ities (or fit probabilities) of the underlying data points. Data points which fit the distribution well
will have high fit probabilities, whereas anomalies will have very low fit probabilities.

The broad principle of a mixture-based generative model is to assume that the data were gener-
ated from a mixture of k distributions with the probability distributions G1 . . .Gk with the use of the
following process:

• Pick a data distribution with prior probability αi, where i ∈ {1 . . .k}, in order to pick one of
the k distributions. Let us assume that the rth one is picked.

• Generate a data point from Gr.

The probability distribution Gr is picked from a host of different possibilities. Note that this gen-
erative process requires the determination of several parameters such as the prior probabilities and
the model parameters for each distribution Gr. Models with different levels of flexibility may be de-
signed depending upon whether the prior probabilities are specified as part of the problem setting,
or whether interattribute correlations are assumed within a component of the mixture. Note that the
model parameters and the probability of assignment of data points to clusters are dependent on one
another in a circular way. Iterative methods are therefore desirable in order to resolve this circularity.
The generative models are typically solved with the use of an EM approach, which starts off with
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a random or heuristic initialization and then iteratively uses two steps to resolve the circularity in
computation:

• (E-Step) Determine the expected probability of assignment of data points to clusters with the
use of current model parameters.

• (M-Step) Determine the optimum model parameters of each mixture by using the assignment
probabilities as weights.

One nice property of EM-models is that they can be generalized relatively easily to different
kinds of data, as long as the generative model for each component is properly selected for the
individual mixture component Gr. Some examples are as follows:

• For numerical data, a Gaussian mixture model may be used in order to model each component
Gr. Such a model is discussed in detail in Chapter 3.

• For categorical data, a Bernoulli model may be used for Gr in order to model the generation
of the discrete values.

• For sequence data, a Hidden Markov Model (HMM) may be used for Gr in order to model the
generation of a sequence. Interestingly, an HMM is itself a special kind of mixture model in
which the different components of the mixture are dependent on each other though transitions.
Thus, the clustering of sequence data with a mixture of HMMs can be considered a two-level
mixture model.

Generative models are among the most fundamental of all clustering methods, because they try to
understand the underlying process through which a cluster is generated. A number of interesting
connections exist between other clustering methods and generative models, by considering special
cases in terms of prior probabilities or mixture parameters. For example, the special case in which
each prior probability is fixed to the same value and all mixture components are assumed to have
the same radius along all dimensions reduces to a soft version of the k-means algorithm. These
connections will be discussed in detail in Chapter 3.

1.2.3 Distance-Based Algorithms

Many special forms of generative algorithms can be shown to reduce to distance-based algo-
rithms. This is because the mixture components in generative models often use a distance function
within the probability distribution. For example, the Gaussian distribution represents data genera-
tion probabilities in terms of the euclidian distance from the mean of the mixture. As a result, a
generative model with the Gaussian distribution can be shown to have a very close relationship with
the k-means algorithm. In fact, many distance-based algorithms can be shown to be reductions from
or simplifications of different kinds of generative models.

Distance-based methods are often desirable because of their simplicity and ease of implemen-
tation in a wide variety of scenarios. Distance-based algorithms can be generally divided into two
types:

• Flat: In this case, the data is divided into several clusters in one shot, typically with the use of
partitioning representatives. The choice of the partitioning representative and distance func-
tion is crucial and regulates the behavior of the underlying algorithm. In each iteration, the
data points are assigned to their closest partitioning representatives, and then the representa-
tive is adjusted according to the data points assigned to the cluster. It is instructive to compare
this with the iterative nature of the EM algorithm, in which soft assignments are performed
in the E-step, and model parameters (analogous to cluster representatives) are adjusted in the
M-step. Some common methods for creating the partitions are as follows:
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– k-Means: In these methods, the partitioning representatives correspond to the mean of
each cluster. Note that the partitioning representative is not drawn from the original data
set, but is created as a function of the underlying data. The euclidian distance is used
in order to compute distances. The k-Means method is considered one of the simplest
and most classical methods for data clustering [46] and is also perhaps one of the most
widely used methods in practical implementations because of its simplicity.

– k-Medians: In these methods, the median along each dimension, instead of the mean, is
used to create the partitioning representative. As in the case of the k-Means approach,
the partitioning representatives are not drawn from the original data set. The k-Medians
approach is more stable to noise and outliers, because the median of a set of values is
usually less sensitive to extreme values in the data. It should also be noted that the term
“k-Medians” is sometimes overloaded in the literature, since it is sometimes also used
to refer to a k-Medoid approach (discussed below) in which the partitioning representa-
tives are drawn from the original data. In spite of this overloading and confusion in the
research literature, it should be noted that the k-Medians and k-Medoid methods should
be considered as distinct techniques. Therefore, in several chapters of this book, the k-
Medians approach discussed is really a k-Medoids approach, though we have chosen to
be consistent within the specific research paper which is being described. Nevertheless,
it would be useful to note the overloading of this term in order to avoid confusion.

– k-Medoids: In these methods, the partitioning representative is sampled from the orig-
inal data. Such techniques are particularly useful in cases, where the data points to be
clustered are arbitrary objects, and it is often not meaningful to talk about functions of
these objects. For example, for a set of network or discrete sequence objects, it may
not be meaningful to talk about their mean or median. In such cases, partitioning repre-
sentatives are drawn from the data, and iterative methods are used in order to improve
the quality of these representatives. In each iteration, one of the representatives is re-
placed with a representative from the current data, in order to check if the quality of
the clustering improves. Thus, this approach can be viewed as a kind of hill climb-
ing method. These methods generally require many more iterations than k-Means and
k-Medoids methods. However, unlike the previous two methods, they can be used in
scenarios where it is not meaningful to talk about means or medians of data objects (eg.
structural data objects).

• Hierarchical: In these methods, the clusters are represented hierarchically through a dendo-
gram, at varying levels of granularity. Depending upon whether this hierarchical representa-
tion is created in top-down or bottom-up fashion, these representations may be considered
either agglomerative or divisive.

– Agglomerative: In these methods, a bottom-up approach is used, in which we start
off with the individual data points and successively merge clusters in order to create
a tree-like structure. A variety of choices are possible in terms of how these clusters
may be merged, which provide different tradeoffs between quality and efficiency. Some
examples of these choices are single-linkage, all-pairs linkage, centroid-linkage, and
sampled-linkage clustering. In single-linkage clustering, the shortest distance between
any pair of points in two clusters is used. In all-pairs linkage, the average over all pairs
is used, whereas in sampled linkage, a sampling of the data points in the two clusters
is used for calculating the average distance. In centroid-linkage, the distance between
the centroids is used. Some variations of these methods have the disadvantage of chain-
ing, in which larger clusters are naturally biased toward having closer distances to other
points and will therefore attract a successively larger number of points. Single linkage
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clustering is particularly susceptible to this phenomenon. A number of data domains
such as network clustering are also more susceptible to this behavior.

– Divisive: In these methods, a top-down approach is used in order to successively parti-
tion the data points into a tree-like structure. Any flat clustering algorithm can be used in
order to perform the partitioning at each step. Divisive partitioning allows greater flex-
ibility in terms of both the hierarchical structure of the tree and the level of balance in
the different clusters. It is not necessary to have a perfectly balanced tree in terms of the
depths of the different nodes or a tree in which the degree of every branch is exactly two.
This allows the construction of a tree structure which allows different tradeoffs in the
balancing of the node depths and node weights (number of data points in the node). For
example, in a top-down method, if the different branches of the tree are unbalanced in
terms of node weights, then the largest cluster can be chosen preferentially for division
at each level. Such an approach [53] is used in METIS in order to create well balanced
clusters in large social networks, in which the problem of cluster imbalance is partic-
ularly severe. While METIS is not a distance-based algorithm, these general principles
apply to distance-based algorithms as well.

Distance-based methods are very popular in the literature, because they can be used with almost any
data type, as long as an appropriate distance function is created for that data type. Thus, the problem
of clustering can be reduced to the problem of finding a distance function for that data type. There-
fore, distance function design has itself become an important area of research for data mining in its
own right [5, 82]. Dedicated methods also have often been designed for specific data domains such
as categorical or time series data [32, 42]. Of course, in many domains, such as high-dimensional
data, the quality of the distance functions reduces because of many irrelevant dimensions [43] and
may show both errors and concentration effects, which reduce the statistical significance of data
mining results. In such cases, one may use either the redundancy in larger portions of the pairwise
distance matrix to abstract out the noise in the distance computations with spectral methods [19] or
projections in order to directly find the clusters in relevant subsets of attributes [9]. A discussion of
many hierarchical and partitioning algorithms is provided in Chapter 4 of this book.

1.2.4 Density- and Grid-Based Methods

Density- and grid-based methods are two closely related classes, which try to explore the data
space at high levels of granularity. The density at any particular point in the data space is defined
either in terms of the number of data points in a prespecified volume of its locality or in terms of
a smoother kernel density estimate [74]. Typically, the data space is explored at a reasonably high
level of granularity and a postprocessing phase is used in order to “put together” the dense regions
of the data space into an arbitrary shape. Grid-based methods are a specific class of density-based
methods in which the individual regions of the data space which are explored are formed into a
grid-like structure. Grid-like structures are often particularly convenient because of greater ease in
putting together the different dense blocks in the post-processing phase. Such grid-like methods can
also be used in the context of high-dimensional methods, since the lower dimensional grids define
clusters on subsets of dimensions [6].

A major advantage of these methods is that since they explore the data space at a high level of
granularity, they can be used to reconstruct the entire shape of the data distribution. Two classical
methods for density-based methods and grid-based methods are DBSCAN [34] and STING [83],
respectively. The major challenge of density-based methods is that they are naturally defined on
data points in a continuous space. Therefore, they often cannot be meaningfully used in a discrete
or noneuclidian space, unless an embedding approach is used. Thus, many arbitrary data types such
as time-series data are not quite as easy to use with density-based methods without specialized
transformations. Another issue is that density computations becomes increasingly difficult to define
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with greater dimensionality because of the greater number of cells in the underlying grid structure
and the sparsity of the data in the underlying grid. A detailed discussion of density-based and grid-
based methods is provided in Chapters 5 and 6 of this book.

1.2.5 Leveraging Dimensionality Reduction Methods

Dimensionality reduction methods are closely related to both feature selection and clustering, in
that they attempt to use the closeness and correlations between dimensions to reduce the dimension-
ality of representation. Thus, dimensionality reduction methods can often be considered a vertical
form of clustering, in which columns of the data are clustered with the use of either correlation or
proximity analysis, as opposed to the rows. Therefore, a natural question arises, as to whether it is
possible to perform these steps simultaneously, by clustering rows and columns of the data together.
The idea is that simultaneous row and column clustering is likely to be more effective than perform-
ing either of these steps individually. This broader principle has led to numerous algorithms such
as matrix factorization, spectral clustering, probabilistic latent semantic indexing, and co-clustering.
Some of these methods such as spectral clustering are somewhat different but are nevertheless based
on the same general concept. These methods are also closely related to projected clustering meth-
ods, which are commonly used for high dimensional data in the database literature. Some common
models will be discussed below.

1.2.5.1 Generative Models for Dimensionality Reduction

In these models, a generative probability distribution is used to model the relationships between
the data points and dimensions in an integrated way. For example, a generalized Gaussian distri-
bution can be considered a mixture of arbitrarily correlated (oriented) clusters, whose parameters
can be learned by the EM-algorithm. Of course, this is often not easy to do robustly with increasing
dimensionality due to the larger number of parameters involved in the learning process. It is well
known that methods such as EM are highly sensitive to overfitting, in which the number of param-
eters increases significantly. This is because EM methods try to retain all the information in terms
of soft probabilities, rather than making the hard choices of point and dimension selection by non-
parametric methods. Nevertheless, many special cases for different data types have been learned
successfully with generative models.

A particularly common dimensionality reduction method is that of topic modeling in text data
[45]. This method is also sometimes referred to as Probabilistic Latent Semantic Indexing (PLSI).
In topic modeling, a cluster is associated with a set of words and a set of documents simultaneously.
The main parameters to be learned are the probabilities of assignments of words (dimensions) to
topics (clusters) and those of the documents (data points) to topics (clusters). Thus, this naturally
creates a soft clustering of the data from both a row and column perspective. These are then learned
in an integrated way. These methods have found a lot of success in the text mining literature, and
many methods, such as Latent Dirichlet Allocation (LDA), which vary on this principle, with the
use of more generalized priors have been proposed [22]. Many of these models are discussed briefly
in Chapter 3.

1.2.5.2 Matrix Factorization and Co-Clustering

Matrix factorization and co-clustering methods are also commonly used classes of dimension-
ality reduction methods. These methods are usually applied to data which is represented as sparse
nonnegative matrices, though it is possible in principle to generalize these methods to other kinds
of matrices as well. However, the real attraction of this approach is the additional interpretability
inherent in nonnegative matrix factorization methods, in which a data point can be expressed as a
nonnegative linear combination of the concepts in the underlying data. Nonnegative matrix factor-
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ization methods are closely related to co-clustering, which clusters the rows and columns of a matrix
simultaneously.

Let A be a nonnegative n× d matrix, which contains n data entries, each of which has a di-
mensionality of d. In most typical applications such as text data, the matrix A represents small
nonnegative quantities such as word frequencies and is not only nonnegative, but also sparse. Then,
the matrix A can be approximately factorized into two nonnegative low rank matrices U and V of
sizes n× k and k× d, respectively. As we will discuss later, these matrices are the representatives
for the clusters on the rows and the columns, respectively, when exactly k clusters are used in order
to represent both rows and columns. Therefore, we have

A≈U ·V (1.1)

The residual matrix R represents the noise in the underlying data:

R = A−U ·V (1.2)

Clearly, it is desirable to determine the factorized matrices U and V , such that the sum of the squares
of the residuals in R is minimized. This is equivalent to determining nonnegative matrices U and V ,
such that the Froebinius norm of A−U ·V is minimized. This is a constrained optimization problem,
in which the constraints correspond to the nonnegativity of the entries in U and V . Therefore, a
Lagrangian method can be used to learn the parameters of this optimization problem. A detailed
discussion of the iterative approach is provided in [55].

The nonnegative n× k matrix U represents the coordinates of each of the n data points into
each of the k newly created dimensions. A high positive value of the entry (i, j) implies that data
point i is closely related to the newly created dimension j. Therefore, a trivial way to perform the
clustering would be to assign each data point to the newly created dimension for which it has the
largest component in U . Alternatively, if data points are allowed to belong to multiple clusters, then
for each of the k columns in V , the entries with value above a particular threshold correspond to
the document clusters. Thus, the newly created set of dimensions can be made to be synonymous
with the clustering of the data set. In practice, it is possible to do much better, by using k-means
on the new representation. One nice characteristic of the nonnegative matrix factorization method
is that the size of an entry in the matrix U tells us how much a particular data point is related to a
particular concept (or newly created dimension). The price of this greater interpretability is that the
newly created sets of dimensions are typically not orthogonal to one another. This brings us to a
discussion of the physical interpretation of matrix V .

The k×d matrix V provides the actual representation of each of the k newly created dimensions
in terms of the original d dimensions. Thus, each row in this matrix is one component of this
newly created axis system, and the rows are not necessarily orthogonal to one another (unlike most
other dimensionality reduction methods). A large positive entry implies that this newly created
dimension is highly related to a particular dimension in the underlying data. For example, in a
document clustering application, the entries with large positive values in each row represent the most
common words in each cluster. A thresholding technique can be used to identify these words. Note
the similarity of this approach with a projection-based technique or the softer PLSI technique. In the
context of a document clustering application, these large positive entries provide the word clusters
in the underlying data. In the context of text data, each document can therefore be approximately
expressed (because of the factorization process) as a nonnegative linear combination of at most
k word-cluster vectors. The specific weight of that component represents the importance of that
component, which makes the decomposition highly interpretable. Note that this interpretability is
highly dependent on nonnegativity. Conversely, consider the word-membership vector across the
corpus. This can be expressed in terms of at most k document-cluster vectors. This provides an idea
of how important each document cluster is to that word.

At this point, it should be evident that the matrices U and V simultaneously provide the clusters
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on the rows (documents) and columns (words). This general principle, when applied to sparse non-
negative matrices, is also referred to as co-clustering. Of course, nonnegative matrix factorization is
only one possible way to perform the co-clustering. A variety of graph-based spectral methods and
other information theoretic methods can also be used in order to perform co-clustering [29, 30, 71].
Matrix factorization methods are discussed in Chapter 7. These techniques are also closely related
to spectral methods for dimensionality reduction, as discussed below.

1.2.5.3 Spectral Methods

Spectral methods are an interesting technique for dimensionality reduction, which work with the
similarity (or distance) matrix of the underlying data, instead of working with the original points and
dimensions. This, of course, has its own set of advantages and disadvantages. The major advantage
is that it is now possible to work with arbitrary objects for dimensionality reduction, rather than
simply data points which are represented in a multi-dimensional space. In fact, spectral methods
also perform the dual task of embedding these objects into a euclidian space, while performing
the dimensionality reduction. Therefore, spectral methods are extremely popular for performing
clustering on arbitrary objects such as node sets in a graph. The disadvantage of spectral methods
is that since they work with an n× n similarity matrix, the time complexity for even creating the
similarity matrix scales with the square of the number of data points. Furthermore, the process of
determining the eigenvectors of this matrix can be extremely expensive, unless a very small number
of these eigenvectors is required. Another disadvantage of spectral methods is that it is much more
difficult to create lower dimensional representations for data points, unless they are part of the
original sample from which the similarity matrix was created. For multidimensional data, the use
of such a large similarity matrix is rather redundant, unless the data is extremely noisy and high
dimensional.

Let D be a database containing n points. The first step is to create an n×n matrix W of weights,
which represents the pairwise similarity between the different data points. This is done with the use
of the heat kernel. For any pair of data points Xi and Xj, the heat kernel defines a similarity matrix
W of weights:

Wi j = exp(−||Xi−Xj||2/t) (1.3)

Here t is a user-defined parameter. Furthermore, the value of Wi j is set to 0 if the distance between Xi

and Xj is greater than a given threshold. The similarity matrix may also be viewed as the adjacency
matrix of a graph, in which each node corresponds to a data item, and the weight of an edge corre-
sponds to the similarity between these data items. Therefore, spectral methods reduce the problem
to that of finding optimal cuts in this graph, which correspond to partitions which are weakly con-
nected by edges representing similarity. Hence, spectral methods can be considered a graph-based
technique for clustering of any kinds of data, by converting the similarity matrix into a network
structure. Many variants exist in terms of the different choices for constructing the similarity matrix
W . Some simpler variants use the mutual k-nearest neighbor graph, or simply the binary graph in
which the distances are less than a given threshold. The matrix W is symmetric.

It should be noted that even when distances are very noisy, the similarity matrix encodes a
significant amount of information because of its exhaustive nature. It is here that spectral analy-
sis is useful, since the noise in the similarity representation can be abstracted out with the use of
eigenvector-analysis of this matrix. Thus, these methods are able to recover and sharpen the latent
information in the similarity matrix, though at a rather high cost, which scales with the square of
the number of data points.

First, we will discuss the problem of mapping the points onto a 1-dimensional space. The gen-
eralization to the k-dimensional case is relatively straightforward. We would like to map the data
points in D into a set of points y1 . . .yn on a line, in which the similarity maps onto euclidian dis-
tances on this line. Therefore, it is undesirable for data points which are very similar to be mapped
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onto distant points on this line. We would like to determine values of yi which minimize the follow-
ing objective function O:

O =
n

∑
i=1

n

∑
j=1

Wi j · (yi− y j)
2 (1.4)

The objective function O can be rewritten in terms of the Laplacian matrix L of W . The Lapla-
cian matrix is defined as D−W , where D is a diagonal matrix satisfying Dii = ∑n

j=1 Wi j. Let
y = (y1 . . .yn). The objective function O can be rewritten as follows:

O = 2 · yT ·L · y (1.5)

We need to incorporate a scaling constraint in order to ensure that the trivial value of yi = 0 for all i
is not selected by the problem. A possible scaling constraint is as follows:

yT ·D · y = 1 (1.6)

Note that the use of the matrix D provides different weights to the data items, because it is assumed
that nodes with greater similarity to different data items are more involved in the clustering process.
This optimization formulation is in generalized eigenvector format, and therefore the value of y is
optimized by selecting the smallest eigenvalue for which the generalized eigenvector relationship
L ·y= λ ·D ·y is satisfied. In practice however, the smallest generalized eigenvalue corresponds to the
trivial solution, where y is the (normalized) unit vector. This trivial eigenvector is noninformative.
Therefore, it can be discarded, and it is not used in the analysis. The second-smallest eigenvalue
then provides an optimal solution, which is more informative.

This model can be generalized to determining all the eigenvectors in ascending order of eigen-
value. Such directions correspond to successive orthogonal directions in the data, which result in the
best mapping. This results in a set of n eigenvectors e1,e2 . . .en (of which the first is trivial), with
corresponding eigenvalues 0 = λ1 ≤ λ2 . . .≤ λn. Let the corresponding vector representation of the
data points along each eigenvector be denoted by y1 . . .yn.

What do the small and large magnitude eigenvectors intuitively represent in the new transformed
space? By using the ordering of the data items along a small magnitude eigenvector to create a cut,
the weight of the edges across the cut is likely to be small. Thus, this represents a cluster in the
space of data items. At the same time, if the top k longest eigenvectors are picked, then the vector
representations yn . . .yn−k+1 provide a n× k matrix. This provides a k-dimensional embedded rep-
resentation of the entire data set of n points, which preserves the maximum amount of information.
Thus, spectral methods can be used in order to simultaneously perform clustering and dimensional-
ity reduction. In fact, spectral methods can be used to recover the entire lower dimensional (possibly
nonlinear) shape of the data, though arguably at a rather high cost [78]. The specific local dimen-
sionality reduction technique of this section is discussed in detail in [19]. An excellent survey on
spectral clustering methods may be found in [35, 63]. These methods are also discussed in detail in
Chapter 8 of this book.

1.2.6 The High Dimensional Scenario

The high dimensional scenario is particularly challenging for cluster analysis because of the
large variations in the behavior of the data attributes over different parts of the data. This leads to
numerous challenges in many data mining problems such as clustering, nearest neighbor search, and
outlier analysis. It should be noted that many of the algorithms for these problems are dependent
upon the use of distances as an important subroutine. However, with increasing dimensionality, the
distances seem to increasingly lose their effectiveness and statistical significance because of irrel-
evant attributes. The premise is that a successively smaller fraction of the attributes often remains
relevant with increasing dimensionality, which leads to the blurring of the distances and increasing
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concentration effects, because of the averaging behavior of the irrelevant attributes. Concentration
effects refer to the fact that when many features are noisy and uncorrelated, their additive effects will
lead to all pairwise distances between data points becoming similar. The noise and concentration
effects are problematic in two ways for distance-based clustering (and many other) algorithms:

• An increasing noise from irrelevant attributes may cause errors in the distance representation,
so that it no longer properly represents the intrinsic distance between data objects.

• The concentration effects from the irrelevant dimensions lead to a reduction in the statistical
significance of the results from distance-based algorithms, if used directly with distances that
have not been properly denoised.

The combination of these issues above leads to questions about whether full-dimensional distances
are truly meaningful [8, 21, 43]. While the natural solution to such problems is to use feature se-
lection, the problem is that different attributes may be relevant to different localities of the data.
This problem is inherent in high-dimensional distance functions and nearest neighbor search. As
stated in [43]: “. . . One of the problems of the current notion of nearest neighbor search is that it
tends to give equal treatment to all features (dimensions), which are however not of equal impor-
tance. Furthermore, the importance of a given dimension may not even be independent of the query
point itself” p. 506. These noise and concentration effects are therefore a problematic symptom of
(locally) irrelevant, uncorrelated, or noisy attributes, which tend to impact the effectiveness and sta-
tistical significance of full-dimensional algorithms. This has lead to significant efforts to redesign
many data mining algorithms such as clustering, which are dependent on the notion of distances
[4]. In particular, it would seem odd that data mining algorithms should behave poorly with in-
creasing dimensionality at least from a qualitative perspective when a larger number of dimensions
clearly provides more information. The reason is that conventional distance measures were gener-
ally designed for many kinds of low-dimensional spatial applications which are not suitable for the
high-dimensional case. While high-dimensional data contain more information, they are also more
complex. Therefore, naive methods will do worse with increasing dimensionality because of the
noise effects of locally irrelevant attributes. Carefully designed distance functions can leverage the
greater information in these dimensions and show improving behavior with dimensionality [4, 11]
at least for a few applications such as similarity search.

Projected clustering methods can be considered a form of local feature selection, or local di-
mensionality reduction, in which the feature selection or transformation is performed specific to
different localities of the data. Some of the earliest methods even refer to these methods as local-
dimensionality reduction [23] in order to emphasize the local feature selection effect. Thus, a pro-
jected cluster is defined as a set of clusters C1 . . .Ck, along with a corresponding set of subspaces
E1 . . .Ek, such that the points in Ci cluster well in the subspace represented by Ei. Thus, these meth-
ods are a form of local feature selection, which can be used to determine the relevant clusters in
the underlying data. Note that the subspace Ei could represent a subset of the original attributes,
or it could represent a transformed axis system in which the clusters are defined on a small set of
orthogonal attributes. Some of the earliest projected clustering methods are discussed in [6, 9, 10].
The literature on this area has grown significantly since 2000, and surveys on the area may be found
in [67, 54]. An overview of algorithms for high-dimensional data will be provided in Chapter 9.

It should also be pointed out that while pairwise distances are often too noisy or concentrated
to be used meaningfully with off-the-shelf distance-based algorithms, larger portions of the entire
distance matrix often retain a significant amount of latent structure due to the inherent redundan-
cies in representing different pairwise distances. Therefore, even when there is significant noise and
concentration of the distances, there will always be some level of consistent variations over the sim-
ilarity matrix because of the impact of the consistent attributes. This redundancy can be leveraged
in conjunction with spectral analysis [19, 78] to filter out the noise and concentration effects from
full-dimensional distances and implicitly recover the local or global lower dimensional shape of the
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underlying data in terms of enhanced distance representations of newly embedded data in a lower
dimensional space. In essence, this approach enhances the contrasts of the distances by carefully
examining how the noise (due to the many irrelevant attributes) and the minute correlations (due
to the smaller number of relevant attributes) relate to the different pairwise distances. The general
principle of these techniques is that distances are measured differently in high-dimensional space,
depending upon how the data is distributed. This in turn depends upon the relevance and relation-
ships of different attributes in different localities. These results are strong evidence for the fact that
proper distance function design is highly dependent on its ability to recognize the relevance and
relationships of different attributes in different data localities.

Thus, while (naively designed) pairwise distances cannot be used meaningfully in high dimen-
sional data with off-the-shelf algorithms because of noise and concentration effects, they often do
retain sufficient latent information collectively when used carefully in conjunction with denoising
methods such as spectral analysis. Of course, the price for this is rather high, since the size of
the similarity matrix scales with the square of the number of data points. The projected cluster-
ing method is generally a more efficient way of achieving an approximately similar goal, since it
works directly with the data representation, rather than building a much larger and more redundant
intermediate representation such as the distance matrix.

1.2.7 Scalable Techniques for Cluster Analysis

With advances in software and hardware technology, data collection has become increasingly
easy in a wide variety of scenarios. For example, in social sensing applications, users may carry
mobile or wearable sensors, which may result in the continuous accumulation of data over time. This
leads to numerous challenges when real-time analysis and insights are required. This is referred to
as the streaming scenario, in which it is assumed that a single pass is allowed over the data stream,
because the data are often too large to be collected within limited resource constraints. Even when
the data are collected offline, this leads to numerous scalability issues, in terms of integrating with
traditional database systems or in terms of using the large amounts of data in a distributed setting,
with the big data framework. Thus, varying levels of challenges are possible, depending upon the
nature of the underlying data. Each of these issues is discussed below.

1.2.7.1 I/O Issues in Database Management

The most fundamental issues of scalability arise when a data mining algorithm is coupled with
a traditional database system. In such cases, it can be shown that the major bottleneck arises from
the I/O times required for accessing the objects in the database. Therefore, algorithms which use
sequential scans of the data, rather than methods which randomly access the data records, are often
useful. A number of classical methods were proposed in the database literature in order to address
these scalability issues.

The easiest algorithms to extend to this case are flat partitioning methods which use sequential
scans over the database in order to assign data points to representatives. One of the first methods
[66] in this direction was CLARANS, in which these representatives are determined with the use of
a k-medoids approach. Note that the k-medoids approach can still be computationally quite inten-
sive because each iteration requires trying out new partitioning representatives through an exchange
process (from the current set). If a large number of iterations is required, this will increase the num-
ber of passes over the data set. Therefore, the CLARANS method uses sampling, by performing the
iterative hill climbing over a smaller sample, in order to improve the efficiency of the approach.
Another method in this direction is BIRCH [87], which generalizes a k-means approach to the clus-
tering process. The CURE method proposed in [41] finds clusters of nonspherical shape by using
more than one representative point per cluster. It combines partitioning and sampling to ensure a
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more efficient clustering process. A number of scalable algorithms for clustering are discussed in
Chapter 11.

1.2.7.2 Streaming Algorithms

The streaming scenario is particularly challenging for clustering algorithms due to the require-
ments of real-time analysis, and the evolution and concept-drift in the underlying data. While
database-centric algorithms require a limited number of passes over the data, streaming algorithms
require exactly one pass, since the data cannot be stored at all. In addition to this challenge, the
analysis typically needs to be performed in real time, and the changing patterns in the data need to
be properly accounted for in the analysis.

In order to achieve these goals, virtually all streaming methods use a summarization technique
to create intermediate representations, which can be used for clustering. One of the first methods in
this direction uses a microclustering approach [7] to create and maintain the clusters from the un-
derlying data stream. Summary statistics are maintained for the microclusters to enable an effective
clustering process. This is combined with a pyramidal time frame to capture the evolving aspects
of the underlying data stream. Stream clustering can also be extended to other data types such as
discrete data, massive-domain data, text data, and graph data. A number of unique challenges also
arises in the distributed setting. A variety of stream clustering algorithms is discussed in detail in
Chapter 10.

1.2.7.3 The Big Data Framework

While streaming algorithms work under the assumption that the data are too large to be stored
explicitly, the big data framework leverages advances in storage technology in order to actually
store the data and process them. However, as the subsequent discussion will show, even if the data
can be explicitly stored, it is often not easy to process and extract insights from them. This is be-
cause an increasing size of the data implies that a distributed file system must be used in order to
store the information, and distributed processing techniques are required in order to ensure suffi-
cient scalability. The challenge here is that if large segments of the data are available on different
machines, it is often too expensive to shuffle the data across different machines in order to extract
integrated insights from them. Thus, as in all distributed infrastructures, it is desirable to exchange
intermediate insights, so as to minimize communication costs. For an application programmer, this
can sometimes create challenges in terms of keeping track of where different parts of the data are
stored, and the precise ordering of communications in order to minimize the costs.

In this context, Google’s MapReduce framework [28] provides an effective method for anal-
ysis of large amounts of data, especially when the nature of the computations involves linearly
computable statistical functions over the elements of the data streams. One desirable aspect of this
framework is that it abstracts out the precise details of where different parts of the data are stored
to the application programmer. As stated in [28]: “The run-time system takes care of the details of
partitioning the input data, scheduling the program’s execution across a set of machines, handling
machine failures, and managing the required inter-machine communication. This allows program-
mers without any experience with parallel and distributed systems to easily utilize the resources of
a large distributed system” p. 107. Many clustering algorithms such as k-means are naturally linear
in terms of their scalability with the size of the data. A primer on the MapReduce framework imple-
mentation on Apache Hadoop may be found in [84]. The key idea here is to use a Map function to
distribute the work across the different machines, and then provide an automated way to shuffle out
much smaller data in (key,value) pairs containing intermediate results. The Reduce function is then
applied to the aggregated results from the Map step to obtain the final results.

Google’s original MapReduce framework was designed for analyzing large amounts of web logs
and more specifically deriving linearly computable statistics from the logs. While the clustering pro-
cess is not as simple as linearly computable statistics, it has nevertheless been shown [26] that many
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existing clustering algorithms can be generalized to the MapReduce framework. A proper choice of
the algorithm to adapt to the MapReduce framework is crucial, since the framework is particularly
effective for linear computations. It should be pointed out that the major attraction of the MapRe-
duce framework is its ability to provide application programmers with a cleaner abstraction, which
is independent of very specific run-time details of the distributed system. It should not, however, be
assumed that such a system is somehow inherently superior to existing methods for distributed par-
allelization from an effectiveness or flexibility perspective, especially if an application programmer
is willing to design such details from scratch. A detailed discussion of clustering algorithms for big
data is provided in Chapter 11.

1.3 Data Types Studied in Cluster Analysis

The specific data type has a tremendous impact on the particular choice of the clustering algo-
rithm. Most of the earliest clustering algorithms were designed under the implicit assumption that
the data attributes were numerical. However, this is not true in most real scenarios, where the data
could be drawn from any number of possible types such as discrete (categorical), temporal, or struc-
tural. This section discusses the impact of data types on the clustering process. A brief overview of
the different data types is provided in this section.

1.3.1 Clustering Categorical Data

Categorical data is fairly common in real data sets. This is because many attributes in real data
such as sex, race, or zip code are inherently discrete and do not take on a natural ordering. In many
cases, the data sets may be mixed, in which some attributes such as salary are numerical, whereas
other attributes such as sex or zip code are categorical. A special form of categorical data is market
basket data, in which all attributes are binary.

Categorical data sets lead to numerous challenges for clustering algorithms:

• When the algorithms depends upon the use of a similarity or distance function, the standard
Lk metrics can no longer be used. New similarity measures need to be defined for categorical
data. A discussion of similarity measures for categorical data is provided in [32].

• Many clustering algorithms such as the k-means or k-medians methods construct clustering
representatives as the means or medians of the data points in the clusters. In many cases,
statistics such as the mean or median are naturally defined for numerical data but need to be
appropriately modified for discrete data.

When the data is mixed, then the problem because more difficult because the different attributes now
need to be treated in a heterogeneous way, and the similarity functions need to explicitly account
for the underlying heterogeneity.

It should be noted that some models of clustering are more amenable to different data types than
others. For example, some models depend only on the distance (or similarity) functions between
records. Therefore, as long as an appropriate similarity function can be defined between records,
cluster analysis methods can be used effectively. Spectral clustering is one class of methods which
can be used with virtually any data type, as long as appropriate similarity functions are defined.
The downside is that the the methods scale with the square of the similarity matrix size. Generative
models can also be generalized easily to different data types, as long as an appropriate generative
model can be defined for each component of the mixture. Some common algorithms for categorical
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data clustering include CACTUS [38], ROCK [40], STIRR [39], and LIMBO [15]. A discussion of
categorical data clustering algorithms is provided in Chapter 12.

1.3.2 Clustering Text Data

Text data is a particularly common form of data with the increasing popularity of the web and
social networks. Text data is typically represented in vector space format, in which the specific
ordering is abstracted out, and the data is therefore treated as a bag-of-words. It should be noted that
the methods for clustering text data can also be used for clustering set-based attributes. Text data
has a number of properties which should be taken into consideration:

• The data is extremely high-dimensional and sparse. This corresponds to the fact that the text
lexicon is rather large, but each document contains only a small number of words. Thus, most
attributes take on zero values.

• The attribute values correspond to word frequencies and are, therefore, typically nonnega-
tive. This is important from the perspective of many co-clustering and matrix factorization
methods, which leverage this nonnegativity.

The earliest methods for text clustering such as the scatter–gather method [25, 75] use distance-
based methods. Specifically, a combination of k-means and agglomerative methods is used for the
clustering process. Subsequently, the problem of text clustering has often been explored in the con-
text of topic modeling, where a soft membership matrix of words and documents to clusters is cre-
ated. The EM-framework is used in conjunction with these methods. Two common methods used
for generative topic modeling are PLSI and LDA [22, 45]. These methods can be considered soft
versions of methods such as co-clustering [29, 30, 71] and matrix factorization [55], which cluster
the rows and columns together at the same time. Spectral methods [73] are often used to perform this
partitioning by creating a bipartite similarity graph, which represents the membership relations of
the rows (documents) and columns (words). This is not particularly surprising since matrix factor-
ization methods and spectral clustering are known to be closely related [57], as discussed in Chapter
8 of this book. Surveys on text clustering may be found in [12, 88]. In recent years, the popularity
of social media has also lead to an increasing importance of short text documents. For example, the
posts and tweets in social media web sites are constrained in length, both by the platform and by
user preferences. Therefore, specialized methods have also been proposed recently for performing
the clustering in cases where the documents are relatively short. Methods for clustering different
kinds of text data are discussed in Chapter 13.

1.3.3 Clustering Multimedia Data

With the increasing popularity of social media, many forms of multimedia data may be used in
conjunction with clustering methods. These include image data, audio and video. Examples of social
media sites which contain large amounts of such data are Flickr and Youtube. Even the web and
conventional social networks typically contain a significant amount of multimedia data of different
types. In many cases, such data may occur in conjunction with other more conventional forms of
text data.

The clustering of multimedia data is often a challenging task, because of the varying and hetero-
geneous nature of the underlying content. In many cases, the data may be multimodal, or it may be
contextual, containing both behavioral and contextual attributes. For example, image data are typ-
ically contextual, in which the position of a pixel represents its context, and the value on the pixel
represents its behavior. Video and music data are also contextual, because the temporal ordering
of the data records provides the necessary information for understanding. The heterogeneity and
contextual nature of the data can only be addressed with proper data representations and analysis. In
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fact, data representation seems to be a key issue in all forms of multimedia analysis, which signif-
icantly impacts the final quality of results. A discussion of methods for clustering multimedia data
is provided in Chapter 14.

1.3.4 Clustering Time-Series Data

Time-series data is quite common in all forms of sensor data, stock markets, or any other kinds of
temporal tracking or forecasting applications. The major aspect of time series is that the data values
are not independent of one another, but they are temporally dependent on one another. Specifically,
the data contain a contextual attribute (time) and a behavioral attribute (data value). There is a
significant diversity in problem definitions in the time-series scenario. The time-series data can be
clustered in a variety of different ways, depending upon whether correlation-based online analysis
is required or shape-based offline analysis is required.

• In correlation-based online analysis, the correlations among the different time-series data
streams are tracked over time in order to create online clusters. Such methods are often useful
for sensor selection and forecasting, especially when streams exhibit lag correlations within
the clustered patterns. These methods are often used in stock market applications, where it is
desirable to maintain groups of clustered stock tickers, in an online manner, based on their
correlation patterns. Thus, the distance functions between different series need to be computed
continuously, based on their mutual regression coefficients. Some examples of these methods
include the MUSCLES approach [86] and a large scale time-series correlation monitoring
method [90].

• In shape-based offline analysis, the time-series objects are analyzed in offline manner, and the
specific details about when a particular time series was created is not important. For example,
for a set of ECG time series collected from patients, the precise time of when a series was
collected is not important, but the overall shape of the series is important for the purposes
of clustering. In such cases, the distance function between two time series is important. This
is important, because the different time series may not be drawn on the same range of data
values and may also show time-warping effects, in which the shapes can be matched only
by elongating or shrinking portions of the time-series in the temporal direction. As in the
previous case, the design of the distance function [42] holds the key to the effective use of the
approach.

A particular interesting case is that of multivariate time series, in which many series are simulta-
neously produced over time. A classical example of this is trajectory data, in which the different
coordinate directions form the different components of the multivariate series. Therefore, trajectory
analysis can be viewed as a special kind of time-series clustering. As in the case of univariate time
series, it is possible to perform these steps using either online analysis (trajectories moving together
in real time) or offline analysis (similar shape). An example of the former is discussed in [59],
whereas an example of the latter is discussed in [68]. A survey on time-series data is found in [60],
though this survey is largely focussed on the case of offline analysis. Chapter 15 discusses both the
online and offline aspects of time series clustering.

1.3.5 Clustering Discrete Sequences

Many forms of data create discrete sequences instead of categorical ones. For example, web
logs, the command sequences in computer systems, and biological data are all discrete sequences.
The contextual attribute in this case often corresponds to placement (e.g., biological data), rather
than time. Biological data is also one of the most common applications of sequence clustering.
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As with the case of continuous sequences, a key challenge is the creation of similarity functions
between different data objects. Numerous similarity functions such as the hamming distance, edit
distance, and longest common subsequence are commonly used in this context. A discussion of the
similarity functions which are commonly used for discrete sequences may be found in [58]. Another
key problem which arises in the context of clustering discrete sequences is that the intermediate and
summary representation of a set of sequences can be computationally intensive. Unlike numerical
data, where averaging methods can be used, it is much more difficult to find such representations
for discrete sequences. A common representation, which provides a relatively limited level of sum-
marization is the suffix tree. Methods for using suffix trees for sequence clustering methods have
been proposed in CLUSEQ [85].

Generative models can be utilized, both to model the distances between sequences and to cre-
ate probabilistic models of cluster generation [76]. A particularly common approach is the use of
mixtures of HMMs. A primer on Hidden Markov Models may be found in [70]. Hidden Markov
Models can be considered a special kind of mixture model in which the different components of the
mixture are dependent on one another. A second level of mixture modeling can be used in order to
create clusters from these different HMMs. Much of the work on sequence clustering is performed
in the context of biological data. Detailed surveys on the subject may be found in [33, 49, 64]. A
discussion of sequence clustering algorithms is provided in Chapter 16, though this chapter also
provides a survey of clustering algorithms for other kinds of biological data.

1.3.6 Clustering Network Data

Graphs and networks are among the most fundamental (and general) of all data representations.
This is because virtually every data type can be represented as a similarity graph, with similarity
values on the edges. In fact, the method of spectral clustering can be viewed as the most general
connection between all other types of clustering and graph clustering. Thus, as long as a similarity
function can be defined between arbitrary data objects, spectral clustering can be used in order to
perform the analysis. Graph clustering has been studied extensively in the classical literature, espe-
cially in the context of the problem of 2-way and multi-way graph partitioning. The most classical
of all multi-way partitioning algorithms is the Kernighan-Lin method [56]. Such methods can be
used in conjunction with graph coarsening methods in order to provide efficient solutions. These
methods are known as multilevel graph partitioning techniques. A particularly popular algorithm in
this category is METIS [53].

A number of methods are commonly used in the literature in order to create partitions from
graphs:

• Generative Models: As discussed earlier in this chapter, it is possible to define a genera-
tive model for practically any clustering problem, as long as an appropriate method exists
for defining each component of the mixture as a probability distribution. An example of a
generative model for network clustering is found in [77].

• Classical Combinatorial Algorithms: These methods use network flow [13] or other iterative
combinatorial techniques in order to create partitions from the underlying graph. It should be
pointed out that even edge sampling is often known to create good quality partitions, when it
is repeated many times [51]. It is often desirable to determine cuts which are well balanced
across different partitions, because the cut with the smallest absolute value often contains
the large majority of the nodes in a single partition and a very small number of nodes in the
remaining partitions. Different kinds of objective functions in terms of creating the cut, such
as the unnormalized cut, normalized cut, and ratio cut, provide different tradeoffs between
cluster balance and solution quality [73]. It should be pointed out that since graph cuts are a
combinatorial optimization problem, they can be formulated as integer programs.
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• Spectral Methods: Spectral methods can be viewed as linear programming relaxations to the
integer programs representing the optimization of graph cuts. Different objective functions
can be constructed for different kinds of cuts, such as the unnormalized cut, ratio cut, and
normalized cut. Thus, the continuous solutions to these linear programs can be used to create
a multidimensional embedding for the nodes, on which conventional k-means algorithms can
be applied. These linear programs can be shown to take on a specially convenient form, in
which the generalized eigenvectors of the graph Laplacian correspond to solutions of the
optimization problem.

• Nonnegative Matrix Factorization: Since a graph can be represented as an adjacency matrix,
nonnegative matrix factorization can be used in order to decompose it into two low rank
matrices. It is possible to apply the matrix factorization methods either to the node–node
adjacency matrix or the node–edge adjacency matrix to obtain different kinds of insights. It
is also relatively easy to augment the matrix with content to create analytical methods, which
can cluster with a combination of content and structure [69].

While the aforementioned methods represent a sampling of the important graph clustering methods,
numerous other objective functions are possible for the construction of graph cuts such as the use
of modularity-based objective functions [24]. Furthermore, the problem becomes even more chal-
lenging in the context of social networks, where content may be available at either the nodes [89]
or edges [69]. Surveys on network clustering may be found in [36, 72]. Algorithms for network
clustering are discussed in detail in Chapter 17.

1.3.7 Clustering Uncertain Data

Many forms of data either are of low fidelity or the quality of the data has been intentionally
degraded in order to design different kinds of network mining algorithms. This has lead to the
field of probabilistic databases. Probabilistic data can be represented either in the form of attribute-
wise uncertainty or in the form of a possible worlds model, in which only particular subsets of
attributes can be present in the data at a given time [3]. The key idea here is that the incorporation
of probabilistic information can improve the quality of data mining algorithms. For example, if
two attributes are equally desirable to use in an algorithm in the deterministic scenario, but one
of them has greater uncertainty than the other, then the attribute with less uncertainty is clearly
more desirable for use. Uncertain clustering algorithms have also been extended recently to the
domain of streams and graphs. In the context of graphs, it is often desirable to determine the most
reliable subgraphs in the underlying network. These are the subgraphs which are the most difficult
to disconnect under edge uncertainty. A discussion of algorithms for reliable graph clustering may
be found in [62]. Uncertain data clustering algorithms are discussed in Chapter 18.

1.4 Insights Gained from Different Variations of Cluster Analysis

While the aforementioned methods discuss the basics of the different clustering algorithms, it
is often possible to obtain enhanced insights either by using more rigorous analysis or by incorpo-
rating additional techniques or data inputs. These methods are particularly important because of the
subjectivity of the clustering process, and the many different ways in which the same data set can
be clustered. How do we know that a particular clustering is good or that it solves the needs of the
application? There are numerous ways in which these issues can be explored. The exploration could
be through interactive visualization and human interaction, external knowledge-based supervision,
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explicitly exploring the multiple solutions to evaluate different possibilities, combining the multiple
solutions to create more robust ensembles, or trying to judge the quality of different solutions with
the use of different validation criteria. For example, the presence of labels adds domain knowledge
to the clustering process, which can be used in order to improve insights about the quality of the
clustering. This approach is referred to as semisupervision. A different way of incorporating domain
knowledge (and indirect supervision) would be for the human to explore the clusters interactively
with the use of visual methods and interact with the clustering software in order to create more
meaningful clusters. The following subsections will discuss these alternatives in detail.

1.4.1 Visual Insights

Visual analysis of multidimensional data is a very intuitive way to explore the structure of the
underlying data, possibly incorporating human feedback into the process. Thus, this approach could
be considered an informal type of supervision, when human feedback is incorporated into cluster
generation. The major advantage of incorporating human interaction is that a human can often pro-
vide intuitive insights, which are not possible from an automated computer program of significant
complexity. On the other hand, a computer is much faster at the detailed calculations required both
for clustering and for “guessing” the most appropriate feature-specific views of high dimensional
data. Thus, a combination of a human and a computer often provides clusters which are superior to
those created by either.

One of the most well-known systems for visualization of high-dimensional clusters is the HD-
Eye method [44], which explores different subspaces of the data in order to determine clusters in
different feature-specific views of the data. Another well-known technique is the IPCLUS method
[2]. The latter method generates feature-specific views in which the data is well polarized. A well-
polarized view refers to a 2-dimensional subset of features in which the data clearly separates out
into clusters. A kernel-density estimation method is used to determine the views in which the data
is well polarized. The final clustering is determined by exploring different views of the data, and
counting how the data separates out into clusters in these different views. This process is essentially
an ensemble-based method, an approach which is used popularly in the clustering literature, and
will be discussed in a later part of this section. Methods for both incorporating and extracting visual
insights from the clustering process are discussed in Chapter 19.

1.4.2 Supervised Insights

The same data set may often be clustered in multiple ways, especially when the dimensionality
of the data set is high and subspace methods are used. Different features may be more relevant to
different kinds of applications and insights. Since clustering is often used as an intermediate step in
many data mining algorithms, it then becomes difficult to choose a particular kind of clustering that
may suit that application. The subjectiveness of clustering is highly recognized, and small changes
in the underlying algorithm or data set may lead to significant changes in the underlying clusters. In
many cases, this subjectiveness also implies that it is difficult to refer to one particular clustering as
significantly better than another. It is here that supervision can often play an effective role, because
it takes the specific goal of the analyst into consideration.

Consider a document clustering application, in which a web portal creator (analyst) wishes to
segment the documents into a number of categories. In such cases, the analyst may already have an
approximate idea of the categories in which he is interested, but he may not have fully settled on
a particular set of categories. This is because the data may also contain as yet unknown categories
in which the analyst is interested. In such cases, semisupervision is an appropriate way to approach
the problem. A number of labeled examples are provided, which approximately represent the cat-
egories in which the analyst is interested. This is used as domain knowledge or prior knowledge,
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which is used in order to supervise the clustering process. For example, a very simple form of super-
vision would be to use seeding, in which the documents of the appropriate categories are provided
as (some of the) seeds to a representative clustering algorithm such as k-means. In recent years,
spectral methods have also been heavily adapted for the problem of semisupervised clustering. In
these methods, Laplacian smoothing is used on the labels to generate the clusters. This allows the
learning of the lower dimensional data surface in a semisupervised way, as it relates to the under-
lying clusters. The area of semisupervised clustering is also sometimes referred to as constrained
clustering. An excellent discussion on constrained clustering algorithms may be found in [18]. A
number of interesting methods for semisupervised clustering are discussed in Chapter 20, with a
special focus on the graph-based algorithms.

1.4.3 Multiview and Ensemble-Based Insights

As discussed above, one of the major issues in the clustering process is that different kinds of
clusters are possible. When no supervision is available, the bewildering number of possibilities in
the clustering process can sometimes be problematic for the analyst, especially from the perspective
of interpretability. These are referred to as alternative clusters, and technically represent the behavior
from different perspectives. In many cases, the ability to provide different clustering solutions that
are significantly different provides insights to the analyst about the key clustering properties of the
underlying data. This broader area is also referred to as multiview clustering.

The most naive method for multiview clustering is to simply run the clustering algorithm mul-
tiple times, and then examine the different clustering solutions to determine those which are dif-
ferent. A somewhat different approach is to use spectral methods in order to create approximately
orthogonal clusters. Recall that the eigenvectors of the Laplacian matrix represent alternative cuts
in the graph and that the small eigenvectors represent the best cuts. Thus, by applying a 2-means
algorithm to the embedding on each eigenvector, it is possible to create a clustering which is very
different from the clustering created by other (orthogonal) eigenvectors. The orthogonality of the
eigenvectors is important, because it implies that the embedded representations are very different.
Furthermore, the smallest eigenvectors represent the best clusterings, whereas clusterings derived
from successively larger eigenvectors represent successively suboptimal solutions. Thus, this ap-
proach not only provides alternative clusterings which are quite different from one another, but also
provides a ranking of the quality of the different solutions. A discussion of alternative clustering
methods is provided in Chapter 21.

In many cases, the alternative clustering methods can be combined to create more robust solu-
tions with the use of ensemble-based techniques. The idea here is that a combination of the output
of the different clusterings provides a more robust picture of how the points are related to one an-
other. Therefore, the outputs of the different alternatives can be used as input to a meta-algorithm
which combines the results from the different algorithms. Such an approach provides a more robust
clustering solution. A discussion of ensemble-based methods for clustering is provided in Chapter
22.

1.4.4 Validation-Based Insights

Given a particular clustering, how do we know what the quality of the clustering really is?
While one possible approach is to use synthetic data to determine the matching between the input
and output clusters, it is not fully satisfying to rely on only synthetic data. This is because the results
on synthetic data may often be specific to a particular algorithm and may not be easily generalizable
to arbitrary data sets.

Therefore, it is desirable to use validation criteria on the basis of real data sets. The problem
in the context of the clustering problem is that the criteria for quality is not quite as crisp as many
other data mining problems such as classification, where external validation criteria are available in
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the form of labels. Therefore, the use of one or more criteria may inadvertently favor different algo-
rithms. As the following discussion suggests, clustering is a problem in which precise quantification
is often not possible because of its unsupervised nature. Nevertheless, many techniques provide a
partial understanding of the underlying clusters. Some common techniques for cluster validation are
as follows:

• A common method in the literature is to use case studies to illustrate the subjective quality of
the clusters. While case studies provide good intuitive insights, they are not particularly effec-
tive for providing a more rigorous quantification of the quality. It is often difficult to compare
two clustering methods from a quantitative perspective with the use of such an approach.

• Specific measurements of the clusters such as the cluster radius or density may be used in
order to provide a measure of quality. The problem here is that these measures may favor
different algorithms in a different way. For example, a k-means approach will typically be
superior to a density-based clustering method in terms of average cluster radius, but a density-
based method may be superior to a k-means algorithms in terms of the estimated density of
the clusters. This is because there is a circularity in using a particular criterion to evaluate
the algorithm, when the same criterion is used for clustering purposes. This results in a bias
during the evaluation. On the other hand, it may sometimes be possible to reasonably compare
two different algorithms of a very similar type (e.g., two variations of k-means) on the basis
of a particular criterion.

• In many data sets, labels may be associated with the data points. In such cases, cluster quality
can be measured in terms of the correlations of the clusters with the data labels. This provides
an external validation criterion, if the labels have not been used in the clustering process.
However, such an approach is not perfect, because the class labels may not always align with
the natural clusters in the data. Nevertheless, the approach is still considered more “impartial”
than the other two methods discussed above and is commonly used for cluster evaluation.

A detailed discussion of the validation methods commonly used in clustering algorithms is provided
in Chapter 23.

1.5 Discussion and Conclusions

Clustering is one of the most fundamental data mining problems because of its numerous appli-
cations to customer segmentation, target marketing, and data summarization. Numerous classes of
methods have been proposed in the literature, such as probabilistic methods, distance-based meth-
ods, density-based methods, grid-based methods, factorization techniques, and spectral methods.
The problem of clustering has close relationships to the problems of dimensionality reduction, es-
pecially through projected clustering formulations. High-dimensional data is often challenging for
analysis, because of the increasing sparsity of the data. Clustering methods can be viewed as an
integration of feature selection/dimensionality reduction methods with clustering.

The increasing advances in hardware technology allow the collection of large amounts of data
through in an ever-increasing number of ways. This requires dedicated methods for streaming and
distributed processing. Streaming methods typically work with only one pass over the data, and
explicitly account for temporal locality in the clustering methods. Big data methods develop dis-
tributed techniques for clustering, especially through the MapReduce framework. The diversity of
different data types significantly adds to the richness of the clustering problems. Many variations
and enhancements of clustering such as visual methods, ensemble methods, multiview methods, or
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supervised methods can be used to improve the quality of the insights obtained from the clustering
process.
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2.1 Introduction

The growth of the high-throughput technologies nowadays has led to exponential growth in
the harvested data with respect to dimensionality and sample size. As a consequence, storing and
processing these data becomes more challenging. Figure (2.1) shows the trend of this growth for
UCI Machine Learning Repository. This augmentation made manual processing for these datasets
impractical. Therefore, data mining and machine learning tools were proposed to automate pattern
recognition and the knowledge discovery process. However, using data mining techniques on ore
data is mostly useless due to the high level of noise associated with collected samples. Usually, data
noise is either due to imperfection in the technologies that collected the data or to the nature of
the source of this data. For instance, in the medical images domain, any deficiency in the imaging
device will be reflected as noise in the dataset later on. This kind of noise is caused by the device
itself. On the other hand, text datasets crawled from the Internet are noisy by nature because they are
usually informally written and suffer from grammatical mistakes, misspelling, and improper punc-
tuation. Undoubtedly, extracting useful knowledge from such huge and noisy datasets is a painful
task.

Dimensionality reduction is one popular technique to remove noisy (i.e., irrelevant) and redun-
dant attributes (aka features). Dimensionality reduction techniques can be categorized mainly into
feature extraction and feature selection. In the feature extraction approach, features are projected
into a new space with lower dimensionality. Examples of the feature extraction technique include
Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Singular Value
Decomposition (SVD), to name a few. On the other hand, the feature selection approach aims to se-
lect a small subset of features that minimize redundancy and maximize relevance to the target (i.e.,
class label). Popular feature selection techniques include Information Gain, Relief, Chi Squares,
Fisher Score, and Lasso, to name a few.

Both dimensionality reduction approaches are capable of improving learning performance, low-
ering computational complexity, building better generalizable models, and decreasing required stor-
age. However, feature selection is superior in terms of better readability and interpretability since
it maintains the original feature values in the reduced space, while feature extraction transforms
the data from the original space into a new space with lower dimension, which cannot be linked
to the features in the original space. Therefore, further analysis of the new space is problematic
since there is no physical meaning for the transformed features obtained from the feature extraction
technique.

Feature selection is broadly categorized into four models: filter model, wrapper model, em-
bedded model, and hybrid model. As mentioned above, feature selection selects subset of highly
discriminant features. In other words, it selects features that are capable of discriminating samples
that belong to different classes. Thus, we need to have labeled samples as training samples in order
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FIGURE 2.1: Plot (a) shows the dimensionality growth trend in UCI Machine Learning Repository
from mid’ 80s to 2012 while (b) shows the growth in the sample size for the same period.

to select these features. This kind of learning is called supervised learning, which means that the
dataset is labeled. In supervised learning, it is easy to define what relevant feature means. It simply
refers to the feature that is capable of distinguishing different classes. For example, a feature fi is
said to be relevant to a class c j if fi and c j are highly correlated.

Unlabeled data poses yet another challenge in feature selection. In such cases, defining rel-
evancy becomes unclear. However, we still believe that selecting subset(s) of features may help
improve unsupervised learning in a way similar to improving the supervised learning. One of the
most utilized unsupervised learning technique is data clustering. Data clustering is the unsuper-
vised classification of samples into groups. In other words, it is the technique that aims to group
similar samples into one group called a cluster. Each cluster has maximum within-cluster simi-
larity and minimum between-cluster similarity based on certain similarity index. However, find-
ing clusters in high-dimensional space is computationally expensive and may degrade the learn-
ing performance. Furthermore, equally good candidate of features’ subsets may produce different
clusters. Therefore, we demand to utilize feature selection for clustering to alleviate the effect of
high-dimensionality.

We will review the literature of data clustering in Section 2.1.1 followed by general discussion
about feature selection models in Section 2.1.2 and feature selection for clustering in Section 2.1.3.
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2.1.1 Data Clustering

Due to the increase in data size, human manual labeling has become extremely difficult and
expensive. Therefore, automatic labeling has become an indispensable step in data mining. Data
clustering is one of the most popular data labeling techniques. In data clustering, we are given
unlabeled data and are to put similar samples in one pile, called a cluster, and the dissimilar
samples should be in different clusters. Usually, neither cluster’s description nor its quantifica-
tion is given in advance unless a domain knowledge exists, which poses a great challenge in data
clustering.

Clustering is useful in several machine learning and data mining tasks including image segmen-
tation, information retrieval, pattern recognition, pattern classification, network analysis, and so on.
It can be seen as either an exploratory task or preprocessing step. If the goal is to explore and reveal
the hidden patterns in the data, clustering becomes a stand-alone exploratory task by itself. However,
if the generated clusters are going to be used to facilitate another data mining or machine learning
task, clustering will be a preprocessing step.

There are many clustering methods in the literature. These methods can be categorized broadly
into partitioning methods, hierarchical methods, and density-based methods. The partitioning meth-
ods use a distance-based metric to cluster the points based on their similarity. Algorithms belonging
to this type produce one level partitioning and nonoverlapping spherical shaped clusters. K-means
and k-medoids are popular partitioning algorithms. The hierarchical method, on the other hand,
partitions the data into different levels that look like a hierarchy. This kind of clustering helps in
data visualization and summarization. Hierarchical clustering can be done in either bottom-up (i.e.,
agglomerative) fashion or top-down (i.e., divisive) fashion. Examples of this type of clustering are
BIRCH, Chameleon, AGNES, and DIANA. Unlike these two clustering techniques, density-based
clustering can capture arbitrarily shaped clusters such as S-shape. Data points in dense regions will
form a cluster while data points from different clusters will be separated by low density regions.
DBSCAN and OPTICS are popular examples of density-based clustering methods.

2.1.2 Feature Selection

In the past thirty years, the dimensionality of the data involved in machine learning and data min-
ing tasks has increased explosively. Data with extremely high dimensionality has presented serious
challenges to existing learning methods [35], known as the curse of dimensionality [23]. With the ex-
istence of a large number of features, learning models tend to overfit and their learning performance
degenerates. To address the problem of the curse of dimensionality, dimensionality reduction tech-
niques have been studied, which form an important branch in the machine learning research area.
Feature selection is one of the most used techniques to reduce dimensionality among practitioners. It
aims to choose a small subset of the relevant features from the original ones according to certain rel-
evance evaluation criterion [36, 21], which usually leads to better learning performance, e.g., higher
learning accuracy, lower computational cost, and better model interpretability. Feature selection
has been successfully applied in many real applications, such as pattern recognition [26, 58, 44],
text categorization [74, 29, 51], image processing [26, 55], and bioinformatics [45, 56], and so
forth.

According to whether the label information is utilized, different feature selection algorithms
can be categorized into supervised [69, 60], unsupervised [16, 44], or semisupervised algo-
rithms [78, 73]. With respect to different selection strategies, feature selection algorithms can also be
categorized as being of either the filter [37, 13], wrapper [31], hybrid, or embedded models [12, 50].
Feature selection algorithms of the filter model are independent of any classifier. They evaluate the
relevance of a feature by studying its characteristics using certain statistical criteria. Relief [59],
Fisher score [15], CFS [22], and FCBF [75] are among the most representative algorithms of the
filter model. On the other hand, algorithms belonging to the wrapper model utilize a classifier as
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a selection criteria. In other words, they select a set of features that has the most discriminative
power using a given classifier, such as SVM and KNN. Some examples of the wrapper model are
the FSSEM [17] and �1SVM [8]. Other examples of the wrapper model could be any combination
of a preferred search strategy and given classifier. Since the wrapper model depends on a given
classifier, cross-validation is usually required in the evaluation process. It is in general more com-
putationally expensive and biased to the chosen classifier. Therefore, in real applications, the filter
model is more popular, especially for problems with large datasets. However, the wrapper model has
been empirically proven to be superior, in terms of classification accuracy, to those of a filter model.
Due to these shortcomings in each model, the hybrid model [12, 38], was proposed to bridge the
gap between the filter and wrapper models. First, it incorporates the statistical criteria, as the filter
model does, to select several candidate features subsets with a given cardinality. Second, it chooses
the subset with the highest classification accuracy [38]. Thus, the hybrid model usually achieves
both accuracy comparable to the wrapper and efficiency comparable to the filter model. Representa-
tive feature selection algorithms of the hybrid model include BBHFS [12], and HGA [52]. Finally,
the embedded model performs feature selection in the learning time. In other words, it achieves
model fitting and feature selection simultaneously. Examples of embedded model include C4.5 [53],
BlogReg [11], and SBMLR [11]. Based on different types of outputs, most feature selection algo-
rithms fall into one of the three categories: subset selection [76], which returns a subset of selected
features identified by the index of the feature; feature weighting [59], which returns weight corre-
sponding to each feature; and the hybrid of subset selection and feature weighting, which returns a
ranked subset of features.

Feature weighting, on the other hand, is thought of as a generalization of feature selection [70].
In feature selection, a feature is assigned a binary weight, where 1 means the feature is selected and
0 otherwise. However, feature weighting assigns a value, usually in the interval [0,1] or [−1,1], to
each feature. The greater this value is, the more salient the feature will be. Feature weighting was
found to outperform a feature selection in tasks where features vary in their relevance score [70],
which is true in most real-world problems. Feature weighting could be, also, reduced to feature
selection if a threshold is set to select features based on their weights. Therefore, most of fea-
ture selection algorithms mentioned in this chapter can be considered as using a feature weighting
scheme.

Typically, a feature selection method consists of four basic steps [38], namely, subset generation,
subset evaluation, stopping criterion, and result validation. In the first step, a candidate feature subset
will be chosen based on a given search strategy, which is sent, in the second step, to be evaluated
according to certain criterion. The subset that best fits the evaluation criterion will be chosen from
all the candidates that have been evaluated after the stopping criterion are met. In the final step, the
chosen subset will be validated using domain knowledge or validation set.

2.1.3 Feature Selection for Clustering

The existence of irrelevant features in the data set may degrade learning quality and consume
more memory and computational time that could be saved if these features were removed. From the
clustering point of view, removing irrelevant features will not negatively affect clustering accuracy
while reducing required storage and computational time. Figure 2.2 illustrates this notion where (a)
shows the relevant feature f1 which can discriminate clusters. Figures 2.2(b) and (c) show that f2

and f3 cannot distinguish the clusters; hence, they will not add any significant information to the
clustering.

In addition, different relevant features may produce different clustering. Figure 2.3(a) shows
four clusters by utilizing knowledge from f1 and f2, while Figure 2.3(b) shows two clusters if we
use f1 only. Similarly, Figure 2.3(c) shows two different clusters if we use f2 only.Therefore, dif-
ferent subsets of relevant features may result in different clustering, which greatly helps discovering
different hidden patterns in the data.
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FIGURE 2.2: Feature f1 is relevant while f2 and f3 are irrelevant. We are able to distinguish the
two clusters from f1 only. Thus, removing f2 and f3 will not affect the accuracy of clustering.

Motivated by these facts, different clustering techniques were proposed to utilize feature se-
lection methods that eliminate irrelevant and redundant features while keeping relevant features to
improve clustering efficiency and quality. For simplicity and better organization, we are going to de-
scribe different feature selection for clustering (FSC) methods based on the domain. The following
sections will be organized as follows: conventional FSC, FSC in text data, FSC in streaming data,
and FSC link data.

Similar to feature selection for supervised learning, methods of feature selection for clustering
are categorized into filter [13] wrapper [54], and hybrid models [18]. A wrapper model evaluates
the candidate feature subsets by the quality of clustering while a filter model is independent of
clustering algorithm. Thus, the filter model is still preferable in terms of computational time and as
unbiased toward any clustering method, while the wrapper model produces better clustering if we
know the clustering method in advance. To alleviate the computational cost in the wrapper model,
filtering criteria are utilized to select the candidate feature subsets in the hybrid model.

In the following subsections, we will briefly discuss feature selection for clustering methods that
falls in the filter, wrapper, and hybrid models. For more about conventional methods, we refer the
reader to [18].

2.1.3.1 Filter Model

Filter model methods do not utilize any clustering algorithm to test the quality of the features
[18]. They evaluate the score of each feature according to certain criteria. Then, they select the fea-
tures with the highest scores. It is called the filter since it filters out the irrelevant features using
given criteria. Furthermore, feature evaluation could be either univariate or multivariate. Univariate
means each feature is evaluated independently of the feature space. This approach is much faster
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FIGURE 2.3: Different sets of features may produce different clustering.
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TABLE 2.1: Nomenclature
D Dataset
n Sample size
m Number of features
x j jth sample
fi ith feature
F Selected feature set
l Number of selected features
K Number of clusters
Ck kth cluster

and more efficient than the multivariate, which evaluates features with respect to the other features.
Therefore, the multivariate, unlike the univariate approach, is capable of handling redundant fea-
tures. SPEC, see Section (2.2.1.1), is an example of the univariate filter model, although it was
extended to the multivariate approach in [79]. Other examples of filter model criteria used in feature
selection for clustering include feature dependency [62], entropy-based distance [13], and Laplacian
score [24, 80].

2.1.3.2 Wrapper Model

The wrapper model utilizes a clustering algorithm to evaluate the quality of selected features. It
starts by (1) finding a subset of features. Then, (2) it evaluates the clustering quality using the se-
lected subset. Finally, it repeats (1) and (2) until the desired quality is found. Evaluating all possible
subsets of features is impossible in high-dimensional datasets. Therefore, heuristic search strategy
is adopted to reduce the search space. The wrapper model is very computationally expensive com-
pared to filter model. Yet, it produces better clustering since we aim to select features that maximize
the quality. It is still biased toward the clustering method used. Different wrapper feature selection
methods for clustering were proposed by changing the combination of search strategy and the uti-
lized clustering algorithm. The method proposed in [16] is an example of a wrapper that involves
maximum likelihood criteria, feature selection, and a mixture of Gaussians as clustering method.
Others use conventional clustering methods such as k-means and any search strategy as feature
selector [30].

2.1.3.3 Hybrid Model

To overcome the drawbacks of filter and wrapper models a hybrid model is used to benefit from
the efficient filtering criteria and better clustering quality from the wrapper model. A typical hybrid
process goes through the following steps: (1) it utilizes filtering criteria to select different candidate
subsets. Then, (2) it evaluates the quality of clustering of each candidate subsets. Finally, (3) the
subset with the highest clustering quality is selected. Algorithms belonging to the hybrid model
usually produce better clustering quality than those of the filter model, yet, they are less efficient.
Compared to the wrapper model, the hybrid model is much more efficient.

2.2 Feature Selection for Clustering

Several feature selection for clustering methods have been proposed in the literature. Some
algorithms handle text data, while others handle streaming data. Still others are capable of handling
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different kinds of data. In this section, we will discuss different methods with respect to data types
they can handle. We will review algorithms for text, streaming, and linked data, as well as algorithms
that are able to handle generic data.

2.2.1 Algorithms for Generic Data

In this section, we will discuss feature selection for clustering methods that are able to handle
generic datasets. In other words, it is not necessary to be designed to handle only text, data stream,
or linked data.

2.2.1.1 Spectral Feature Selection (SPEC)

Although Algorithm 1, the Spectral Feature Selection (SPEC) algorithm, is a unified framework
that enables the joint study of supervised and unsupervised learning, we will use SPEC in this
work as an example of filter-based unsupervised feature selection methods. SPEC [80] estimates
the feature relevance by estimating feature consistency with the spectrum of a matrix derived from
a similarity matrix S. SPEC uses the Radial-Basis Function (RBF) as a similarity function between
two samples xi and x j:

Si j = e
− ||xi−x j ||2

2σ2 (2.1)

Graph G will be constructed from S and adjacency matrix W will be constructed from G. Then,
degree matrix D̄ will be computed from W . D̄ is the diagonal matrix where D̄ii = ∑n

j=1 Wi j.
Given D̄ and W , the Laplacian matrix L and the normalized Laplacian matrix L are computed as
follows:

L = D̄−W ; L = D̄−
1
2 LD̄−

1
2 (2.2)

The main idea behind SPEC is that the features consistent with the graph structure are assigned
similar values to instances that are near to each other in the graph. Therefore, these features should
be relevant since they behave similarly in each similar group of samples (i.e., clusters). Motivated by
graph theory that states that graph structure information can be captured from its spectrum, SPEC
studies how to select features according to the structure of the graph G induced from the samples
similarity matrix S.

The weight of each feature fi in SPEC is evaluated using three functions: ψ1,ψ2, and ψ3. These
functions were derived from the normalized cut function with the spectrum of the graph and ex-
tended to their more general forms. In this chapter, we will not explain these functions in detail,
therefore, we refer the reader to [80] for more details. We assume here that each function ψ takes
feature vector fi and returns the weight based on the normalized Laplacian L .

2.2.1.2 Laplacian Score (LS)

Laplacian Score (LS)[24] is a special case of SPEC if the ranking function used is

Fi← f̂ T
i L f̂i

f̂ T
i D̄ f̂i

where f̂i = fi− f T
i D̄1

1T D̄1
1 (2.3)

Where 1 is one vector. LS is very effective and efficient with respect to the data size. Similar to
SPEC, the most time consuming step in LS is constructing the similarity matrix S. The beauty of
this algorithm is that it can handle both labeled and unlabeled data.
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Algorithm 1 Spectral Feature Selection (SPEC)
Input:
D: dataset
ψ ∈ {ψ1,ψ2,ψ3}: feature weighting functions
n: number of samples
Output:
F : the ranked feature list

1: Construct similarity matrix S from D
2: Construct Graph G from S
3: Construct W from S
4: Construct D̄ from W
5: Define L and L according to Equation (2.2)
6: for each feature vector fi do

7: f̂i← D̄−
1
2 fi

||D̄− 1
2 fi||

8: Fi← ψ( f̂i)
9: end for

10: Rank F based on ψ

2.2.1.3 Feature Selection for Sparse Clustering

Witten and Tibshirani in [72] propose a framework for feature selection in sparse clustering.
They apply Lasso-type, �1−norm, as a feature selection method embedded in the clustering process.
This framework can be applied to any similarity-based clustering technique, yet, they used k-means
clustering in [72]. The number of selected features l is chosen using gap statistics in a similar fashion
to choosing the number of clusters in [67]. The proposed method attempts to minimize the following
objective function with respect to the clusters {C1, . . . ,CK} and the feature weight vector w :

min ∑m
j=1 wjΨ j

subject to ||w||2 ≤ 1,
||w||1 ≤ l,
wj ≥ 0 ∀ j

Where Ψ j is given by the following equation for k-means over jth feature:

Ψ j =
K

∑
c=1

1
nc

∑
i,i′∈CK

Sim(i, i′, j)− 1
n

n

∑
i=1

n

∑
i′=1

Sim(i, i′, j). (2.4)

K is the number of clusters, nc is the number of samples in cluster c, and Sim(i, i′, j) is the
similarity index of sample i and i′ using only the selected feature j. Optimizing Equation (2.4) is
done using iterative algorithm by holding w fixed and optimizing Equation (2.4) with respect to the
clusters {C1, . . . ,CK}. In this step, we apply standard k-means clustering on n-by-n similarity matrix
using the jth feature. Then, we hold the clusters fixed and optimize Equation (2.4) with respect to
w. w is set in this step to be

w =
S(Ψ+,Δ)

S(||Ψ+,Δ)||2 (2.5)

where Ψ+ is the positive part of Ψ and Δ = 0, when ||w||1 ≤ l and Δ > 0 otherwise, so, ||w||1 = l.
Algorithm 2 illustrates these steps of optimizing Equation (2.4).
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Algorithm 2 Feature Selection for Sparse Clustering
Input:
D: dataset
l: number of selected features obtained from gab statistics-like approach
n: number of samples
Output:
the clusters and w
Initialize:
w1 = w2, . . . ,wm = 1√

m

1: while not converge do
2: Hold w fixed
3: Optimize Equation (2.4) with respect to C1, . . . ,CK

4: Holding C1, . . . ,CK fixed
5: Optimize Equation (2.4) with respect to w by applying Equation (2.5)
6: end while

Witten and Tibshirani in [72], also, propose sparse hierarchical clustering based on lasso penalty
similar to Algorithm 2. The hierarchical clustering involves n-by-n similarity matrix, which is op-
timized iteratively with w. Then, we perform hierarchical clustering on the constructed similarity
matrix. For more about this algorithm we refer the reader to [72].

2.2.1.4 Localized Feature Selection Based on Scatter Separability (LFSBSS)

Li et al in [33] proposed a localized feature selection based on scatter separability (LFSBSS).
This is motivated by the fact that the set of features that are relevant to one clustering result are not
necessary the same set that is relevant to another clustering result. In other words, clustering dataset
D using a set of feature F1 may produce clusters {C1,C2,C3} while clustering using another set of
features F2 may lead to clusters {C4,C5}, where F1 
= F2. This notion is also illustrated in Figure
(2.3). Furthermore, each cluster in a clustering result may be associated to different set of relevant
features. In document clustering, for instance, documents that belong to sport news are more likely
to have different set of relevant terms such as: FIFA, Ball, and so on. While the set of documents that
belong to technology news contains relevant terms such as: Apple, IBM, and so on. In this section
we are will use the cluster set C = {(C1,F1), . . . ,(Cj,Fj), . . . ,(CK ,FK)} to refer to the clustering
result where C1 and F1 are the first cluster and the set of selected features corresponds to the first
cluster, respectively.

Li et al in [33] borrowed the notion of scatter separability from Dy and Brodley [16] and adopted
it as a localized feature selection. They defined the scatter separability as

Ω = tr(S−1
w Sb)

where S−1
w is the inverse of within-cluster separability and Sb is the between-cluster separability. If

we need to evaluate Ωi for cluster i, we should use the within that cluster separability S(i)−1
w , instead.

It was proven in [33] that Ωi is monotonically increasing with dimensions as long as the clustering
assignments remain the same. To mitigate this problem, separability criteria must be normalized
with respect to the dimensionality for feature selection. Moreover, since localized feature selection
attempts to select different sets of relevant features for each cluster, the between-cluster separability
needs to be appropriately normalized as well. This is performed using cross-projecting over indi-
vidual clusters. We assume that the projected cluster is Ĉ = {(Ĉ1, F̂1), . . . ,(ĈK , F̂K)}. At each step of
the projection, we replace the projected cluster Ĉi with the largest overlap and the original cluster Cj
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to generate the new clustering C∗ = {(C1,F1), . . . ,(Ĉi, F̂i), . . . ,(CK ,FK)}. Finally, we cross-project
them into each other, which generates the normalized value, v, that allows us to compare two differ-
ent clusters with different subspaces. Larger v indicates greater separability between clusters. More
details about the projection may be found in [33].

LFSBSS reduces the impact of overlapping and unassigned data by penalizing using what they
call adjusted normalized value a. This value penalizes the cross-projection if the amount of unsigned
or overlap has increased in the projected cluster compared to the original clusters.

LFSBSS adopts the sequential backward feature selection. This means that the clusters are gen-
erated first using the whole feature space, then, iteratively removing irrelevant or noisy feature based
on a from each cluster individually. Algorithm 3 illustrates the steps of LFSBSS.

Algorithm 3 Localized Feature Selection Based on Scatter Separability (LFSBSS)
Input:
D: dataset
l: number of selected features
n: number of samples
K: number of clusters
Output:
the clusters and their corresponding features sets
Initialize:
initialize C using all feature space F

1: F ′1 = F ′2 = · · ·= F ′K = F
2: while not converged do
3: for c = 1 to K do
4: Evaluate a for Cc

5: Choose feature fi to be removed based on a
6: Fc=Fc− fi

7: Generate a new cluster set C′ based on Fc

8: Compare cluster in C′ with clusters in C
9: if BetterClusterFound then

10: Replace the corresponding cluster in C
11: end if
12: end for
13: if Desired then
14: Process unassigned samples
15: end if
16: end while

2.2.1.5 Multicluster Feature Selection (MCFS)

Similar to the motivation illustrated in Figure (2.3), Cai et al in [9] propose a multicluster feature
selection (MCFS) method that is able to select the set of features that can cover all the possible clus-
tering in the data. In MCFS, spectral analysis is used to measure the correlation between different
features without needing label information. Using the top eigenvectors of graph Laplacian, spectral
clustering can cluster data samples without utilizing label information. Thus, MCFS applied k-
Nearest-Neighbors approach to construct the graph of the data samples, where k is a predetermined
parameter. Next, the heat kernel weighting matrix W is computed as follows:

Wi j = e−
||xi−x j ||2

σ
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where xi and x j are connected samples in the k-Nearest-Neighbors graph and σ is used as a pre-
defined parameter. From W a degree matrix is computed as explained earlier in this chapter. Then,
a graph Lapalcian matrix L = D̄−W is constructed. After that, MCFS solves the following eigen-
problem:

Ly = λD̄y (2.6)

Given Y = [y1, . . . ,yK ], the eigenvectors of Equation (2.6), we can find a relevant subset of features
by minimizing the following objective function:

minak ||yk−XT ak||2
s.t. ||ak||0 = l

Where ak is an m−dimensional vector and ||ak||0 is the number of nonzero elements in ak. Then,
K sparse coefficient vectors will be chosen to correspond to each cluster. For each feature f j, the
maximum value of ak that correspond to f j will be chosen. Finally, MCFS will choose the top l
features. MCFS shows improvement over other methods such as LS according to [9].

2.2.1.6 Feature Weighting k-Means

k-means clustering is one of the most popular clustering techniques. It has been extensively
used in data mining and machine learning problems. A large number of k-means variations have
been proposed to handle feature selection [7, 68, 28, 25, 46]. Most of these variations start by
clustering the data into k clusters. Then, weight is assigned to each feature. The feature that min-
imizes within-cluster distance and maximizes between-cluster distance is preferred and, hence,
gets higher weight. In [28], for example, an entropy weighting k-means (EWKM) was proposed
for subspace clustering. It simultaneously minimizes the within-cluster dispersion and maximizes
the negative weight entropy in the clustering process. EWKM calculates the weight of each fea-
ture in each cluster by including the weight entropy in the objective function of k-means. The
subset of features corresponding to each cluster are, then, selected based on that weight. Thus,
EWKM allows subspace clustering where the set of selected features may differ from one cluster to
another.

In addition, [46] proposes feature weighting k-means clustering using generalized Fisher ratio
that minimizes the ratio of the average of within-cluster distortion over the average between-cluster
distortion. In this algorithm, several candidate clusterings are generated and the one with the mini-
mal Fisher ratio is determined to be the final cluster.

Similarly, [25] proposes another variation of feature weighting k-means (W-k-means) that mea-
sures the weight of each feature based on its variance of the within-cluster distance. Algorithm 4
illustrates the process of W-k-means. It, iteratively, minimizes Equation (2.7) by fixing two param-
eters at each step and solving Ψ with respect to the third one. If there is no change in Ψ after the
minimization, the algorithm is said to be converged.

Ψ(C,Z,w) =
k

∑
l=1

n

∑
i=1

m

∑
j=1

cilw
β
j d(xi j,zl j) (2.7)

Where C is a n-by-k partition matrix that contains binary values, cil = 1 indicates that xi belongs
to cluster l. Z is the centroids and d(·, ·) is the distance matrix. w is the weight vector and β is
the parameter of the attribute weight. Minimizing Ψ with respect to C and Z is straightforward.
However, minimizing Ψ with respect to w depends of the value of β. We refer the reader to [25] for
more about minimizing with respect to w.
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Algorithm 4 Feature Weighting k-means (W-k-means)
Input:
D: dataset
n: number of samples
Ψ: the objective function Equation (2.7)
Initialize:
C: apply k-means on D to obtain initial clusters
Z: randomly choose k centroids
w: randomly initialize the weight of each feature so that ∑m

i=1 wi = 1
t: 0
Output:
C: the clustering
Z: the centroids
w: the features weights

1: while not stop do
2: Fix Z and w and solve Ψ with respect to C.
3: Stop when no changes occur on C.
4: Fix C and w and solve Ψ with respect to Z.
5: Stop when no changes occur on Z.
6: Fix C and Z and solve Ψ with respect to w.
7: Stop when no changes occur on w.
8: t=t+1
9: end while

2.2.2 Algorithms for Text Data

Document clustering aims to segregate documents into meaningful clusters that reflect the con-
tent of each document. For example, in the news wire, manually assigning one or more categories for
each document requires exhaustive human labor, especially with the huge amount of text uploaded
online daily. Thus, efficient clustering is essential. Another problem associated with document clus-
tering is the huge number of terms. In a matrix representation, each term will be a feature and each
document is an instance. In typical cases, the number of features will be close to the number of
words in the dictionary. This imposes a great challenge for clustering methods where the efficiency
will be greatly degraded. However, a huge number of these words are either stop words, irrelevant
to the topic, or redundant. Thus, removing these unnecessary words may help significantly reduce
dimensionality.

Feature selection not only reduces computational time but also improves clustering results and
provides better data interpretability [48]. In document clustering, the set of selected words that are
related to a particular cluster will be more informative than the whole set of words in the documents
with respect to that cluster. Different feature selection methods have been used in document cluster-
ing recently, for example, term frequency, pruning infrequent terms, pruning highly frequent terms,
and entropy-based weighting. Some of these methods and others will be explained in the following
subsections.

2.2.2.1 Term Frequency (TF)

Term Frequency is one of the earliest and most simple yet effective term methods. It is dated
back to 1957 in [41]. Thus, it is, indeed, a conventional term selection method. In a text corpus,
the documents that belong to the same topic more likely will use similar words. Therefore, these
frequent terms will be a good indicator for a certain topic. We can say that a very frequent term
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that is normally distributed across different topics is not informative; hence, such term would be
unselected. We call this technique pruning highly frequent terms. Similarly, very rare terms should
be pruned as well and that is called pruning infrequent terms. Stop words most likely will be pruned
due to their high frequency. Furthermore, words such as abecedarian will be ignored since they will
not be very frequent.

TF for term fi with respect to the whole corpus is given by

T F( fi) = ∑
j∈Dfi

tfi j (2.8)

where D fi is the documents that contain the term fi, and tfi j is the frequency of fi in document j.

2.2.2.2 Inverse Document Frequency (IDF)

TF is an effective term selection method. However, it is not effective in terms of term weighting,
where all selected terms will be assigned the same weight. Also, we cannot link TF value to any
document. In other words, we cannot distinguish between frequent words that appear in a small set
of documents, which could have discriminative power for this set of documents, and frequent words
that appear in all or most of the documents in the corpus. In order to scale the term’s weight, we
use, instead, the inverse document frequency (IDF). IDF measures whether the term is frequent or
rare across all documents:

idf( fi) = log
|D|
|D fi |

(2.9)

where |D| is the total number of documents (i.e., sample size) and |D fi | is the number of documents
that contain the term fi. The value of IDF will be high for rare terms and low for highly frequent
ones.

2.2.2.3 Term Frequency-Inverse Document Frequency (TF-IDF)

We can now combine the above mentioned measures (i.e., TF and IDF) to produce weight for
each term fi in each document d j. This measure is called TF-IDF. It is given by

tf-idf( fi,d j) = tfi j ∗ idf( fi) (2.10)

tf-idf assigns greater values to terms that occur frequently in a small set of documents, thus having
more discriminative power. This value gets lower when the term occurs in more documents, while
the lowest value is given to terms that occur in all documents. In document clustering, terms that
have higher tf-idf have a higher ability for better clustering.

2.2.2.4 Chi Square Statistic

Chi square (χ2) statistic has been widely used in supervised feature selection [71]. It measures
the statistical dependency between the feature and the class. χ2 with r different values and C classes
is defined as

χ2 =
r

∑
i=1

C

∑
j=1

(ni j−μi j)
2

μi j
,

where ni j is the number of samples (i.e., documents) with ith feature value in the jth class and
μi j =

ni∗n∗ j
n and n is the total number of documents. This equation can be interpreted using the

probability as

χ2( f ,c) =
n(p( f ,c)p(¬ f ,¬c)− p( f ,¬c)p(¬ f ,c))2

p( f )p(¬ f )p(¬c)p(c)
(2.11)
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where p( f ,c) is the probability of class c that contains the term f , and p(¬ f ,¬c) is the probability
of not being in class c and not containing term f and so on. Thus, χ2 cannot be directly applied in an
unsupervised learning such as clustering due to the absence of class label. Y. Li et al in [34] propose
a variation of χ2 called rχ2 that overcomes some drawbacks of the original χ2 and is embedded in
an Expectation-Maximization (EM) algorithm to be used for text clustering problems. [34] found
out that χ2 cannot determine whether the dependency between the feature and the class is negative
or positive, which leads to ignoring relevant features and selecting irrelevant features sometimes.
Therefore, they proposed a relevance measure (R) that can be used in the original χ2 to overcome
this limitation. This new measure R follows.

R( f ,c) =
p( f ,c)p(¬ f ,¬c)− p( f ,¬c)p(¬ f ,c)

p( f )p(c)
(2.12)

R in Equation (2.12) will be equal to 1 if there is no such dependency between the class and the
feature, greater than 2 if there is a positive dependency, and less than 1 if the dependency is negative.

From Equations (2.11) and (2.12), Hoffman et al. [34] proposed a new variation of χ2 that is
able to distinguish positive and negative relevance:

rχ2( f ) =
C

∑
j=1

p(R( f ,c j))χ2( f ,c j) (2.13)

where p(R( f ,c j)) is given by p(R( f ,c j)) =
R( f ,c j)

∑C
j=1 R( f ,c j)

. The larger the value of rχ2 is, the more

relevant the feature f will be.
As we mentioned earlier, we cannot apply a supervised feature selection in an unsupervised

learning directly. Therefore, [34] embedded their proposed method given in Equation (2.13) in a
clustering algorithm using an EM approach. They used k-means as the clustering algorithm and rχ2

as the feature selection method as shown in Algorithm 5.

Algorithm 5 rχ2 as a feature selector for clustering
Input:
D: dataset
k: number of clusters
α: predetermine parameter in the range of [0,1)
m: number of selected features
Output:
C the clusters
Initialize:
C←Apply k-means on D to obtain initial clusters

1. E-step:

• Apply rχ2 from Equation (2.13) using clusters C obtained from step (1) as class
labels.

• Make the weight of the top m relevant features 1 and α for the rest of the features.

• Calculate the new k-centroid for the new space.

2. M-step: Compute the new clusters using k-means.

3. Repeat E-step and M-step until convergence.
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One advantage of this framework is that it does not simply remove the unselected features, in-
stead, it keeps them while reducing their weight to α so they can be reselected in coming iterations.
Also, this approach outperforms other clustering techniques even with the existence of feature se-
lection methods using F-measure and the purity. However, [34] did not investigate the convergence
of Algorithm 5 which is a big concern for such an algorithm especially when we know that the
selected features may change dramatically from one iteration to another. In addition, the complexity
of this algorithm is not discussed. In fact, the feature selection step in Algorithm 5 is not a feature
selection; instead, it is a feature weighting. In other words, the number of features in each iteration
remains the same. Thus, the complexity of k-means will not be reduced, which is against the goals
of involving feature selection in clustering.

A similar approach is proposed for the Relief algorithm by Dash and Ong in [14]. They called
their method Relief-C. It is observed that if clustering is done using the whole feature space, Relief
will fail miserably in the presence of a large number of irrelevant features. Thus, Relief-C starts by
clustering using exactly 2 randomly selected features and using clusters as a class label passed to
Relief. After that, the feature weight will be updated. These two steps are repeated until the given
criteria are met. We believe Relief-C may not perform well with huge dimensionality, say, more
than 1000 features, since the chance of finding the real clusters from two randomly chosen features
is very slim especially if we know that the percentage of relevant features is very small. In addition,
both Relief-C and rχ2 are capable of handling generic data. We include rχ2 in the text data section
since it was originally applied on text domain and requires a dataset to contain discrete values.

2.2.2.5 Frequent Term-Based Text Clustering

Frequent Term-Based Text Clustering (FTC), proposed in [6], provides a natural way to reduce
dimensionality in text clustering. It follows the notion of a frequent item set that forms the basis of
association rule mining. In FTC, the set of documents that contains the same frequent term set will
be a candidate cluster. Therefore, clusters may overlap since the document may contain different
item sets. This kind of clustering can be either flat (FTC) or hierarchical (HFTC) clustering since
we will have different cardinalities of item sets.

Algorithm 6 explains the FTC algorithm. First, a dataset D, predetermined minimum support
minsup value, and an algorithm that finds frequent item set should be available. The algorithm starts
by finding the frequent item set with minimum support minsup. Then, it runs until the number of
documents contributing in the selected term set |cov(STS)| is equivalent to the number of documents
in D. In each iteration, the algorithm calculates the entropy overlap EO for each set in the remaining
term set RTS, where EO is given by

EOi = ∑
Dj∈Ci

− 1
Fj
· ln( 1

Fj
)

where D j is the jth document, Ci is the ith cluster and Fj is the number of all frequent term sets
supported by document J, with the less overlap assumed to be the better. EO equals 0 if all the
documents in Ci support only on frequent item set (i.e., Fj = 1). This value increases with the
increase of Fj. This method of overlap evaluation was found to produce better clustering quality
than the standard one [6]. The best candidate set BestSet will be the set with a minimum amount of
overlap. BestSet will be selected and added to the STS and excluded from RT S. In addition, the set
of documents that supports the BestSet is removed from the dataset since they have been already
clustered, which leads to dramatically reducing the number of documents. They are also removed
from the documents’ list of RTS which leads to reducing the number of remaining term set. This
greedy approach gives the computational advantage for this algorithm.

Due to the monotonicity property of a frequent item set, which means all (k–1)-items that are
subset of frequent (k)-items are also frequent, we can perform an HFTC. HFTC is based on Algo-
rithm 6. Instead of performing FTC on the whole frequent term sets, it is performed on a single level
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Algorithm 6 Frequent Term-Based Clustering (FTC)
Input:
D: dataset
minsup: minimum support
Ψ(·, ·): frequent item set finder
n: number of documents
Output:
STS and cov(STS)
Initialize:
Selected Term Set STS = {}

1: Remaining Term Set RTS = Ψ(D,minsup)
2: while |cov(STS)| 
= n do
3: for each set in RT S do
4: EOi = Calculate overlap for the set
5: end for
6: BestSet = RTSi which is the set with min(EO)
7: STS = STS∪BestSet
8: RT S = RT S−BestSet
9: D = D− cov(BestSet)

10: cov(RTS) = cov(RTS)− cov(BestSet)
11: end while

of frequent term set, say, k-term sets. Then, the obtained clusters are further partitioned using the
next level of term set, (k+1)-term sets.

Both FTC and HFTC were imperially proven to be superior to other well-known clustering
methods such as bisecting k-means and 9-secting k-means in efficiency and clustering quality. They
also were able to provide better description and interpretation of the generated clusters by the se-
lected term set.

2.2.2.6 Frequent Term Sequence

Similar to FTC, a clustering based on frequent term sequence (FTS) was proposed in [32].
Unlike FTC, the sequence of the terms matters in FTS. This means that the order of terms in the
document is important. The frequent terms sequence, denoted as f, is a set that contains the frequent
terms < f1, f2, . . . , fk >. The sequence here means that f2 must be after f1, but it is not necessary to
be immediately after it. There could be other nonfrequent terms between them. This is true for any
fk and fk−1 terms. This definition of frequent terms sequence is more adaptable to the variation of
human languages [32].

Similar to FTC, FTS starts by finding frequent term sets using an association rule mining algo-
rithm. This frequent term set guarantees to contain the frequent term sequence but not vice versa.
Hence, we do not need to search the whole term space for the frequent term sequence. We can search
in only the frequent term set space, which is a dramatic dimension reduction. After that, FTS builds
a generalized suffix tree (GST), which is a well-known data structure for sequence pattern match-
ing, using the documents after removing the nonfrequent terms. From the suffix nodes in GST, we
obtain the cluster candidates. These cluster candidates may contain subtopics that may be eligible
to be merged together to create more general topics. Therefore, a merging step takes place.

The authors of [32] chose to merge cluster candidates into more general topic clusters using k–
mismatch instead of the similarity. An example of using the k–mismatch concept is when we have
FSi = { f eature,selection,clustering} and FS j = { f eature,selection, classification}, where they
have one mismatch. Therefore, we can merge these two clusters if the tolerance parameter k ≥ 1.
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In [32], FTS adopted Landau–Vishkin (LV) to test three types of mismatches: insertion, deletion,
substitution. Insertion means that all we need to insert is k, or fewer, terms into the FS j in order
to match FSi. Deletion, in contrast, means we need to delete. While substitution means we need to
substitute terms from FS j with terms from FSi.

These merged clusters are prone to overlap. Accordingly, more merging will be performed after
measuring the amount of overlap using the Jaccard Index:

J(Ci,Cj) =
|Ci∪Cj|
|Ci∩Cj|

The larger J(Ci,Cj) is, the more the overlap would be. The merge takes place here when the
overlap exceeds a user defined threshold, δ. However, the final number of clusters could be prede-
fined too. In this case, this merging step would be repeated until the number of clusters meet the
user’s demand.

Algorithm 7 Frequent Term Sequence (FTS)
Input:
D: dataset
minsup: minimum support
Ψ(·, ·): frequent item set finder
n : number of documents
K: number of clusters
δ: overlap threshold
Output:
Clusters
Initialize:
Clusters = {}

1: Frequent 2-Term Set FS = Ψ(D,minsup)
2: D̂ = Reduce D by removing every term f /∈ FS.
3: G = GST (D̂)
4: for each node j in G do
5: if node j has Frequent term set FS j with documents id ID j then
6: Cj = {FS j, ID j}
7: Clusters =Clusters∪Cj

8: end if
9: end for

10: Use Landau−Vishkin to find k−mismatch
11: Clusters←Merge Clusters according to Landau−Vishkin results
12: while number of Clusters > K do
13: Clusters← Combine overlapped Clusters based on Jaccard Index and δ
14: end while

In Algorithm 7, the most time consuming element is constructing GST, yet, it is still linear
element with the number of terms. In [32], the terms reduction after finding the frequent term sets
is huge; it exceeds 90% in all cases.

Similar to FTS, [32] proposed another frequent term set algorithm (FTMS) that is based on the
synonymous set (synsets) of terms instead of the term itself. This is more adaptable with human
language where we may use different terms to refer to the same meaning. This proposed algorithm
used a WordNet dictionary to retrieve the synsets of each word and replace each with the original
term. Each two synsets that intersect in at least one term will be merged into one synset. Thus, the
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number of synsets will be further reduced. Finally, FTS will be applied to these documents that
contain the synsets.

These two proposed algorithms (i.e., FTS and FTMS) were empirically proved to be superior
to other algorithms, such as bisect k-means and hierarchical frequent item-based clustering. Yet,
FTMS is more capable of capturing more precise clustering topics than FTS. This is due to using
the terms synsets instead of just the word itself.

There are several clustering techniques based on frequent item sets besides the ones mentioned
in this chapter [19, 61, 77, 4, 47]. However, they all follow the same notion of reducing dimen-
sionality by finding the frequent term sets. They differ in the parameters or the underlying utilized
methods. For example, the number of terms in the frequent set may be set to a specific number or
undefined. Hence, the maximum number will be found. They also differ in the way the final cluster
is smoothed or merged.

2.2.3 Algorithms for Streaming Data

Streaming Data are continuous and rapid data records. Formally defined as a set of multi-
dimensional records X1, . . . ,Xn, . . . that come in time stamps T1, . . . ,Tn, . . . . Each record Xi is m-
dimensional. Usually these samples have a huge dimensionality and arrive very fast. Therefore,
they require scalable and efficient algorithms. Also, the underlying cluster structure is changing, so
we need to capture this change and keep selected feature sets up to date. In this section, we introduce
what we believe to be required characteristics of a good algorithm that handles streaming data:

• Adaptivity: The algorithm should be able to adjust features’ weights or even reselect the set
of features, so it is able to handle the data drift, aka dataset shift.

• Single scan: The algorithm should be able to cluster the incoming stream in one scan, since
another scan is usually impossible or at least costly.

The following algorithms represent the literature of feature selection for data stream clustering.
In fact, this area still needs great attention from the researchers due to the lack of work in this area.

2.2.3.1 Text Stream Clustering Based on Adaptive Feature Selection (TSC-AFS)

It is natural for clusters and data categories to evolve overtime. For example, the breaking news
that dominates the worlds’ media today may change dramatically tomorrow. Therefore, using the
same set of features to process and cluster data stream may lead to unsatisfactory learning results
over time. Gong et al in [20] propose using the cluster quality threshold γ to test the quality of
newly arrived sample’s clustering with respect to old clusters. TSC-AFS starts by applying feature
selection on training data D. Then, it clusters the samples of D with respect to the selected features
only.

After that, it starts to receive data streams and assign them to the closest cluster. TSC-AFS
evaluates a validity index ρ for each cluster using the Davies–Bouldin D–B index. If γ is less than
ρ, then TSC-AFS should reselect the set of features. Otherwise, the algorithm keeps the current
feature set and clusters based on them and accepts new streams to come. Otherwise, TSC-AFS will
reevaluate ρ while considering the new data stream being added the closest cluster. If the validity
index cannot satisfy the threshold requirements, a tolerance parameter κ is set to allow this sample
to be clustered and initialize the algorithm again. These parameters, κ and γ, are simply determined
by the cross-validation approach.

This algorithm utilizes a word variance-based selection method as feature selection since the do-
main in [20] is text data stream. However, any other appropriate algorithm may be used. In addition,
k-means was used as a clustering method. Algorithm 8 shows the pseudocode for TSC-AFS.

TSC-AFS, shown in Algorithm 8, is arguable in terms of performance and applicability in the
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Algorithm 8 Text Stream Clustering Based on Adaptive Feature Selection (TSC-AFS)
Input:
γ: cluster quality threshold
κ: tolerance parameter
t : time stamp
K: number of clusters
Ξ(·): feature selection method
Output: Clusters
Initialize: t = ρ = 0

1: while We have more stream do
2: D← Load new training set
3: Select features Ft = Ξ(D)
4: D̂← remove unselected features from D
5: Apply k-means clustering on D̂
6: μ← the centroid of each cluster
7: while ρ < κ do
8: t = t + 1
9: St ← new stream

10: Evaluate the validity index ρ
11: Flag = true
12: while Flage do
13: if ρ > γ then
14: Assign St to the nearest μ
15: ρ← Reevaluate the validity index
16: else
17: Assign St to the nearest μ
18: end if
19: end while
20: end while
21: Clusters←{μ,F}
22: end while

current form. However, it has a nice underlying property that is the adaptivity with the drifting
features. We believe that this approach needs more attention to improve the adaptivity step.

2.2.3.2 High-Dimensional Projected Stream Clustering (HPStream)

Aggarwal et al in [2] propose a data streams clustering technique that involves a feature selection
step. This method is called HPStream. Projected clustering [3] is a subset of data points P with a
subset of dimensions F such that the points in P are closely clustered with respect to F .

Since data quality in data streams may decay, the stream clustering method should assign a
greater level of importance to recent data points. Motivated from this belief, fading data struc-
ture was proposed in [2] to keep the clustering contemporary. Assuming, X1, . . . ,Xi, . . . are multi-
dimensional data samples arriving in time stamps T1, . . . ,Ti, . . . ., each data sample Xi contains m
dimensions (x1

i , . . . ,x
m
i ). The fading f (t) function for each data point will be according to the arrival

time t. The fading function is assumed to be monotonically exponentially decreasing with respect
to the time t [2].

Fading function f (t) = 2−λt , where λ = 0.5 is the decay rate. After defining the fading function,
[2] defines the fading cluster structure at time t as Ω(P, t) = (Ψ2(P, t),Ψ(P, t),w(t)), where Ψ2(P, t)
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and Ψ(P, t) for each jth dimension are given by ∑n
i=1 f (t − Ti) · (x j

i )
2 and ∑n

i=1 f (t − Ti) · (x j
i ), re-

spectively, and w(t) is the sum of all the weights of the data points at time t, ∑n
i=1 f (t−Ti).

Algorithm 9 systematically describes the HPStream algorithm. HPStream is initialized offline
using k-means to cluster a portion of the data Dtr using full dimension. Then, the least spread di-
mensions within each cluster will be chosen to form the initial fading cluster structure Ω. These two
steps will be repeated, using the selected features until convergence. After initialization, incoming
data stream X is temporally added to each cluster with the corresponding selected features of that
cluster for determination of a new set of selected features. Final assignment of X will be to the clos-
est cluster. After that, the limiting radius of each cluster will be calculated. Any data point that lies
outside the limiting radii will form a cluster by itself. If the number of generated clusters exceeds
the predetermined number of clusters K, the oldest cluster(s) are removed, so that the number of
clusters equals K.

Algorithm 9 High-Dimensional Projected Stream Clustering (HPStream)
Input:
Dtr: training data set
K: number of clusters
l: number of selected features
Output: Ω
Initialize:
Perform clustering on Dtr

F = {F1, . . . ,FK}: sets of bit vectors
Ω : fading cluster structure

1: while X ←We have more incoming stream do
2: for each cluster Ci do
3: Add the new stream point X into Ci

4: Update Ω(Ci, t)
5: for each dimension d do
6: Compute the radii of Ω(Ci, t)
7: end for
8: Pick the dimensions in Ω(Ci, t) with minimum radii
9: Create selected features set Fi for Ci

10: end for
11: for each cluster Ci do
12: for each selected feature Fi do
13: disi← Average distance between X and the centroid of Ci

14: end for
15: index = argmini{disi}
16: s← The radius of Cindex

17: if disindex > s then
18: Add new cluster CK+1

19: else
20: Add X to Cindex

21: end if
22: Remove clusters with zero dimensions from Ω
23: if Number of current clusters > K then
24: Delete the least recently added cluster from Ω
25: end if
26: end for
27: end while
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There are a few more things regarding HPStream worth mentioning. First, the data set should be
normalized for meaningful comparison between different dimensions. Also, Manhattan Segmental
Distance is used to find the distance along the projected dimensions. This is a normalized version
of Manhattan Distance that can compute the distance of different dimensionality. In terms of the
empirical evaluation of HPStream, [2] conducted several experiments on real-world and synthetic
datasets. HPStream was able to out perform CluStream [1], as a clustering method for evolving data
streams. Also, it was shown to be very stable in terms of processing speed and scalable in terms of
dimensionality.

2.2.4 Algorithms for Linked Data

Linked data has become ubiquitous in real-world applications such as tweets in Twitter 1 (tweets
linked through hyperlinks), social networks in Facebook2 (people connected by friendships), and
biological networks (protein interaction networks). Typically linked data have the following three
characteristics: (1) high-dimensional such as tens of thousands of terms for tweets; (2) linked, pro-
viding an important source of information beyond attributes, i.e., link information; and (3) unlabeled
due to the large-scale size and the expensive cost for labeling. Such properties pose challenges to
the clustering task, and feature selection is an effective way to prepare high-dimensional data for
effective and efficient clustering [35]. In this subsection, we first introduce the challenges and op-
portunities of linked data for traditional feature selection, then present an embedded unsupervised
feature selection framework for linked data, and finally follow with a discussion about future work
of feature selection for linked data.

2.2.4.1 Challenges and Opportunities

Linked instances are related to each other via different types of links (e.g., hyperlinks, friend-
ships, and interactions). Thus linked data is distinct from traditional attribute value data (or “flat”
data). Figure 2.4 illustrates a typical example of linked data and its two representations. Figure 2.4(a)
shows 8 linked instances (u1 to u8), while Figure 2.4(b) is a conventional representation of attribute-
value data: rows are instances and columns are features. As mentioned above, besides attributes,
linked data provide an extra source in the form of links, represented as in Figure 2.4(c). These
differences present both challenges and opportunities for traditional feature selection and machine
learning [43, 57].

Linked data is patently not independent and identically distributed (i.i.d.), which is among the
most enduring and deeply buried assumptions of traditional machine learning methods [27, 66].
Due to the absence of class labels that guide the search for relevant information, unsupervised
feature selection is particularly difficult [9]. The linked property further exacerbates the difficulty
of unsupervised feature selection for linked data. On the other hand, linked data provides more
information than attribute value data and the availability of link information presents unprecedented
opportunities to advance research. For example, linked data allows collective inference, inferring
various interrelated values simultaneously [43], and enables relational clustering, finding a more
accurate pattern [39].

Many linked data-related learning tasks are proposed such as collective classification [43, 57]
and relational clustering [40, 39], but the task of feature selection for linked data is rarely touched
due to its unique challenges for feature selection: (1) how to exploit relations among data instances
and (2) how to take advantage of these relations for feature selection. Until recently, feature selection
for linked data has attracted attention. In [63], a supervised feature selection algorithm, LinkedFS,
is proposed for linked data in social media. Various relations, (coPost, coFollowing, coFollowed,
and Following) are extracted following social correlation theories. LinkedFS significantly improves

1http://www.twitter.com/
2https://www.facebook.com/
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FIGURE 2.4: A simple example of linked data.

the performance of feature selection by incorporating these relations into feature selection. In [64],
an unsupervised feature selection framework, LUFS, is developed for linked data [65]. More details
about LUFS will he presented in the following subsection.

2.2.4.2 LUFS: An Unsupervised Feature Selection Framework for Linked Data

LUFS is an unsupervised feature selection framework for linked data and in essence, LUFS in-
vestigates how to exploit and take advantage of link information of linked data for unsupervised fea-
ture selection. In general, the goal of feature selection is to select a subset of features to be consistent
with some constraints [80]. For supervised learning, label information plays the role of constraint.
Without label information, LUFS introduces the concept of pseudo-class label to guide unsupervised
learning. Particularly, LUFS assumes that there is a mapping matrix W∈Rm×c, assigning each data
point with a pseudo-class label where m is the number of original features and c is the number of
pseudo-class labels. The pseudo-class label indicator matrix is Y = W�X ∈ R

c×n where n is the
number of data points. Each column of Y has only one nonzero entity, i.e., ‖Y(:, i)‖0 = 1 where
‖ · ‖0 is the vector zero norm, counting the number of nonzero elements in the vector. Then LUFS
seeks pseudo-class label information by extracting constraints from both linked and attribute-value
data. The constraints from link information and attribute-value parts are obtained through social
dimension regularization and spectral analysis, respectively.
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Social Dimension Regularization: In [64], social dimension is introduced to improve the per-
formance of relational learning. LUFS employs social dimensions to exploit the interdependency
among linked data. It first adopts Modularity Maximization [49] to extract social dimension in-
dicator matrix H. Since social dimensions can be considered as a type of affiliations, according
to Linear Discriminant Analysis, three matrices, i.e., within, between, and total social dimension
scatter matrixes Sw, Sb, and St , are defined as follows:

Sw = YY�−YFF�Y�,

Sb = YFF�Y�,

St = YY�, (2.14)

where F = H(H�H)−
1
2 is the weighted social dimension indicator matrix.

Instances from different social dimensions are dissimilar while instances in the same social
dimension are similar. Finally the constraint, social dimension regularization, from link information
can be obtained via the following maximization problem:

max
W

Tr
(
(St)

−1Sb
)
. (2.15)

Spectral Analysis: To take advantage of information from the attribute-value part, LUFS ob-
tains the constraint from the attribute-value part through spectral analysis [42] as

min Tr(YLY�) (2.16)

where L is a Laplacian matrix.
Considering constraints from both link information and the attribute-value part, LUFS, is equiv-

alent to solving the following optimization problem:

min
W,s

Tr(YLY�)−αTr
(
(St)

−1Sb
)

s.t. ‖Y(:, i)‖0 = 1, 1≤ i≤ n (2.17)

With the spectral relaxation for label indicator matrix [42], LUFS is eventually used to solve the
following optimization problem:

min
W

f (W) = Tr(W�AW)+β‖W‖2,1

s.t. W�BW = Ic (2.18)

where A = XLX�+αX(In−FF�)X� is a symmetric and positive semidefinite matrix and B =
XX�+λI is a symmetric and positive matrix. Since the problem in Equation (2.18) is convex, an
optimal solution W can be guaranteed for LUFS [65]. The detailed algorithm for LUFS is shown in
Algorithm 10.

In Algorithm 10, social dimension extraction and weighted social dimension indicator construc-
tion are from line 1 to line 2. The iterative algorithm to optimize Equation (2.18) is presented from
line 8 to line 13.

2.2.4.3 Conclusion and Future Work for Linked Data

In this subsection, we first analyzed the differences between linked data and attribute-view data,
then presented the challenges and opportunities posed by linked data for feature selection, and
finally introduced a recent proposed unsupervised feature selection framework, LUFS, for linked
data in detail. To the best of our knowledge, LUFS is the first to study feature selection for linked



Feature Selection for Clustering: A Review 53

Algorithm 10 LUFS
Input: {X,R,α,β,λ,c,K,k}
Output: k most relevant features

1: Obtain the social dimension indicator matrix H
2: Set F = H(H�H)−

1
2

3: Construct S through RBF kernel
4: Set L = D−S
5: Set A = XLX�+αX(In−FF�)X�
6: Set B = XX�+λI
7: Set t = 0 and initialize D0 as an identity matrix
8: while not convergent do
9: Set Ct = B−1(A+βDt)

10: Set Wt = [q1, . . . ,qc] where q1, . . . ,qc are the eigenvectors of Ct corresponding to the first c
smallest eigenvalues

11: Update the diagonal matrix Dt+1, where the i-th diagonal element is 1
2‖Wt (i,:)‖2

;
12: Set t = t + 1
13: end while
14: Sort each feature according to ‖W(i, :)‖2 in descending order and select the top-k ranked ones;

data in an unsupervised scenario, and many works are needed to further exploit linked data for
feature selection.

Since LUFS can be categorized as an embedded method, analogous to conventional data, how
to develop filter, wrapper, and hybrid models for linked data is an interesting problem for further
research. Furthermore, LUFS employs social dimension to capture link information, a further in-
vestigation into sophisticated methods of exploiting link will lead to novel approaches and help us
develop a deeper understanding of how to improve the performance of feature selection. Finally,
the availability of various link formation can lead to links with heterogeneous strengths. Therefore
how to incorporate automatic link selection into feature selection is another promising direction for
linked data.

2.3 Discussions and Challenges

Here are several challenges and concerns that we need to mention and discuss briefly in this
chapter about feature selection for clustering.

2.3.1 The Chicken or the Egg Dilemma

In feature selection for clustering, there is a dilemma in choosing which one to start with or
which one serves the demands of the other. Do we utilize feature selection to improve clustering
quality? Or, do we use clustering as an indicator of relevant features? This, in fact, leads us to the
chicken or the egg dilemma. Which one comes first, clustering or feature selection? If the answer
to the latter is yes, that means feature selection is a goal in itself. However, this is not the case
in feature selection literature. We usually use feature selection, as mentioned earlier, to improve
learning quality, reduce computational time, and reduce required storage. Thus, the answer to the
first question is, indeed, yes. We use feature selection to improve clustering quality. Accordingly, we
should select the features that preserve cluster structure. However, some current methods initialize
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clusters using all features. Then, they apply the supervised feature selection method using the initial
clusters as class labels. We believe that such techniques will not achieve the goal of feature selection
since the initial clusters may not be the real ones or even close. If these clusters are claimed to be
real ones, why bother doing feature selection at all? Some other methods apply the same process
but in an iterative manner using an EM-like approach. Although this might lead to better results,
we still believe that there are several drawbacks associated with this approach. For example, if
the dimensionality in the original space is huge, such an approach may take a very long time to
converge. Therefore, we prefer utilizing feature selection that does not depend on any clustering
input to define the relevancy of the the feature. In other words, we may utilize the clustering method
to guide the searching process but we do not use the clustering as a class label. This means we apply
the feature selection method on the whole dataset and then use the selected features to construct the
clusters. If we are not satisfied with the clustering quality, we may use this as an indicator that this
set of features is not satisfactory. This is exactly the wrapper approach.

2.3.2 Model Selection: K and l

Selecting the number of clusters K or the number of selected features l is an open problem. In
real-world problems, we have limited knowledge about each domain. Consequently, determining
optimal K or l is almost impossible. Although this problem seems not to be a big issue with some
approaches (such as frequent term set-based feature selection methods), we still need to determine
other sensitive parameters such as the minimum support, which leads us to another problem. Choos-
ing different l for the same problem usually results in different equally good subsets of features and
hence, different clustering results. Similarly, choosing different K leads to merging totally different
clusters into one or splitting one cluster into smaller ones. In other cases, this may lead to changing
the set of selected features which results in losing potential clusters and/or constructing less im-
portant ones. Therefore, picking nearly optimal parameters is desirable for better clustering quality.
Some work has been done to quantify such parameters. For instance, [10] uses the notion of false
nearest neighbor to find the number of selected features for clustering. On the other hand, [67] uses
gap statistics to estimate the number of clusters in a dataset. However, the effort in finding better
parameters for clustering is still limited. We believe it is necessary to pay more attention to these
two parameters for better clustering results.

2.3.3 Scalability

With the tremendous growth of dataset sizes, the scalability of current algorithms may be in
jeopardy, especially with those domains that require online clustering. For example, streaming data
or data that cannot be loaded into the memory require a single data scan where the second pass
is either unavailable or very expensive. Using feature selection methods for clustering may reduce
the issue of scalability for clustering. However, some of the current methods that involve feature
selection in the clustering process require keeping full dimensionality in the memory to observe any
evolving in the cluster structure. If a change in data structure is observed, the clustering process
should be restarted. Furthermore, other methods require an iterative process where each sample is
visited more than once until convergence.

On the other hand, the scalability of feature selection algorithms is a big problem. Usually, they
require a sufficient number of samples to obtain, statically, good enough results. It is very hard
to observe a feature relevance score without considering the density around each sample. Some
methods try to overcome this issue by memorizing only samples that are important or a summary,
say, the mean of each cluster. In conclusion, we believe that the scalability of clustering and feature
selection methods should be given more attention to keep pace with the growth and fast streaming
of the data.
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2.3.4 Stability

In supervised learning such as classification, stability of feature selection algorithms has gained
increasing attention the last few years. Stability of feature selection algorithms or selection stability
is the sensitivity of the selection toward data perturbation [5]. An example of data perturbation
would be new data sample(s). Therefore, with a small amount of perturbation introduced to the data,
we do not expect dramatic change in the selected features. Otherwise, the algorithm is considered
to be unstable. To the best to our knowledge, selection stability in unsupervised learning has not yet
been studied.

Studying stability in supervised learning is much easier than in the unsupervised. Due to the
absence of class label in the latter, we cannot maintain enough knowledge about the underlying
clusters within the data. For this reason, we cannot be confident enough whether the new sample(s)
belong to any existing clusters or they form one or more new clusters. However, in supervised
learning, we have a limited number of classes. Thus, a sample that does not belong to any existing
class would be considered an outlier and we do not need to modify our selected set to obey outliers.
So, to address the issue of feature selection stability in clustering, we discuss it with respect to a
different situation.

Predefined Clusters:
In case we have enough domain knowledge to predefine the possible clusters, the stability issue

will be identical to the stability in supervised learning. Therefore, we expect the feature selection
algorithm to be stable with the existence of a small amount of perturbation. However, if the topics
do not change while the data change, we might consider unstable selection.

Undefined Clusters:
In contrast to the first case, if we do not have enough knowledge about the clusters of the data,

which is true in real-world situations, we generally can say that this case depends on the domain and
the practitioner’s desire. In streaming data, for example, we usually expect some kind of dataset shift
or drift where the distribution and the clustering topics of the data may evolve over time. Therefore,
we should have an adaptive feature selection process that adjusts the selected features in a way
that can capture the evolving structure of the data. However, we might desire a stable selection for
a period of time and an unstable one for another period. For example, in a news data clustering,
we wish to have stable selection while we do not have breaking news that takes the distribution to
different topic.

On the other hand, subspace and projected clustering may not promote stable selection since
they search for all possible sets of features that define clusters. In some cases, we might want to
maintain stable selection on some clusters but unstable on others. For instance, if we are performing
projected clustering on news data, we may want to have stable selection on clusters that do not
evolve rapidly while having unstable selection on rapidly evolving clusters.
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3.1 Introduction

Probabilistic model-based clustering techniques have been widely used and have shown promis-
ing results in many applications, ranging from image segmentation [71, 15], handwriting recog-
nition [60], document clustering [36, 81], topic modeling [35, 14] to information retrieval [43].
Model-based clustering approaches attempt to optimize the fit between the observed data and some
mathematical model using a probabilistic approach. Such methods are often based on the assump-
tion that the data are generated by a mixture of underlying probability distributions. In practice,
each cluster can be represented mathematically by a parametric probability distribution, such as a
Gaussian or a Poisson distribution. Thus, the clustering problem is transformed into a parameter
estimation problem since the entire data can be modeled by a mixture of K component distributions.
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Data points (or objects) that belong most likely to the same distribution can then easily be defined
as clusters.

In this chapter, we introduce several fundamental models and algorithms for probabilistic clus-
tering, including mixture models [45, 48, 25], EM algorithm [23, 46, 53, 16], and probabilistic topic
models [35, 14]. For each probabilistic model, we will introduce its general framework of model-
ing, the probabilistic explanation, the standard algorithms to learn the model, and its applications.
Mixture models are probabilistic models which are increasingly used to find the clusters for univari-
ate and multivariate data. We therefore begin our discussion of mixture models in Section 3.2, in
which the values of the discrete latent variables can be interpreted as the assignments of data points
to specific components (i.e., clusters) of the mixture. To find maximum likelihood estimations in
mixture models, a general and elegant technique, the Expectation-Maximization (EM) algorithm, is
introduced in Section 3.3. We first use the Gaussian mixture model to motivate the EM algorithm in
an informal way, and then give a more general view of the EM algorithm, which is a standard learn-
ing algorithm for many probabilistic models. In Section 3.4, we present two popular probabilistic
topic models, i.e., probabilistic latent semantic analysis (PLSA) [35] and latent Dirichlet allocation
(LDA) [14], for document clustering and analysis. Note that some of the methods (e.g., EM/mixture
models) may be more appropriate for quantitative data, whereas others such as topic models, PLSI,
and LDA, are used more commonly for text data. Finally, we give the conclusions and summary in
Section 3.5.

3.2 Mixture Models

Mixture models for cluster analysis [75, 45, 48, 25, 47] have been addressed in a number of
ways. The underlying assumption is that the observations to be clustered are drawn from one of
several components, and the problem is to estimate the parameters of each component so as to best fit
the data. Inferring the parameters of these components and identifying which component produced
each observation leads to a clustering of the set of observations. In this section, we first give an
overview of mixture modeling, then introduce two most common mixtures, Gaussian mixture model
and Bernoulli mixture model, and finally discuss several issues about model selection.

3.2.1 Overview

Suppose we have a set of data points X = {x1, . . . ,xN} consisting of N observations of a D-
dimensional random variable x. The random variable xn is assumed to be distributed according to a
mixture of K components. Each component (i.e., cluster) is mathematically represented by a para-
metric distribution. An individual distribution used to model a specific cluster is often referred to
as a component distribution. The entire data set is therefore modeled by a mixture of these dis-
tributions. Formally, the mixture distribution, or probability density function, of xn can be written
as

p(xn) =
K

∑
k=1

πk p(xn|θk) (3.1)

where π1, . . . ,πK are the mixing probabilities (i.e., mixing coefficients or weights), each θk is the set
of parameters specifying the kth component, and p(xn|θk) is the component distribution. In order to
be valid probabilities, the mixing probabilities {πk} must satisfy

0≤ πk ≤ 1 (k = 1, . . . ,K), and
K

∑
k=1

πk = 1.
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FIGURE 3.1: Graphical representation of a mixture model. Circles indicate random variables, and
shaded and unshaded shapes indicate observed and latent (i.e., unobserved) variables.

An obvious way of generating a random sample xn with the mixture model, given by (3.1), is
as follows. Let zn be a categorical random variable taking on the values 1, . . . ,K with probabilities
p(zn = k) = πk (also denoted as p(znk = 1) = πk). Suppose that the conditional distribution of xn

given zn = k is p(xn|θk). Then the marginal distribution of xn is obtained by summing the joint
distribution over all possible values of zn to given p(xn) as (3.1). In this context, the variable zn

can be thought of as the component (or cluster) label of the random sample xn. Instead of using
a single categorical variable zn, we introduce a K-dimensional binary random vector zn to denote
the component label for xn. The K-dimensional random variable zn has a 1-of-K representation, in
which one of the element znk = (zn)k equals to 1, and all other elements equal to 0, denoting the
component of origin of xn is equal to k. For example, if we have a variable with K = 5 clusters and
a particular observation xn of the variable happens to correspond to the cluster where zn4 = 1, then
zn will be represented by zn = (0,0,0,1,0)T . Note that the values of znk satisfy znk ∈ {0,1} and
∑K

k=1 znk = 1. Because zn uses a 1-of-K representation, the marginal distribution over zn is specified
in terms of mixing probabilities πk, such that

p(zn) = πzn1
1 πzn2

2 . . .πznK
K =

K

∏
k=1

πznk
k . (3.2)

Similarly, the conditional distribution of xn given zn can be written in the form

p(xn|zn) =
K

∏
k=1

p(xn|θk)
znk . (3.3)

The joint distribution is given by p(zn)p(xn|zn), and the marginal distribution of xn is obtained as

p(xn) =∑
zn

p(zn)p(xn|zn) =
K

∑
k=1

πk p(xn|θk). (3.4)

Thus, the above marginal distribution of x is an equivalent formulation of the mixture model in-
volving an explicit latent variable. The graphical representation of the mixture model is shown in
Figure 3.1. From the generative process point of view, a given set of data points could have been
generated by repeating the following procedure N times, once for each data point xn:

(a) Choose a hidden component (i.e., cluster) label zn ∼ MultK(1,π). This selects the kth com-
ponent from which to draw point xn.

(b) Sample a data point xn from the kth component according to the conditional distribution
p(xn|θk).

Because we have represented the marginal distribution in the form p(xn) = ∑zn p(xn,zn), it
follows that for every observed data point xn there is a corresponding latent variable zn. Using
Bayes’ theorem, we can obtain the conditional probability of znk = 1 given xn as

p(znk = 1|xn) =
p(znk = 1)p(xn|znk = 1)

∑K
j=1 p(zn j = 1)p(xn|zn j = 1)

=
πk p(xn|θk)

∑K
j=1 π j p(xn|θ j)

, (3.5)
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where πk (i.e., p(znk = 1)) is the prior probability that data point xn was generated from component
k, and p(znk = 1|xn) is the posterior probability that the observed data point xn came from compo-
nent k. In the following, we shall use γ(znk) to denote p(znk = 1|xn), which can also be viewed as
the responsibility that component k takes for explaining the observation xn.

In this formulation of the mixture model, we need to infer a set of parameters from the obser-
vation, including the mixing probabilities {πk} and the parameters for the component distributions
{θk}. The number of components K is considered fixed, but of course in many applications, the
value of K is unknown and has to be inferred from the available data [25]. Thus, the overall pa-
rameter of the mixture model is Θ = {π1, . . . ,πK ,θ1, . . . ,θK}. If we assume that the data points are
drawn independently from the distribution, then we can write the probability of generating all the
data points in the form

p(X|Θ) =
N

∏
n=1

K

∑
k=1

πk p(xn|θk), (3.6)

or in a logarithm form

log p(X|Θ) =
N

∑
n=1

log
K

∑
k=1

πk p(xn|θk). (3.7)

In statistics, maximum likelihood estimation (MLE) [23, 8, 41] is an important statistical approach
for parameter estimation,

ΘML = argmax
Θ
{log p(X|Θ)},

which considers the best estimate as the one that maximizes the probability of generating all the
observations. Sometimes we have a priori information p(Θ) about the parameters, and it can be
incorporated into the mixture models. Thus, the maximum a posteriori (MAP) estimation [70, 27]
is used instead,

ΘMAP = argmax
Θ
{log p(X|Θ)+ log p(Θ)},

which considers the best estimate as the one that maximizes the posterior probability of Θ given
the observed data. MLE and MAP give a unified approach to parameter estimation, which is well-
defined in the case of the normal distribution and many other problems.

As mentioned previously, each cluster is mathematically represented by a parametric distribu-
tion. In principle, the mixtures can be constructed with any types of components, and we could still
have a perfectly good mixture model. In practice, a lot of effort is given to parametric mixture mod-
els, where all components are from the same parametric family of distributions, but with different
parameters. For example, they might all be Gaussians with different means and variances, or all
Poisson distributions with different means, or all power laws with different exponents. In the fol-
lowing section, we will introduce the two most common mixtures, mixture of Gaussian (continuous)
and mixture of Bernoulli (discrete) distributions.

3.2.2 Gaussian Mixture Model

The most well-known mixture model is the Gaussian mixture model (GMM), where each com-
ponent is a Gaussian distribution. Recently, GMM has been widely used for clustering in many
applications, such as speaker identification and verification [62, 61], image segmentation [15, 56],
and object tracking [71].

The Gaussian, also known as the normal distribution, is a widely used model for the distribution
of continuous variables. In the case of a single variable x, the Gaussian distribution can be written
in the form

N (x|μ,σ2) =
1

(2πσ2)1/2
exp{− 1

2σ2 (x−μ)2}, (3.8)
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FIGURE 3.2 (See color insert): (a) Plots of the univariate Gaussian distribution given by (3.8)
for various parameters of μ and σ, and (b) contours of the multivariate (2-D) Gaussian distribution
given by (3.9) for various parameters of μ and Σ.

where μ is the mean and σ2 is the variance. Figure 3.2(a) shows plots of the Gaussian distribu-
tion for various values of the parameters. For a D-dimensional vector x, the multivariate Gaussian
distribution takes the form

N (x|μ,Σ) = 1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(x−μ)T Σ−1(x−μ)}, (3.9)

where μ is a D-dimensional mean vector, Σ is a D×D covariance matrix, and |Σ| denotes the de-
terminant of Σ. Figure 3.2(b) shows contours of the Gaussian distribution for various values of the
parameters.

In the Gaussian mixture model, each component is represented by the parameters of a multivari-
ate Gaussian distribution p(xk|θk)=N (xn|μk,Σk). Based on (3.1), the Gaussian mixture distribution
can be written as a linear superposition of Gaussians in the form

p(xn|Θ) = p(xn|π,μ,Σ) =
K

∑
k=1

πkN (xn|μk,Σk). (3.10)

For a given set of observations X, the log-likelihood function is given by

l(Θ) = log p(X|Θ) =
N

∑
n=1

log p(xn|Θ) =
N

∑
n=1

log
K

∑
k=1

πkN (xn|μk,Σk). (3.11)

To find maximum likelihood solutions that are valid at local maxima, we compute the derivatives
of log p(X|π,μ,Σ) with respect to πk, μk, and Σk, respectively. The derivative with respect to the
mean μk is given by

∂l
∂μk

=
N

∑
n=1

πkN (xn|μk,Σk)

∑K
j=1 π jN (xn|μj,Σ j)

Σ−1
k (xn−μk) =

N

∑
n=1

γ(znk)Σ−1
k (xn−μk),

where we have used (3.9) and (3.5) for the Gaussian distribution and the responsibilities (i.e., pos-
terior probabilities), respectively. Setting this derivative to zero and multiplying by Σk, we obtain

μk =
∑N

n=1 γ(znk)xn

∑N
n=1 γ(znk)

(3.12)
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and

γ(znk) =
πkN (xn|μk,Σk)

∑K
j=1 π jN (xn|μj,Σ j)

. (3.13)

We can interpret that the mean μk for the kth Gaussian component is obtained by taking a weighted
mean of all the points in the data set, in which the weighting factor corresponds to the posterior
probability γ(znk) that component k was responsible for generating xn.

Similarly, we set the derivative of log p(X|π,μ,Σ) with respect to Σk to zero, and we obtain

Σk =
∑N

n=1 γ(znk)(xn−μk)(xn−μk)
T

∑N
n=1 γ(znk)

. (3.14)

Similar to (3.12), each data point is weighted by the conditional probability generated by the corre-
sponding component and with the denominator given by the effective number of points associated
with the corresponding component.

The derivative of log p(X|π,μ,Σ) with respect to the mixing probabilities πk requires a little
more work, because the values of πk are constrained to be positive and sum to one. This constraint
can be handled using a Lagrange multiplier and maximizing the following quantity

log p(X|π,μ,Σ)+λ(
K

∑
k=1

πk− 1).

After simplifying and rearranging we obtain

πk =
∑N

n=1 γ(znk)

N
(3.15)

so that the mixing probabilities for the kth component are given by the average responsibility that
the component takes for explaining the data points.

It is worth noting that the Equations (3.12), (3.14), and (3.15) are not the closed-form solution
for the parameters of the mixture model. The reason is that these equations are intimately coupled
with Equation (3.13). More specifically, the responsibilities γ(znk) given by Equation (3.13) depend
on all the parameters of the mixture model, while all the results of (3.12), (3.14), and (3.15) rely on
γ(znk). Therefore, maximizing the log likelihood function for a Gaussian mixture model turns out
to be a very complex problem. An elegant and powerful method for finding maximum likelihood
solutions for models with latent variables is called the Expectation-Maximization algorithm or EM
algorithm [23].

However, the above equations do suggest an iterative solution for the Gaussian mixture model,
which turns out to be an instance of the EM algorithm for the particular case of the Gaussian mixture
model. Here we shall give such an iterative algorithm in the context of Gaussian mixture model,
and later we shall give a general framework of EM algorithm in Section 3.3. This algorithm is
started by initializing with guesses about the parameters, including the means, covariances, and
mixing probabilities. Then we alternative between two updating steps, the expectation step and
maximization step. In the expectation step, or E-step, we use the current parameters to calculate the
responsibilities (i.e., posterior probabilities) according to (3.13). In the maximization step, or M-
step, we maximize the log-likelihood with the updated responsibilities, and reestimate the means,
covariances, and mixing coefficients using (3.12), (3.14), and (3.15). In Section 3.3, we shall show
that each iteration of the EM algorithm is guaranteed to increase the log-likelihood. In practice, the
EM algorithm is converged when the change in the log-likelihood or the parameter values fall below
some threshold. We summarize the EM algorithm for Gaussian mixtures in Algorithm 11.

As illustrated in Figure 3.3, the EM algorithm for a mixture of two Gaussian components is
applied to a random generated data set. Plot (a) shows the data points together with the random
initialization of the mixture model in which the two Gaussian components are shown. Plot (b) shows
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Algorithm 11 EM for Gaussian Mixtures
Given a set of data points and a Gaussian mixture model, the goal is to maximize the log-likelihood
with respect to the parameters.

1: Initialize the means μ0
k , covariances Σ0

k , and mixing probabilities π0
k .

2: E-step: Calculate the responsibilities γ(znk) using the current parameters based on Equation
(3.13).

3: M-step: Update the parameters using the current responsibilities. Note that we first update the
new means using (3.12), then use these new values to calculate the covariances using (3.14),
and finally reestimate the mixing probabilities using (3.15).

4: Compute the log-likelihood using (3.10) and check for convergence of the algorithm. If the con-
vergence criterion is not satisfied, then repeat steps 2–4; otherwise, return the final parameters.
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FIGURE 3.3: Illustration of the EM algorithm for two Gaussian components.

the result of the initial E-step, in which each data point is depicted using a proportion of white ink
and black ink according to the posterior probability of having been generated by the corresponding
component. Plot (c) shows the situation after the first M-step, in which the means and covariances
of both components have changed. Plot (d) shows the results after 47 cycles of EM, which is close
to convergence.

Compared with K-means algorithm, the EM algorithm for GMM takes many more iterations to
reach convergence [8, 55]. There will be multiple local maxima of the log-likelihood which depends
on different initialization, and EM is not guaranteed to find the largest of these maxima. In order
to find a suitable initialization and speed up the convergence for a Gaussian mixture model, it is
common to run the K-means algorithm [8] and choose the means and covariances of the clusters,
and the fractions of data points assigned to the respective clusters, for initializing μ0

k , Σ0
k and π0

k ,
respectively. Another problem of the EM algorithm for GMM is the singularity of the likelihood
function in which a Gaussian component collapses onto a particular data point. It is reasonable to
avoid the singularities by using some suitable heuristics [8, 55], for instance, by detecting when a
Gaussian component is collapsing and resetting its mean and covariance, and then continuing with
the optimization.

3.2.3 Bernoulli Mixture Model

Although most research in mixture models has focused on distributions over continuous vari-
ables described by mixtures of Gaussians, there are many clustering tasks for which binary or dis-
crete mixture models are better fitted. We now discuss mixtures of discrete binary variables de-
scribed by Bernoulli distributions, which is also known as latent class analysis [42, 48].
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A Bernoulli mixture model [18] is a special case of mixture models, where each component k
has a D-dimensional Bernoulli distribution with parameters μk = {μk1, . . . ,μkD}T ,

p(x|μk) =
D

∏
i=1
μxi

ki(1−μki)
1−xi . (3.16)

Let K denote the number of components, a mixture model with K Bernoulli components can be
written in the form

p(x|μ,π) =
K

∑
k=1

πk p(x|μk), (3.17)

where μ= {μ1, . . . ,μK} and π = {π1, . . . ,πK}.
Given a data set X = {x1, . . . ,xN}, the log-likelihood for the model is given by

log p(X|μ,π) =
N

∑
n=1

log

{
K

∑
k=1

πk p(xn|μk)

}

(3.18)

=
N

∑
n=1

log

{
K

∑
k=1

πk

D

∏
i=1
μxni

ki (1−μki)
1−xni

}

. (3.19)

Note that the summation appears inside the logarithm, so that there is no close-form result for
maximum likelihood solution. EM algorithm is a standard learning algorithm for estimating the
parameters of this model. In Section 3.3 we will show the general EM algorithm, and the solution
for Bernoulli mixture model will be shown and revisited in Section 3.3.2.

Here let us discuss a real application of the Bernoulli mixture model by using it to model hand-
written digits. Imagine that we are given an M×M binary (black-and-white) image that is known to
be a scan of a handwritten digit between 0 and 9, but we do not know which digit is written. We can
create a mixture model with K = 10 different components, where each component is a vector of size
M2 of Bernoulli distributions (one per pixel). Such a model can be trained with the EM algorithm
on an unlabeled set of handwritten digits and will effectively cluster the images according to the
digit being written.

3.2.4 Model Selection Criteria

With the model-based approach to clustering, issues such as the selection of the number of
clusters or the assessment of the validity of a given model can be addressed in a principled and
formal way. In mixture modeling, an important issue is the selection of the number of components,
which is assumed to be fixed in previous subsections. However, like the usual trade-off in model
selection problems, the mixture with too many components may overfit the data, while a mixture
with too few components may not be flexible enough to approximate the true underlying model.
Thus, we need to adopt some statistical procedures besides the parameter estimation to infer the
number of components.

To illustrate the problem of model selection, let us denote Mk as the class of all possible k-
component mixtures built from a certain type of distribution. The MLE criterion cannot be di-
rectly used to estimate the number of mixture components k because these classes are nested, i.e.,
Mk ∈ Mk+1, and the maximized likelihood function log p(X|ΘML) is a nondecreasing function of
k. Therefore, MLE criterion is useless to estimate the number of components, and some advanced
model selection methods have been proposed.

From a computational point of view, there are two main types of model selection methods:
deterministic and stochastic methods. Deterministic methods usually start by obtaining a set of



Probabilistic Models for Clustering 69

candidate models for a range of values of k (from kmin to kmax) which is assumed to contain the
optimal k. The number of components is then selected according to

k∗ = argmin
k
{C (Θk,k),k = kmin, . . . ,kmax}, (3.20)

where Θk is an estimate of the mixture parameters with k components, and C (Θk,k) is some model
selection criteria. A very common criterion can be expressed in the form

C (Θk,k) =− log p(X|Θk)+P (k),

where P (k) is an increasing function penalizing higher values of k. There are many examples of
such criteria that have been used for mixture models, including Bayesian approximation criteria,
such as Laplace-empirical criterion (LEC) [65, 48] and Schwarz’s Bayesian inference criterion
(BIC) [67, 26], and information-theoretic approaches [17], such as Rissanen’s minimum description
length (MDL) [64, 57], the minimum message length (MML) criterion [54, 79, 25], and Akaike’s
information criterion (AIC) [17]. In addition, several model section criteria have been proposed
based on the classification likelihood, such as the normalized entropy criterion (NEC) [21, 4] and
the integrated classification likelihood (ICL) criterion [5]. For finite mixture models, a compre-
hensive review of model selection approaches is given in [48]. Besides deterministic methods,
stochastic methods based on Markov chain Monte Carlo (MCMC) can be used for model infer-
ence, by either implementing model selection criteria [3, 66], or modeling in fully Bayesian way
and sampling from the full a posteriori distribution with k considered unknown [63, 59]. More-
over, cross-validation approaches [69] have also been used to estimate the number of mixture
components.

3.3 EM Algorithm and Its Variations

In most applications, parameters of a mixture model are estimated by maximizing the likelihood
and the standard approach to MLE for mixture models and other probabilistic models is the EM
algorithm [23]. In this section, we first present a general view of the EM algorithm, then revisit
the EM algorithm for mixture models, and finally discuss the variations and applications of EM
algorithm. We will also illustrate the EM algorithm for topic models in Section 3.4.

3.3.1 The General EM Algorithm

The EM (Expectation-Maximization) algorithm is a popular iterative method for finding MLE
or MAP estimations for probabilistic models with latent variables [23].

Suppose we have a set of observed data points (or objects) X = {x1, . . . ,xN} and a set of latent
variables Z = {z1, . . . ,zN}, in which each data point xn is associated with a latent variable zn, and
we use Θ to denote the set of all model parameters. To use the method of maximum likelihood,
the likelihood (or likelihood function) of a set of parameters given the observed data is defined as
the probability of all the observations given those parameters values p(X|Θ). In practice, it is often
more convenient to optimize the log-likelihood function for the EM algorithm, which is given by

l(Θ) = log p(X|Θ) =
N

∑
n=1

log p(xn|Θ) =
N

∑
n=1

log∑
zn

p(xn,zn|Θ).

Here we are assuming zn is discrete, although the discussion is identical if zn comprises continuous
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FIGURE 3.4: For a concave function log(x), the secant line consists of weighted means of the
concave function that lies on or below the function.

variables with summation replaced by integration as appropriate. Note that the summation over the
latent variables appears inside the logarithm, which prevents the logarithm from acting directly on
the joint distribution, resulting in complicated expressions for the maximum likelihood solution.
The essential trick of the EM algorithm is to maximize a lower bound on the log-likelihood instead
of the log-likelihood.

Jensen’s inequality is often used to bound the logarithm of a summation of terms. Given K non-
negative numbers π1, . . . ,πK that add up to one (i.e., mixing probabilities), and K arbitrary numbers
x1, . . . ,xK , for a convex function f , Jensen’s inequality can be stated as

f (
K

∑
k=1

πkxk)≤
K

∑
k=1

πk f (xk),

and the inequality is reversed if f is a concave function, which is

f (
K

∑
k=1

πkxk)≥
K

∑
k=1

πk f (xk).

Let us take the logarithm function, a concave function, as an example. As shown in Figure 3.4, for
two points x1 and x2, the concave function of the weighted means log(πx1 +(1−π)x2) is larger
than the weighted means of the concave function π log(x1)+ (1−π) log(x2).

We can introduce an arbitrary distribution q(zn) defined over the latent variables (∑zn q(zn) = 1,
q(zn) ≥ 0), and we observe that, for any choice of q(zn), the following decomposition holds based
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on the Jensen’s inequality:

l(Θ) = log p(X|Θ) =
N

∑
n=1

log∑
zn

p(xn,zn|Θ)

=
N

∑
n=1

log∑
zn

q(zn)
p(xn,zn|Θ)

q(zn)

≥
N

∑
n=1

∑
zn

q(zn) log
p(xn,zn|Θ)

q(zn)
(3.21)

≡ L(q,Θ).

It is obvious that L(q,Θ) is a lower bound on log p(X|Θ). Note that L(q,Θ) is a function of the
distribution q(z) and a function of the parameters Θ. It is worth studying carefully that it will be
easier to maximize this lower bound on the log-likelihood than the actual log-likelihood, and the
lower bound is reasonably tight. In terms of tightness, suppose q(zn) = p(zn|xn,Θ); we can simplify
L(q,Θ) to be

L(q,Θ)|q(zn)=p(zn|xn,Θ) =
N

∑
n=1

∑
zn

p(zn|xn,Θ) log
p(xn,zn|Θ)

p(zn|xn,Θ)

=
N

∑
n=1

∑
zn

p(zn|X,Θ) log p(xn|Θ)

=
N

∑
n=1

log p(xn|Θ) = l(Θ). (3.22)

Therefore, with that choice of q, the lower bound L(q,Θ) will equal the log-likelihood, which
indicates that the lower bound is tight. Moreover, since L(q,Θ)≤ l(Θ), this choice of q maximizes
L(q,Θ) for fixed Θ.

The EM algorithm is a two-stage iterative optimization framework for finding maximum likeli-
hood solutions. Now we shall demonstrate how the EM algorithm does indeed maximize the log-
likelihood. Suppose that the current estimates of the parameters are Θ(t). In the E-step, the lower
bound L(q,Θ(t)) is maximized with respect to q(zn) while holding Θ(t) fixed, which can be stated
in the form

q(t)(zn) = argmax
q

L(q,Θ(t)) = p(zn|xn,Θ(t)).

The solution to this maximization problem is easily seen by noting that the value of log p(X|Θ(t))

does not depend on q(zn) when q(zn) is equal to the posterior distribution p(zn|xn,Θ(t)). In this
case, the lower bound will equal the log-likelihood given by Equation (3.22). In other words, the
maximization in the E-step is just computing the posterior probabilities p(zn|xn,Θ(t)).

In the following M-step, the distribution q(zn) is held fixed and the lower bound L(q(t),Θ) is
maximized with respect to Θ to obtain a new estimate Θ(t+1), which can be stated in the form

Θ(t+1) = argmax
Θ

L(q(t),Θ). (3.23)

If we substitute q(t)(zn) = p(zn|xn,Θ(t)) into L(q(t),Θ), the lower bound can be expressed as

L(q(t),Θ) = Q (Θ,Θ(t))−
N

∑
n=1

∑
zn

p(zn|xn,Θ(t)) log p(zn|xn,Θ(t)) (3.24)

where

Q (Θ,Θ(t)) =
N

∑
n=1

∑
zn

p(zn|xn,Θ(t)) log p(xn,zn|Θ), (3.25)
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Algorithm 12 The General EM Algorithm
Given a statistical model consisting of a set of observed variables X, a set of unobserved latent
variables Z, and a vector of unknown parameters Θ, the goal is to maximize the log-likelihood with
respect to the parameters Θ.

1: Start with an initial guess for the parameters Θ(0) and compute the initial log-likelihood
log p(X|Θ(0)).

2: E-step: Evaluate q(t) = argmaxq L(q,Θ(t)) = p(zn|xn,Θ(t)).
3: M-step: Update the parameters Θ(t+1) = argmaxΘ Q (Θ,Θ(t)).
4: Compute the log-likelihood log p(X|Θ(t+1)) and check for convergence of the algorithm. If the

convergence criterion is not satisfied, then repeat steps 2-4, otherwise, return the final parame-
ters.

and the second sum is simply the negative entropy (constant) of the q distribution, and is there-
fore independent of Θ. Thus, in the M-step, maximizing L(q(t),Θ) is equivalent to maximizing
Q (Θ,Θ(t)),

Θ(t+1) = argmax
Θ

Q (Θ,Θ(t)). (3.26)

The above quantity that is being maximized is the expectation of the complete data log-likelihood.
The convergence properties of the EM algorithm are discussed in detail in [23] and [46]. Here

we discuss the general convergence of the algorithm. We have seen that both the E and the M steps
of the EM algorithm are about maximizing L(q,Θ). It is easy to see that, after E-step,

l(Θ(t)) = L(q(t),Θ(t))≥ L(q(t−1),Θ(t))

and that, after the M-step,
L(q(t),Θ(t+1))≥ L(q(t),Θ(t)).

Putting these two inequalities together, we obtain L(q(t+1),Θ(t+1)) ≥ L(q(t),Θ(t)) and log p(X|
Θ(t+1)) ≥ log p(X|Θ(t)). It is clear that each EM cycle can increase the lower bound on the log-
likelihood function and will change the model parameters in such a way as to increase the actual
log-likelihood, which is guaranteed to reach a local maximum of the log-likelihood function. The
general EM algorithm is summarized in Algorithm 12.

Maximum A Posterior Estimation: The EM algorithm can also be used to find MAP solutions
for models in which a prior p(Θ) over the parameters is introduced. We note that as a function of

Θ, p(Θ|X) = p(X|Θ)p(Θ)
p(X)

, based on Bayes’ theorem. By making use of the decomposition (3.21), we
have

log p(Θ|X) = log p(X|Θ)+ log p(Θ)− log p(X)

≥ L(q,Θ)+ log p(Θ)− log p(X), (3.27)

where log p(X) is a constant. Again we can maximize the right-hand side alternatively with respect
to q and Θ. In this case the E-step remains the same as in the maximum likelihood case as q only
appears in L(q,Θ), whereas in the M-step the quantity to be maximized is given by L(q,Θ) +
log p(Θ), which typically requires only a small modification to the standard maximum likelihood
M-step.

Furthermore, a number of variants of the EM algorithm for clustering have been studied for
when the original EM algorithm is difficult to compute in either the E-step or the M-step. Here we
list some of them.

Generalized EM: Often in practice, the solution to the M-step exists in closed form, but there
are many cases for which it is intractable to find the value of Θ that maximizes the function
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Q (Θ,Θ(t)). In such situations, a generalized EM algorithm (GEM) [23, 53, 16] is defined for which
the M-step requires Θ(t+1) to be chosen such that

Q (Θ(t+1),Θ(t))≥ Q (Θ(t),Θ(t))

holds. That is, one chooses a better value Θ(t+1) to increase the Q -function, Q (Θ,Θ(t)), rather than
to find the local maximum of it. The convergence can still be guaranteed using GEM, and it has
been widely used for the estimation of topic modeling with graph-based regularization, such as
NetPLSA [50] and TMBP [24].

Variational EM: The variational EM algorithm addresses the problem of an intractable E-step,
which is one of the approximate algorithms used in LDA [14]. The idea is to find a set of variational
parameters with respect to hidden variables that attempts to obtain the tightest possible lower bound
in E-step and to maximize the lower bound in M-step. The variational parameters are chosen in
a way that simplifies the original probabilistic model and are thus easier to calculate. There is no
guarantee that variational EM will find a local optimum.

Stochastic EM: In some situations, the EM algorithm involves computing an integral that may
not be tractable, such as LDA [14]. The idea of stochastic EM (SEM) [20, 46] is then to replace
this tedious computation with a stochastic simulation. The E-step is computed with Monte Carlo
sampling. This introduces randomness into the optimization, but asymptotically it will converge to
a local optimum.

3.3.2 Mixture Models Revisited

With our general definition of the EM algorithm, let us revisit the case of estimating the param-
eters for Gaussian mixture model and Bernoulli mixture model, respectively. The EM algorithm is
an iterative algorithm that has two main steps. In the E-step, it tries to guess the values of the hidden
variable znk, while in the M-step, it updates the parameters of the model based on the guesses of the
E-step.

Gaussian Mixture Model: The parameters of a Gaussian mixture model include the mean
vectors μ, covariance matrices Σ, and mixing weights π. In the E-step, we calculate the posterior
probability, or responsibility, of the hidden variable znk, given the current setting of parameters.
Using Bayes’ theorem, we obtain

q(znk = 1) = p(znk = 1|xn,μk,Σk) =
πkN (xn|μk,Σk)

∑K
j=1 π jN (xn|μj,Σ j)

= γ(znk), (3.28)

which is just the responsibility of the component k for data point xn. In the M-step, we need to max-
imize the quantity Q (Θ,Θ(t)). From the independence assumption, the expectation of the complete
data log-likelihood (3.25) can be rewritten as

Q (Θ,Θ(t)) =
N

∑
n=1

K

∑
k=1

γ(znk)
(t) logπkN (xn|μk,Σk). (3.29)

Compared with the log-likelihood function (3.11) for the incomplete data, the logarithm now acts
directly on the Gaussian distributions. By keeping the responsibilities fixed, we can maximize
Q (Θ,Θ(t)) with respect to μk, Σk, and πk. This leads to closed-form solutions for updating μk, Σk,
and πk, given by (3.12), (3.14), and (3.15). This is precisely the EM algorithm for Gaussian mixtures
as derived earlier.

Relationship of EM with the K-means Algorithm: Given a set of data, the goal of K-means
is to partition the data set into some number K of clusters, such that the sum of the square distances
of each data points to the center of its cluster is a minimum. We introduce a binary responsibility
variable, rnk, to describe the ownership of a data point that belongs to cluster k if rnk = 1, where
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∑K
k=1 = 1, and a set of vectors μk to denote the mean vector associated with the kth cluster. The cost

function of K-means algorithm can be defined as

J =
N

∑
n=1

K

∑
k=1

rnk‖xn−μk‖2, (3.30)

which represents the sum of the square distances of each data point to its associated vector μk. Our
goal is to find values for the {rnk} and the {μk} so as to minimize J. We can solve K-means through
an iterative procedure in which each iteration involves two successive steps corresponding to EM
algorithm as follows,

Choose some initial values for mean vectors {μk}, then iterate between the following two
phases until convergence:

(E-step): Assign each data point to the nearest cluster by minimizing J with respect to
the rnk and keeping the μk fixed,

(M-step): Update mean vectors for clusters by minimizing J with respect to the μk and
keeping rnk fixed.

More formally, we calculate rnk in the E-step,

rnk =

{
1 i f k = argmin j ‖xn−μj‖2

0 otherwise,

and update μk in the M-step,

μk =
∑n rnkxn

∑n rnk
.

The two phases of reassigning data points to clusters and recomputing the cluster means are re-
peated until there is no further change in the assignments or some other convergence criteria are
satisfied.

As described above, the K-means algorithm can be solved through iterative EM algorithm,
which shows that there is a close similarity between the K-means algorithm and the EM algorithm.
Actually, we can derive the K-means algorithm as a particular case of EM for Gaussian mixtures.
The major difference is that the K-means algorithm performs a hard assignment of data points to
clusters, while the EM algorithm makes a soft assignment based on the posterior probabilities. Con-
sider a Gaussian mixture model with common covariance matrices given by εI, where ε is a variance
parameter that is shared by all of the components, and I is the identity matrix. The Gaussian distri-
bution can be written as

p(x|μk,Σk) =
1

(2πε)1/2
exp

{
− 1

2ε
‖x−μk‖2

}
. (3.31)

Based on Equation (3.28), the responsibility γ(znk) is given by

γ(znk) =
πk exp{−‖xn−μk‖2/2ε}

∑ j π j exp{−‖xn−μj‖2/2ε} .

If we consider the limit ε→ 0, the responsibilities γ(znk) for the data point xn all go to zero except
for the cluster j with the smallest ‖xn−μj‖2, such that the responsibility becomes binary. Thus, in
this limit, we obtain a hard assignment of data points to cluster, just as in the K-means algorithm, so
that γ(znk)→ rnk ∈ {0,1}. In this case, the EM re-estimation equation for the μk given by Equation
(3.12) boils down to the K-means result. Therefore, as we can see in this limit, the EM algorithm
for Gaussian mixtures is precisely equivalent to the K-means algorithm.
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Bernoulli Mixture Model: We now derive the EM algorithm for maximizing the likelihood
function for estimating the parameters of the Bernoulli mixture model Θ = {μ,π}. As in the case
of the Gaussian mixture, let us introduce a latent variable z associated with each instance of x. The
expectation of the complete data log-likelihood with respect to the posterior distribution of the latent
variable can be given by

Q (Θ,Θ(t)) =
N

∑
n=1

K

∑
k=1

γ(znk) logπk p(xn|μk) (3.32)

=
N

∑
n=1

K

∑
k=1

γ(znk)

{

logπk +
D

∑
i=1

[xni logμki +(1− xni) log(1−μki)]

}

where γ(znk) is the posterior probability, or responsibility, of component k, given xn and the current
setting of parameters.

The EM algorithm proceeds iteratively in two steps. In the E-step, the posterior probability, or
responsibility, of component k, given xn and the current setting of parameters, is estimated using
Bayes’ theorem, which can be written in the form

γ(znk) =
πk p(xn|μk)

∑K
j=1 π j p(xn|μj)

.

In the M-step, we maximize the above log-likelihood function with respect to the parameters μki and
πk. By setting the derivative of (3.32) with respect to μki to zero and rearrange the terms, we cab get

μki =
∑N

n=1 γ(znk)xni

∑N
n=1 γ(znk)

.

For the maximization with respect to πk, we introduce a Lagrange multiplier to enforce the constraint
∑k πk = 1, and then we obtain

πk =
∑N

n=1 γznk

N
To start the EM algorithm, initial values for the parameters are required. Provided that a

nonpathological starting point is used, the EM algorithm always increases the value of the log-
likelihood, and the algorithm is guaranteed to converge to a local maximum. Generally, the mixing
probabilities are initialized to πk = 1/K, and the parameters μki are set to random values chosen
uniformly in the range (0.25, 0.75) and then normalized to satisfy the constraint that ∑iμki = 1.

3.3.3 Limitations of the EM Algorithm

The popularity of the EM algorithm is due to its simple implementation together with the guar-
anteed monotone increase of the likelihood of the training set during optimization. However, there
are several well-known limitations associated with the EM algorithm.

The EM algorithm converges to a local maximum and its solution is highly dependent on ini-
tialization, which consequently produces suboptimal maximum likelihood estimates. One simple
strategy is to use multiple random starts and choose the final estimate with the highest likeli-
hood [33, 46, 48, 65], and the other one is to initialize by clustering algorithms [33, 46, 48, 8]. In [6],
several simple methods to choose sensible starting values for the EM algorithm to get maximum
likelihood parameter estimation in mixture models are compared. In addition, many adaptations
and extensions of the EM algorithm have been proposed in order to address the problems of conver-
gence to a local optimum and the initialization issue, such as deterministic annealing (DA) versions
of EM algorithm [76], split-and-merge EM algorithm [77], component-wise EM algorithm [19, 25],
and genetic-based EM algorithms [44, 57].
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Moreover, EM is known to converge slowly in some situations, which has received much at-
tention recently. Many algorithms aiming to speed up the convergence of EM while preserving its
simplicity have been proposed [48, 19]. Additionally, the EM algorithm assumes that the number
of components for modeling the distributions is known. In many practical applications, the opti-
mal number of components is unknown and has to be determined. In such cases, a set of candidate
models is established by applying the algorithm for a different number of components, and the best
model is selected according to a model selection criterion as discussed in Section 3.2.4.

3.3.4 Applications of the EM Algorithm

The EM algorithm turns out to be a general way of maximizing the likelihood when some
variables are unobserved and, hence, is useful for other applications besides mixture models. There
are two main applications of the EM algorithm. The first occurs when the data indeed has missing
values, due to problems with or limitations of the observation process. The second occurs when
optimizing the likelihood function is analytically intractable but when the likelihood function can be
simplified by assuming the existence of and values for additional but missing (or hidden) parameters.
The latter application is more common in the computational pattern recognition community. But
the range of potentially useful applications is much broader than presented here, including, for
instance, specialized variance components models, problems of missing values in general parametric
models, and models with discrete or continuous latent variables. A complementary overview of the
applications is studied in [23, 7].

Here we selectively review some applications of the EM algorithm, including parameter esti-
mation for Hidden Markov Models and the problem of missing data. The Hidden Markov Model
(HMM) is a probabilistic model of the joint probability of a collection of random variables with
both observations and hidden states. Generally, an HMM can be considered as a generalization of
a mixture model where the hidden variables are related through a Markov process rather than inde-
pendent of each other. Given a set of observed feature vectors or sequences, the parameter learning
task in HMMs is to find the best set of state transition and output probabilities, which is usually to
derive the maximum likelihood estimate of the unknown parameters of an HMM. A local maximum
likelihood can be derived efficiently using the Baum-Welch algorithm [2, 7], and it is a particu-
lar case of a generalized EM algorithm. The general EM algorithm involves incomplete data and,
therefore, includes the problem of accidental or unintended missing data. Three situations of the
problem of missing data have been studied in [23], namely, the multinomial model, the normal lin-
ear, model and the multivariate normal model. In addition, the EM algorithm is frequently used for
data clustering in machine learning. With the ability to deal with missing data and observe uniden-
tified variables, EM is becoming a useful tool to price and manage risk of a portfolio [49]. The EM
algorithm is also widely used in medical image reconstruction [38], especially in positron emission
tomography [40, 30] and single photon emission computed tomography [68].

3.4 Probabilistic Topic Models

Probabilistic topic models [35, 14, 72, 9, 10] are a type of statistical model for discovering
the abstract topics that occur in a collection (or corpus) of documents, where each document may
be viewed as a mixture of various topics. In the view of probabilistic clustering, each topic can be
interpreted as a cluster, such that each document usually belongs to multiple clusters. In this section,
we introduce two key topic models, PLSA (also called PLSI) [35] and LDA [14], for document
analysis.
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FIGURE 3.5: Graphical representation of PLSA. Circles indicate random variables, and shaded
and unshaded shapes indicate observed and latent (i.e., unobserved) variables, respectively. The
boxes are plates representing replicates. The outer plate represents documents, while the inner plate
represents the repeated choice of topics and words within a document.

3.4.1 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) [35, 36] is a statistical model for the analysis of
co-occurrence data, which has been widely used in many applications, such as information retrieval,
natural language processing, and machine learning from text.

The basic idea of PLSA is to treat the co-occurrences of words and documents as observa-
tions from a mixture model where each component (i.e., aspect or topic) is a distribution over
words, and the proportions of different components correspond to the mixing probabilities. In
PLSA, an unobserved latent variable zk ∈ {z1, . . . ,zK} is associated with the occurrence of a word
wj ∈ {w1, . . . ,wM} in a particular document di ∈ {d1, . . . ,dN}. Let us introduce the following proba-
bilities: p(di) denotes the probability that a word occurrence will be observed in a specific document
di, p(wj|zk) is used to denote the conditional probability of a particular word wj conditioned on the
unobserved aspect variable zk, and finally p(zk|di) denotes the mixing probability for document
di to choose the kth component zk such that ∑K

k=1 p(zk|di) = 1. Formally, the joint probability of
generating an observation pair (di,wj) can be expressed in the form

p(di,wj) = p(di)p(wj |di) = p(di)
K

∑
k=1

p(wj|zk)p(zk|di). (3.33)

Note that there is a conditional independence assumption, i.e., di and wj are independent conditioned
on the latent variable. The graphical representation of the PLSA model is shown in Figure 3.5.
From the generative process point of view, an observation pair p(di,wj) could be generated by the
following procedure:

(a) select a document di with probability p(di),

(b) pick a latent component (i.e., aspect) zk with probability p(zk|di),

(c) generate a word wj with probability p(wj |zk).

For a collection of documents C, we make the assumption that all co-occurrences of di and wj in
the collection are independent and identically distributed. Following the likelihood principle, these
parameters can be determined by maximizing the log-likelihood of a collection as follows:

l(C) =
N

∑
i=1

M

∑
j=1

n(di,wj) log p(di,wj) (3.34)

=
N

∑
i=1

n(di) log p(di)+
N

∑
i=1

M

∑
j=1

n(di,wj) log
K

∑
k=1

p(wj|zk)p(zk|di),

where n(di) = ∑M
j=1 n(di,wj) refers to the document length. The parameters {p(di)} can be esti-

mated trivially. By taking the derivative with respect to p(di) and using a Lagrange multiplier, we
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obtain

p(di) =
n(di)

∑N
i=1 n(di)

.

The other parameters Θ include {p(wj|zk)} and {p(zk|di)}, which can be estimated by using the
standard EM algorithm [23, 36]. The total number of parameters is equal to N +KN +MK. Since
the trivial estimate p(di) can be carried out independently, we will only consider the second term in
the following estimation.

From (3.21), the lower bound L(q,Θ) on the log-likelihood (the second term of (3.34)) can be
written in the form

L(q,Θ) =
N

∑
i=1

M

∑
j=1

n(di,wj)
K

∑
k=1

q(zk) log
p(wj|zk)p(zk|di)

q(zk)
,

where q(zk) is an arbitrary distribution defined over the latent variables. In the E-step, as described
in Section 3.3.1, the lower bound is maximized with respect to q(zk) while holding Θ fixed, and
the solution is to choose the posterior probabilities p(zk|di,wj) as q(zk). Therefore, based on the
current estimates of the parameters, we can simply apply Bayes’ formula to compute the posterior
probabilities

p(zk|di,wj) =
p(wj|zk)p(zk|di)

∑K
l=1 p(wj|zl)p(zl |di)

. (3.35)

In the M-step, parameters are updated by maximizing the expectation of the complete data log-
likelihood Q (Θ,Θ(t)), which depends on the posterior probabilities computed in the E-step, where

Q (Θ,Θ(t)) =
N

∑
i=1

M

∑
j=1

n(di,wj)
K

∑
k=1

p(zk|di,wj) log
{

p(wj |zk)p(zk|di)
}
. (3.36)

In order to take account of the probability constraints, (3.36) has to be augmented by appropriate
Language multipliers λk and τi,

Q̂ = Q (Θ,Θ(t))+
K

∑
k=1

λk

(

1−
M

∑
j=1

p(wj|zk)

)

+
N

∑
i=1

τi

(

1−
K

∑
k=1

p(zk|di)

)

.

We maximize Q̂ with respect to the probability functions p(wj|zk) and p(zk|di), leading to the
following equations, respectively.

N

∑
i=1

n(di,wj)p(zk|di,wj)−λk p(wj|zk) = 0,

M

∑
j=1

n(di,wj)p(zk|di,wj)− τi p(zk|di) = 0.

After eliminating λk and τi, we obtain the M-step reestimation equations

P(wj|zk) =
∑N

i=1 n(di,wj)p(zk|di,wj)

∑M
j′=1 ∑N

i=1 n(di,wj′)p(zk|di,wj′)
, (3.37)

P(zk|di) =
∑M

j=1 n(di,wj)p(zk|di,wj)

n(di)
. (3.38)

The EM algorithm alternates between the E-step and the M-step until a local maximum of the log-
likelihood is achieved or the convergence condition is satisfied.
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Topic 1 (DB) Topic 2 (DM) Topic 3 (IR) Topic 4 (AI)
data data information problem
database mining retrieval algorithm
systems learning web paper
query based based reasoning
system clustering learning logic
databases classification knowledge based
management algorithm text time
distributed image search algorithms
queries analysis system search
relational detection language show

FIGURE 3.6: The representative terms generated by PLSA. The terms are selected according to
the probability P(w|z).

vspace*-12pt

Figure 3.6 illustrates example inference with PLSA using a subset of the DBLP records [24]. The
dataset includes four areas: database, data mining, information retrieval, and artificial intelligence,
and contains 28,569 documents. The most representative terms generated by PLSA are shown in
Figure 3.6. We can observe that the extracted topics could automatically reveal the DBLP subset is
a mixture of four areas.

In clustering models for documents [37], one typically associates a latent class variable with each
document in the collection. It can be shown that the hidden components zk (i.e., aspects or topics)
extracted by the topic modeling approaches can be regarded as clusters. The posterior probability
P(zk|di) is used to infer the cluster label for each document, indicating the posterior probability of
document di belonging to cluster zk. In principle, this model is a soft clustering algorithm. In order
to obtain a hard clustering, documents are often then assigned to the cluster zk to which they most
likely belong.

Although PLSA provides a good probabilistic model for document clustering, it has two prob-
lems. First, the number of parameters grows linearly with the number of documents, so that it tends
to overfit the training data. Second, although PLSA is a generative model of the training documents
on which it is estimated, it is not a generative model of new documents, and there is no natural way
to estimate the probability of a previously unseen document.

3.4.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [14, 10] extends PLSA and overcomes both problems of
PLSA by further considering priors on the parameters. As we will see in the following, LDA is a
well-defined generative model and generalizes easily to new documents. Furthermore, the K +KM
parameters in a K-topic LDA model do not grow with the size of the training documents.

Similar to PLSA, LDA is a generative probabilistic model of a collection of documents. The
basic idea is that documents are represented as mixtures of latent topics, where each topic is char-
acterized by a distribution over words. Technically, the model assumes that the topics are specified
before any data has been generated. From the generative process point of view, each document dn

in a collection C could be generated by the following two-stage process.

1. Randomly choose a distribution over topics θn ∼ Dir(α).

2. For each word wn j in the document dn

(a) Randomly choose a topic zn j ∼Multinomial(θn),

(b) Randomly choose a word wn j with probability p(wn j|zn j,β).
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FIGURE 3.7: Graphical representation of LDA. Circles denote random variables, and edges denote
dependence between random variables. Shaded circles, the words of the documents, are observed
variables, while unshaded circles, like the topic proportions, assignments, and topics, are latent
(i.e., unobserved) variables. The rectangular boxes are plates representing replication. The M plate
represents documents, while the N plate represents the repeated choice of topics and words within
a document.

The generative process of LDA can also be described in a graphical model representation as shown
in Figure 3.7. The observed variables are the words of the documents, and the hidden variables
are the topic proportions of documents, topic assignments of words within documents, and topics.
The above generative process defines a joint probabilistic distribution over both the observed and
hidden random variables. With the joint distribution, we can compute the posterior distribution of
the hidden variables given the observed variables.

Now let us formally define some notations. The topic proportions for the nth document are θn,
and the topics are β. Note that the word probabilities of topics are parameterized by a K×M matrix
β where βk j = p(wj = 1|z j = k), which are treated as fixed quantity to be estimated. In an LDA
model, a conjugate prior α is added to the multinomial distribution θ over topics, where θ follows
a Dirichlet distribution θ∼ Dir(α) and α is a K-dimensional parameter vector. In addition, another
Dirichlet prior η ∼ Dir(β) [14, 31] can be further added to the multinomial distribution β over
words, serving as a smoothing functionality over words, where η is an M-dimensional parameter
vector and M is the size of the vocabulary. The topic assignments for the nth document are zn,
where zn j is the topic assignment for the jth word in document dn. Finally, the observed words for
document dn are wn, where wn j is the jth word in document dn. With this notation, the probability
of observing all the words in a single document dn can be expressed as

p(wn|α,β) =
∫

p(θn|α)
(

M

∏
j=1

∑
zn j

p(zn j|θn)p(wn j|zn j,β)

)

dθn.

For a collection of documents C, the joint probability of observing all the documents is given by

p(C|α,η) =
N

∏
n=1

∫
p(wn|α,β)p(β|η)dβ. (3.39)

As illustrated in Figure 3.7, there are three levels to the LDA representation. The parameters α, η,
and β are collection-level parameters, assumed to be sampled once in the process of generating a
collection. The variables θn are document-level variables, sampled once per document. Finally, the
variables zn j and wn j are word-level variables and are sampled once for each word in each document.

To estimate the parameters of LDA, there are two types of approximate algorithms, variational
algorithms and sampling-based algorithms. Variational methods are used as approximation methods
in a wide variety of settings [39, 78]. The application of variational methods converts the original
complex problem into a simplified problem in which inference is efficient. The simplified model
is generally characterized by introducing additional parameters and ignoring some troublesome de-
pendencies. A good descriptions of variational inference algorithm for LDA is presented in [14].
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Based on that, Expectation–Propagation [52] is proposed that leads to higher accuracy at compara-
ble cost, and a much faster online algorithm [34] is presented that easily handles millions of doc-
uments. Sampling-based methods [28, 31, 8] are a stochastic alternative which attempt to collect
samples from the posterior to approximate it with an empirical distribution. Gibbs sampling [31],
a form of Markov chain Monte Carlo [29, 1], is the most commonly used sampling algorithm for
topic modeling. Gibbs sampling generates samples until the sampled values approximate the target
distribution, and then estimates the parameters using the statistics of the distribution according to
the samples. It was shown in [31] that Gibbs sampling is more efficient than other LDA learning
algorithms including variational EM [14] and Expectation-Propagation [52]. Please refer to [31, 72]
for a detailed description of Gibbs sampling for LDA, and a fast collapsed Gibbs sampling for LDA
is proposed in [58].

3.4.3 Variations and Extensions

The simple PLSA and LDA models provide powerful tools for discovering and exploiting the
hidden thematic structure in large collections of documents, which have been extended and adapted
in many ways.

One active area of topic modeling research is to relax and extend the statistical assumptions, so
as to uncover more sophisticated structure in the texts. For example, [80] developed a topic model
to relax the bag-of-words assumption by assuming that the topics generate words conditional on the
previous words, and [32] developed a topic model that switches between LDA and a standard HMM.
These models expand the parameter space significantly but show improved language modeling per-
formance. Another assumption is that the order of documents does not matter, but long-running
collections (e.g., The New York Times collections and Science magazine) span years and centuries,
and the topics may change over time. The dynamic topic model [12] is proposed that respects the
ordering of the documents and gives a richer posterior topical structure. A third assumption about
topic modeling is that the number of topics is assumed known and fixed. The Bayesian nonpara-
metric topic model [74, 11] provides an elegant solution to determine the number of topics by the
collection during posterior inference.

In traditional topic models, documents are considered independent of each other. However, the
documents could be correlated with each other based on additional information, such as author and
links, which should be taken into account when fitting a topic model. The author-topic model [73]
is proposed to consider the relations between authors and documents: Papers with multiple authors
are assumed to attach each word to an author, drawn from a topic from his topic proportions. In such
way, the model allows for inferences about authors as well as documents. In addition, many docu-
ments are linked; for example, scientific papers are linked by citation or web pages are linked by
hyperlink. We can assume linked webpages tend to be similar with each other, a paper cites another
paper indicates the two papers are somehow similar. NetPLSA [50] is proposed to incorporate topic
modeling with homogeneous networks, and TMBP [24] is another extended algorithm that could
handle heterogeneous networks. Other models that incorporate meta-data into topic models includes
relational topic model [22], supervised topic model [13], and Dirichlet-multinomial regression mod-
els [51]. A comprehensive overview of current research and future directions in topic modeling is
given in [10].

3.5 Conclusions and Summary

This chapter has introduced the most frequently used probabilistic models for clustering, which
include mixture models, such as Gaussian mixture model and Bernoulli mixture model, and proba-
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bilistic topic models, such as PLSA and LDA. Some of the methods, like mixture models, may be
more appropriate for quantitative data, whereas others, such as topic models, PLSI, and LDA, are
used more commonly for text data. The goals of learning algorithms for these probabilistic models
are to find MLE or MAP estimations for parameters in these models. There are no closed form
solutions for most of the models. The EM algorithm provides a general and elegant framework to
learn mixture models and topic models. For more complicated cases, some variations of the EM
algorithm, such as generalized EM and variational EM, can be employed to solve these problems.
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4.1 Introduction

The two most widely studied clustering algorithms are partitional and hierarchical clustering.
These algorithms have been heavily used in a wide range of applications primarily due to their
simplicity and ease of implementation relative to other clustering algorithms. Partitional clustering
algorithms aim to discover the groupings present in the data by optimizing a specific objective
function and iteratively improving the quality of the partitions. These algorithms generally require
certain user parameters to choose the prototype points that represent each cluster. For this reason
they are also called prototype-based clustering algorithms.

Hierarchical clustering algorithms, on the other hand, approach the problem of clustering by
developing a binary tree-based data structure called the dendrogram. Once the dendrogram is con-
structed, one can automatically choose the right number of clusters by splitting the tree at different
levels to obtain different clustering solutions for the same dataset without rerunning the clustering
algorithm again. Hierarchical clustering can be achieved in two different ways, namely, bottom-up
and top-down clustering. Though both of these approaches utilize the concept of dendrogram while
clustering the data, they might yield entirely different sets of results depending on the criterion used
during the clustering process.

Partitional methods need to be provided with a set of initial seeds (or clusters) which are then
improved iteratively. Hierarchical methods, on the other hand, can start off with the individual data
points in single clusters and build the clustering. The role of the distance metric is also different
in both of these algorithms. In hierarchical clustering, the distance metric is initially applied on the
data points at the base level and then progressively applied on subclusters by choosing absolute
representative points for the subclusters. However, in the case of partitional methods, in general, the
representative points chosen at different iterations can be virtual points such as the centroid of the
cluster (which is nonexistent in the data).

This chapter is organized as follows. In Section 4.2, the basic concepts of partitional clustering
are introduced and the related algorithms in this field are discussed. More specifically, Subsections
4.2.1-4.2.3 will discuss the widely studied K-Means clustering algorithm and highlight the major
factors involved in these partitional algorithms such as initialization methods and estimating the
number of clusters K. Subsection 4.2.4 will highlight several variations of the K-Means clustering.
The distinctive features of each of these algorithms and their advantages are also featured. In Sec-
tion 4.3 the fundamentals of hierarchical clustering are explained. Subsections 4.3.1 and 4.3.2 will
discuss the agglomerative and divisive hierarchical clustering algorithms, respectively. We will also
highlight the differences between the algorithms in both of these categories. Subsection 4.3.3 will
briefly discuss the other prominent hierarchical clustering algorithms. Finally, in Section 4.4, we
will conclude our discussion highlighting the merits and drawbacks of both families of clustering
algorithms.
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4.2 Partitional Clustering Algorithms

The first partitional clustering algorithm that will be discussed in this section is the K-Means
clustering algorithm. It is one of the simplest and most efficient clustering algorithms proposed in
the literature of data clustering. After the algorithm is described in detail, some of the major factors
that influence the final clustering solution will be highlighted. Finally, some of the widely used
variations of K-Means will also be discussed in this section.

4.2.1 K-Means Clustering

K-means clustering [33, 32] is the most widely used partitional clustering algorithm. It starts by
choosing K representative points as the initial centroids. Each point is then assigned to the closest
centroid based on a particular proximity measure chosen. Once the clusters are formed, the centroids
for each cluster are updated. The algorithm then iteratively repeats these two steps until the centroids
do not change or any other alternative relaxed convergence criterion is met. K-means clustering is
a greedy algorithm which is guaranteed to converge to a local minimum but the minimization of
its score function is known to be NP-Hard [35]. Typically, the convergence condition is relaxed
and a weaker condition may be used. In practice, it follows the rule that the iterative procedure
must be continued until 1% of the points change their cluster memberships. A detailed proof of the
mathematical convergence of K-means can be found in [45].

Algorithm 13 K-Means Clustering
1: Select K points as initial centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until convergence criterion is met.

Algorithm 13 provides an outline of the basic K-Means algorithm. Figure 4.1 provides an illus-
tration of the different stages of the running of 3-means algorithm on the Fisher Iris dataset. The first
iteration initializes three random points as centroids. In subsequent iterations the centroids change
positions until convergence. A wide range of proximity measures can be used within the K-means
algorithm while computing the closest centroid. The choice can significantly affect the centroid as-
signment and the quality of the final solution. The different kinds of measures which can be used
here are Manhattan distance (L1 norm), Euclidean distance (L2 norm), and Cosine similarity. In
general, for the K-means clustering, Euclidean distance metric is the most popular choice. As men-
tioned above, we can obtain different clusterings for different values of K and proximity measures.
The objective function which is employed by K-means is called the Sum of Squared Errors (SSE)
or Residual Sum of Squares (RSS). The mathematical formulation for SSE/RSS is provided below.

Given a dataset D={x1,x2, . . . ,xN} consists of N points, let us denote the clustering obtained after
applying K-means clustering by C = {C1,C2, . . . ,Ck . . . ,CK}. The SSE for this clustering is defined
in the Equation (4.1) where ck is the centroid of cluster Ck. The objective is to find a clustering that
minimizes the SSE score. The iterative assignment and update steps of the K-means algorithm aim
to minimize the SSE score for the given set of centroids.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

‖ xi− ck ‖2 (4.1)

ck =

∑
xi∈Ck

xi

|Ck| (4.2)
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FIGURE 4.1: An illustration of 4 iterations of K-means over the Fisher Iris dataset.

4.2.2 Minimization of Sum of Squared Errors

K-means clustering is essentially an optimization problem with the goal of minimizing the SSE
objective function. We will mathematically prove the reason behind choosing the mean of the data
points in a cluster as the prototype representative for a cluster in the K-means algorithm. Let us
denote Ck as the kth cluster, xi is a point in Ck, and ck is the mean of the kth cluster. We can solve
for the representative of Cj which minimizes the SSE by differentiating the SSE with respect to c j

and setting it equal to zero.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

(ck− xi)
2 (4.3)

∂
∂c j

SSE =
∂

∂c j

K

∑
k=1

∑
xi∈Ck

(ck− xi)
2

=
K

∑
k=1

∑
xi∈Cj

∂
∂c j

(c j− xi)
2

= ∑
xi∈Cj

2 ∗ (c j− xi) = 0

∑
xi∈Cj

2 ∗ (c j− xi) = 0⇒ |Cj| · c j = ∑
xi∈Cj

xi⇒ c j =

∑
xi∈Cj

xi

|Cj|
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Hence, the best representative for minimizing the SSE of a cluster is the mean of the points in
the cluster. In K-means, the SSE monotonically decreases with each iteration. This monotonically
decreasing behaviour will eventually converge to a local minimum.

4.2.3 Factors Affecting K-Means

The major factors that can impact the performance of the K-means algorithm are the following:

1. Choosing the initial centroids.

2. Estimating the number of clusters K.

We will now discuss several methods proposed in the literature to tackle each of these factors.

4.2.3.1 Popular Initialization Methods

In his classical paper [33], MacQueen proposed a simple initialization method which chooses
K seeds at random. This is the simplest method and has been widely used in the literature. The
other popular K-means initialization methods which have been successfully used to improve the
clustering performance are given below.

1. Hartigan and Wong [19]: Using the concept of nearest neighbor density, this method sug-
gests that the points which are well separated and have a large number of points within their
surrounding multi-dimensional sphere can be good candidates for initial points. The average
pair-wise Euclidean distance between points is calculated using Equation (4.4). Subsequent
points are chosen in the order of their decreasing density and simultaneously maintaining
the separation of d1 from all previous seeds. Note that for the formulae provided below we
continue using the same notation as introduced earlier.

d1 =
1

N(N− 1)

N−1

∑
i=1

N

∑
j=i+1

‖ xi− x j ‖ (4.4)

2. Milligan [37]: Using the results of agglomerative hierarchical clustering (with the help of the
dendrogram), this method uses the results obtained from the Ward’s method. Ward’s method
chooses the initial centroids by using the sum of squared errors to evaluate the distance be-
tween two clusters. Ward’s method is a greedy approach and keeps the agglomerative growth
as small as possible.

3. Bradley and Fayyad [5]: Choose random subsamples from the data and apply K-means clus-
tering to all these subsamples using random seeds. The centroids from each of these subsam-
ples are then collected, and a new dataset consisting of only these centroids is created. This
new dataset is clustered using these centroids as the initial seeds. The minimum SSE obtained
guarantees the best seed set chosen.

4. K-Means++ [1]: The K-means++ algorithm carefully selects the initial centroids for K-means
clustering. The algorithm follows a simple probability-based approach where initially the first
centroid is selected at random. The next centroid selected is the one which is farthest from the
currently selected centroid. This selection is decided based on a weighted probability score.
The selection is continued until we have K centroids and then K-means clustering is done
using these centroids.
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4.2.3.2 Estimating the Number of Clusters

The problem of estimating the correct number of clusters (K) is one of the major challenges
for the K-means clustering. Several researchers have proposed new methods for addressing this
challenge in the literature. We will briefly describe some of the most prominent methods.

1. Calinski–Harabasz Index [6]: The Calinski–Harabasz index is defined by Equation (4.5):

CH(K) =

B(K)
(K−1)
W (K)
N−K

(4.5)

where N represents the number of data points. The number of clusters is chosen by maximiz-
ing the function given in Equation (4.5). Here B(K) and W (K) are the between and within
cluster sum of squares, respectively (with K clusters).

2. Gap Statistic [48]: In this method, B different datasets each with the same range values as the
original data are produced. The within cluster sum of squares is calculated for each of them
with a different number of clusters. W ∗b (K) is the within cluster sum of squares for the bth
uniform dataset.

Gap(K) =
1
B
×∑

b

log(W ∗b (K))− log(W (K)) (4.6)

The number of clusters chosen is the smallest value of K which satisfies Equation (4.7):

Gap(K)≥ Gap(K + 1)− sk+1 (4.7)

where Sk+1 represents the estimate of standard deviation of log(W ∗b (K + 1)).

3. Akaike Information Criterion (AIC) [52]: AIC has been developed by considering the log-
likelihood and adding additional constraints of Minimum Description Length (MDL) to esti-
mate the value of K. M represents the dimensionality of the dataset. SSE (Equation 4.1) is the
sum of squared errors for the clustering obtained using K. K-means uses a modified AIC as
given below.

KMeansAIC : K = argminK[SSE(K)+ 2MK] (4.8)

4. Bayesian Information Criterion (BIC) [39]: BIC serves as an asymptotic approximation to a
transformation of the Bayesian posterior probability of a candidate model. Similar to AIC,
the computation is also based on considering the logarithm of likelihood (L). N represents the
number of points. The value of K that minimizes the BIC function given below will be used
as the initial parameter for running the K-means clustering.

BIC =
−2 ∗ ln(L)

N
+

K ∗ ln(N)

N
=

1
N
× ln(

NK

L2 ) (4.9)

5. Duda and Hart [11]: This is a method for estimation that involves stopping the hierarchical
clustering process by choosing the correct cut-off level in the dendrogram. The methods which
are typically used to cut a dendrogram are the following: (i) Cutting the dendrogram at a pre-
specified level of similarity where the threshold has been specified by the user. (ii) Cutting
the dendrogram where the gap between two successive merges is the largest. (iii) Stopping
the process when the density of the cluster that results from the merging is below a certain
threshold.
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6. Silhouette Coefficient [26]: This is formulated by considering both the intra- and inter-cluster
distances. For a given point xi, first the average of the distances to all points in the same
cluster is calculated. This value is set to ai. Then for each cluster that does not contain xi,
the average distance of xi to all the data points in each cluster is computed. This value is set
to bi. Using these two values the silhouette coefficient of a point is estimated. The average
of all the silhouettes in the dataset is called the average silhouettes width for all the points
in the dataset. To evaluate the quality of a clustering one can compute the average silhouette
coefficient of all points.

S =

N
∑

i=1

bi−ai
max(ai,bi)

N
(4.10)

7. Newman and Girvan [40]: In this method, the dendrogram is viewed as a graph, and a be-
tweenness score (which will be used as a dissimilarity measure between the edges) is pro-
posed. The procedure starts by calculating the betweenness score of all the edges in the graph.
Then the edge with the highest betweenness score is removed. This is followed by recomput-
ing the betweenness scores of the remaining edges until the final set of connected components
is obtained. The cardinality of the set derived through this process serves as a good estimate
for K.

8. ISODATA [2]: ISODATA was proposed for clustering the data based on the nearest centroid
method. In this method, first K-means is run on the dataset to obtain the clusters. Clusters are
then merged if their distance is less than a threshold φ or if they have fewer than a certain
number of points. Similarly, a cluster is split if the within cluster standard deviation exceeds
that of a user defined threshold.

4.2.4 Variations of K-Means

The simple framework of the K-means algorithm makes it very flexible to modify and build
more efficient algorithms on top of it. Some of the variations proposed to the K-means algorithm are
based on (i) Choosing different representative prototypes for the clusters (K-medoids, K-medians,
K-modes), (ii) choosing better initial centroid estimates (Intelligent K-means, Genetic K-means),
and (iii) applying some kind of feature transformation technique (Weighted K-means, Kernel K-
means). In this section, we will discuss the most prominent variants of K-means clustering that have
been proposed in the literature of partitional clustering.

4.2.4.1 K-Medoids Clustering

K-medoids is a clustering algorithm which is more resilient to outliers compared to K-
means [38]. Similar to K-means, the goal of K-medoids is to find a clustering solution that min-
imizes a predefined objective function. The K-medoids algorithm chooses the actual data points as
the prototypes and is more robust to noise and outliers in the data. The K-medoids algorithm aims
to minimize the absolute error criterion rather than the SSE. Similar to the K-means clustering algo-
rithm, the K-medoids algorithm proceeds iteratively until each representative object is actually the
medoid of the cluster. The basic K-medoids clustering algorithm is given in Algorithm 14.

In the K-medoids clustering algorithm, specific cases are considered where an arbitrary random
point xi is used to replace a representative point m. Following this step the change in the membership
of the points that originally belonged to m is checked. The change in membership of these points
can occur in one of the two ways. These points can now be closer to xi (new representative point)
or to any of the other set of representative points. The cost of swapping is calculated as the absolute
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Algorithm 14 K-Medoids Clustering
1: Select K points as the initial representative objects.
2: repeat
3: Assign each point to the cluster with the nearest representative object.
4: Randomly select a nonrepresentative object xi.
5: Compute the total cost S of swapping the representative object m with xi.
6: If S < 0, then swap m with xi to form the new set of K representative objects.
7: until Convergence criterion is met.

error criterion for K-medoids. For each reassignment operation this cost of swapping is calculated
and this contributes to the overall cost function.

To deal with the problem of executing multiple swap operations while obtaining the final rep-
resentative points for each cluster, a modification of the K-medoids clustering called Partitioning
Around Medoids (PAM) algorithm is proposed [26]. This algorithm operates on the dissimilarity
matrix of a given dataset. PAM minimizes the objective function by swapping all the nonmedoid
points and medoids iteratively until convergence. K-medoids is more robust compared to K-means
but the computational complexity of K-medoids is higher and hence is not suitable for large datasets.
PAM was also combined with a sampling method to propose the Clustering LARge Application
(CLARA) algorithm. CLARA considers many samples and applies PAM on each one of them to
finally return the set of optimal medoids.

4.2.4.2 K-Medians Clustering

The K-medians clustering calculates the median for each cluster as opposed to calculating the
mean of the cluster (as done in K-means). K-medians clustering algorithm chooses K cluster centers
that aim to minimize the sum of a distance measure between each point and the closest cluster center.
The distance measure used in the K-medians algorithm is the L1-norm as opposed to the square of
the L2-norm used in the K-means algorithm. The criterion function for the K-medians algorithm is
defined as follows:

S =
K

∑
k=1

∑
xi∈Ck

|xi j−medk j| (4.11)

where xi j represents the jth attribute of the instance xi and medk j represents the median for the jth
attribute in the kth cluster Ck. K-medians is more robust to outliers compared to K-means. The goal
of the K-Medians clustering is to determine those subsets of median points which minimize the
cost of assignment of the data points to the nearest medians. The overall outline of the algorithm
is similar to that of K-means. The two steps that are iterated until convergence are (i) All the data
points are assigned to their nearest median and (ii) the medians are recomputed using the median of
the each individual feature.

4.2.4.3 K-Modes Clustering

One of the major disadvantages of K-means is its inability to deal with nonnumerical at-
tributes [51, 3]. Using certain data transformation methods, categorical data can be transformed
into new feature spaces, and then the K-means algorithm can be applied to this newly transformed
space to obtain the final clusters. However, this method has proven to be very ineffective and does
not produce good clusters. It is observed that the SSE function and the usage of the mean are not
appropriate when dealing with categorical data. Hence, the K-modes clustering algorithm [21] has
been proposed to tackle this challenge.
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K-modes is a nonparametric clustering algorithm suitable for handling categorical data and op-
timizes a matching metric (L0 loss function) without using any explicit distance metric. The loss
function here is a special case of the standard Lp norm where p tends to zero. As opposed to the Lp

norm which calculates the distance between the data point and centroid vectors, the loss function in
K-modes clustering works as a metric and uses the number of mismatches to estimate the similarity
between the data points. The K-modes algorithm is described in detail in Algorithm 15. As with
K-means, this is also an optimization problem and this method cannot guarantee a global optimal
solution.

Algorithm 15 K-Modes Clustering
1: Select K initial modes.
2: repeat
3: Form K clusters by assigning all the data points to the cluster with the nearest mode using

the matching metric.
4: Recompute the modes of the clusters.
5: until Convergence criterion is met.

4.2.4.4 Fuzzy K-Means Clustering

This is also popularly known as Fuzzy C-Means clustering. Performing hard assignments of
points to clusters is not feasible in complex datasets where there are overlapping clusters. To extract
such overlapping structures, a fuzzy clustering algorithm can be used. In fuzzy C-means clustering
algorithm (FCM) [12, 4], the membership of points to different clusters can vary from 0 to 1. The
SSE function for FCM is provided in Equation (4.12):

SSE(C) =
K

∑
k=1

∑
xi∈Ck

wβ
xik ‖ xi− ck ‖2 (4.12)

wxik =
1

K
∑
j=1

( xi−ck
xi−c j

)
2

β−1

(4.13)

ck =

∑
xi∈Ck

wβ
xikxi

∑
xi∈Ck

wxik
(4.14)

Here wxik is the membership weight of point xi belonging to Ck. This weight is used during
the update step of fuzzy C-means. The weighted centroid according to the fuzzy weights for Ck is
calculated (represented by ck). The basic algorithm works similarly to K-means where the algorithm
minimizes the SSE iteratively followed by updating wxik and ck. This process is continued until the
convergence of centroids. As in K-means, the FCM algorithm is sensitive to outliers and the final
solutions obtained will correspond to the local minimum of the objective function. There are further
extensions of this algorithm in the literature such as Rough C-means [34] and Possibilistic C-means
[30].

4.2.4.5 X-Means Clustering

X-means [42] is a clustering method that can be used to efficiently estimate the value of K. It
uses a method called blacklisting to identify those sets of centroids among the current existing ones
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that can be split in order to fit the data better. The decision making here is done using the Akaike or
Bayesian Information Criterion. In this algorithm, the centroids are chosen by initially reducing the
search space using a heuristic. K values for experimentation are chosen between a selected lower
and upper bound value. This is followed by assessing the goodness of the model for different K
in the bounded space using a specific model selection criterion. This model selection criterion is
developed using the Gaussian probabilistic model and the maximum likelihood estimates. The best
K value corresponds to the model that scores the highest on the model score. The primary goal of
this algorithm is to estimate K efficiently and provide a scalable K-means clustering algorithm when
the number of data points becomes large.

4.2.4.6 Intelligent K-Means Clustering

Intelligent K-means (IK-means) clustering [38] is a method which is based on the follow-
ing principle: the farther a point is from the centroid, the more interesting it becomes. IK-means
uses the basic ideas of principal component analysis (PCA) and selects those points farthest
from the centroid that correspond to the maximum data scatter. The clusters derived from such
points are called as anomalous pattern clusters. The IK-means clustering algorithm is given in
Algorithm 16.

In Algorithm 16, line 1 initializes the centroid for the dataset as cg. In line 3, a new centroid
is created which is farthest from the centroid of the entire data. In lines 4–5, a version of 2-means
clustering assignment is made. This assignment uses the center of gravity of the original dataset
cluster cg and that of the new anomalous pattern cluster sg as the initial centroids. In line 6, the
centroid of the dataset is updated with the centroid of the anomalous cluster. In line 7, a threshold
condition is applied to discard small clusters being created because of outlier points. Lines 3–7 are
run until one of the stopping criteria is met: (i) Centroids converge or (ii) prespecified K number of
clusters has been obtained or (iii) the entire data have been clustered.

Algorithm 16 IK-Means Clustering
1: Calculate the center of gravity for the given set of data points cg.
2: repeat
3: Create a centroid c farthest from cg.
4: Create a cluster Siter of data points that is closer to c compared to cg by assigning all the

remaining data points xi to Siter if d(xi,c)< d(xi,cg).
5: Update the centroid of Siter as sg.
6: Set cg = sg.
7: Discard small clusters (if any) using a prespecified threshold.
8: until Stopping criterion is met.

There are different ways by which we can select the K for IK-means, some of which are similar
to choosing K in K-means described earlier. A structural based approach which compares the inter-
nal cluster cohesion with between-cluster separation can be applied. Standard hierarchical clustering
methods which construct a dendrogram can also be used to determine K. K-means is considered to
be a nondeterministic algorithm whereas IK-means can be considered a deterministic algorithm.

IK-means can be very effective in extracting clusters when they are spread across the dataset
rather than being compactly structured in a single region. IK-means clustering can also be used for
initial centroid seed selection before applying K-means. At the end of the IK-means we will be
left with only the good centroids for further selection. Small anomalous pattern clusters will not
contribute any candidate centroids as they have already been pruned.
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4.2.4.7 Bisecting K-Means Clustering

Bisecting K-means clustering [47] is a divisive hierarchical clustering method which uses K-
means repeatedly on the parent cluster C to determine the best possible split to obtain two child
clusters C1 and C2. In the process of determining the best split, bisecting K-means obtains uniform-
sized clusters. The algorithm for bisecting K-means clustering is given in Algorithm 17.

Algorithm 17 Bisecting K-Means Clustering
1: repeat
2: Choose the parent cluster to be split C.
3: repeat
4: Select two centroids at random from C.
5: Assign the remaining points to the nearest subcluster using a prespecified distance mea-

sure.
6: Recompute centroids and continue cluster assignment until convergence.
7: Calculate inter-cluster dissimilarity for the 2 subclusters using the centroids.
8: until I iterations are completed.
9: Choose those centroids of the subclusters with maximum inter-cluster dissimilarity.

10: Split C as C1 and C2 for these centroids.
11: Choose the larger cluster among C1 and C2 and set it as the parent cluster.
12: until K clusters have been obtained.

In line 2, the parent cluster to be split is initialized. In lines 4–7, a 2-means clustering algorithm
is run I times to determine the best split which maximizes the Ward’s distance between C1 and C2.
In lines 9–10, the best split obtained will be used to divide the parent cluster. In line 11, the larger
of the split clusters is made the new parent for further splitting. The computational complexity of
the bisecting K-means is much higher compared to the standard K-means.

4.2.4.8 Kernel K-Means Clustering

In Kernel K-means clustering [44], the final clusters are obtained after projecting the data onto
the high-dimensional kernel space. The algorithm works by initially mapping the data points in the
input space onto a high-dimensional feature space using the kernel function. Some important kernel
functions are polynomial kernel, Gaussian kernel, and sigmoid kernel. The formula for the SSE
criterion of kernel K-means along with that of the cluster centroid is given in Equation (4.15). The
formula for the kernel matrix K for any two points xi,x j ∈Ck is also given below.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

||φ(xi)− ck||2 (4.15)

ck =

∑
xi∈Ck

φ(xi)

|Ck| (4.16)

Kxix j = φ(xi) ·φ(x j) (4.17)

The difference between the standard K-means criteria and this new kernel K-means criteria is
only in the usage of projection function φ. The Euclidean distance calculation between a point and
the centroid of the cluster in the high-dimensional feature space in kernel K-means will require the
knowledge of only the kernel matrix K. Hence, the clustering can be performed without the actual
individual projections φ(xi) and φ(x j) for the data points xi, x j ∈ Ck. It can be observed that the
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computational complexity is much higher than K-means since the kernel matrix has to be gener-
ated from the kernel function for the given data. A weighted version of the same algorithm called
Weighted Kernel K-means has also been developed [10]. The widely studied spectral clustering can
be considered as a variant of kernel K-means clustering.

4.2.4.9 Mean Shift Clustering

Mean shift clustering [7] is a popular nonparametric clustering technique which has been used in
many areas of pattern recognition and computer vision. It aims to discover the modes present in the
data through a convergence routine. The primary goal of the mean shift procedure is to determine
the local maxima or modes present in the data distribution. The Parzen window kernel density
estimation method forms the basis for the mean shift clustering algorithm. It starts with each point
and then performs a gradient ascent procedure until convergence. As the mean shift vector always
points toward the direction of maximum increase in the density, it can define a path leading to
a stationary point of the estimated density. The local maxima (or modes) of the density are such
stationary points. This mean shift algorithm is one of the widely used clustering methods that fall
into the category of mode-finding procedures.

We provide some of the basic mathematical formulation involved in the mean shift clustering
Algorithm 18. Given N data points xi, where i = 1, . . . ,N on a d-dimensional space Rd , the multi-
variate Parzen window kernel density estimate f (x) is obtained with kernel K(x) and window radius
h. It is given by

f (x) =
1

Nhd

N

∑
i=1

K

(
x− xi

h

)
(4.18)

mh(x) =

N
∑

i=1
xi ·g(‖ x−xi

h ‖2)

N
∑

i=1
g(‖ x−xi

h ‖2)

(4.19)

Algorithm 18 Mean Shift Clustering
1: Select K random points as the modes of the distribution.
2: repeat
3: For each given mode x calculate the mean shift vector mh(x).
4: Update the point x = mh(x).
5: until Modes become stationary and converge.

More detailed information about obtaining the gradient from the kernel function and the exact
kernel functions being used can be obtained from [7]. A proof of convergence of the modes is also
provided in [8].

4.2.4.10 Weighted K-Means Clustering

Weighted K-means (WK-means) Algorithm 19 [20] introduces a feature weighting mechanism
into the standard K-means. It is an iterative optimization algorithm in which the weights for dif-
ferent features are automatically learned. Standard K-means ignores the importance of a partic-
ular feature and considers all of the features to be equally important. The modified SSE func-
tion optimized by the WK-means clustering algorithm is given in Equation (4.20). Here the fea-
tures are numbered from v = 1, . . . ,M and the clusters are numbered from k = 1, . . . ,K. A user-
defined parameter β which employs the impact of the feature weights on the clustering is also
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Algorithm 19 Weighted K-Means Clustering
1: Choose K random centroids and set up M feature weights such that they sum to 1.
2: repeat
3: Assign all data points xi to the closest centroid by calculating d(xi,ck).
4: Recompute centroids of the clusters after completing assignment.
5: Update weights using wv.
6: until Convergence criterion has been met.

used. The clusters are numbered C =C1, . . . ,Ck, . . . ,CK , ck is the M-dimensional centroid for clus-
ter Ck, and ckv represents the vth feature value of the centroid. Feature weights are updated in WK-
means according to wv. Dv is the sum of within cluster variances of feature v weighted by cluster
cardinalities.

SSE(C,w) =
K

∑
k=1

∑
xi∈Ck

M

∑
v=1

sxikwβ
v (xiv− ckv)

2 (4.20)

wv =
1

∑
u∈V

[Dv
Du

]
1

β−1

(4.21)

d(xi,ck) =
M

∑
v=1

wβ
v (xiv− ckv)

2 (4.22)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sxik ∈ (0,1)
K
∑

k=1
sxik = 1

M
∑

v=1
wv = 1

(4.23)

The WK-means clustering algorithm runs similar to K-means clustering but the distance mea-
sure is also weighted by the feature weights. In line 1, the centroids and weights for M features are
initialized. In lines 3–4, points are assigned to their closest centroids and the weighted centroid is
calculated. This is followed by a weight update step such that the sum of weights is constrained as
shown in Equation (4.23). These steps are continued until the centroids converge. This algorithm
is computationally more expensive compared to K-means. Similar to K-means, this algorithm also
suffers from convergence issues. Intelligent K-means (IK-means) [38] can also be integrated with
WK-means to yield the Intelligent Weighted K-means algorithm.

4.2.4.11 Genetic K-Means Clustering

K-means suffers from the problem of converging to a local minimum. To tackle this problem,
stochastic optimization procedures which are good at avoiding the convergence to a local optimal
solution can be applied. Genetic algorithms (GA) are proven to converge to a global optimum. These
algorithms evolve over generations, where during each generation they produce a new population
from the current one by applying a set of genetic operators such as natural selection, crossover, and
mutation. They develop a fitness function and pick up the fittest individual based on the probability
score from each generation and use them to generate the next population using the mutation operator.
The problem of local optima can be effectively solved by using GA and this gives rise to the Genetic
K-means algorithm (GKA) [29]. The data is initially converted using a string of group numbers
coding scheme and a population of such strings forms the initial dataset for GKA. The following
are the major steps involved in the GKA algorithm:
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1. Initialization: Select a random population initially to begin the algorithm. This is analogous
to the random centroid initialization step in K-means.

2. Selection: Using the probability computation given in Equation (4.24), identify the fittest
individuals in the given population.

P(si) =
F(si)

N
∑
j=1

F(s j)

(4.24)

where F(si) represents the fitness value of a string si in the population. A fitness function is
further developed to assess the goodness of the solution. This fitness function is analogous to
the SSE of K-means.

3. Mutation: This is analogous to the K-means assignment step where points are assigned to
their closest centroids followed by updating the centroids at the end of iteration. The selection
and mutation steps are applied iteratively until convergence is obtained.

The pseudocode of the exact GKA algorithm is discussed in detail in [29] and a proof of con-
vergence of the GA is given [43].

4.2.5 Making K-Means Faster

It is believed that the K-means clustering algorithm consumes a lot of time in its later stages
when the centroids are close to their final locations but the algorithm is yet to converge. An im-
provement to the original Lloyd’s K-means clustering using a kd-tree data structure to store the data
points was proposed in [24]. This algorithm is called the filtering algorithm where for each node a
set of candidate centroids is maintained similar to a normal kd-tree. These candidate set centroids
are pruned based on a distance comparison which measures the proximity to the midpoint of the
cell. This filtering algorithm runs faster when the separation between the clusters increases. In the
K-means clustering algorithm, usually there are several redundant calculations that are performed.
For example, when a point is very far from a particular centroid, calculating its distance to that
centroid may not be necessary. The same applies for a point which is very close to the centroid
as it can be directly assigned to the centroid without computing its exact distance. An optimized
K-means clustering method which uses the triangle inequality metric is also proposed to reduce the
number of distance metric calculations [13]. The mathematical formulation for the lemma used by
this algorithm is as follows. Let x be a data point and let b and c be the centroids.

d(b,c) ≥ 2d(x,b)→ d(x,c)≥ d(x,b) (4.25)

d(x,c) ≥ max{0,d(x,b)− d(b,c)} (4.26)

This algorithm runs faster than the standard K-means clustering algorithm as it avoids both kinds of
computations mentioned above by using the lower and upper bounds on distances without affecting
the final clustering result.

4.3 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms [23] were developed to overcome some of the disadvantages
associated with flat or partitional-based clustering methods. Partitional methods generally require
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a user predefined parameter K to obtain a clustering solution and they are often nondeterministic
in nature. Hierarchical algorithms were developed to build a more deterministic and flexible mech-
anism for clustering the data objects. Hierarchical methods can be categorized into agglomerative
and divisive clustering methods. Agglomerative methods start by taking singleton clusters (that con-
tain only one data object per cluster) at the bottom level and continue merging two clusters at a time
to build a bottom-up hierarchy of the clusters. Divisive methods, on the other hand, start with all the
data objects in a huge macro-cluster and split it continuously into two groups generating a top-down
hierarchy of clusters.

A cluster hierarchy here can be interpreted using the standard binary tree terminology as follows.
The root represents all the sets of data objects to be clustered and this forms the apex of the hierarchy
(level 0). At each level, the child entries (or nodes) which are subsets of the entire dataset correspond
to the clusters. The entries in each of these clusters can be determined by traversing the tree from
the current cluster node to the base singleton data points. Every level in the hierarchy corresponds
to some set of clusters. The base of the hierarchy consists of all the singleton points which are the
leaves of the tree. This cluster hierarchy is also called a dendrogram. The basic advantage of having
a hierarchical clustering method is that it allows for cutting the hierarchy at any given level and
obtaining the clusters correspondingly. This feature makes it significantly different from partitional
clustering methods in that it does not require a predefined user specified parameter k (number of
clusters). We will discuss more details of how the dendrogram is cut later in this chapter.

In this section, we will first discuss different kinds of agglomerative clustering methods which
primarily differ from each other in the similarity measures that they employ. The widely studied
algorithms in this category are the following: single link (nearest neighbour), complete link (diam-
eter), group average (average link), centroid similarity, and Ward’s criterion (minimum variance).
Subsequently, we will also discuss some of the popular divisive clustering methods.

4.3.1 Agglomerative Clustering

The basic steps involved in an agglomerative hierarchical clustering algorithm are the following.
First, using a particular proximity measure a dissimilarity matrix is constructed and all the data
points are visually represented at the bottom of the dendrogram. The closest sets of clusters are
merged at each level and then the dissimilarity matrix is updated correspondingly. This process of
agglomerative merging is carried on until the final maximal cluster (that contains all the data objects
in a single cluster) is obtained. This would represent the apex of our dendrogram and mark the
completion of the merging process. We will now discuss the different kinds of proximity measures
which can be used in agglomerative hierarchical clustering. Subsequently, we will also provide a
complete version of the agglomerative hierarchical clustering algorithm in Algorithm 20.

4.3.1.1 Single and Complete Link

The most popular agglomerative clustering methods are single link and complete link cluster-
ings. In single link clustering [36, 46], the similarity of two clusters is the similarity between their
most similar (nearest neighbor) members. This method intuitively gives more importance to the re-
gions where clusters are closest, neglecting the overall structure of the cluster. Hence, this method
falls under the category of a local similarity-based clustering method. Because of its local behavior,
single linkage is capable of effectively clustering nonelliptical, elongated shaped groups of data ob-
jects. However, one of the main drawbacks of this method is its sensitivity to noise and outliers in
the data.

Complete link clustering [27] measures the similarity of two clusters as the similarity of their
most dissimilar members. This is equivalent to choosing the cluster pair whose merge has the small-
est diameter. As this method takes the cluster structure into consideration it is nonlocal in behav-
ior and generally obtains compact shaped clusters. However, similar to single link clustering, this
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FIGURE 4.2: An illustration of agglomerative clustering. (a) A dissimilarity matrix computed for
four arbitrary data points. The corresponding dendrograms obtained using (b) single link and (c)
complete link hierarchical clustering methods.

method is also sensitive to outliers. Both single link and complete link clustering have their graph-
theoretic interpretations [16], where the clusters obtained after single link clustering would corre-
spond to the connected components of a graph and those obtained through complete link would
correspond to the maximal cliques of the graph.

Figure 4.2 shows the dissimilarity matrix and the corresponding two dendrograms obtained
using single link and complete link algorithms on a toy dataset. In the dendrograms, the X-axis
indicates the data objects and the Y-axis indicates the dissimilarity (distance) at which the points
were merged. The difference in merges between both the dendrograms occurs due to the different
criteria used by single and complete link algorithms. In single link, first data points 3 and 4 are
merged at 0.1 as shown in (b). Then, based on the computations shown in Equation (4.27), cluster
(3,4) is merged with data point 1 at the next level; at the final level cluster (3,4,1) is merged with
2. In complete link, merges for cluster (3,4) are checked with points 1 and 2 and as d(1,2) = 0.20,
points 1 and 2 are merged at the next level. Finally, clusters (3,4) and (1,2) are merged at the final
level. This explains the difference in the clustering in both the cases.

dmin((3,4),1) = min(d(3,1),d(4,1)) = 0.15 (4.27)

dmin((3,4,1),2) = min(d(3,2),d(4,2),d(1,2)) = 0.20

dmax((3,4),1) = max(d(3,1),d(4,1)) = 0.30

dmax((3,4),2) = max(d(3,2),d(4,2)) = 0.50

dmax((3,4),(1,2)) = max(d(3,1),d(3,2),d(4,1),d(4,2)) = 0.50

4.3.1.2 Group Averaged and Centroid Agglomerative Clustering

Group Averaged Agglomerative Clustering (GAAC) considers the similarity between all pairs of
points present in both the clusters and diminishes the drawbacks associated with single and complete
link methods. Before we look at the formula let us introduce some terminology. Let two clusters Ca

and Cb be merged so that the resulting cluster is Ca∪b = Ca ∪Cb. The new centroid for this cluster is
ca∪b =

Naca+Nbcb
Na+Nb

, where Na and Nb are the cardinalities of the clusters Ca and Cb, respectively. The
similarity measure for GAAC is calculated as follows:

SGAAC(Ca,Cb) =
1

(Na +Nb)(Na +Nb− 1) ∑
i∈Ca∪Cb

∑
j∈Ca∪Cb,i
= j

d(i, j) (4.28)
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We can see that the distance between two clusters is the average of all the pair-wise distances be-
tween the data points in these two clusters. Hence, this measure is expensive to compute especially
when the number of data objects becomes large. Centroid-based agglomerative clustering, on the
other hand, calculates the similarity between two clusters by measuring the similarity between their
centroids. The primary difference between GAAC and Centroid agglomerative clustering is that,
GAAC considers all pairs of data objects for computing the average pair-wise similarity, whereas
centroid-based agglomerative clustering uses only the centroid of the cluster to compute the simi-
larity between two different clusters.

4.3.1.3 Ward’s Criterion

Ward’s criterion [49, 50] was proposed to compute the distance between two clusters during
agglomerative clustering. This process of using Ward’s criterion for cluster merging in agglomera-
tive clustering is also called as Ward’s agglomeration. It uses the K-means squared error criterion
to determine the distance. For any two clusters, Ca and Cb, the Ward’s criterion is calculated by
measuring the increase in the value of the SSE criterion for the clustering obtained by merging them
into Ca ∪ Cb. The Ward’s criterion is defined as follows:

W (Ca∪b,ca∪b)−W(C,c) =
NaNb

Na +Nb

M

∑
v=1

(cav− cbv)
2 (4.29)

=
NaNb

Na +Nb
d(ca,cb)

So the Ward’s criterion can be interpreted as the squared Euclidean distance between the cen-
troids of the merged clusters Ca and Cb weighted by a factor that is proportional to the product of
cardinalities of the merged clusters.

4.3.1.4 Agglomerative Hierarchical Clustering Algorithm

In Algorithm 20, we provide a basic outline of an agglomerative hierarchical clustering algo-
rithm. In line 1, the dissimilarity matrix is computed for all the points in the dataset. In lines 3–4, the
closest pairs of clusters are repeatedly merged in a bottom-up fashion and the dissimilarity matrix is
updated. The rows and columns pertaining to the older clusters are removed from the dissimilarity
matrix and are added for the new cluster. Subsequently, merging operations are carried out with this
updated dissimilarity matrix. Line 5 indicates the termination condition for the algorithm.

Algorithm 20 Agglomerative Hierarchical Clustering
1: Compute the dissimilarity matrix between all the data points.
2: repeat
3: Merge clusters as Ca∪b = Ca ∪ Cb. Set new cluster’s cardinality as Na∪b = Na + Nb.
4: Insert a new row and column containing the distances between the new cluster Ca∪b and the

remaining clusters.
5: until Only one maximal cluster remains.

4.3.1.5 Lance–Williams Dissimilarity Update Formula

We have discussed many different proximity measures that are used in agglomerative hierarchi-
cal clustering. A convenient formulation in terms of dissimilarity which embraces all the hierarchi-
cal methods mentioned so far is the Lance–Williams dissimilarity update formula [31]. If points i
and j are agglomerated into cluster i∪ j, then we will have to specify just the new dissimilarity
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TABLE 4.1: Values of the Coefficients for the Lance–Williams Dissimilarity Update Formula for
Different Hierarchical Clustering Algorithms.

Name of the Method Lance–Williams Dissimilarity Update Formula
Single Link αi = 0.5; β = 0; and γ = -0.5
Complete Link αi = 0.5; β = 0; and γ = 0.5

GAAC αi =
|i|
|i|+| j| ; β = 0; and γ = 0

Centroid αi =
|i|
|i|+| j| ; β =− |i|| j|

(|i|+| j|)2 ; and γ = 0

Ward’s αi =
|i|+|k|
|i|+| j|+|k| ; β =− |k|

|i|+| j|+|k| ; and γ = 0

between the cluster and all other points. The formula is given as follows:

d(i∪ j,k) = αid(i,k)+α jd( j,k)+βd(i, j)+ γ|d(i,k)− d( j,k)| (4.30)

Here, αi, α j, β, and γ define the agglomerative criterion. The coefficient values for the different
kinds of methods we have studied so far are provided in Table 4.1.

4.3.2 Divisive Clustering

Divisive hierarchical clustering is a top-down approach where the procedure starts at the root
with all the data points and recursively splits it to build the dendrogram. This method has the advan-
tage of being more efficient compared to agglomerative clustering especially when there is no need
to generate a complete hierarchy all the way down to the individual leaves. It can be considered as
a global approach since it contains the complete information before splitting the data.

4.3.2.1 Issues in Divisive Clustering

We will now discuss the factors that affect the performance of divisive hierarchical clustering.

1. Splitting criterion: The Ward’s K-means square error criterion is used here. The greater re-
duction obtained in the difference in the SSE criterion should reflect the goodness of the split.
Since the SSE criterion can be applied to numerical data only, Gini index (which is widely
used in decision tree construction in classification) can be used for handling the nominal data.

2. Splitting method: The splitting method used to obtain the binary split of the parent node is also
critical since it can reduce the time taken for evaluating the Ward’s criterion. The Bisecting
K-means approach can be used here (with K = 2) to obtain good splits since it is based on the
same criterion of maximizing the Ward’s distance between the splits.

3. Choosing the cluster to split: The choice of cluster chosen to split may not be as important as
the first two factors, but it can still be useful to choose the most appropriate cluster to further
split when the goal is to build a compact dendrogram. A simple method of choosing the
cluster to be split further could be done by merely checking the square errors of the clusters
and splitting the one with the largest value.

4. Handling noise: Since the noise points present in the dataset might result in aberrant clus-
ters, a threshold can be used to determine the termination criteria rather splitting the clusters
further.
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4.3.2.2 Divisive Hierarchical Clustering Algorithm

In Algorithm 21, we provide the steps involved in divisive hierarchical clustering. In line 1,
we start with all the points contained in the maximal cluster. In line 3, the Bisecting K-means
approach is used to determine the uniform splitting mechanism to obtain C1 and C2. In line 4, we
use the heuristic mentioned above and choose the cluster with higher squared error for splitting as
the next parent. These steps (lines 3–4) are run repeatedly until the complete dendrogram (up to
the individual) has been constructed. As mentioned above, we can use the threshold to handle noise
during the construction of the dendrogram.

Algorithm 21 Basic Divisive Hierarchical Clustering
1: Start with the root node consisting all the data points
2: repeat
3: Split parent node into two parts C1 and C2 using Bisecting K-means to maximize Ward’s

distance W(C1,C2).
4: Construct the dendrogram. Among the current, choose the cluster with the highest squared

error.
5: until Singleton leaves are obtained.

4.3.2.3 Minimum Spanning Tree-Based Clustering

In a weighted graph, a minimum spanning tree is an acyclic subgraph that covers all the vertices
with the minimum edge weights. Prim’s and Kruskal’s algorithms [9] are used for finding the mini-
mum spanning tree (MST) in a weighted graph. In a Euclidean minimum spanning tree (EMST), the
data points represent the vertices and the edge weights are computed using the Euclidean distance
between two data points. Each edge in an EMST represents the shortest distance between those two
points. Using this EMST a divisive clustering method can be developed which removes the largest
weighted edge to get two clusterings and subsequently removes the next largest edge to get three
clusterings and so on. This process of removing edges from an EMST gives rise to an effective
divisive clustering method. The major advantage of this method is that it is able to detect clusters
with nonspherical shapes effectively.

A basic EMST clustering algorithm proceeds by taking a user supplied parameter K where
the edges present in the graph are sorted in descending order. This is followed by removing the
edges with the top (K−1) weights one by one to get the K connected components. This is similar
to the process of divisive clustering where finer clustering partitions are obtained after each split.
Subsequently, we can also use the EMST to build a clustering algorithm which continuously prunes
the inconsistent edges present in the graph. An inconsistent edge is the one whose edge weight is
much higher than the average weight of the edges in the neighbourhood of that edge. Algorithm 22
describes the minimum spanning tree-based clustering algorithm that was originally proposed by
Zahn [53].

Algorithm 22 Zahn Minimum Spanning Tree-Based Divisive Clustering
1: Create the EMST using Prim’s/Kruskal’s algorithm on all the data points.
2: repeat
3: Remove edge with highest inconsistency measure.
4: until No more inconsistent edges can be removed.
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4.3.3 Other Hierarchical Clustering Algorithms

The agglomerative and divisive hierarchical clustering methods are successful in capturing con-
vex shaped clusters effectively. As mentioned above, agglomerative methods, especially single link
and complete link, suffer from the “chaining problem” and are ineffective at capturing arbitrarily
shaped clusters. Hence, to capture arbitrarily shaped clusters, algorithms such as CURE [17] and
CHAMELEON [25] have been proposed in the literature. Some of the popular extensions of hierar-
chical algorithms are discussed below.

1. CURE (Clustering Using REpresentatives) [17] is an algorithm which incorporates a novel
feature of representing a cluster using a set of well-scattered representative points. The dis-
tance between two clusters is calculated by looking at the minimum distance between the
representative points chosen. In this manner, CURE incorporates features of both the Single
link and GAAC hierarchical clustering methods. Choosing scattered points helps CURE cap-
ture clusters of arbitrary shapes also. In addition, CURE employs a shrinking factor α in the
algorithm, where the points are shrunk toward the centroid by a factor α. α shrinking has
a greater effect in the case of outliers compared to normal points. This makes CURE more
robust to outliers. Similar to this approach, an algorithm called ROCK [18] was also proposed
to handle categorical data. This algorithm uses the concept of common links and determines
the Jaccard coefficient between candidate clusters for hierarchical clustering.

2. CHAMELEON [25] is a clustering algorithm which uses graph partitioning methods on
the K-nearest neighbor graph of the data. These initial partitions are then used as the seed
clusters for the agglomerative hierarchical clustering process. The algorithm uses two metrics
based on the relative inter-connectivity and relative closeness of clusters to merge the clusters.
These metrics capture the local information of the clusters during the clustering process thus
enabling this algorithm to behave like a dynamic framework. CHAMELEON is one of the best
hierarchical clustering algorithms and is extremely effective in capturing arbitrarily shaped
clusters which is primarily due to the dynamic behavior. A detailed comparison between the
clustering results of CURE and CHAMELEON for synthetic datasets with clusters of varying
shapes can also be found in [25].

3. COBWEB [15]: This is a conceptual clustering algorithm that works incrementally by up-
dating the clusters object by object. Probabilistically described clusters are arranged as a tree
to form a hierarchical clustering known as probabilistic categorization tree. It handles uncer-
tainty associated with categorical attributes in clustering through a probabilistic framework
that is similar to Naive Bayes. The dendrogram in this algorithm is also called a classification
tree and the nodes are referred to as concepts.

4. Self-Organizing Maps (SOM) [28] were developed on the same lines of Artificial Neural
Networks and are useful for hierarchical representation. It is an efficient data visualization
technique. Similar to K-means, data points are assigned to their closest centroids. The dif-
ference arises in the centroid update step where, when a centroid is updated, those in its
neighborhood which are close to this centroid are also updated. The final output is an SOM
neural network which can be explored to understand the relationships between different ob-
jects involved in the clustering.

4.4 Discussion and Summary

A major advantage of partitional clustering algorithms is that they can gradually improve the
clustering quality through an iterative optimization process [3]. This cannot be done in standard
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hierarchical clustering since the dendrogram cannot revisit the merges (or splits) that were already
completed. Partitional algorithms are also effective in detecting compact spherical-shaped clusters
and are easy to implement and use in practice [22]. K-means is also a computationally efficient
algorithm compared to hierarchical clustering. Although there is no consensus, it is believed that
K-means is better than hierarchical clustering algorithms [35] in terms of the quality of the final
clustering solution.

Hierarchical clustering methods can potentially overcome some of the critical problems asso-
ciated with flat (partitional) clustering methods. One of the major advantages of hierarchical algo-
rithms is the generation of the visual dendrograms which can assist the end-users during the cluster-
ing process. In such applications, generally a user will label the clusters to understand more about
them. This is also called cluster labeling. Hierarchical methods are also deterministic compared to
the nondeterministic behavior experienced with the basic K-means algorithm.

Despite these advantages, it is observed that in hierarchical clustering methods the merge or split
decisions once made at any given level in the hierarchy cannot be undone [3]. This is considered to
be a weakness for such hierarchical algorithms since it reduces the flexibility. To overcome this prob-
lem, [14] proposes an iterative optimization strategy that keeps modifying the created dendrogram
until the optimal solution is obtained. The run-time complexity of these hierarchical algorithms is
quadratic which is not desirable especially for large-scale problems. Parallel hierarchical clustering
methods [41] have also been proposed to reduce the complexity to linear time.

In spite of the numerous advances made in the field of data clustering in the past two decades,
both partitional and hierarchical clustering algorithms form a solid foundation for data clustering.
Many of the newly proposed data clustering algorithms (to be discussed in the next few chapters)
typically compare their performance to these fundamental clustering algorithms. In addition, due
to their simplicity and ease of usage, these algorithms are heavily used in several other application
domains such as bioinformatics, information retrieval, text mining, imaging, climate science, and
astronomy. The development of new variants of both partitional and hierarchical clustering algo-
rithms is still an active area of research.
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5.1 Introduction

Many of the well-known clustering algorithms make, implicitly or explicitly, the assumption
that data are generated from a probability distribution of a given type, e.g., from a mixture of k
Gaussian distributions. This is the case in particular for EM (Expectation Maximization) clustering
and for k-means. Due to this assumption, these algorithms produce spherical clusters and cannot
deal well with datasets in which the actual clusters have nonspherical shapes. Nonspherical clusters
occur naturally in spatial data, i.e., data with a reference to some two- or three-dimensional concrete
space corresponding to our real world. Spatial data include points, lines, and polygons and support
a broad range of applications. Clusters in spatial data may have arbitrary shape, i.e., they are often
drawn-out, linear, elongated etc., because of the constraints imposed by geographic entities such
as mountains and rivers. In geo-marketing, one may want to find clusters of homes with a given
characteristic, e.g., high-income homes, while in crime analysis one of the goals is to detect crime
hot-spots, i.e., clusters of certain types of crimes. Even in higher-dimensional data the assumption
of a certain number of clusters of a given shape is very strong and may often be violated. In this
case, algorithms such as k-means will break up or merge the actual clusters, leading to inaccurate
results. The objective to minimize the average squared distances of points from their corresponding
cluster center leads to a partitioning of the dataset that is equivalent to the Voronoi diagram of the
cluster centers, irrespective of the shape of the actual clusters. Figure 5.1 illustrates this weakness
on a small 2-dimensional dataset, showing that k-means with k = 3 breaks up and merges the three
horizontal clusters.

This observation motivates the requirement to discover clusters of arbitrary shape. The in-
creasingly large sizes of real-life databases require scalability to large databases, i.e., efficiency on
databases of up to millions of points or more. Finally, the clustering of large databases requires the
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FIGURE 5.1: k-means with k = 3 on a sample 2-dimensional dataset.

ability to detect and remove noise and outliers. The paradigm of density-based clustering has been
proposed to address all of these requirements. Density-based clustering can be considered as a non-
parametric method, as it makes no assumptions about the number of clusters or their distribution.

Density-based clusters are connected, dense areas in the data space separated from each other
by sparser areas. Furthermore, the density within the areas of noise is assumed to be lower than the
density in any of the clusters. Due to their local nature, dense connected areas in the data space can
have arbitrary shape. Given an index structure that supports region queries, density-based clusters
can be efficiently computed by performing at most one region query per database object. Sparse
areas in the data space are treated as noise and are not assigned to any cluster.

It is worth noting that the algorithms that are being referred to in the literature as density-based
clustering have various predecessors that have already explored some of the ideas. In particular,
Wishart [33] explored ways to avoid the so-called chaining effect in single-link clustering, which is
caused by a small number of noisy data points that connect sets of points that should in principle
form separate clusters. First, nondense points, that have fewer than k neighbors within a distance of
r, are removed. Second, single-link is employed to cluster the remaining points. Finally, nondense
points may be allocated to one of the clusters according to some criterion. We would also like to
point out the relationship of the paradigms of density-based clustering and mean-shift clustering [8].
The mean-shift procedure is an iterative procedure that replaces each point by the weighted mean
of its neighboring points, where the neighborhood and weights are determined by the chosen kernel
function, and it converges to the nearest stationary point of the underlying density function. Mean-
shift clustering employs the mean-shift procedure as density-estimator. In mean-shift clustering,
very narrow kernels create singleton clusters, very wide kernels create one cluster, and intermediate
kernels create a natural number of clusters. As opposed to density-based clustering, in mean-shift
clustering, the neighborhood membership is weighted (instead of Boolean), the minimum number
of points does not need to be specified, and there is no guarantee that clusters are connected.

A density-based clustering algorithm needs to answer several key design questions:

• How is the density estimated?
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• How is connectivity defined?

• Which data structures support the efficient implementation of the algorithm?

In the following, we will present the main density-based clustering algorithms and discuss the
ways in which they answer these questions.

5.2 DBSCAN

DBSCAN [11] estimates the density by counting the number of points in a fixed-radius neigh-
borhood and considers two points as connected if they lie within each other’s neighborhood. A
point is called core point if the neighborhood of radius Eps contains at least MinPts points, i.e., the
density in the neighborhood has to exceed some threshold. A point q is directly density-reachable
from a core point p if q is within the Eps-neighborhood of p, and density-reachability is given by
the transitive closure of direct density-reachability. Two points p and q are called density-connected
if there is a third point o from which both p and q are density-reachable. A cluster is then a set of
density-connected points which is maximal with respect to density-reachability. Noise is defined
as the set of points in the database not belonging to any of its clusters. The task of density-based
clustering is to find all clusters with respect to parameters Eps and MinPts in a given database.

In the following we provide more formal definitions. Let D be a set (database) of data points. The
definition of density-based clusters assumes a distance function dist(p,q) for pairs of points. The
E ps-neighborhood of a point p, denoted by NE ps(p), is defined by NE ps(p) = {q∈D|dist(p,q)�
E ps}. A point p is directly density-reachable from a point q with respect to Eps, MinPts if (1)
p ∈ NE ps(q) and (2) |NE ps(q)| ≥ MinPts. A point p is density-reachable from a point q with
respect to Eps and MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is
directly density-reachable from pi. Density-reachability is a canonical extension of direct density-
reachability. Since this relation is not transitive, another relation is introduced. A point p is density-
connected to a point q with respect to Eps and MinPts if there is a point o such that both p and q
are density-reachable from o with respect to Eps and MinPts. Figure 5.2 illustrates these concepts.
While p is density-reachable from q, q is not density-reachable from p. a and c are density-connected
via b.

Intuitively, a density-based cluster is a maximal set of density-connected points. Formally, a
cluster C with respect to Eps and MinPts is a nonempty subset of D satisfying the following two
conditions:

1. ∀p,q if p ∈C and q is density-reachable from p with respect to E ps and MinPts, then q ∈C.
(maximality)

FIGURE 5.2: Density-reachability and connectivity.
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2. ∀p,q ∈C: p is density-connected to q with respect to E ps and MinPts. (connectivity)

Let C1, . . . ,Ck be the clusters of the database D with respect to Eps and MinPts. Then the noise is
defined as the set of points in D not belonging to any cluster Ci, i.e., noise = {p ∈ D|p 
∈ Ci∀i}.
Density-based clustering distinguishes three different types of points (see Figure 5.2 ):

• core points, i.e., points with a dense neighborhood (|NE ps(p)| ≥MinPts),

• border points, i.e., points that belong to a cluster, but whose neighborhood is not dense, and

• noise points, i.e., points which do not belong to any cluster.

In Figure 5.2, e.g., q and b are core points, and p, a and c are border points.
Density-based clusters have two important properties that allow their efficient computation. Let

p be a core point in D. Consider the set O of all points drawn from D, which are density-reachable
from p with respect to E ps and MinPts. This set O is a cluster with respect to Eps and MinPts.
Let C be a cluster in D. Each point in C is density-reachable from any of the core points of C and,
therefore, a cluster C contains exactly the points which are density-reachable from an arbitrary core
point of C. Thus, a cluster C with respect to Eps and MinPts is uniquely determined by any of its
core points. This is the foundation of the DBSCAN algorithm.

To find a cluster, DBSCAN starts with an arbitrary database point p and retrieves all points
density-reachable from p with respect to Eps and MinPts, performing region queries first for p and
if necessary for p’s direct and indirect neighbors. If p is a core point, this procedure yields a cluster
with respect to Eps and MinPts. If p is not a core point, no points are density-reachable from p and
DBSCAN assigns p to the noise and applies the same procedure to the next database point. If p
is actually a border point of some cluster C, it will later be reached when collecting all the points
density-reachable from some core point of C and will then be (re-)assigned to C. The algorithm
terminates when all points have been assigned to a cluster or to the noise.

Standard DBSCAN implementations are based on a spatial index such as an R-tree [14] or X-
tree [4], which provides efficient support of region queries that retrieve the Eps-neighborhood of a
given point. In the worst case, DBSCAN performs one region query per database point. This leads
to a runtime complexity of O(nlogn) for DBSCAN, where n denotes the number of database points.
Unfortunately, spatial indexes degenerate for high-dimensional data, i.e., the performance of region
queries degenerates from O(logn) to O(n), and the runtime complexity of DBSCAN becomes O(n2)
for such data. On the other hand, if a grid-based data structure is available that supports O(1) region
queries, the runtime complexity of DBSCAN decreases to O(n). Note that a runtime complexity of
O(nlogn) is considered to be scalable to large datasets.

An incremental version of DBSCAN can further improve its efficiency in dynamic databases
with insertions and deletions. [10] shows that a density-based clustering can be updated incremen-
tally without having to rerun the DBSCAN algorithm on the updated database. It examines which
part of an existing clustering is affected by an update of the database and presents algorithms for
incremental updates of a clustering after insertions and deletions. Due to the local nature of density-
based clusters, the portion of affected database objects tends to be small which makes the incremen-
tal algorithm very efficient.

The basic idea of density-based clusters can be generalized in several ways [30]. First, any no-
tion of a neighborhood can be employed instead of a distance-based Eps-neighborhood as long
as the definition of the neighborhood is based on a predicate NPred(p,q) which is symmet-
ric and reflexive. The neighborhood N of p is then defined as the set of all points q satisfying
NPred(p,q). Second, instead of simply counting the elements in a neighborhood we can as well
use a more general predicate MinWeight(N) to determine whether the neighborhood N is dense,
if MinWeight is monotone in N, i.e., if MinWeight is satisfied for all supersets of sets that satisfy
N. Finally, not only point-like objects but also spatially extended objects such as polygons can be
clustered. When clustering polygons, for example, the following predicates are more natural than
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the Eps-neighborhood and the MinPts cardinality constraint: NPred(X ,Y ) iff intersect(X ,Y ) and
MinWeight(N) iff ∑p∈N population(p)≥MinPop. The GDBSCAN algorithm [30] for finding gen-
eralized density-based clusters is a straightforward extension of the DBSCAN algorithm.

5.3 DENCLUE

DENCLUE [16] takes another approach to generalize the notion of density-based clusters, based
on the concept of influence functions that mathematically model the influence of a data point in
its neighborhood. The density at some point is estimated by the sum of the influences of all data
points. A point is said to be density-attracted to a so-called density-attractor, if they are connected
through a path of high-density points. An influence function should be symmetric, continuous, and
differentiable, and typical examples of influence functions are square wave functions or Gaussian
functions. The density function at a point x is computed as the sum of the influence functions of all
data points at point x. Density-attractors are points that correspond to local maxima of the density
function. A point p is density-attracted to a density-attractor q if q can be reached from p through a
path of points that lie within a distance of Eps from each other in the direction of the gradient. An
arbitrary-shape cluster for a set of density-attractors X is then defined as the set of all points that are
density-attracted to one of the density-attractors x from X where the density function at x exceeds a
threshold ξ. In addition, all pairs of density-attractors need to be connected to each other via paths
of points whose density meets the same threshold.

More precisely, the influence function of a data point y ∈ Fd is a function f y
B(x) defined in terms

of a basic influence function fB, i.e., f y
B(x) = fB(x,y). A simple example of an influence function is

the Square Wave Influence Function:

fB(x,y) = 1 if d(x,y)≤ σ,
0 otherwise.

Given a database of points D = {x1, . . . ,xN} ⊂ Fd , the density function is defined as f D
B (x) =

∑N
i=1 f xi

B (x). The gradient of the density function is defined as Δ f D
B (x) = ∑N

i=1(xi− x) f xi
B (x). A point

x∗ is called a density-attractor, if x∗ is a local maximum of the density function f D
B (x). A point x

is density-attracted to density-attractor x∗, if there is a sequence of points xk,d(xk,x∗)≤ ε for some

distance function d, with xi = xi−1 + δ Δ f D
B (xi−1)

‖Δ f D
B (xi−1)‖ .

Given a set of density-attractors X, an arbitrary-shape cluster with respect to σ and ξ is a subset
C � D, where

1. ∀x ∈C ∃x∗ ∈ X : f D
B (x∗)≥ ξ and x is density-attracted to x∗, and

2. ∀x∗1,x∗2 ∈ X ∃ path P⊂ Fd from x∗1 to x∗2 with ∀p ∈ P : f D
B (p)≥ ξ.

The parameter σ, employed by the basic influence function, determines the reach of the influ-
ence of a point, while parameter ξ specifies when a density-attractor is significant. Note that the
DENCLUE clusters become identical to the DBSCAN clusters when choosing the Square Wave
Influence Function with σ = E ps and ξ = MinPts.

The efficient implementation of the DENCLUE algorithm is based on the observation that most
data points do not contribute to the density function at any given point of the data space. This can
be exploited by computing only a local density function, while guaranteeing tight error bounds.
To efficiently access neighboring points, a so-called map data structure is created, a d-dimensional
grid structure of grid length 2σ. Only grid cells that actually contain points are determined and are
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mapped to one-dimensional keys, which are indexed, e.g., in a B+-tree. To determine the density-
attractors for each point in a grid cell, a hill-climbing procedure based on the local density function
and its gradient is used. After determining the density-attractor x∗ for a point x, the point x is as-
signed to the cluster including x∗. Some heuristics allows the algorithm to assign nearby points
without having to apply the hill-climbing procedure.

5.4 OPTICS

In many real-life databases the intrinsic cluster structure cannot be characterized by global den-
sity parameters, and very different local densities may be needed to reveal clusters in different
regions of the data space. In principle, one could apply a density-based clustering algorithm with
different parameter settings, but there are an infinite number of possible parameter values. The basic
idea of the OPTICS algorithm [3] to address this challenge is to create not one explicit clustering, but
to produce a novel cluster-ordering of the database points with respect to its density-based clustering
structure containing the information about every clustering level of the data set up to a generating
distance Eps. This ordering is visualized graphically to support interactive analysis of the cluster
structure.

For a constant MinPts-value, density-based clusters with respect to a higher density (i.e., a lower
value for Eps) are completely contained in clusters with respect to a lower density (i.e., a higher
value for Eps). Consequently, the DBSCAN algorithm could be extended to simultaneously cluster
a database for several Eps values. However, points which are density-reachable with respect to the
lowest Eps value would always have to be processed first to guarantee that clusters with respect to
higher density are finished first. OPTICS works in principle like an extended DBSCAN algorithm
for an infinite number of distance parameters E psi which are smaller than a generating distance
Eps. The only difference is that it does not assign cluster memberships, but stores the order in
which the points are processed (the clustering order) and the following two pieces of information
which would be used by an extended DBSCAN algorithm to assign cluster memberships. The core-
distance of a point p is the smallest distance E ps′ between p and a point in its Eps-neighborhood
such that p would be a core point with respect to E ps′ if this neighbor is contained in NE ps(p).
The reachability-distance of a point p with respect to another point o is the smallest distance such
that p is directly density-reachable from o if o is a core point. The clustering structure of a data set
can be visualized by a reachability plot (see Figure 5.3) that shows the reachability-distance values
r for all points sorted according to the clustering order. Valleys in the reachability plot correspond
to clusters, which can be hierarchically nested.

5.5 Other Algorithms

The work in [31] introduces a statistical, grid-based index structure called STING (Statistical
INformation Grid) to efficiently process region queries on databases of points. STING divides the
data space into rectangular cells at different levels of resolution, and these cells form a tree structure.
A cell at a high level contains a number of cells of the next lower level. The following statistical
information is calculated and stored for each cell: (1) the number of points in the cell and (2) for each
attribute, the mean, standard deviation, minimum value, and maximum value of the attribute for the
points in this cell, as well as the type of distribution of these attribute values. To process a region
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FIGURE 5.3: Reachability plot for sample dataset.

query, the STING index is explored, starting with the root. At the current cell, the likelihood that this
cell is relevant to the query at some confidence level is calculated using the statistical information
of this cell. Only children of likely relevant cells are recursively explored. The algorithm terminates
when the lowest level of the index structure has been searched. The runtime complexity of a region
query is O(K), where K is the number of grid cells at the lowest level. Usually, K << N, where
N is the number of data points. While STING is more efficient than deterministic index structures
discussed above, its probabilistic nature implies a loss of accuracy in query processing. STING can
provide efficient support for density-based clustering algorithms which employ region queries as
basic operations.

The restriction of k-means-like algorithms to find spherical clusters can be traced back to the
representation of a cluster by only one point. Density-based clustering algorithms, on the other hand,
represent a cluster by the set of all of its points, which enables them to discover arbitrary shape
clusters. CURE (Clustering Using RErepresentatives) [12] adopts a compromise, representing each
cluster by a certain fixed number of points that are generated by selecting well- scattered points from
the cluster and shrinking them toward the center of the cluster by a specified fraction. Having more
than one representative point per cluster allows CURE to adjust well to the geometry of nonspherical
shapes, and the shrinking helps to dampen the effects of outliers. In order to scale to large databases,
CURE employs a combination of random sampling and partitioning. First, a random sample drawn
from the data set is partitioned, and each partition is partially clustered. Then the partial clusters are
clustered to obtain the final clusters.

The clustering algorithm CHAMELEON [21] also aims to discover arbitrary-shape clusters.
As in CURE, the approach is not density-based, but is distance-based. CHAMELEON is a hierar-
chical algorithm. The key idea is to consider both the inter-connectivity and closeness of clusters
when identifying the most similar pair of clusters. These two clusters are merged only if the inter-
connectivity and closeness between the two clusters are comparable to the internal inter-connectivity
of the clusters and closeness of points within the clusters. This is different from the CURE algo-
rithm which ignores the information about the aggregate inter-connectivity of points in two clusters.
CHAMELEON finds the clusters in two phases. During the first phase, CHAMELEON uses a graph
partitioning algorithm to cluster the data items into several relatively small subclusters. In the sec-
ond phase, it creates clusters by applying hierarchical clustering to the subclusters from the first
phase.

While DBSCAN can find clusters of arbitrary shapes, it cannot handle data with clusters of
different densities, due to a single density threshold. OPTICS (see Section 5.4) provides an approach
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to address this challenge, but it only visualizes the cluster structure without actually determining
clusters. [9] presents an approach based on shared nearest neighbors (SNN). The SNN similarity of
two points is defined as the cardinality of the intersection of the sets of the k nearest neighbors of the
two points. The SNN graph is created by linking a pair of points if and only if they have each other
in their k-nearest neighbor lists. The shared nearest neighbor graph keeps the links in regions of
uniform density and breaks links in transition regions, i.e., it keeps links in a region of any density,
high or low, as long as the region has relatively uniform density. This property supports the detection
of clusters of different densities. A point is called core point if the number of points that have an
SNN similarity of Eps or greater is at least MinPts. With these definitions, the DBSCAN algorithm
(see Section 5.2) can be applied.

5.6 Subspace Clustering

In high-dimensional datasets, clusters tend to reside in lower-dimensional subspaces rather than
in the full-dimensional space, which has motivated the task of subspace clustering, as discussed
in Chapter 9. The CLIQUE algorithm [2], a prominent subspace clustering algorithm, is density-
based. It discretizes the data space through a grid and estimates the density by counting the number
of points in a grid cell. Two grid cells are considered to be connected if they share some edge or
face. A subspace cluster is then a set of neighboring dense cells in an arbitrary subspace. Note
that CLIQUE discovers not only the subspace clusters, but also some minimal descriptions of the
clusters. Figure 5.4 illustrates a two-dimensional dataset without full-space clusters, that contains a
one-dimensional subspace cluster in the “age” dimension (18≤ age≤ 24).

More formally, let S = A1 × A2 × ·· · × Ad be a d-dimensional numerical space, and D =
v1,v2, . . . ,vm a set of d-dimensional points. The data space S is partitioned into units by partitioning
every dimension into ξ intervals of equal length, and each unit u is the intersection of one inter-
val from each dimension. The selectivity of a unit is defined to be the fraction of total data points
contained in the unit. We call a unit u dense if selectivity(u) is greater than density threshold τ.
Similarly, units are defined in all subspaces of the original d-dimensional space. Two k-dimensional

FIGURE 5.4: Sample dataset with subspace clusters.



Density-Based Clustering 119

units u1,u2 are connected if they have a common face or if there exists another k-dimensional unit
u3 such that u1 is connected to u3 and u2 is connected to u3. A cluster is then defined as a maximal
set of connected dense units in k dimensions. A region in k dimensions is an axis-parallel rectan-
gular k-dimensional set, expressed as a DNF expression on intervals of the domains Ai. A region R
contained in a cluster C is said to be maximal if no proper superset of R is contained in C. A minimal
description of a cluster is a nonredundant covering of the cluster with maximal regions. Given a set
of data points and the input parameters, ξ and τ, the task of subspace clustering is to find all clusters
in all subspaces of the original data space together with a minimal description of each cluster.

The CLIQUE algorithm decomposes the task of subspace clustering into three subtasks:

1. identification of subspaces that contain clusters,

2. identification of clusters, and

3. generation of minimal descriptions.

We discuss only the first subtask, which is the most challenging. Its algorithmic solution is based on
the following monotonicity property: If a set of points S is a cluster in a k-dimensional space, then
S is also part of a cluster in any (k− 1)-dimensional projections of this space. Due to this property,
dense units (and therefore subspaces with clusters) can be efficiently discovered in a level-wise
manner, starting with 1-dimensional units, and extending dense units by one dimension at every
level. The determination of the density of all candidate units at a given level requires one database
scan. The algorithm terminates when no more candidates are generated at the current level.

If a dense unit exists in k dimensions, then all of its projections in any of the O(2k) subsets of the
k dimensions are also dense. The running time of the CLIQUE algorithm is therefore exponential in
the highest dimensionality of any dense unit. While it can be shown that the candidate generation
procedure produces the minimal number of candidates that can guarantee that all dense units will
be found, a heuristic inspired by the Minimal Description Length principle was proposed to prune
all subspaces and their dense units that are not “interesting.” To measure the interestingness of a
subspace, its coverage is computed, i.e., the fraction of the database that is covered by the dense
units in that subspace. Only subspaces with large coverage are selected, and the remaining ones are
pruned.

In CLIQUE, as in all grid-based approaches, the quality of the results crucially depends on the
appropriate choice of the number and width of the partitions and grid cells. To address this problem,
[17] suggests the OptiGrid method. Good cutting planes should partition the dataset in areas of low
density and should discriminate clusters as much as possible. Guided by these requirements, the
OptiGrid algorithm works as follows. In each step, it partitions the dataset into multiple subsets. A
cutting plane has to be orthogonal to at least one projection. The density at a cutting plane is bound
by the density of the orthogonal projection of the cutting plane in the projected space. q cutting
planes with minimum density are chosen. Partitions containing at least one cluster are processed
recursively. The recursion stops if no good cutting plane can be found for a given partition. It can
be shown analytically that the OptiGrid algorithm finds all center-defined clusters, which roughly
correspond to clusters generated by a Gaussian distribution.

To avoid the drawbacks of grid-based approaches, researchers have investigated approaches
similar to DBSCAN that define the neighborhood of a point through region queries. In principle,
one could apply the DBSCAN algorithm as is to all subspaces to detect all density-based subspace
clusters, but this approach is infeasible due to the exponential number of subspaces. SUBCLU [26]
discovers the same clusters as the naive application of DBSCAN to all subspaces, but achieves an
efficient solution by employing the following monotonicity property: while density-based clusters
are not anti-monotone, density-connected sets are, i.e., they are density-connected in any subset of
the set of their dimensions.

More precisely, let A denote the set of all attributes or dimensions of dataset D. Different from
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DBSCAN, the Eps-neighborhood of a point is defined relative to a subspace S � A based on the
distance of two points being projected to the dimensions of S.

NE ps(p) = {q ∈ D|dist(πs(p),πs(q))≤ E ps}

All other DBSCAN notation can be transferred to subspaces in a straightforward way. A density-
connected set in subspace S � A is also a density-connected set in any subspace T � S. The SUB-
CLU algorithm starts by applying DBSCAN to each 1-dimensional subspace. Let Sk denote the
set of all k-dimensional subspaces containing at least one cluster. For each detected cluster with
k (initially, k = 1) dimensions, it is checked whether (part of) this cluster still exists in higher-
dimensional subspaces. Therefore, candidate k+ 1 dimensional subspaces are generated by joining
two k-dimensional subspaces that have k− 1 attributes in common. Candidate subspaces having at
least one k-dimensional subspace not included in Sk are pruned. The algorithm terminates when no
more clusters are detected at the current dimensionality.

As DBSCAN is applied to different subspaces, an index structure for the full-dimensional data
space A is not applicable. Instead, inverted lists are employed to support the region queries that
retrieve the Eps-neighborhood of a point. Inverted lists provide O(logn) region queries for individual
attributes, where n denotes the number of data points. For region queries on multiple attributes,
region queries are performed separately on each of the attributes, and these intermediate results are
intersected to obtain the final result.

Many algorithms for subspace clustering or projected clustering of high-dimensional data have
been proposed. However, the relevant densities in different subspaces may vary greatly. In particular,
the threshold density that can distinguish between different clusters in one subspace may be equal
to the density of the noise in another subspace. To address this issue, visualization-based, interactive
methods have been presented as a way to involve the user with his cognitive abilities and domain
knowledge. Hinneburg et al. [18] develop the visual tool HD-Eye that enables the user to interact
with clusters in lower-dimensional subspaces. Predefined projections (subspaces) are visualized and
combined iteratively by the user. Aggarwal [1] presents the IPCLUS system providing more active
guidance to the user. In each iteration, the system proposes a well-polarized projection to the user,
i.e., a projection in which several clusters can be clearly distinguished. A visual profile of the data
density in that projection is presented to the user, who then manually separates the clusters in the
subspace. The system terminates as soon as most points have been assigned to at least one cluster
in one of the subspaces considered.

5.7 Clustering Networks

Most density-based clustering algorithms, as well as other clustering algorithms, work on data
points or records with a fixed number of attributes having one value each. However, network data is
becoming increasingly common, e.g., social networks, the web, or biological interaction networks.
Networks can naturally be modeled as graphs. Let G = (V,E) be a graph with a set of vertices V
and a set of edges E. Vertices represent objects, and edges represent relationships between pairs of
objects. In this section, we discuss density-based clustering methods for networks and refer to the
Chapter 17 on Network Clustering for other methods.

The SCAN algorithm [34] transfers the concepts of DBSCAN from point data to network data,
assuming that network clusters are dense graph components. SCAN discovers not only clusters, but
also hubs connecting several clusters and outliers not belonging to any cluster. Figure 5.5 shows a
sample network dataset with two clusters (vertices 1 to 6, and vertices 7 to 10), one hub (vertex 11)
and one outlier (vertex 12).
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FIGURE 5.5: Sample network dataset.

Intuitively, vertices sharing a lot of neighbors should belong to the same cluster. To formalize
this intuition, a similarity function for pairs of vertices v and w, denoted by sim(v,w), is defined as
follows based on the intersection of their sets of neighbors:

sim(v,w) =
|Γ(v)∩Γ(w)|
√|Γ(v)| · |Γ(w)| ,

where Γ(v) denotes the set of all (direct) neighbors of vertex v, i.e., Γ(v) = {w|(v,w) ∈ E}∪{v}.
The ε-neighborhood of a vertex v is given by the set of all neighbors whose similarity exceeds the
threshold of ε, i.e.,

Nε(v) = {w|wεΓ(v)∧ sim(v,w) ≥ ε}.
A vertex v is called a core, if its ε-neighborhood has a cardinality of at least μ. Based on these defini-
tions, the concepts of direct structure-reachability, structure-reachability, structure-connectivity, and
(structure-connected) cluster with respect to ε and μ can be introduced in analogy to the DBSCAN
concepts.

If a vertex is not a member of any cluster, it is either a hub or an outlier, depending on its
neighborhood. It is a hub, if it has neighbors in at least two different clusters, and it is an outlier
otherwise, i.e., if all neighbors belong to the same cluster or not to any cluster.

The SCAN algorithm is completely analogous to the DBSCAN algorithm. The crucial operation
is the retrieval of the neighborhood of a given vertex, which can be efficiently supported using an
adjacency list, a data structure where each vertex is associated with a list of directly neighboring
vertices. With this data structure, the cost of a neighborhood query is proportional to the number of
neighbors, that is, the degree of the query vertex. SCAN performs at most one neighborhood query
per vertex. Therefore, the total running time of SCAN is O(m), where m denotes the number of all
edges, which scales well to large datasets.

SCAN, like most other methods of network clustering such as graph partitioning and quasi-
clique finding work on graph data only. However, in many applications more informative graphs
are given, where feature vectors are associated with vertices representing object properties such as
demographic attributes of customers and expression data of genes. Often features and edges contain
complementary information, i.e., neither can the relationships be derived from the attributes nor
vice-versa. In such scenarios the simultaneous use of both data types promises more meaningful
and accurate results. Figure 5.6 shows an example of a social network of computer science students
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FIGURE 5.6: Sample social network dataset with feature vectors.

where students are associated with two features, their favorite sports and their research areas. The
first cluster consists of hockey players, united by their favorite sports, and the second one contains
students who share data mining as their research area. Note that student A belongs to both clusters,
while students B and C are not part of any of the clusters, because they do not share any interest
(research or sports) with their friends.

Integrating the concepts of dense subgraphs and subspace clusters, Moser et al. [28] introduced
the problem of finding cohesive patterns. A cohesive pattern is defined as a subgraph which

1. is connected,

2. has a density exceeding the threshold of α, and

3. has homogeneous values in at least d features, for example, the values of each of these features
may have at most a specified variance within the vertices of the pattern.

Different from graph partitioning methods and similar to frequent pattern mining methods, co-
hesive patterns can overlap and do not have to cover the entire dataset. Furthermore, the number
of patterns does not need to be specified in advance. Integrating constraints on the feature vec-
tors reduces the number of patterns substantially and adds more meaning to the identified pat-
terns. In order to reduce the potentially large number of cohesive patterns, the search is restricted
to finding only maximal cohesive patterns, i.e., those whose supergraphs do not form cohesive
patterns.

The problem of discovering all maximal cohesive patterns is NP-hard, but it becomes tractable
in many practical cases by exploiting the following monotonicity properties. A constraint is called
anti-monotone if the satisfaction of the constraint by a pattern of size k implies the satisfaction
of the constraint by all subpatterns of size k− 1, and a constraint is called loose anti-monotone if
the implication holds for at least one subpattern of size k− 1. The homogeniety constraint is anti-
monotone. The density constraint and the connectivity constraint are loose anti-monotone. Finally,
the simultaneous satisfaction of all three constraints is loose anti-monotone for α≥ 0.5. The CoPaM
algorithm enumerates subgraphs in a levelwise, bottom-up fashion, starting with subgraphs of size
2. At level k, subgraphs of size k that do not satisfy all of the three constraints are pruned, while
the remaining graphs are extended by one neighboring vertex to form candidates for the next level
k+ 1. The algorithm terminates at a level where no cohesive patterns are discovered.
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To further reduce the number of cohesive patterns, Güennemann et al. [13] introduce a notion of
redundancy among such patterns, based on their density, size, and number of relevant dimensions,
and present the Gamer algorithm for discovering redundancy-free sets of patterns.

While all of the above methods cluster static snapshots of a network, [22] proposes a method for
clustering dynamic networks, employing the framework of temporal smoothness. This framework
assumes that the structure of clusters does not significantly change in a very short time and tries
to smooth clusterings over time. The framework aims for a trade-off between the snapshot quality,
i.e., the strength of the cluster structure in one snapshot, and the history quality, i.e., the similarity
of the clusterings of a snapshot and the previous snapshot. A density-based approach similar to that
of SCAN is adopted for clustering the static snapshots, determining smoothed local clusters of high
quality using a cost-embedding technique and optimal modularity.

5.8 Other Directions

A data stream consists of a sequence of data points that arrive continuously and rapidly and are
too large to be stored permanently, so that an algorithm can take only one look at each data point to
analyze the data stream. Stream data is becoming available in many applications, e.g., sensor data
and click stream data. For density-based clustering of data streams, [6] introduces the concepts of
core-micro-clusters, potential core-micro-clusters and outlier micro-clusters to maintain the relevant
statistical information. A novel pruning strategy is designed based on these concepts, which allows
accurate clustering in the context of limited memory. [7] presents the D-Stream algorithm, which
uses an online component to map input data into a grid and an offline component to compute the
grid cell density and cluster the cells based on the density. The algorithm adopts a density decaying
technique to capture the dynamic changes of a data stream. Sporadic grid cells, resulting from
outliers in the data stream, are detected and removed.

Recently, uncertain data has become more common in scenarios such as mobile services, where
the locations of moving objects are transmitted at discrete time stamps and can only be estimated
with some uncertainty between these time stamps. Essentially, attribute values are generalized to
probability distributions over the attribute domain. For density-based clustering of uncertain data,
the FDBSCAN algorithm [24] introduces a probabilistic concept of density-based clusters gener-
alizing the deterministic concept of DBSCAN. In particular, the distance function is replaced by
a distance density function and a distance distribution function for pairs of uncertain data points,
and the Boolean core point property is replaced by a core point probability. The main challenge
of the implementation is the efficient computation of the core point probability. A Monte-Carlo
sampling method is developed in order to efficiently approximate this probability. A similar gen-
eralization (FOPTICS) has been proposed [25] for OPTICS, supporting the hierarchical density-
based clustering of uncertain data. See Chapter 18 on clustering uncertain data for other clustering
methods.

Januzaj et al. [19] investigate density-based clustering of distributed databases. The databases
are clustered locally, and suitable representatives from the clusters are determined. These repre-
sentatives are sent to a global server where the overall clustering is computed based on the local
representatives. In [20], the same authors improve the scalability of this approach, allowing the user
to specify the trade-off between clustering quality and the number of transmitted objects from the
different local databases to the global server.

Various researchers have explored the use of constraints in the context of density-based clus-
tering. Wang et al. [32] propose the spatial clustering method DBRS+ to cluster spatial data in the
presence of both obstacles and facilitators. In [29], the authors enhance the density-based algorithm
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DBSCAN with Must-Link and Cannot-Link constraints for pairs of points that must or cannot be-
long to the same cluster. Lelis and Sander [27] demonstrate how labeled objects can be employed
to help the DBSCAN algorithm detecting suitable density parameters.

Outliers are observations that deviate significantly from the other observations. The task of out-
lier detection is quite closely related to that of clustering, since points in a cluster can be considered
normal cases and points not assigned to any cluster can be considered outliers. However, clustering
algorithms treat outliers only as by-products and do not focus on their discovery. Knorr and Ng
[23] introduce the notion of distance-based outliers, i.e., points for which at least p percent of the
database points have a distance larger than D. It is shown that this definition generalizes the standard
definition of outliers from a Gaussian distribution. We would like to point out that the concept of
distance-based outliers can also be understood as density-based: points are considered outliers if
their neighborhood of radius D does not contain at least a fraction of 1− p of all database points.
Distance-based outliers are global in the sense that the number of points that should be further away
than D is specified as a fraction of the database cardinality. Breunig et al. [5] motivate the impor-
tance of local outliers, points that deviate strongly from their local neighborhoods, particularly with
respect to the densities of the neighborhoods. Different from other methods, an outlier factor is in-
troduced measuring the degree to which a point p is an outlier. Adopting the notions of OPTICS (see
Section 5.4), the local outlier factor is defined as the average of the ratio of the local reachability-
density of p and those of the MinPts nearest neighbors of p. Similar to DBSCAN and distance-
based outlier detection, the detection of local outliers requires one region query per database point,
i.e., the runtime complexity is O(n · log(n)) if an effective index structure is available and O(n2)
otherwise.

5.9 Conclusion

The paradigm of density-based clustering has been proposed to address the requirements of
(1) discovery of arbitrary shape clusters, (2) scalability to large databases, and (3) the ability to
detect and remove noise and outliers. Density-based clusters are connected, dense areas in the data
space separated from each other by sparser areas. Furthermore, the density within the areas of noise
is assumed to be lower than the density in any of the clusters. Due to their local nature, dense
connected areas in the data space can have arbitrary shape. Given an index structure that supports
region queries, density-based clusters can be efficiently computed by performing at most one region
query per data point. Sparse areas in the data space are treated as noise and are not assigned to any
cluster. Different from clustering algorithms that optimize a certain objective function, the number
of clusters does not need to be specified by the user.

In this chapter, we have reviewed the major concepts and algorithms for density-based cluster-
ing. In particular, we have discussed the key aspects of density estimation, connectivity definition,
and data structures for efficient implementation. We have also covered advanced density-based ap-
proaches to subspace clustering and the clustering of network data as well as the clustering of
data streams and uncertain data. Density-based clustering has been successfully applied in many
practical applications. The density-based clustering algorithms DBSCAN and OPTICS have been
implemented in WEKA [15], the leading public domain data mining toolkit.
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6.1 Introduction

Grid-based clustering algorithms are efficient in mining large multidimensional data sets. These
algorithms partition the data space into a finite number of cells to form a grid structure and then form
clusters from the cells in the grid structure. Clusters correspond to regions that are more dense in
data points than their surroundings. Grids were initially proposed by Warnekar and Krishna [30] to
organize the feature space, e.g., in GRIDCLUS [25], and increased in popularity after STING [28],
CLIQUE [1], and WaveCluster [27] were introduced. The great advantage of grid-based clustering is
a significant reduction in time complexity, especially for very large data sets. Rather than clustering
the data points directly, grid-based approaches cluster the neighborhood surrounding the data points
represented by cells. In most applications since the number of cells is significantly smaller than the
number of data points, the performance of grid-based approaches is significantly improved. Grid-
based clustering algorithms typically involve the following five steps [9, 10]:

1. Creating the grid structure, i.e., partitioning the data space into a finite number of cells.

2. Calculating the cell density for each cell.

3. Sorting of the cells according to their densities.

4. Identifying cluster centers.

5. Traversal of neighbor cells.

Since cell density often needs to be calculated in order to sort cells and select cluster centers,
most grid-based clustering algorithms may also be considered density-based. Some grid-based clus-
tering algorithms also combine hierarchical clustering or subspace clustering in order to organize
cells based on their density. Table 6.1 lists several representative grid-based algorithms which also
use hierarchical clustering or subspace clustering.

Grid-based clustering is susceptible to the following data challenges:

1. Non-Uniformity: Using a single inflexible, uniform grid may not be sufficient to achieve de-
sired clustering quality or efficiency for highly irregular data distributions.

2. Locality: If there are local variations in the shape and density of the distribution of data points,
the effectiveness of grid-based clustering is limited by predefined cell sizes, cell borders, and
the density threshold for significant cells.

3. Dimensionality: Since performance depends on the size of the grid structures and the size of
grid structures may increase significantly with more dimensions, grid-based approaches may
not be scalable for clustering very high-dimensional data. In addition, there are aspects of the
“curse of dimensionality” including filtering noise and selecting the most relevant attributes
that are increasingly difficult with more dimensions in a grid-based clustering approach.

To overcome the challenge of nonuniformity, adaptive grid-based clustering algorithms that di-
vide the feature space at multiple resolutions, e.g., AMR [15] and MAFIA [21], were proposed. The
varying grid sizes can cluster data well with nonuniform distributions. For example, as illustrated

TABLE 6.1: Grid-Based Algorithms That Use Hierarchical Clustering or Subspace Clustering

hierarchical clustering GRIDCLUS, BANG-clustering, AMR, STING, STING+

subspace clustering MAFIA, CLIQUE, ENCLUS
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(a) Original data (b) Uniform grid

FIGURE 6.1: Nonuniformity example with nested clusters.

in Figure 6.1(a), the data is dispersed throughout the spatial domain with several more dense nested
regions in the shape of a circle, square, and rectangle. A single resolution uniform grid would have
difficulty identifying those more dense, nested regions as clusters as shown in Figure 6.1(b). In con-
trast, an adaptive algorithm, such as AMR, that permits higher resolution throughout the space can
recognize those nested, more dense clusters with centers at the most clear, dense shapes. (Figure 6.1
is adapted from Figure 1 from Liao et al. [15] and is only illustrative, not based on real data.)

To address locality, axis-shifting algorithms were introduced. These methods adopt axis-shifted
partitioning strategies to identify areas of high density in the feature space. For instance, in Fig-
ure 6.2(a), traditional grid-based algorithms will have difficulty adhering to the border and continu-
ity of the most dense regions because of the predefined grids and the threshold of significant cells.
The clustering from using a single uniform grid, shown in Figure 6.2(b), demonstrates that some
clusters are divided into several smaller clusters because the continuity of the border of the dense re-
gions is disturbed by cells with low density. To remedy this, axis-shifting algorithms, such as ASGC
[17], shift the coordinate axis by half a cell width in each dimension creating a new grid structure.
This shifting yields a clustering that recognizes more dense regions adjacent to lower density cells
as shown in Figure 6.2(c). By combining the clustering from both axes, algorithms can recognize
dense regions as clusters as shown in Figure 6.2(d). (Figures 6.2(a), 6.2(b), 6.2(c), and 6.2(d) are
adapted from Figures 11, 12, 14, and 18, respectively, from Lin et al. [17] and are only illustrative,
not based on real data or real clustering algorithm results.)

For handling high dimensional data, there are several grid-based approaches. For example, the
CLIQUE algorithm selects appropriate subspaces rather than the whole feature space for finding
the dense regions. In contrast, the OptiGrid algorithm uses density estimations. A summary of grid-
based algorithms that address these three challenges is presented in Table 6.2.

TABLE 6.2: Grid-based Algorithms Addressing Nonuniformity (Adaptive), Locality (Axis-
Shifting), and Dimensionality

Adaptive MAFIA, AMR

Axis-shifting NSGC, ADCC, ASGC, GDILC

High-dimension CLIQUE, MAFIA, ENCLUS, OptiGrid, O-cluster, CBF
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FIGURE 6.2: Locality Example: Axis-shifting grid-based clustering.

In the remainder of this chapter we survey classical grid-based clustering algorithms as well
as those algorithms that directly address the challenges of nonuniformity, locality, and high-
dimensionality. First, we discuss some classical grid-based clustering algorithms in Section 6.2.
These classical grid-based clustering algorithms include the earliest approaches: GRIDCLUS,
STING, WaveCluster, and variants of them. We present an adaptive grid-based algorithm, AMR,
in Section 6.3. Several axis-shifting algorithms are evaluated in Section 6.4. In Section 6.5, we dis-
cuss high dimensional grid-based algorithms, including CLIQUE, OptiGrid, and their variants. We
offer our conclusions and summary in Section 6.6.



Grid-Based Clustering 131

6.2 The Classical Algorithms

In this section, we introduce three classical grid-based clustering algorithms together with their
variants: GRIDCLUS, STING, and WaveCluster.

6.2.1 Earliest Approaches: GRIDCLUS and BANG

Schikuta [25] introduced the first GRID-based hierarchical CLUStering algorithm called GRID-
CLUS. The algorithm partitions the data space into a grid structure composed of disjoint d-
dimensional hyper rectangles or blocks. Data points are considered points in d-dimensional space
and are designated to blocks in the grid structure such that their topological distributions are main-
tained. Once the data is assigned to blocks, clustering is done by a neighbor search algorithm. In
some respects, GRIDCLUS is the canonical grid-based clustering algorithm and its basic steps coin-
cide with those given for grid-based algorithms in Section 6.1. Namely, GRIDCLUS inserts points
into blocks in its grid structure, calculates the resultant density of the blocks, sorts the blocks ac-
cording to their density, recognizes the most dense blocks as cluster centers, and constructs the rest
of clusters using a neighbor search on the blocks.

The grid structure has a scale for each dimension, a grid directory, and the set of data blocks.
Each scale is used to partition the entire d-dimensional space and this partitioning is stored in the
grid directory. The data blocks contain the data points and there is an upper bound on the number
of points per block. The blocks must be nonempty, cover all the data points, and not have any data
points in common. Hinrichs offers a more thorough discussion of the grid file structure used [13].

The density index of a block, B, is defined as the number of points in the block divided by the
spatial volume of the block, i.e.,

DB =
pB

VB
, (6.1)

where pB is the number of data points in the block B and VB is the spatial volume of the block B,
i.e.,

VB =
d

∏
i=1

eBi , (6.2)

where d is the number of dimensions and eBi is the extent of the block in the i dimension.
GRIDCLUS sorts the blocks according to their density and those with the highest density are

chosen as the cluster centers. The blocks are clustered in order of descending density iteratively to
create a nested sequence of nonempty, disjoint clusters. Starting from cluster centers only neighbor-
ing blocks are merged into clusters. The neighbor search is done recursively starting at the cluster
center, checking for adjacent blocks that should be added to the cluster, and for only those neigh-
boring blocks added to the cluster, continuing the search. The GRIDCLUS algorithm is described
in Algorithm 23 and the function NEIGHBOR SEARCH is the recursive procedure described in
Algorithm 24 [10, 25].

While no explicit time complexity analysis is given for GRIDCLUS in the original paper, the
algorithm may not have time complexity much better than other hierarchical clustering algorithms
in the worst case. The number of blocks in the worst case is O(n) where n is the number of data
points and sorting the blocks by density is O(n logn). However, this complexity would still be better
than hierarchical clustering. The problem is that step 4 can also require O(n) if all the blocks have
different densities and step 7 can also require O(n) if all the blocks have the same density. In ad-
dition, while the number of neighbors of any block is a function of the number of dimensions, the
depth of the recursive calls to the neighbor search function can also be O(n). This can occur if the
blocks are adjacent in a single place analogous to a spanning tree that is a straight line. Without any
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Algorithm 23 GRIDCLUS Algorithm

1: Set u := 0, W [] := {},C[] := {}{initialization};
2: Create the grid structure and calculate the block density indices;
3: Generate a sorted block sequence B1′ ,B2′ , ...,Bb′ and mark all blocks “not active” and “not

clustered”;
4: while a “not active” block exists do
5: u⇐ u+ 1;
6: mark first B1′ ,B2′ , ...,B j′ with equal density index “active”;
7: for each “not clustered” block Bl′ := B1′ ,B2′ , ...,B j′ do
8: Create a new cluster set C[u];
9: W [u]⇐W [u]+ 1,C[u,W[u]]← Bl′ ;

10: Mark block Bl′ clustered;
11: NEIGHBOR SEARCH(Bl′ ,C[u,W [u]]);
12: end for
13: for each “not active” block B do
14: W [u]⇐W [u]+ 1,C[u,W[u]]← B;
15: end for
16: Mark all blocks “not clustered”;
17: end while

Algorithm 24 Procedure NEIGHBOR SEARCH(B,C)

1: for each “active” and “not clustered” neighbor B′ of B do
2: C← B′;
3: Mark block B′ “clustered”;
4: NEIGHBOR SEARCH(B′,C);
5: end for

discriminatory density thresholds, the pathological case of step 7 could also apply and the complex-
ity would be O(n2). (Granted average case complexity for several distributions may be significantly
better (i.e., O(n)) and that may be a better analysis to consider.)

The BANG algorithm introduced by Schikuta and Erhart [26] is an extension of the GRIDCLUS
algorithm. It addresses some of the inefficiencies of the GRIDCLUS algorithm in terms of grid
structure size, searching for neighbors, and managing blocks by their density. BANG also places
data points in blocks and uses a variant of the grid directory called a BANG structure to maintain
blocks. Neighbor search and processing the blocks in decreasing order of density are also used for
clustering blocks. Nearness of neighbors is determined by the maximum dimensions shared by a
common face between blocks. A binary tree is used to store the grid structure, so that neighbor
searching can be done more efficiently. From this tree in the grid directory and the sorted block
densities, the dendrogram is calculated. Centers of clusters are still the most highly dense blocks
in the clustering phase. The BANG algorithm is summarized in Algorithm 25 [10]. While both
GRIDCLUS and BANG can discern nested clusters efficiently, BANG has been shown to be more
efficient than GRIDCLUS on large data sets because of its significantly reduced growth of grid
structure size [26].

6.2.2 STING and STING+: The Statistical Information Grid Approach

Wang et al. [28] proposed a STatistical INformation Grid-based clustering method (STING) to
cluster spatial databases and to facilitate region-oriented queries. STING divides the spatial area into
rectangular cells and stores the cells in a hierarchical grid structure tree. Each cell (except leaves in
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Algorithm 25 BANG-Clustering Algorithm
1: Partition the feature space into rectangular blocks which contain up to a maximum of pmax data

points.
2: Build a binary tree to maintain the populated blocks, in which the partition level corresponds to

the node depth in the tree.
3: Calculate the dendrogram in which the density indices of all blocks are calculated and sorted in

decreasing order.
4: Starting with the highest density index, all neighbor blocks are determined and classified in

decreasing order. BANG-clustering places the found regions in the dendrogram to the right of
the original blocks.

5: Repeat step 4 for the remaining blocks of the dendrogram.

the tree) is partitioned into 4 child cells at the next level with each child corresponding to a quadrant
of the parent cell. A parent cell is the union of its children; the root cell at level 1 corresponds to the
whole spatial area. The leaf level cells are of uniform size, determined globally from the average
density of objects. For each cell, both attribute-dependent and attribute-independent parameters of
the statistical information are maintained. These parameters are defined in Table 6.3.

STING maintains summary statistics for each cell in its hierarchical tree. As a result, statistical
parameters of parent cells can easily be computed from the parameters of child cells. Note that
the distribution types may be normal, uniform, exponential, and none. Value of dist may be either
assigned by the user or obtained by hypothesis tests such as the χ2 test. Even though measures of
these statistical parameters are calculated in a bottom-up fashion from any leaf node, the STING
algorithm adopts a top-down approach for clustering and query by starting from the root of its
hierarchical grid structure tree. The algorithm is summarized in Algorithm 26 [10, 28].

The tree can be constructed in O(N) time, where N is the total number of data points. Dense
cells are identified and clustered by examining the density of these cells in a similar vein to the
density-based DBSCAN algorithm [7]. If the cell tree has K leaves, then the complexity of spatial
querying and clustering for STING is O(K), which is O(N) in the worst case since cells that would
be empty never need to be materialized and stored in the tree. A common misconception is that K
would be O(2d) where d is the number of dimensions and that this would be problematic in high
dimensions. STING may have problems with higher dimensional data common to all grid-based
algorithms (e.g., handling noise and selecting most relevant attributes) [11], but scalability of the
grid structure is not one of them.

There are several advantages of STING. First, it is a query-independent approach since the
statistical information exists independent of queries. The computational complexity of STING for
clustering is O(K), and this is quite efficient in clustering large data sets especially when K � N.
The algorithm is readily parallelizable and allows for multiple resolutions for examining the data in
its hierarchical grid structure. In addition, incremental data updating is supported, so there is lower
overhead for incorporating new data points.

TABLE 6.3: Statistical Information in STING
n number of objects (points) in the cell

mean mean of each dimension in this cell

std standard deviation of each dimension in this cell

min the minimum value of each dimension in this cell

max the maximum value of each dimension in this cell

dist the distribution of points in this cell
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Algorithm 26 STING Algorithm
1: Determine a level at which to begin.
2: For each cell of this level, we calculate the confidence interval (or estimated range) of probabil-

ity that this cell is relevant to the query.
3: From the interval calculated above, label the cell as relevant or not relevant.
4: If this level is the leaf level, go to Step 6; otherwise, go to Step 5.
5: Go down the hierarchy structure by one level. Go to Step 2 for those cells that form the relevant

cells of the higher level.
6: If the specification of the query is met, go to Step 8; otherwise, go to Step 7.
7: Retrieve those data that fall into the relevant cells and do further processing. Return the result

that meets that the requirement of the query. Go to Step 9.
8: Find the regions of relevant cells. Return those regions that meet the requirement of the query.

Go to Step 9.
9: Stop.

Wang et al. extended STING to STING+ [29] so that it is able to process dynamically evolving
spatial databases. In addition, STING+ enables active data mining by supporting user-defined trigger
conditions.

6.2.3 WaveCluster: Wavelets in Grid-Based Clustering

Sheikholeslami et al. [27] proposed a grid-based and density-based clustering approach that uses
wavelet transforms: WaveCluster. This algorithm applies wavelet transforms to the data points and
then uses the transformed data to find clusters. A wavelet transform is a signal processing technique
that decomposes a signal into different frequency subbands. The insight to using the wavelet trans-
forms is that data points are considered d-dimensional signals where d is the number of dimensions.
The high-frequency parts of a signal correspond to the more sparse data regions such as bound-
aries of the clusters whereas the low-frequency high-amplitude parts of a signal correspond to the
more dense data regions such as cluster interiors [3]. By examining different frequency subbands,
clustering results may be achieved at different resolutions and scales from fine to coarse. Data are
transformed to preserve relative distance between objects at different levels of resolution. A hat-
shaped filter is used to emphasize regions where points cluster and to suppress weaker information
in their boundaries. This makes natural clusters more distinguishable and eliminates outliers simul-
taneously. As input parameters the algorithm requires the number of grid cells for each dimension,
the wavelet, and the number of applications of the wavelet transform. This algorithm is summarized
in Algorithm 27 [27].

Algorithm 27 WaveCluster Algorithm
INPUT: Multidimensional data objects’ feature vectors
OUTPUT: cluster objects

1: First bin the feature space, then assign objects to the units, and compute unit summaries.
2: Apply wavelet transform on the feature space.
3: Find connected components (clusters) in the subbands of transformed feature space, at multiple

levels.
4: Assign labels to the units in the connected components.
5: Make the lookup table.
6: Map the objects to the clusters.
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WaveCluster offers several advantages. The time complexity is O(N) where N is the number of
data points; this is very efficient for large spatial databases. The clustering results are insensitive to
outliers and the data input order. The algorithm can accurately discern arbitrarily shaped clusters
such as those with concavity and nesting. The wavelet transformation permits multiple levels of
resolution, so that clusters may be detected more accurately. This algorithm is primarily only suited
for low dimensional data. However, in the case of very high-dimensional data, PCA may be applied
to the data to reduce the number of dimensions, so that N > m f where m is the number of intervals
in each dimension and f is the number of dimensions selected after PCA. After this, WaveCluster
may be applied to the data to cluster it and still achieve linear time efficiency [27].

6.3 Adaptive Grid-Based Algorithms

When a single inflexible, uniform grid is used, it may be difficult to achieve the desired cluster-
ing quality or efficiency for highly irregular data distributions. In such instances, adaptive algorithms
that modify the uniform grid may be able to overcome this weakness in uniform grids. In this sec-
tion, we introduce an adaptive grid-based clustering algorithm: AMR. Another adaptive algorithm
(MAFIA) will be discussed in Section 6.5.2.2.

6.3.1 AMR: Adaptive Mesh Refinement Clustering

Liao et al. [15] proposed a grid-based clustering algorithm AMR using an Adaptive Mesh Re-
finement technique that applies higher resolution grids to the localized denser regions. Different
from traditional grid-based clustering algorithms, such as CLIQUE and GRIDCLUS, which use a
single resolution mesh grid, AMR divides the feature space at multiple resolutions. While STING
also offers multiple resolutions, it does so over the entire space, not localized regions. AMR creates
a hierarchical tree constructed from the grids at multiple resolutions. Using this tree, this algorithm
can discern clusters, especially nested ones, that may be difficult to discover without clustering sev-
eral levels of resolutions at once. AMR is very fit for data mining problems with highly irregular
data distributions.

The AMR clustering algorithm mainly contains two steps summarized here from [14]:

1. Grid Construction: First grids are created at multiple resolutions based on regional density.
The grid hierarchy tree contains nested grids of increasing resolution since the grid con-
struction is done recursively. The construction of the AMR tree starts with a uniform grid
covering the entire space, and for those cells that exceed a density threshold, the grid is re-
fined into higher resolution grids at each recursive step. The new child grids created as part
of the refinement step are connected in the tree to parent grid cells whose density exceeds the
threshold.

2. Clustering: To create clusters, each leaf node is considered to be the center of an individual
cluster. The algorithm recursively assigns objects in the parent nodes to clusters until the root
node is reached. Cells are assigned to clusters based on the minimum distance to the clusters
under the tree branch.

The overall complexity for constructing the AMR tree is O(dtN 1−ph

1−p +(dtk+6d)r 1−qh

1−q ), where
N is the number of data points, d is the dimensionality, t is the number of attributes in each dimen-
sion, h is the AMR tree height, p represents the average percentage of data points to be refined at
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each level, r is the mesh size at the root, and q is the average ratio of mesh sizes between two grid
levels [15].

As with most grid-based methods, AMR exhibits insensitivity to the order of input data. The
AMR clustering algorithm may be applied to any collection of attributes with numerical values
even those with very irregular or very concentrated data distributions. However, like GDILC, it
cannot be scaled to high-dimensional databases because of its overall complexity.

6.4 Axis-Shifting Grid-Based Algorithms

The effectiveness of a grid-based clustering algorithm is seriously limited by the size of the
predefined grids, the borders of the cells, and the density threshold of the significant cells in the
face of local variations in shape and density in a data space. These challenges motivate another kind
of grid-based algorithm: axis-shifting algorithms. In this section, we introduce four axis-shifting
algorithms: NSGC, ADCC, ASGC, and GDILC.

6.4.1 NSGC: New Shifting Grid Clustering Algorithm

Fixed grids may suffer from the boundary effect. To alleviate this, Ma and Chow [18] proposed
a New Shifting Grid Clustering algorithm (NSGC). NSGC is both density-based and grid-based.
To form its grid structure, the algorithm divides each dimension of the space into an equal number
of intervals. NSGC shifts the whole grid structure and uses the shifted grid along with the original
grid to determine the density of cells. This reduces the influence of the size and borders of the
cells. It then clusters the cells rather than the points. Specifically, NSGC consists of four main steps
summarized in Algorithm 28 [18].

Algorithm 28 NSGC Algorithm
1: Cell construction: It divides each dimension of the space into 2w intervals, where w is the

number of iterations.
2: Cell assignment: It first finds the data points belonging to a cell, then shifts by half cell-size of

the corresponding dimension, and finds the data points belonging to shifted cells.
3: Cell density computation: It uses both the density of the cell itself and its nearest neighborhood

to obtain a descriptive density profile.
4: Group assignment(clustering): It starts when the considered cell or one of its neighbor cells has

no group assigned. Otherwise, the next cell is considered until all non-empty cells are assigned.

NSGC repeats the steps above until the result of the previous iteration and that of the current it-
eration are smaller than a specified accepted error threshold. The complexity of NSGC is O((2w)d),
where d is the dimensionality and w is the number of iterations of the algorithm. While it is claimed
that this algorithm is nonparametric, its performance is dependent upon the choice of the number of
iterations, w, and the accepted error threshold. If w is set too low (or high) or the error threshold too
high, then clustering results may not be accurate; there is no a priori way to know the best values
of these parameters for specific data. NSGC is susceptible to errors caused by cell sizes that are too
small also. As the size of cells decreases (and the number of iterations increases), the total number
of cells and the number of clusters reported both increase. The reported clusters may be too small
and not correspond to clusters in the original data. The strongest advantage of NSGC is that its
grid shifting strategy permits it to recognize clusters of very arbitrary boundary shapes with great
accuracy.
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6.4.2 ADCC: Adaptable Deflect and Conquer Clustering

The clustering quality of grid-based clustering algorithms often depends on the size of the pre-
defined grids and the density threshold. To reduce their influence, Lin et al. adopted “deflect and
conquer techniques” to propose a new grid-based clustering algorithm ADCC (Adaptable Deflect
and Conquer Clustering) [16]. Very similar to NSGC, the idea of ADCC is to utilize the predefined
grids and predefined threshold to identify significant cells. Nearby cells that are also significant can
be merged to develop a cluster. Next, the grids are deflected half a cell size in all directions and
the significant cells are identified again. Finally, the newly generated significant cells and the initial
set of significant cells are merged to improve the clustering of both phases. Specifically, ADCC is
summarized in Algorithm 29.

Algorithm 29 ADCC Algorithm
1: Generate the first grid structure.
2: Identify the significant cells.
3: Generate the first set of clusters.
4: Transform the grid structure.
5: Generate the second set of clusters.
6: Revise the original clusters. In this case, the first and second sets of clusters are combined

recursively.
7: Generate the final clustering result.

The overall complexity of ADCC is O(md +N), where m is the number of intervals in each
dimension, d is the dimensionality of data, and N is the number of data points. While ADCC is
very similar to NSGC in its axis-shifting strategy, it is quite different in how it constructs clusters
from the sets of grids. Rather than examining a neighborhood of the two grids at once as NSGC
does, ADCC examines the two grids recursively looking for consensus in the significance of cells
in both clusterings especially those that overlap a previous clustering to make a determination about
the final clustering. This step can actually help to separate clusters more effectively especially if
there is only a small distance with very little data between them. Both methods are suspectible to
errors caused by small cell sizes, but can for the most part handle arbitrary borders and shapes in
clusters very well. ADCC is not dependent on many parameters to determine its termination. It is
only dependent on the choice of the number of intervals per dimension, m.

6.4.3 ASGC: Axis-Shifted Grid-Clustering

Another attempt by Lin et al. [17] to minimize the impact of the size and borders of the cells is
ASGC (Axis-Shifted Grid-Clustering) (also referred to as ACICA+). After creating an original grid
structure and initial clustering from that grid structure, the original grid structure is shifted in each
dimension and another clustering is done. The shifted grid structure can be translated an arbitrary
distance to be specified. The effect of this is to implicitly change the size of the original cells. It
also offers greater flexibility to adjust to boundaries of clusters in the original data and minimize the
effect of the boundary cells. The clusters generated from this shifted grid structure can be used to
revise the original clusters. Specifically, the ASGC algorithm involves 7 steps, and is summarized
in Algorithm 30 from [14].

The complexity of ASGC is the same as that of ADCC, which is O(md +N), where N is the
number of data points, d is the dimensionality of the data, and m is the number of intervals in
each dimension. The main difference between ADCC and ASGC is that the consensus method
to revise clusters is bidirectional in ASGC: using the overlapping cells the clusters from the first
phase can be used to modify the clusters of the second phase and vice versa. When a cluster of
the first clustering overlaps a cluster of the second clustering, the combined cluster of union of
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Algorithm 30 ASGC Algorithm
1: Generate the first grid structure: the entire feature space is divided into non overlapping cells

thus forming the first grid structure.
2: Identify the significant cells: These are cells whose density is more than a predefined threshold.
3: Generate the first set of clusters: all neighboring significant cells are grouped together to form

clusters.
4: Transform the grid structure: the original coordinate origin is shifted by distance ξ in each

dimension of the feature space to obtain a new grid structure.
5: Generate the second set of clusters: new clusters are generated using steps 2 and 3.
6: Revise the original clusters: the clusters generated from the shifted grid structures can be used

to revise the clusters generated from the original grid structure.
7: Generate the final clustering result.

both can then be modified in order to generate the final clustering. This permits great flexibility in
handling arbitrary shapes of clusters in the original data and minimizes the extent to which either
grid structure will separate clusters. By essentially translating the original grid structure an arbitrary
distance to create the second grid and overlapping it with the original grid structure, a different
resolution (and implicitly different cell size) is also achieved by this translation. While this method
is less susceptible to the effects of cell sizes and cell-density thresholds than other axis-shifting
grid-clustering methods, it still requires careful initial choice of cell size and cell-density threshold.

6.4.4 GDILC: Grid-Based Density-IsoLine Clustering Algorithm

Zhao and Song [32] proposed a Grid-based Density-IsoLine Clustering algorithm (GDILC) to
perform clustering by making use of the density-isoline figure. It assumes that all data samples have
been normalized. All attributes are numerals and are in the range of [0,1]. This is for the convenience
of distance and density calculation. GDILC first implicitly calculates a density-isoline figure, the
contour figure of the density of data points. Then clusters are discovered from the density-isoline
figure.

GDILC computes the density of a data point by counting the number of points in its neighbor
region. Specifically, the density of a data point x is defined as follows:

Density(x) = |{y : Dist(x,y) ≤ T}|, (6.3)

where T is a given distance threshold and Dist(x,y) is a distance function (e.g., Euclidean distance)
used to measure the dissimilarity between data points x and y. The density-isoline figure is never
drawn, but is obtained from the density vectors. The density vectors are computed by counting the
elements of each row of the distance matrix that are less than the radius of the neighbor region,
T . To avoid enumerating all data points for calculating the density vector, GDILC employs a grid-
based method. The grid-based method first partitions each dimension into several intervals creating
hyper-rectangular cells. Then, to calculate the density of data point x, GDILC considers only data
points in the same cell with x and those data points in its neighbor cells; this is identical to axis
shifting. The GDILC algorithm is shown in Algorithm 31 [10].

For many data sets, this grid-based method significantly reduces the search space of calculating
the point pair distances; the complexity may appear nearly linear. In the worst case the time com-
plexity of GDILC remains O(N2) (i.e., for the pathological case when all the points cluster in the
neighborhood of a constant number of cells). However, it cannot be scaled to high-dimensional data
because the space is divided into md cells, where m is the number of intervals in each dimension,
and d is the dimensionality. When the dimensionality d is very large, md is significantly large, and
the data points in each cell are very sparse, the GDILC algorithm will no longer work. (There will
be difficulty computing any distances or thresholds.)
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Algorithm 31 GDILC Algorithm
1: Cells are initialized by dividing each dimension into m intervals.
2: The distances between sample points and those in neighboring cells are calculated. The distance

threshold T is computed.
3: The density vector and density threshold τ are computed.
4: At first, GDILC takes each data point whose density is more than the density threshold τ as a

cluster. Then, for each data point x, check, for every data point whose density is more than the
density threshold τ in the neighbor cells of x, whether its distance to x is less than the distance
threshold T . If so, GDILC then combines the two clusters containing those two data points. The
algorithm continues until all point pairs have been checked.

5: Outliers are removed.

There are two significant advantages to this algorithm. First, it can handle outliers explicitly and
this can be refined as desired. Second, it computes necessary thresholds such as those for density
and distance directly from the data. These can be fine-tuned as needed (i.e., they don’t need to be
guessed at any point). In essence this algorithm dynamically learns the data distribution of samples
while learning the parameters for thresholds in addition to discerning the clustering in the data.

6.5 High-Dimensional Algorithms

The scalability of grid-based approaches is a significant problem in higher dimensional data
because of the increase in the size of the grid structure and the resultant time complexity increase.
Moreover, inherent issues in clustering high dimensional data such as filtering noise and identifying
the most relevant attributes or dimensions that represent the most dense regions must be addressed
inherently in the grid structure creation as well as the actual clustering algorithm. In this section, we
examine carefully a subspace clustering approach presented in CLIQUE and a density estimation
approach presented by OptiGrid. This section is greatly influenced by the survey of Berkhin [3] with
additional insights on the complexity, strengths, and weaknesses of each algorithm presented.

6.5.1 CLIQUE: The Classical High-Dimensional Algorithm

Agrawal et al. [1] proposed a hybrid density-based, grid-based clustering algorithm, CLIQUE
(CLustering In QUEst), to find automatically subspace clustering of high-dimensional numerical
data. It locates clusters embedded in subspaces of high-dimensional data without much user inter-
vention to discern significant subclusters. In order to present the clustering results in an easily in-
terpretable format, each cluster is given a minimal description as a disjunctive normal form (DNF)
expression.

CLIQUE first partitions its numerical space into units for its grid structure. More specifically,
let A = {A1,A2, ...,Ad} be a set of bounded, totally ordered domains (attributes) and S = A1×A2×
...,×Ad be a d-dimensional numerical space. By partitioning every dimension Ai (1 ≤ i ≤ d) into
m intervals of equal length, CLIQUE divides the d-dimensional data space into md nonoverlapping
rectangular units. A d-dimensional data point, v, is considered in a unit, u, if the value of v in each
attribute, is greater than or equal to the left boundary of that attribute in u and less than the right
boundary of that attribute in u. The selectivity of a unit is defined to be the fraction of total data
points in the unit. Only units whose selectivity is greater than a parameter τ are viewed as dense and
retained. The definition of dense units applies to all subspaces of the original d-dimensional space.
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To identify dense units to retain and subspaces that contain clusters, CLIQUE considers pro-
jections of the subspaces from the bottom up (i.e., the least dimensional subspaces to those of
increasing dimension). Given a projection subspace, At1 ×At2 × ...×Atp, where p < d and ti < t j

if i < j, a unit is the intersection of an interval in each dimension. By leveraging the Apriori al-
gorithm, CLIQUE employs a bottom-up scheme because monotonicity holds: if a collection of
points is a cluster in a p-dimensional space, then this collection of points is also part of a cluster
in any (p− 1)-dimensional projections of this space. In CLIQUE, the recursive step from (p− 1)-
dimensional units to p-dimensional units involves a self-join of the p−1 units sharing first common
(p− 2)-dimensions [3]. To reduce the time complexity of the Apriori process, CLIQUE prunes the
pool of candidates, only keeping the set of dense units to form the candidate units in the next level
of the dense unit generation algorithm. To prune the candidates, all the subspaces are sorted by their
coverage, i.e., the fraction of the database that is covered by the dense units in it. The less covered
subspaces are pruned. The cut point between retained and pruned subspaces is selected based on the
MDL [24] principle in information theory.

CLIQUE then forms clusters from the remaining candidate units. Two p-dimensional units u1,
u2 are connected if they have a common face or if there exists another p-dimensional unit us such
that u1 is connected to us and u2 is connected to us. A cluster is a maximal set of connected dense
units in p-dimensions. Finding clusters is equivalent to finding connected components in the graph
defined to represent the dense units as the vertices and edges between vertices existing if and only
if the units share a common face. In the worst case, this can be done in quadratic time in the number
of dense units. After finding all the clusters, CLIQUE uses a DNF expression to specify a finite
set of maximal segments (regions) whose union is the cluster. Finding the minimal descriptions for
the clusters is equivalent to finding an optimal cover of the clusters; this is NP-hard. In light of
this, instead, CLIQUE adopts a greedy approach to cover the cluster in regions and then discards
redundant regions.

By integrating density-based, grid-based, and subspace clustering, CLIQUE discovers clusters
embedded in subspaces of high-dimensional data without requiring users to select subspaces of
interest. The DNF expressions for the clusters give a clear representation of clustering results. The
time complexity of CLIQUE is O(cp + pN), where p is the highest subspace dimension selected,
N is the number of input points, and c is a constant; this grows exponentially with respect to p.
The algorithm offers an effective, efficient method of pruning the space of dense units in order to
counter the inherent exponential nature of the problem. However, there is a trade-off for the pruning
of dense units in the subspaces with low coverage. While the algorithm is faster, there is an increased
likelihood of missing clusters. In addition, while CLIQUE does not require users to select subspaces
of interest, its susceptibility to noise and ability to identify relevant attributes is highly dependent
on the user’s choice of unit intervals, m, and sensitivity threshold, τ.

6.5.2 Variants of CLIQUE

There are two aspects of the CLIQUE algorithm that can be improved. The first one is the
criterion for the subspace selection. The second is the size and resolution of the grid structure. The
former is addressed by the ENCLUS algorithm by using entropy as subspace selection criterion. The
latter is addressed by the MAFIA algorithm by using adaptive grids for fast subspace clustering.

6.5.2.1 ENCLUS: Entropy-Based Approach

The algorithm ENCLUS (ENtropy-based CLUStering) [6] is an adaptation of CLIQUE that
uses a different, entropy-based criterion for subspace selection. Rather than using the fraction of
total points in a subspace as a criterion to select subspaces, ENCLUS uses an entropy criteria and
only those subspaces spanned by attributes A1, ...,Ap with entropy H(A1, ...,Ap) < ϖ(a threshold)
are selected for clustering. A low-entropy subspace corresponds to a more dense region of units.
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An analogous monotonicity condition or Apriori property also exists in terms of entropy. If a p-
dimensional subspace has low entropy, then so does any (p− 1)-dimensional projections of this
subspace:

H(A1, ...,Ap−1) = H(A1, ...,Ap)−H(Ap|A1, ...,Ap−1)< ϖ. (6.4)

A significant limitation of ENCLUS is its extremely high computational cost, especially in terms
of computing the entropy of subspaces. However, this cost also yields the benefit that this approach
has increased sensitivity to detect clusters especially extremely dense small ones.

6.5.2.2 MAFIA: Adaptive Grids in High Dimensions

MAFIA (Merging of Adaptive Finite IntervAls) proposed by Nagesh et al. [21] is a descendant
of CLIQUE. Instead of using a fixed size cell grid structure with an equal number of bins in each
dimension, MAFIA constructs adaptive grids to improve subspace clustering and also uses paral-
lelism on a shared-nothing architecture to handle massive data sets. MAFIA proposes an adaptive
grid of bins in each dimension. Then using an Apriori algorithm, dense intervals are merged to
create clusters in the higher dimensional space. The adaptive grid is created by partitioning each
dimension independently based on the distribution (i.e., the histogram) observed in that dimension,
merging intervals that have the same observed distribution, and pruning those intervals with low
density. This pruning during the construction of the adaptive grid reduces the overall computation
of the clustering step. The steps of MAFIA are summarized from [3] in Algorithm 32.

Algorithm 32 MAFIA Algorithm
1: Do one scan of the data to construct adaptive grids in each dimension.
2: Compute the histograms by reading blocks of data into memory using bins.
3: Using the histograms to merge bins into a smaller number of adaptive variable-size bins, com-

bine adjacent bins with similar histogram values to form larger bins. The bins that have low
density of data are pruned.

4: Select bins that are α-times (α is a parameter called the cluster dominance factor) more densely
populated than average as p (p = 1 now) CDUs.

5: Iteratively scan data for higher dimensions, construct new p-CDU from two (p− 1)-CDUs if
they share any (p− 2)-face, and merge adjacent CDUs into clusters.

6: Generate minimal DNF expressions for each cluster.

If p is the highest dimensionality of a candidate dense unit (CDU), N is the number of data
points, and m is a constant, the algorithm’s complexity is O (mp + pN), still exponential in the
dimension as CLIQUE also is. However, the performance results on real data sets show that MAFIA
is 40 to 50 times faster than CLIQUE because of the use of adaptive grids and their ability to select
a smaller set of interesting CDUs [6]. Parallel MAFIA further offers the ability to obtain a highly
scalable clustering for large data sets. Since the adaptive grid permits not only variable resolution
because of the variable bin size, but also variable, adaptive grid boundaries, MAFIA yields with
greater accuracy cluster boundaries that are very close to grid boundaries and are readily expressed
as minimal DNF expressions.

6.5.3 OptiGrid: Density-Based Optimal Grid Partitioning

Hinneburg and Keim proposed OptiGrid (OPTimal GRID-Clustering) [12] to address several
aspects of the “curse of dimensionality”: noise, scalability of the grid construction, and selecting
relevant attributes by optimizing the density function over the data space. OptiGrid uses density
estimations to determine the centers of clusters as the clustering was done for the DENCLUE algo-
rithm [11]. A cluster is a region of concentrated density centered around a strong density attractor
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or local maximum of the density function with density above the noise threshold. Clusters may also
have multiple centers if the centers are strong density attractors and there exists a path between
them above the noise threshold. By recursively partitioning the feature space into multidimensional
grids, OptiGrid creates an optimal grid-partition by constructing the best cutting hyperplanes of the
space. These cutting planes cut the space in areas of low density (i.e., local minima of the density
function) and preserve areas of high density or clusters, specifically the cluster centers (i.e., local
maxima of the density function). The cutting hyperplanes are found using a set of contracting linear
projections of the feature space. The contracting projections create upper bounds for the density of
the planes orthogonal to them. Namely, for any point, x, in a contracting projection, P, then for any
point y such that P(y) = x, the density of y is at most the density of x.

To define the grid more precisely, we present the definitions offered in [12] as summarized in
[10]. A cutting plane is a (d− 1)-dimensional hyperplane consisting of all points y that satisfy the
equation ∑d

i=1 wiy j = 1. The cutting plane partitions Rd into two half spaces. The decision function
H(x) determines the half space, where a point x ∈ R is located:

H(x) =

{
1 i f ∑d

i=1 wix j ≥ 1,

0 otherwise.
(6.5)

Then, a multi-dimensional grid G for the feature space S is defined to be a set H = {H1,H2, ...,Hk}
of (d− 1)-dimensional cutting planes. The coding function cG : S→ N is defined as

x ∈ S,c(x) =
k

∑
i=1

2i ·Hi(x). (6.6)

OptiGrid uses a density function to determine the best cutting places and to locate clusters. The
density function f̂ D is defined as

f̂ D =
1

nh

n

∑
i=1

KD(
x− xi

h
), (6.7)

where D is a set of N d-dimensional points, h is the smoothness level, and KD is the kernel density
estimator. Clusters are defined as the maxima of the density function, which are above a certain
noise level ξ.

A center-based cluster for a maximum x∗ of the density function f̂ D is the subset C ⊆ D, with
x ∈ C being density-attracted by x∗ and f̂ D(x∗) ≥ ξ. Points x ∈ D are called outliers if they are
density-attracted by a local maximum x∗0 with f̂ D(x∗0)< ξ.

OptiGrid selects a set of contracting projections. These projections are then used to find the
optimal cutting planes. The projections are useful because they concentrate the density of points,
and the cutting planes, in contrast, will have low density. Each cutting plane is selected to have
minimal point density and to separate two dense half spaces. After each step of constructing a
multi-dimensional grid defined by the best cutting planes, OptiGrid finds the clusters using the den-
sity function. The algorithm is then applied recursively to the clusters. In each round of recursion,
OptiGrid maintains only data objects in the dense grids from the previous round of recursion. The
algorithm OptiGrid is described in Algorithm 33 [10, 12].

The time complexity of OptiGrid is O(d ·N · logN), where N is the number of data points and d is
the dimensionality of the data. This is very efficient for clustering large high-dimensional databases.
However, it may perform poorly in locating clusters embedded in a low-dimensional subspace of a
very high-dimensional database, because its recursive method only reduces the dimensions by one at
every step [10]. In addition, it suffers sensitivity to parameter choice and does not efficiently handle
grid sizes that exceed available memory [20]. Moreover, OptiGrid requires very careful selection
of the projections, density estimate, and determination of what constitutes a best or optimal cutting
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Algorithm 33 OptiGrid Algorithm
INPUT: data set D, q, min cut score

1: Determine a set of contracting projections P = {P0,P1, ...,Pk} and calculate all the projections
of the data set D : Pi(D), i = 1,2, ...,k;

2: Initialize a list of cutting planes BEST CUT ⇐Φ, CUT ⇐Φ;
3: for i = 0 to k do
4: CUT ⇐best local cuts Pi(D);
5: CUT SCORE⇐Score best local cuts Pi(D);
6: Insert all the cutting planes with a score ≥ min cut score into BEST CUT ;
7: if BEST CUT = Φ then
8: return D as a cluster;
9: else

10: Select the q cutting planes of the highest score from BEST CUT and construct a multidi-
mensional grid G using the q cutting planes;

11: Insert all data points in D into G and determine the highly populated grid cells in G; add
these cells to the set of clusters C;

12: Refine C;
13: for all clusters Ci in C do
14: Do the same process with data set Ci;
15: end for
16: end if
17: end for

plane from users. The difficulty of this is only determined on a case by case basis on the data
being studied. However, a special case of applying this algorithm can be considered a more efficient
variant of CLIQUE and MAFIA. Namely, if the projections used are the projection maps in each
dimension, the density estimate is uniform, and there are sufficient cutting planes to separate each
density attractor on each dimension, then a more efficient and accurate clustering can be achieved
that circumvents the difficulties of CLIQUE, i.e, the time complexity is no longer exponential in the
dimensions and clusters are not missed.

6.5.4 Variants of the OptiGrid Approach

In this section, we consider variants of OptiGrid that were introduced to address the issues of
the scalabity of the grid structure, especially with respect to available memory, and a clear criterion
for the selection of cutting planes.

6.5.4.1 O-Cluster: A Scalable Approach

Milenova and Campos proposed an O-Cluster (Orthogonal partitioning CLUSTERing) [20] to
address three limitations of OptiGrid: scalability in terms of data relative to memory size, lack of
clear criterion to determine if a cutting plane is optimal or not, and sensitivity to threshold param-
eters for noise and cut plane density. O-Clusters addresses the first limitation by using a random
sampling technique on the original data and a small buffer size. Only partitions that are not resolved
(i.e., ambiguous) have data points maintained in the buffer. As a variant of OptiGrid, O-Cluster uses
an axis-parallel partitioning strategy to locate high density areas in the data. To do so, O-Cluster
uses contracting projections, but also proposes the use of a statistical test to validate the quality of
a cutting plane. The statistical test checks for statistical significance between the difference in the
density of the peaks and a valley when the valley separates the two peaks using a standard χ2 test.
If statistical significance is found, the cutting plane would then be through such a valley.
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O-Cluster is also a recursive method. After testing the splitting points for all projections in a
partition, the optimal one is chosen to partition the data. The algorithm then searches for cutting
planes in the new partitions. A hierarchical tree structure is used to divide the data into rectangular
regions. The main steps are summarized in Algorithm 34.

Algorithm 34 O-Cluster Algorithm
1: Load data buffer.
2: Compute histograms for active partitions.
3: Find “best” splits for active partitions.
4: Flag ambiguous and “frozen” partitions.
5: Split active partitions.
6: Reload buffer.

The time complexity of O-Cluster is approximated to be O(Nd), where N is the number of data
points and d is the number of dimensions. However, Hinneburg and Keim claim a superlinear lower
bound for the time complexity of clustering high dimensional data with noise [12]. Their proof
sketch addresses the issue that given an O(N) amount of noise in data that has been read and must
be searched, there is not a constant time way to do that even for random noise. Moreover, the time
complexity of the OptiGrid algorithm is dominated by the insertion time into the grid structure.
They assert that the insertion time for axis parallel planes is O(NqI) where q is the number of planes
and I is the insertion time and that the insertion time is the minimum of q and logN. Since the
O-Cluster algorithm uses a binary clustering tree to load the buffer, it is possible that its running
time is dominated by this and is O(Ns) where s is the depth of the binary clustering tree, but clear
worst case analysis of that depth was not offered. However, empirically O-Cluster has shown good
scalability results even using a small buffer size.

While O-Cluster handles uniform noise well, its performance degrades with increasing noise.
O-Cluster, unlike OptiGrid, also has a tendency to split clusters because it tends to oversplit the data
space and uses histograms that do not sufficiently smooth the distribution density. However, like
OptiGrid, it may have difficulty with clusters embedded in a low-dimensional subspace of a very
high-dimensional feature space because of its recursion step [10].

6.5.4.2 CBF: Cell-Based Filtering

CBF (Cell-Based Filtering) [4] proposed by Chang and Jin focuses on the scalability of the grid
structure, handling large data sets in memory, and the efficiency of insertion and retrieval of clusters
from the grid structure. It also offers a clear criteria for a cutting plane.

CBF creates its grid structure by splitting each dimension into a set of partitions using a split in-
dex. Once a dimension is split into classes, the split index is equal to the sum of the relative density
squared of each class. CBF finds the optimal split section in each dimension by repeatedly examin-
ing the the split value index for partitions along the potential split points in the dimension until the
maximum value of a split index for a partitioning is found. Cells are created from the overlapping
regions of the partitions in each dimension. This cell creation algorithm results in many fewer cells
in the grid structure than other high dimensional grid-based algorithms we have discussed.

Cells with higher density than a given threshold are inserted into the clusters in the index struc-
ture. There is a second layer of the index structure built upon the cluster information file that pro-
vides approximation information of the clusters by grouping them into sections. For sections of
clusters, if the density of the section is greater than a threshold, then this secondary index is set to
true for that section and false otherwise. By using this approximation technique, the index structure
is able to filter queries by first examining the section information and then accessing the cell and
cluster information as necessary. This filtering-based index structure achieves good retrieval perfor-
mance on clusters by minimizing the I/O access to a cluster information file. While CBF is very
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efficient in its cell grid creation and query retrieval time, the trade-off for such efficiency is lower
precision for clustering.

6.6 Conclusions and Summary

The efficiency of grid-based clustering algorithms comes from how data points are grouped
into cells and clustered collectively rather than individually. This results in drastic time complexity
improvements because often data is grouped into far few cells than there are data points. The general
approach of these algorithms is to divide the data space into grid data structures, summarize each cell
in the grids by a statistic such as density, and then cluster the grid cells. The greatest challenge for
using these algorithms is then determining the best strategy of constructing the grid structure. The
size of the grid structure and the time for its construction largely determine the time complexity of
grid-based algorithms. The size of the grid structure is directly influenced by the size of the cell, and
the size of the cell determines the resolution at which data may be clustered. The resolution of the
grid determines the clustering accuracy and the ability to recognize diverse data cluster boundaries.

We have presented classical grid-based algorithms that use uniform grids and several variant
classes that deal with the specific challenges of using uniform grid structures. Adaptive algorithms
permit grid structures that offer finer resolutions over some regions of the data space in order to
deal with data that has highly irregular or concentrated data distributions. Axis-shifting algorithms
deal with local variations in data shape clusters and density of the data by translating the original
grid structure across the data space. Grid-based algorithms for high-dimensional data deal with a
problem that is inherently exponential in nature; constructing a grid structure that partitions the data
in each dimension will create one that is exponential in the number of dimensions. These algorithms
choose ways to filter the grid structure to investigate only relevant subspaces or to filter the original
subspace in order to select only the most relevant attributes and filter noise.

The time complexities of several grid-based algorithms discussed in this chapter are summarized
in Table 6.4. Figure 6.3 summarizes the grid-based algorithms we have discussed in this chapter and
their relationships. GCA is a low dimensional grid-based clustering algorithm that can be applied to
high-dimensional data after PCA is applied to the data [33]. GCHL is a variant of GRIDCLUS that
is suitable for high-dimensional data [23]. Some current research on grid-based clustering focuses
on parallel implementation of grid-based clustering such as PGMCLU [31] and GridDBSCAN [19],
grid-based clustering of fuzzy query results [2], and domain-specific applications such as grid-based
clustering on data streams such as SGCS, D-Stream , and DUCstream [22, 5, 8].

TABLE 6.4: Time Complexity of Grid-Based Algorithms

Algorithm Name Time Complexity

STING O(K), K is the number of cells at bottom layer

WaveCluster O(N), N is the number of data objects

NSGC O((2w)d), d is the dimensionality, w is number of iterations

ADCC,ASGC O(md)+O(N), m is the number of intervals in each dimension

GDILC O(N)

CLIQUE,MAFIA O(cp + pN), p is the highest subspace dimension selected, c is a constant

OptiGrid O(d ·N · logN)

O-Cluster Ω(N ·d)
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FIGURE 6.3: Relationships among grid-based algorithms.
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7.1 Introduction

Recently there has been significant development in the use of nonnegative matrix factorization
(NMF) methods for various clustering tasks. NMF factorizes an input nonnegative matrix into two
nonnegative matrices of lower rank. Although NMF can be used for conventional data analysis, the
recent overwhelming interest in NMF is due to the newly discovered ability of NMF to solve chal-
lenging data mining and machine learning problems. In particular, NMF with the sum of squared
error cost function is equivalent to a relaxed K-means clustering, the most widely used unsupervised
learning algorithm. In addition, NMF with the I-divergence cost function is equivalent to probabilis-
tic latent semantic indexing, another unsupervised learning method popularly used in text analysis.
Many other data mining and machine learning problems can be reformulated as an NMF problem.
This chapter aims to provide a comprehensive review of nonnegative matrix factorization methods
for clustering. In particular, we outline the theoretical foundations on NMF for clustering, provide
an overview of different variants on NMF formulations, and examine several practical issues in
NMF algorithms. We also summarize recent advances on using NMF-based methods for solving
many other clustering problems including co-clustering, semisupervised clustering, and consensus
clustering and discuss some future research directions.

7.1.1 Background

Originally proposed for parts-of-whole interpretation of matrix factors, NMF has attracted a lot
of attention recently and has been shown to be useful in a variety of applied settings, including
environmetrics [88], chemometrics [128], pattern recognition [70], multimedia data analysis [26],
text mining [130, 91], document summarization [89, 118], DNA gene expression analysis [11],
financial data analysis [43], and social network analysis [138, 123, 19]. NMF can be traced back
to the 1970s (Notes from G. Golub) and is studied extensively by Paatero and Tapper [88]. The
work of Lee and Seung [68, 67] brought much attention to NMF in machine learning and data
mining fields. Algorithmic extensions of NMF have been developed to accommodate a variety of
objective functions [29] and a variety of data analysis problems, including classification [97] and
collaborative filtering [106]. A number of studies have focused on further developing computational
methodologies for NMF. In addition, various extensions and variations of NMF and the complexity
proof that NMF is NP-hard have been proposed recently [56, 7, 37, 39, 111, 97, 135, 113, 38].

The true power of NMF, however, is NMF’s ability to solve challenging data mining and pattern
recognition problems. In fact, it has been shown [35, 37] that NMF with the sum of squared error
cost function is equivalent to a relaxed K-means clustering, the most widely unsupervised learning
algorithm. In addition, NMF with the I-divergence cost function is equivalent to probabilistic la-
tent semantic indexing [48, 39, 40], another unsupervised learning method popularly used in text
analysis. Thanks to the clustering capability, NMF has attracted a lot of recent attentions in data
mining.

In this chapter, we provide a comprehensive review of nonnegative matrix factorization methods
for clustering. To appeal to a broader audience in the data mining community, our review focuses
more on conceptual formulation and interpretation rather than detailed mathematical derivations.
The reader should be cautioned, however, that NMF is such a large research area that truly com-
prehensive surveys are almost impossible and, thus, that our overview may be a little eclectic. An
interested reader is encouraged to consult with other papers for further reading. The reader should
be cautioned also that in our presentation many mathematical descriptions are modified so that they
adapt to data mining problems.

The rest of the chapter is organized as follows: the remainder of Section 7.1 introduces the basic
formulations of NMF; Section 7.2 outlines the theoretical foundations on NMF for clustering and
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presents the equivalence results between NMF and various clustering methodologies; Section 7.3
demonstrates the NMF clustering capabilities and analyzes the advantages of NMF in clustering
analysis; Section 7.4 provides an outline on the NMF algorithm development and discusses sev-
eral practical issues in NMF algorithms; Section 7.5 provides an overview of many different NMF
variants; and Section 7.6 summarizes recent advances on using NMF-based methods for solving
many other clustering problems including co-clustering, semisupervised clustering, and consensus
clustering. Finally, Section 7.7 concludes the chapter and discusses future research directions.

7.1.2 NMF Formulations

Let the input data matrix X = (x1, · · · ,xn) contain the collection of n data column vectors. Gen-
erally, we factorize X into two matrices,

X ≈ FGT , (7.1)

where X ∈ R
p×n, F ∈R

p×k, and G ∈ R
n×k. Generally, p < n and the rank of matrices F,G is much

lower than the rank of X , i.e., k�min(p,n). F,G are obtained by minimizing a cost function. The
most common cost function is the sum of squared errors,

min
F,G≥0

Jsse = ‖X−FGT‖2. (7.2)

In this chapter, the matrix norm is implicitly assumed to be the Frobenius norm. A rank non-
deficiency condition is assumed for F,G.

Another cost function is the so-called I-divergence:

min
F,G≥0

JID =
m

∑
i=1

n

∑
j=1

[
Xi j log

Xi j

(FGT )i j
−Xi j +(FGT )i j

]
. (7.3)

It is easy to show that the inequality I(x) = x logx− x+ 1≥ 0 holds when x≥ 0; the equality holds
when x = 1. The quantity I(u,v) = (u/v) log(u/v)− u/v+ 1 is called I-divergence,

7.2 NMF for Clustering: Theoretical Foundations

Although NMF can be used for conventional data analysis [88], the overwhelming interest in
NMF is the newly discovered ability of NMF to solve challenging clustering problems [35, 37].
Here we outline the recent results on (1) the relationship between NMF with least square objec-
tive and K-means clustering; (2) the relationship between NMF using I-divergence and PLSI; and
(3) the relationship between NMF and spectral clustering. These results establish the theoretical
foundations for NMF to solve unsupervised learning problems. We also present the boundedness
theorem which offers the theoretical foundation for the normalization of factor matrices.

7.2.1 NMF and K-Means Clustering

The K-means clustering algorithm is one of the most popularly used data clustering methods.
Let X = (x1, · · · ,xn) be n data points. We partition them into K mutually disjoint clusters. The
K-means clustering objective can be written as

JKmeans =
n

∑
i=1

min
1≤k≤K

‖xi− fk‖2 =
K

∑
k=1

∑
i∈Ck

‖xi− fk‖2.
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The following theorem shows that NMF is inherently related to the K-means clustering
algorithm [35].

Theorem 1 G-orthogonal NMF,

min
F≥0,G≥0

‖X−FGT‖2, s.t. GT G = I. (7.4)

is equivalent to K-means clustering. This holds even if X and F have mixed-sign entries.

We can understand this relationship in this way [35]. Let C = (c1, · · · ,ck) be the cluster centroids
obtained via K-means clustering. Let H be the cluster indicators; i.e., hki = 1 if xi belongs to cluster
ck; hki = 0 otherwise. We can write the K-means cluster objective as J = ∑n

i=1 ∑K
k=1 hik‖xi− ck‖2 =

‖X −CHT‖2. From this analogy, in NMF F has the meaning of cluster centroids and G is the
cluster indicator [35]. Thus K-means and NMF have the same objective function but with different
constraints.

Indeed, the K-means objective function can be expressed in such a way: if we ignore the non-
negativity constraint while keeping the orthogonality constraint, the principal component is the so-
lution [34, 137]. On the other hand, if we ignore the orthogonality while keeping the nonnegativity,
NMF is the solution.

7.2.2 NMF and Probabilistic Latent Semantic Indexing

Probabilistic Latent Semantic Indexing (PLSI) is a unsupervised learning method based on sta-
tistical latent class models and has been successfully applied to document clustering [55]. (PLSI is
further developed into a more comprehensive Latent Dirichlet Allocation model [9].) PLSI maxi-
mizes the likelihood

JPLSI =
m

∑
i=1

n

∑
j=1

X(wi,d j) logP(wi,d j), (7.5)

where the joint occurrence probability is factorized (i.e., parameterized or approximated ) as

P(wi,d j) =∑
k

P(wi,d j|zk)P(zk) =∑
k

P(wi|zk)P(d j|zk)P(zk), (7.6)

assuming that wi and d j are conditionally independent given zk. The following theorem shows the
equivalence between NMF and PLSI [39, 40]:

Theorem 2 PLSI is equivalent to NMF with I-divergence objective. (A) The objective function of
PLSI is identical to the objective function of NMF using the I-divergence. (B) We can express FGT =
F̄DḠT where F̄ ,D, ḠT satisfy the probability normalization: ∑m

i=1 F̄ik = 1,∑n
j=1 Ḡ jk = 1,∑K

k=1 D̄kk =
1.

Therefore, the NMF update algorithm and the EM algorithm in training PLSI are alternative methods
to optimize the same objective function [39]. The relationships between NMF and PLSI have also
been studied in [48].

7.2.3 NMF and Kernel K-Means and Spectral Clustering

For a square symmetric matrix W , we would expect a W � HHT type decomposition. The
following theorem points out its usefulness for data clustering [35].

Theorem 3 Orthogonal symmetric NMF

min
H≥0
‖W −HHT‖2, s.t. HT H = I (7.7)

is equivalent to kernel K-means clustering.
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It has also been shown that symmetric matrix factorization, a special case of nonnegative ma-
trix factorization, is equivalent to sophisticated normalized cut spectral clustering [100]. Given the
adjacent matrix W of a graph, it can be easily seen that the following matrix factorization

min
HT H=I,H≥0

||W̃ −HHT ||2, (7.8)

where
W̃ = D−1/2WD−1/2, D = diag(d1, · · · ,dn), di =∑

j
wi j,

is equivalent to Normalized Cut spectral clustering [35, 118].

7.2.4 NMF Boundedness Theorem

NMF differs from SVD (Singular Value Decomposition) due to the absence of cancellation of
plus and minus signs. But what is the fundamental significance of this absence of cancelation? It is
the Boundedness Property [140, 141]. The boundedness theorem offers the theoretical foundation
for the normalization of F and G in X = FGT . A matrix A is bounded, if 0≤ Ai j ≤ 1. Note that for
any nonnegative input matrix, we can rescale it into the bounded form.

The boundedness property of NMF states: if X is bounded, then the factor matrices F,G must
also be bounded. More precisely:

Theorem 4 (Boundedness Theorem) Let 0≤ X ≤ 1 be the input data matrix. F,G are the nonneg-
ative matrices satisfying X = FGT . There exists a diagonal matrix D such that when we rescale X =
FGT = (FD)(GD−1)T = F∗(G∗)T , the rescaled matrices satisfy 0 ≤ F∗i j,G

∗
i j ≤ 1. D is constructed

this way: D = D1/2
F D−1/2

G , DF = diag( f1, · · · , fk), fk = maxpFkp and DG = diag(g1, · · · ,gk),gk =
maxpGkp. This holds when X is symmetric, i.e., X = HHT , 0≤ Hi j ≤ 1.

This theorem assures the existence of an appropriate scale such that both W and H are bounded,
i.e., their elements cannot exceed the magnitude of the input data matrix. We note that SVD decom-
position does not have the boundedness property. In this case, even if the input data are in the range
of 0≤ Xi j ≤ 1, we cannot guarantee that for all i, j, |F∗i j | ≤ 1 and |V ∗i j| ≤ 1.

7.3 NMF Clustering Capabilities

7.3.1 Examples

We demonstrate the clustering capabilities of NMF using several examples. Figures 7.1 and
7.2 present the computed F factors (images) on two image datasets: ORL face image dataset and
Digits image dataset. Here each image is represented as a vector of pixel gray values. Note that
by Theorem 1, these F factors are cluster centroids (representatives of clusters). Intuitively, these
images are representatives of clusters of the original images. The examples show that NMF provides
a holistic view of the datasets.

7.3.2 Analysis

In general, the advantages of NMF over the existing unsupervised learning methods can be
summarized as follows. NMF can model widely varying data distributions due to the flexibility of
matrix factorization as compared to the rigid spherical clusters that the K-means clustering objective
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FIGURE 7.1: Left: ORL face image dataset, containing 100 images of 10 persons. Middle/Right:
Computed NMF factors F = (f1, · · · , f16) for 2 runs with random initialization.

function attempts to capture. When the data distribution is far from a spherical clustering, NMF
may have advantages. Another advantage of NMF is that NMF can do both hard and soft clustering
simultaneously.

Figure 7.3 gives an example. The 2-D dataset in the left figure consists of 38 data points and the
G values are shown in the right figure. As seen in the figure, G values for points in regions {C,D,E}
indicate they are fractionally assigned to different clusters. As a result, NMF is able to perform soft
clustering.

The third advantage is that NMF is able to perform simultaneously clustering of the rows (fea-
tures) and the columns (data points) of an input data matrix. Consider the following NMF objective
with orthonormal constraints on the factor matrices:

Jorth = ‖X−FGT‖2, s.t. F ≥ 0,G≥ 0,FT F = I,GT G = I. (7.9)

The orthonormal constraints and the nonnegative constraints in Equation (7.9) make the resulted F
and G approximate the K-means clustering results on both features and data points [35]. The fourth
advantage is that many other data mining and machine learning problems can be reformulated as
NMF problems.

FIGURE 7.2: Left: Digits image dataset. Middle/Right: Computed NMF factors F = (f1, · · · , f16)
for 2 runs with random initialization.
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FIGURE 7.3: Left: A 2D dataset of 38 data points. Right: Their G = (g1,g2) values are shown
as blue and red curves. Points in regions {A,B} are numbered 1–30, where g1 and g2 values differ
significantly, indicating that these points are uniquely clustered into either cluster A or cluster B
(hard clustering). Points in regions {C,D,E} are numbered 31–38, where g1 and g2 values are
close, indicating that these points are fractionally clustered into clusters A and B (soft clustering).

7.4 NMF Algorithms

7.4.1 Introduction

The algorithms for matrix factorizations are generally iterative updating procedures: updating
one factor while fixing the other factors. Existing algorithms for NMF include multiplicative updates
of Lee and Seung [68, 67], alternating least square (ALS) algorithms [88, 7], alternating nonnegative
least squares (ANLS) [59, 60], gradient descent methods [56, 98], projected gradient methods [79],
and Newton-type algorithms [134, 58]. More details on NMF algorithms can be found in [105, 7,
24]. In this section, we provide an outline on the algorithm development for orthogonal NMF and
also discuss several practical issues when applying NMF for clustering.

7.4.2 Algorithm Development

Here we provide an outline on the algorithm development for orthogonal NMF. We wish to solve
the optimization problem

min
F≥0

J(F) = ||X−FGT ||2, s.t. FT F = I, (7.10)

where X ,G≥ 0 are fixed. We show that given an initial F , the updating algorithm

Fik← Fik
(XG)ik

(FGT XT F)ik
(7.11)

correctly finds a local minimum of this problem.
We can use the gradient-descent method, the current standard approach, to update F as F ←

F−δ∇̃GJ, where ∇̃F J = ∇F J−F(∇F J)T F is the natural gradient [46] to enforce the orthogonality
FT F = I (F on the Stiefel manifold). We obtain the updating rule

Fik← Fik− δ(−XG+FGT XT F)ik. (7.12)

Note that in Equation (7.12), setting the stepsize δ= Gik/(FGT XT F)ik we recover the updating rule
Equation (7.11).
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We can also show that the fixed point of the iteration in Equation (7.11) is in fact the KKT
(Karush–Kuhn–Tucker) condition in the theory of constrained optimization. We introduce the La-
grangian multipliers Λ ∈ ℜK×K and minimize the Lagrangian function L(F) = ||X − FGT ||2 +
Tr[Λ(FT F− I)]. The KKT complementarity slackness condition for the nonnegativity of Fik gives

(−2XG+ 2FGT G+ 2FΛ)ikFik = 0. (7.13)

This is the fixed point condition that any local minimum F∗ must satisfy. From Equation (7.13) we
obtain the Lagrangian multiplier Λ=GT XT F∗−GT G. Now, we can easily check that the converged
solution of the update rule Equation (7.11) also satisfies the fixed point relation Equation (7.13) with
Λ substituted in. This shows that the converged solution of the update rule Equation (7.11) is a local
minimum of the optimization problem.

The convergence of Equation (7.11) is guaranteed by the monotonicity theorem which can be
proved using the auxiliary function approach [67, 41].

Theorem 5 The Lagrangian function L is nonincreasing (monotonically decreasing) under the up-
date rule Equation (7.11).

7.4.3 Practical Issues in NMF Algorithms

In the following we discuss several practical issues when applying NMF for clustering.

7.4.3.1 Initialization

Similar to K-means clustering, initialization also plays an important role when applying NMF
for clustering since the objective function may have many local minima [109, 53]. The intrinsic
alternating minimization in NMF algorithms is nonconvex, even though the objective function is
convex with respect to one set of variables.

A simple random initialization, where the factor matrices are initialized as random matrices, is
generally not effective as it often leads to slow convergence to a local minimum. Many different
techniques have been developed for improving the random initialization:

• Multiple initializations: The core idea is to perform multiple runs using different random
initializations and select the best estimates from multiple runs. This method needs to perform
NMF multiple times and is computationally expensive.

• Factorization-based initialization: Note that NMF is a constrained low rank matrix factor-
ization; hence, we can use the results from alternative low rank factorization methods as
the initialization [10]. Typical examples include SVD-based initialization [10] and CUR
decomposition-based initialization [66].

• Clustering-based initialization: If we think of NMF as a clustering process, we can seek the
initialization strategy based on the results obtained from other clustering algorithms (e.g.,
spherical k-means [127, 41], divergence-based K-means [131], and fuzzy clustering [142]).

A comparison of different initialization methods can be found in [66]. Note that both
factorization-based initialization and clustering-based initialization methods are able to lead to rapid
error reduction and faster convergence.

7.4.3.2 Stopping Criteria

Beyond a predefined number of iterations or a fixed running time, there are simple heuristics that
can be used as the stopping criteria for the iterative algorithms of NMF: (1) the objective function
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is reduced to below a given threshold, and (2) there is little change on the factor matrices or the
objective function between successive iterations. Recently, Lin employed stopping conditions from
bound-constrained optimization for the iterative procedures of NMF [79] and Kim and Park tested
the combined convergence criterion using the KKT optimality conditions and the convergence of
positions of the largest elements in the factor matrices [59].

Based on Theorem 1, upon the completion of NMF algorithms, G corresponds to the cluster
indicator. Thus, the clustering assignment can be determined by the largest element of each row
in G. Clustering assignments can also be determined by finding a discrete clustering membership
function that is close to the resulted G, using the strategy similar to [133].

7.4.3.3 Objective Function vs. Clustering Performance

In clustering problems, when we have the external structure information (i.e., the derived class
labels of the data points), various performance measures such as purity, normalized mutual infor-
mation (NMI), and accuracy [109, 53, 39] have been used as the performance measure. In practice,
the clusters of a given dataset could have many different shapes and sizes. In addition, these clusters
can overlap with each other and they cannot be easily identified and separated. As a result, it is dif-
ficult to effectively capture the cluster structures using a single (even the “best” if exists) clustering
objective function.

Hence there is generally a gap between the objective function and the clustering performance
measure [33]. In many real applications, when the clustering objective function is optimized, the
quality of clustering in terms of accuracy or NMI is usually improved. But the improvement works
only up to a certain point, and beyond that, further optimization of the objective function will not
improve the clustering performance as the objective function does not necessarily capture the cluster
structure. It is also possible that as the objective function is optimized, the clustering performance
(e.g., accuracy or NMI) of clustering can be degraded.

7.4.3.4 Scalability

Many prior efforts have been reported on scaling up matrix factorization methods through del-
icate algorithm designs. While efficient computation algorithms for matrix factorization have been
developed, they have primarily been in the context of scientific/engineering applications where sizes
of matrices (tens of thousands by tens of thousands with millions of nonzero values) are typically
much smaller than those for Web analysis (millions-by-millions matrices with billions of observa-
tions). Here we present several practical mechanisms for dealing with large-scale datasets for NMF:

• Shrinking scheme: The scheme first “coarsens” the original large scale problem into a small
one (level by level), then solves the coarsened optimization problem, and finally refines the
solution to the coarsened problem to approximate the solution to the original problem. A
typical example of the shrinking scheme is the multi-level graph partitioning [31, 54, 57].

• Partitioning scheme: The scheme first divides the original problem into a series of small
scale problems, and then solves those small problems, and finally combines their solutions
to approximate the solution to the original problem. Typical examples of this scheme include
blockwise principal component analysis [87], canopy-based clustering [85], and K-means
preclustering [121].

• Online/Incremental scheme: The scheme does not require the input dataset to reside in the
memory and performs factorization in an incremental fashion (i.e., one sample or a chunk
of samples per step). Examples of the scheme include incremental NMF [16], online NMF
by dynamic updating of the factor matrices [13], online NMF using stochastic approxima-
tion [122, 52, 120], and evolutionary NMF [125, 94].
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• Parallel and distributed implementation: An orthogonal direction for improving the scal-
ability of matrix factorization methods is to use parallel and distributed computing plat-
forms [42, 80, 6]. MapReduce is a programming model proposed for processing and generat-
ing large data sets [26]. Although the initial purpose of MapReduce is to perform large-scale
data processing, it turns out that this model is much more expressive and has been widely
used in many data mining and machine learning tasks [112, 21, 15]. Liu et al. [80] success-
fully scaled up the basic NMF for web-scale dyadic data analysis using MapReduce, and Sun
et al. [108] presented different matrix multiplication implementations and scaled up three
types of nonnegative matrix factorizations on MapReduce. Recently, Graphics Processing
Unit (GPU) implementation of the NMF algorithms has also been reported [65, 84, 93].

7.5 NMF Related Factorizations

Here we provide an overview on related matrix factorization methods.

1. SVD: The classic matrix factorization is Principal Component Analysis (PCA) which uses
the singular value decomposition [45, 50], X ≈UΣV T , where we allow U,V to have mixed
signs; the input data could have mixed signs. Absorbing Σ into U , we can write

SVD: X± ≈U±V±. (7.14)

2. NMF: When the input data is nonnegative, we restrict F and G to be nonnegative. The stan-
dard NMF can be written as

NMF: X+ ≈ F+G+, (7.15)

using an intuitive notation for X ,F,G≥ 0.

3. Regularized NMF: Additional constraints can be added to the standard NMF formulation.
In general, regularized NMF can be written as the following optimization problem:

min
F,G≥0

{‖X−FGT‖2 +αJ1(F)+βJ2(G)}, (7.16)

where the functions J1(F) and J2(G) are penalty terms to enforce certain constraints and
α and β are the corresponding regularization parameters [90]. Many different penalty terms
have been used in the literature to have different effects on the computed solutions such as
the smoothness constraint (e.g., the matrix norm) [90], the sparsity constraints (e.g., L1-norm
regularization) [59, 56], the geometric constraints (e.g., manifold structures) [12], and the
local learning regularizations based on neighborhoods [51].

4. Projective NMF: A projective NMF model aims to find an approximate projection of the
input matrix [132, 24]. It can be formulated as follows:

X ≈ FFTX . (7.17)

The idea of the projective NMF is similar to subspace clustering.

5. Semi-NMF: When the input data has mixed signs, we can restrict G to be nonnegative while
placing no restriction on the signs of F . This is called semi-NMF [37, 36]:

semi-NMF: X± ≈ F±G+. (7.18)
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6. Convex-NMF: In general, the basis vectors F = (f1, · · · , fk) ∈ℜn×k
+ are a much larger space

than the input space spanned by the columns of X = (x1, · · · ,xn), while according to Theorem
1, F has the meaning of cluster centroids. To enforce this geometry meaning, we restrict
F to be a convex combination of the input data points, i.e., F lies in the input space, fl =
w1lx1 + · · ·+wnlxn = Xwl,or F = XW,wil ≥ 0. We call this restricted form of factorization
Convex-NMF [37, 36]. Convex-NMF applies to both nonnegative and mixed-sign input data:

X± ≈ X±W+GT
+. (7.19)

Recently, Convex-Hull NMF has been proposed to extend Convex-NMF by restricting the
convexity on the columns of both F and G, thus leading to the factorization where each input
data point is expressed as a convex combination of convex hull data points [110]. Convex-Hull
NMF can be expressed as

X ≈CGT , (7.20)

where C consists of a set of appropriate points ci ∈ conv(X), and conv(X) is the convex hull
of X .

7. Cluster NMF: In Convex-NMF, we require the columns of F to be convex combinations of
input data. Suppose now that we interpret the entries of G as posterior cluster probabilities.
In this case the cluster centroids can be computed as fk = Xgk/nk, or F = XGD−1

n , where
Dn = diag(n1, · · · ,nk). The extra degree of freedom for F is not necessary. Therefore, the pair
of desiderata—(1) F encodes centroids and (2) G encodes posterior probabilities—motivates
a factorization X ≈ XGD−1

n GT . We can absorb D−1
n into G and solve for

Cluster-NMF : X ≈ XG+GT
+. (7.21)

We call this factorization Cluster-NMF because the degree of freedom in this factorization
is the cluster indicator G, as in a standard clustering problem [37]. The objective function is
J = ‖X−XGGT‖2.

8. Tri-Factorization: To simultaneously cluster the rows and the columns of the input data
matrix X , we consider the following nonnegative 3-factor decomposition [41]:

X ≈ FSGT . (7.22)

Note that S provides additional degrees of freedom such that the low-rank matrix representa-
tion remains accurate while F gives row clusters and G gives column clusters. More precisely,
we solve

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FT F = I, GT G = I. (7.23)

This form gives a good framework for simultaneously clustering the rows and columns of X
[30, 136].

An important special case is that the input X contains a matrix of pairwise similarities: X =
XT =W . In this case, F = G = H. We call it symmetric NMF, which optimizes

min
W≥0,S≥0

‖X−HSHT‖2, min
W≥0,S≥0

‖X−HSHT‖2, s.t. HT H = I.

9. Kernel NMF: Consider a mapping such as those used in support vector machines:

xi→ φ(xi), or , X → φ(X) = (φ(x1), · · · ,φ(xn)).

Similar to the concept proposed for convex-NMF, we restrict F to be a convex combination
of transformed input data points:

φ(X)� φ(X)W GT , (7.24)
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rather than a standard NMF like φ(X)≈ FGT , which would be difficult since F,G will depend
explicitly on the mapping function φ(·). It is easy to see that the minimization objective:

||φ(X)−φ(X)WGT ||2 = Tr[φ(X)T φ(X)−2GT φT (X)φ(X)W +W T φT (X)φ(X)WGT G], (7.25)

depends only on the kernel K = φT (X)φ(X). This kernel extension of NMF is similar to
kernel-PCA and kernelK-means .

10. Multi-layer NMF: In multi-layer NMF, the basic factor matrix is replaced by a set of cas-
caded matrices using a sequential decomposition [22, 32, 23]. Given an input matrix X , it is
first decomposed as F(1)G

T
(1). Then in the second step, GT

(1) is further decomposed to F(2)G
T
(2)

and the process is repeated for a number of times. The multi-layer NMF model can be written
as follows:

X ≈ F(1)F(2) · · ·F(t)GT
(t) = FGT . (7.26)

It has been shown that the multi-layer NMF can improve the performance of most NMF
algorithms and address the problem of local minima due to the distributed and multi-stage
nature and the sequential decomposition with different initial conditions [24].

11. Binary NMF: When the input data X is binary, binary NMF factorizes X into two binary
matrices thus conserving the most important integer property of X [141, 140, 71]. The binary
NMF model can be written as

Binary NMF: X0−1 ≈ F0−1GT
0−1. (7.27)

A special case of binary NMF is the boolean factorization [86]

X0−1 ≈W0−1⊕H0−1.

12. Weighted Feature Subset NMF: In weighed NMF, weights are incorporated to indicate the
importance of the corresponding rows and columns. If we consider only the feature impor-
tance, this leads to the feature subset NMF (FS-NMF):

min
W≥0,F≥0,G≥0

||X−FGT ||2W ,s.t. ∑
j

W α
j = 1, (7.28)

where W ∈ R
m×m
+ is a diagonal matrix indicating the weights of the rows (keywords or fea-

tures) in X , and α is a parameter [116, 117]. In general, we can also assign different weights
to different samples. This leads to the weighted FS-NMF:

min
W≥0,F≥0,G≥0

||X−FGT ||2W ,

where we set Wi j = aib j. This becomes

min
W≥0,F≥0,G≥0

(X−FGT )2
i jaib j,

s.t. ∑
i

aα
i = 1,∑

j
bβ

j = 1, (7.29)

where α,β are two parameters with 0 < α < 1,0 < β < 1.

13. Robust NMF: Recently a robust NMF by using L2,1-norm loss function has been proposed
in [63]. The error function is

||X−FGT ||2,1 =∑
i

√
∑

j
(X−FGT )2

i j. (7.30)

The proposed robust NMF formulation can handle outliers and noises in a better way than
standard NMF.
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In summary, various newly proposed NMF formulations are collectively presented as follows:

SVD: X± ≈U±V±
NMF: X+ ≈ F+GT

+

Regularized NMF: min
F,G≥0

{‖X−FGT‖2 +αJ1(F)+βJ2(G)}

Projective NMF: X ≈ FFTX

Semi-NMF: X± ≈ F±GT
+

Convex-NMF: X± ≈ X±W+GT
+

Convex-hull NMF: X ≈CGT , ci ∈ conv(X)

Cluster-NMF: X ≈ XG+GT
+

Kernel-NMF: φ(X±)≈ φ(X±)W+GT
+

Tri-Factorization: X+ ≈ F+S+GT
+

Symmetric-NMF: W+ ≈ H+S+HT
+

Multi-layer NMF: X ≈ F(1)F(2) · · ·F(t)GT
(t)

Binary NMF: X0−1 ≈ F0−1GT
0−1

Weighted Feature Subset NMF: min ||X−FGT ||2W
Robust NMF: min ||X−FGT ||22,1

Note that there are other NMF formulations that are not included in the above discussion, such
as convolutive NMF for a set of nonnegative matrices [24, 103] and Bayesian NMF with the incor-
poration of Bayesian techniques to NMF [14, 95, 96].

7.6 NMF for Clustering: Extensions

We have shown that NMF provides a general framework for unsupervised learning. NMF can
model widely varying data distributions and can do both hard and soft clustering simultaneously.
In fact, many other clustering problems such as co-clustering, consensus clustering, semisupervised
clustering, and graph clustering can be reformulated as an NMF problems.

7.6.1 Co-clustering

In many real world applications, a typical task often involves more than one type of data points
and the input data are association data relating different types of data points. For example, in docu-
ment analysis, there are terms and documents. In DNA micro-array data, rows represent genes and
columns represent samples. Co-clustering algorithms aim at clustering different types of data simul-
taneously by making use of the dual relationship information such as the term-document matrix and
the gene-sample matrix [30, 136, 20, 82, 83].

To simultaneously cluster the rows and the columns of the input data matrix X , tri-factorization
has been proposed for 3-factor nonnegative matrix decomposition [41], which aims to solve

min
F≥0,G≥0,S≥0

‖X−FSGT‖2, s.t. FT F = I, GT G = I. (7.31)

Note that S provides additional degrees of freedom such that the low-rank matrix representation
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remains accurate while F gives row clusters and G gives column clusters. Tri-factorization pro-
vides a nice co-clustering framework. Recently, a fast tri-factorization extension has been proposed
in [126] for large-scale data co-clustering by restricting the factor matrices to be cluster indicator
matrices (a special type of nonnegative matric).

7.6.2 Semisupervised Clustering

In many situations when we discover new patterns using clustering, there exists some prior,
partial, incomplete knowledge about the problem. We wish to incorporate that knowledge into
the clustering algorithm. Semisupervised clustering refers to the situation where the clustering
is done with many prespecified must-link constraints (two data points must be clustered into the
same cluster) and cannot-link constraints (two data points cannot be clustered into the same clus-
ter) [5, 8, 4, 115, 129, 61].

Specifically the above constraints are formulated as follows [115]: (1) Must-link constraints. A=
{(i1, j1), · · · ,(ia, ja)},a= |A|, contains pairs of data points, where xi1 ,x j1 are considered similar and
must be clustered into the same cluster. (2) Cannot-link constraints. B = {(i1, j1), · · · ,(ib, jb)},b =
|B|, where each pair of points are considered dissimilar and cannot be clustered into the same clus-
ters. A, B can also be viewed as symmetric matrices containing {0,1}. Using cluster indicator H,
the must-link of (i1, j1) implies that xi1 ,x j1 should have significant nonzero posterior probability
at the same cluster k, i.e., the overlap ∑K

k=1 hi1kh j1k = (HHT )i1 j1 should be maximized. Thus, the
must-link condition is maxH ∑(i j)∈A(HHT )i j = ∑i j Ai j(HHT )i j = TrHT AH. Similarly, the cannot-
link constraints can be formulated as minH TrHT BH. Putting these constraint conditions together,
the semisupervised clustering problem can be cast as the following optimization problem:

max
HT H=I,H≥0

Tr[HTWH +αHT AH−βHT BH], (7.32)

where parameter α controls the weight for must-link constraints in A, and β controls the weight of
cannot-link constraints in B. Weights α,β allow certain levels of uncertainties so that must-link and
cannot-link constraints are not necessarily always vigorously enforced.

Let W+ =W +αA≥ 0, W− = βB≥ 0. The semisupervised clustering problem can be refor-
mulated as an NMF problem [73]

min
HT H=I,H≥0

||(W+−W−)−HHT ||2. (7.33)

Thus, the semisupervised clustering problem is equivalent to a semi-NMF problem [37, 72].
Chen et al. formulated semisupervised clustering with the instance-level constraints using sym-

metric nonnegative tri-factorization [17]. Zhu et al. [143] noted that must-link and cannot-link con-
straints play different roles in clustering and proposed a constrained NMF method where must-link
constraints are used to control the distance of the data in the compressed form, and cannot-link
constraints are used to control the encoding factor.

There are also some other research efforts on incorporating the (partial) class label information
into the matrix factorization framework. For example, Lee et al. [69] presented semisupervised NMF
(SSNMF) which jointly incorporates the data matrix and the (partial) class label matrix into NMF.
Liu and Wu [81] proposed a form of constrained NMF by requiring that the data points sharing the
same label have the same coordinate in the new representation space.

7.6.3 Semisupervised Co-Clustering

In co-clustering two types of objects, sometimes we have partial knowledge on x-type objects
and also partial knowledge on y-type objects. Semisupervised co-clustering aims to incorporate the
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knowledge in co-clustering. As in Section 7.6.2, we can formulate the partial knowledge as must-
link and cannot-link constraints on both x-type and y-type objects. Let Ax contain the must-link pairs
for x-type objects (Ay for y-type objects), and Bx contain the cannot-link pairs for x-type objects (By

for y-type objects). Then, the semisupervised co-clustering problem can be formulated as

min
F≥0,G≥0

J = ‖X−FSGT‖2 +Tr[aFT (Ax−Bx)F + bGT (Ay−By)G], (7.34)

where a,b are parameters to control the effects of different types of constraints [124]. Another
semisupervised co-clustering method has been proposed in [18] using symmetric nonnegative tri-
factorization.

Recently, Li et al. [74, 78] proposed several constrained nonnegative tri-factorization knowl-
edge transformation methods to use the partial knowledge (such as instance-level constraints and
partial class label information) from one type of objects (e.g., words) to improve the clustering of
another type of objects (e.g., documents). Their models bring together semisupervised clustering/co-
clustering and learning from labeled features [44, 101, 102].

7.6.4 Consensus Clustering

Consensus clustering, also called aggregation of clustering, refers to the situation where a num-
ber of clustering results on the same dataset are already obtained and the task is to find a clustering
which is closest to those already obtained clusterings [49, 107, 47, 75].

Formally let X = {x1,x2, · · · ,xn} be a set of n data points. Suppose we are given a set of T
clusterings (or partitionings) P = {P1,P2, · · · ,PT } of X . Note that the number of clusters could be
different for different clusterings. Let us define the connectivity matrix Mi j(Pt) for a single partition
Pt as

Mi j(P
t) =

{
1 (i, j) belong to the same cluster
0 otherwise

(7.35)

Consensus clustering looks for a consensus partition (consensus clustering) P∗ which is the closest
to all the given partitions:

min
P∗

J =
1
T

T

∑
t=1

n

∑
i, j=1

[Mi j(P
t)−Mi j(P

∗)]2 =
1
T

T

∑
t=1
‖M(Pt)−M(P∗)‖2

F .

Let the average association between i and j be M̃i j =
1
T ∑T

t=1 Mi j(Pt). We have

J =
1
T

T

∑
t=1
‖M(Pt)− M̃‖2

F + ‖M̃−M(P∗)‖2
F .

The first term is a constant which measures the average difference from the consensus association
M̃. The smaller this term is, the closer to each other the partitions are.

We therefore minimize the second term. The optimal clustering solution P∗ can be specified by
clustering indicators H = {0,1}n×k, with the constraint that in each row of H there can be only one
“l” and the rest must be zeros. The key connection here is that the connectivity matrix M(P∗) =
HHT . With this, the consensus clustering problem becomes

min
H
||M̃−HHT ||2 s.t. H is a cluster indicator. (7.36)

We can relax the constraint. Clearly (HT H) = D = diag(n1, · · · ,nk) where nk = |Ck|. However,
before we solve the problem, we have no way to know D and thus no way to impose the
constraints. A slight reformulation resolves the problem. We define H̃ = H(HT H)−1/2. Thus,
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HHT = H̃DH̃T , H̃T H̃ = H(HT H)−1H = I. Therefore, the consensus clustering becomes the fol-
lowing optimization problem:

min
H̃T H̃=I, H̃,D≥0

||M̃− H̃DH̃T ||2, s.t. D is diagonal. (7.37)

Now, H̃ and D are new variables. We do not need to prespecify the cluster sizes. Thus, the consensus
clustering problem is equivalent to a symmetric NMF problem [73].

7.6.5 Graph Clustering

Three NMF models (Symmetric NMF, Asymmetric NMF, and Joint NMF) have been proposed
in [123] to identify communities in three different types of networks (undirected, directed, and com-
pound). Among their proposed models, symmetric NMF and asymmetric NMF are special cases of
tri-factorization. Joint NMF involves multiple and possibly heterogeneous networks. For example,
in music recommendation, we are given three networks: (1) the user network U showing the rela-
tionships among users, (2) the music network D showing the relationship among music songs, and
(3) the user–music network M showing user preferences. Joint NMF is the problem of finding a la-
tent matrix G, which reflects some “intrinsic” characteristics of the user–music network M, such that
the following three objectives are minimized simultaneously: ‖M−G‖, ‖U−GGT‖, ‖D−GT G‖.
Formally, joint NMF aims to solve

min
G
‖M−G‖2+α‖U−GGT‖2 +β‖D−GTG‖2 s.t. G ∈ R

n×m
+ , (7.38)

where α > 0 and β > 0 are constants to trade-off the importance between different terms. Re-
cently, an efficient Newton-like algorithm has been proposed for graph clustering using symmetric
NMF [64].

7.6.6 Other Clustering Extensions

NMF methods have also been developed for many other clustering extensions. Badea has
proposed an NMF model which simultaneously factorizes two linked nonnegative matrices with
a shared factor matrix, aiming to uncover the common characteristics between the two input
datasets [2]. Saha and Sindhwani have proposed a framework for online topic detection to han-
dle streaming nonnegative data matrices with possibly growing number of components [94]. Li
et al. [77, 76] have proposed constrained nonnegative matrix tri-factorizations for cross-domain
transfer clustering with the input matrices in both the source and target domains. The proposed con-
strained matrix factorization framework naturally incorporates document labels via a least squares
penalty incurred by a certain linear model and enables direct and explicit knowledge transfer across
different domains. Wang et al. [119] have proposed a new NMF-based language model to simulta-
neously cluster and summarize documents by making use of both the document-term and sentence-
term matrices. The proposed framework leads to a better document clustering method with more
meaningful interpretation using representative sentences. Wang et al. [116, 117] have proposed
weighted NMF-based approaches which combine keyword selection and document clustering (topic
discovery) together by incorporating weights describing the importance of the keywords.

NMF has also been extended for analyzing multi-way data (or multi-way tensor). Multi-way
data are generalizations of matrices and they appear in many applications [114, 3, 104, 62, 92, 1].
One typical type of three-way data is multiple two-way data/matrices with different time periods.
For example, a series of 2-D images, 2-D text data (documents vs. terms) or 2-D microarray data
(genes vs. conditions) are naturally represented as three-way data. Nonnegative Tensor Factorization
(NTF) [99] is an extension of Nonnegative Matrix Factorization. The input data is a nonnegative
tensor. For a three-way tensor, the standard NTF can be thought as HOSVD (high-order SVD) [27,
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28] with nonnegativity constraints. Tri-factorization has also been extended as Tri-NTF (Tri-factor
Nonnegative Tensor Factorization) to analyze three-way tensors [139].

7.7 Conclusions

Matrix-based methodologies are rapidly becoming a significant part of data mining as they are
amenable to vigorous analysis and can benefit from the well-established knowledge in linear alge-
bra accumulated through centuries. In particular, NMF factorizes an input nonnegative matrix into
two nonnegative matrices of lower rank and has the capability to solve challenging data mining
problems. Thanks to the data mining capabilities, NMF has attracted a lot of recent attention and
has been used in a variety of fields. This chapter provides a comprehensive review of nonnegative
matrix factorization methods for clustering by outlining the theoretical foundations on NMF for
clustering and providing an overview of different variants on NMF formulations. We also exam-
ine the practical issues in NMF algorithms and summarize recent advances on using NMF-based
methods for solving many other clustering problems.

There are many future research directions on NMF for clustering including the following:

1. extending NMF for better cluster representation and for dealing with more challenging clus-
tering problems;

2. providing deeper understanding of NMF’s clustering capability besides the established theo-
retical results;

3. developing novel and rigorous proof strategies to prove the correctness and convergence prop-
erties of the numerical algorithms;

4. studying NMF with other distance measures (such as other matrix norms and Bregman diver-
gences);

5. improving the scalability of NMF algorithms for large-scale datasets; and

6. applying NMF to many different real-world applications and solving real problems.
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8.1 Introduction

In this chapter, we introduce the family of spectral clustering algorithms which have seen in-
creasing popularity over the past few years. Starting with the seminal works in [37] and [43], a large
number of papers has been published along this line of work. As opposed to “traditional clustering
algorithms” such as k-means and generative mixture models which always result in clusters with
convex geometric shape, spectral clustering can solve problems in much more complex scenarios,
such as intertwined spirals, or other arbitrary nonlinear shapes, because it does not make assump-
tions on the shapes of clusters. Another disadvantage of the previous algorithms is related to the
inherent challenges in the Expectation Maximization (EM) framework, which is often used to learn

177
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FIGURE 8.1: Self-tuning spectral clustering on toy datasets. (From Zelnik-Manor and Perona,
Advances in Neural Information Processing Systems, 17:1601–1608, 2004.)

a mixture model for clustering. This framework is essentially an iterative process of finding local
minima, and therefore multiple restarts are required to find a good solution.

Many data sets can be notoriously difficult to cluster with traditional methods. Figure 8.1 demon-
strates a number of toy data sets [60], which are difficult for traditional clustering algorithms. These
data sets have been constructed in order to generate clusters of different shapes. On such datasets,
algorithms which implicitly assume specific shapes of clusters cannot achieve good results. For ex-
ample, the Euclidian distance metrics assume a convex shape to the underlying clusters. Obviously
such assumptions can impact the quality of the clustering in arbitrary data sets. As will be evident,
the spectral clustering method is able to handle such data sets effectively.

The history of spectral clustering can be traced back to [14, 15], in which it was suggested
that the eigenvectors of the adjacency matrix could be used in order to determine the underlying
partitions. The main difference between spectral clustering algorithms is whether they use normal-
ized or unnormalized “graph Laplacian” [52] which will be introduced in the later sections. Differ-
ent versions of spectral clustering have been successfully applied to image segmentation [43], text
mining [11], speech processing [1], and general purpose methods for data analysis and clustering
[37, 60, 13, 12]. An excellent review on the history of spectral clustering can be found in [46].

The spectral clustering family can be viewed as a three-step algorithm:

• The first step is to construct a similarity graph for all the data points.

• The data points are embedded in a space, in which the clusters are more “obvious,” with the
use of the eigenvectors of the graph Laplacian.

• Finally, a classical clustering algorithm such as k-means is applied to partition the embedding.

The low-dimensional representation obtained in the second step is also referred to as “spectral em-
bedding” and has applications beyond the clustering context, such as dimensionality reduction [2].
The word spectral is used to denote the fact that the clustering results are obtained by analyzing the
spectrum of the graph Laplacian.

Figure 8.2 shows1 the application of the spectral clustering on an example data set. The figure
in the middle is a K-nearest neighbor (KNN) graph built in term of the Euclidean distance. The
clustering result is illustrated in the adjacent figure on the right.

1The figure is generated by GraphDemo: http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.
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Data Symmetric KNN Spectral  Clustering

FIGURE 8.2: Example illustrating three steps of spectral clustering. (From Tenenbaum, de Silva,
and Langford, Science, 290(5550):2319–2323, 2000.)

8.2 Similarity Graph

Let the set of data points, which we wish to partition into k subsets, be denoted by X =
{x1, . . .xn} in R

m. In order to perform spectral clustering, we first need to represent this data in
the form of an undirected “similarity graph” G = (V,E). Here each data point xi is represented by
a vertex vi, and E refers to the edges between vertices. Note that xi is a vector which denotes the
data point while vi is a vertex without any attributes. Then we can use a nonnegative weighted n
by n adjacency matrix (or affinity matrix) W to describe G, where W = {Wi j}i, j=1,...,n. Note that
Wi j equals 0 when vertices vi and v j are not connected. Since spectral clustering algorithms aim at
partitioning the vertices to let those in the same cluster have high similarity and those in different
clusters have low similarity, it becomes critical to choose an effective method to construct such an
adjacency matrix.

Recent studies in spectral graph theory [8] and manifold learning theory [50, 2] have demon-
strated that the adjacency matrix should model the local geometric structure of the data points. This
issue will be discussed in some more detail in Section 8.7. Based on this rule, we introduce three
ways to construct W [2, 31]:

1. K-nearest neighbor graphs: The idea is that vi is connected with v j when v j is among the
K-nearest neighbors of vi, or vi is among the K-nearest neighbors of v j. The distance is com-
puted based on the original representation of the data points xi and x j. Some examples include
�1-norm, �2-norm, and the cosine distance. The resulting graph is usually called the k-nearest
neighbor graph. The alternative is to connect vi and v j when they are mutually in the neigh-
borhood of each other. This graph is referred to as the mutual K-nearest neighbor graph or
symmetric K-nearest neighbor graph. In both cases, after adding the edges according to the
neighborhood of each vertex, we can assign weights to the edges by the similarity of their
endpoints or simply adopt a 0–1 weight.

2. ε-neighborhood graph: In this kind of graph, vertices are connected only when the pair-
wise distance ||xi− x j||2 is smaller than ε. However, this method often leads to graphs with
disconnected components if ε is not carefully chosen.

3. Fully connected graph: In this case, we connect all vertices with positive similarity. Since
the adjacency matrix should model the local neighborhood, the selection of the similarity
function itself becomes tricky. An example is the heat kernel function:

Wi j = e
− ||xi−x j ||2

σ2

where σ controls the width of the neighborhoods. It is suggested in [60] that σ could be tuned
locally with respect to the pair of vertices. Besides the problem of choosing an appropriate
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value of σ, the construction of this kind of graph also suffers from the efficiency problem.
It is reported in [5] that the most commonly used approach for addressing the computational
and memory challenge is to zero out some elements in the similarity matrix, or to sparsify the
matrix. From this point of view, once the graph is fully connected, it will increase both the
time and space complexity. In Section 8.9, we will carefully discuss this issue.

The selection of the specific method for constructing the similarity graph can sometimes be
a complex and confusing problem. To the best of our knowledge, there are no theoretical studies
regarding the best choice under different circumstances. Besides these three methods, some recent
papers have been published to propose new graph construction techniques which will be covered in
Section 8.10.

8.3 Unnormalized Spectral Clustering

Given the similarity graph G, the main step for spectral clustering is then to compute graph
Laplacian matrices [8]. The actual construction of this very important intermediate representation is
often not defined uniquely in the literature. Every author just calls “his” matrix the graph Laplacian
[31]. To distinguish them, we will carefully study and discuss their properties in this and the next
section. In this section, we first introduce the unnormalized graph Laplacian.

8.3.1 Notation

In the previous section, we defined the nonnegative weight Wi j for each pair of vertices vi and
v j in the undirected similarity graph G. Since G is undirected, we have Wi j =Wji.

For each vertex, its degree is then computed as the sum of the weights incident on it:

di =
n

∑
j=1

Wi j

Correspondingly, the degree matrix D is defined as the diagonal matrix satisfying Dii = di.
For a subset A of vertices V , its indicator vector is denoted by 1A = ( f1, . . . , fn)

T , where fi = 1
if vertex vi belongs to A and fi = 0 otherwise.

8.3.2 Unnormalized Graph Laplacian

The unnormalized graph Laplacian L is defined as follows:

L = D−W

We list several important properties of L [33, 34, 31]:

Proposition 8.3.1 The unnormalized graph Laplacian L satisfies the following four properties:

1. For an arbitrary vector f ∈ R
n, we have

f T L f =
1
2

n

∑
i, j=1

Wi j( fi− f j)
2 (8.1)

2. L is symmetric and positive semidefinite.
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3. The smallest eigenvalue of L is 0, with eigenvector 1.

4. L has n nonnegative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . .≤ λn.

Proof 1 We can verify the first property from the following equation:

f T L f = f T (D−W) f =
n

∑
i=1

f 2
i di−

n

∑
i, j=1

fi f jWi j

=
1
2
(

n

∑
i=1

f 2
i di +

n

∑
j=1

f 2
j d j− 2

n

∑
i, j=1

fi f jWi j)

=
1
2

n

∑
i, j=1

Wi j( fi− f j)
2

Since f T L f ≥ 0 and both D and W are symmetric, L is symmetric and positive semidefinite. Property
3 can be proven directly by plugging the unit vector 1 into Equation (8.1). Due to the fact that L
is a real symmetric matrix, its eigenvalues should be also real numbers. Then property 4 is proved

based on property 3.

8.3.3 Spectrum Analysis

We first analyze the spectrum of L in the context of the unnormalized algorithm. Assume that
G is an undirected similarity graph with k connected components A1,A2, . . . ,Ak. The corresponding
graph Laplacians for these subsets are represented as L1,L2, . . . ,Lk. Without loss of generality, L
can be represented as a block-diagonal structure:

L =

⎡

⎢
⎢
⎢
⎣

L1

L2
. . .

Lk

⎤

⎥
⎥
⎥
⎦

Since L is a block diagonal matrix, its eigenvalues and eigenvectors are the union of eigenvalues
and eigenvectors of its blocks (i.e., L1,L2, . . . ,Lk). This implies that the multiplicity of eigenvalue
0 of L should be at least k. The corresponding eigenvectors can be represented as indicator vectors
1A1 ,1A2 , . . . ,1Ak . As the weights Wi j are nonnegative, it can also be seen from Equation 8.1 that the
next eigenvalue is strictly bigger than 0 because this sum can vanish if expressions Wi j( fi− f j)

2 for
any pairs of vertices vi and v j vanish. So we can claim that the multiplicity k of the eigenvalue 0 of
L equals the number of connected components A1,A2, . . . ,Ak.

How about the eigenvectors? Since 0 is a repeated eigenvalue in L, any other k orthogonal vectors
spanning the same subspace as the eigenspace of the eigenvectors obtained above can also be the
eigenvectors. Therefore, we have the following proposition [31].

Proposition 8.3.2 The multiplicity k of eigenvalue 0 of L equals the number of connected compo-
nents A1,A2, . . . ,Ak in the graph. And the eigenspace of eigenvalue 0 is spanned by the indicator
vectors 1A1 ,1A2 , . . . ,1Ak of those components.

This proposition provides theoretical foundation for the spectral clustering algorithm proposed
for partitioning vertices into different subsets in the “ideal” case.
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8.3.4 Unnormalized Spectral Clustering Algorithm

We will introduce the unnormalized spectral clustering algorithm based on unnormalized graph
Laplacian L. Assume that F ∈ R

n×k is a matrix containing the k relevant orthonormal vectors
f1, f2, . . . , fk. It is desired to determine these orthonormal vectors f1, f2, . . . , fk with the following
objective function:

min
F

Tr(FT LF) s.t. FT F = I (8.2)

Here, Tr(·) denotes the trace of the matrix.
As we have discussed in the last subsection, these vectors are the top2 eigenvectors of L. As

discussed earlier, these eigenvectors are useful for clustering the vertices. However, unlike non-
negative matrix factorization methods, these eigenvectors cannot be directly used for inferring the
cluster labels because of the following two reasons. First, only in the ideal case where no edges exist
between different connected components can the eigenspace be spanned by the indicator vectors
1A1 ,1A2 , . . . ,1Ak . Second, the eigenvectors could be any orthogonal transformation of the indicator
vectors, which are not necessarily indicative of the cluster labels. Fortunately, if we view these
eigenvectors as the low-dimensional representations of the original data points X , then any off-
the-shelf clustering algorithms such as k-means and mixture models can be used to partition the
embedding.

The overall algorithm for spectral clustering is illustrated below.

Unnormalized Spectral Clustering

1. Construct the similarity graph with one of the methods described in Section 8.2. Let W
be the adjacency matrix and D be the degree matrix.

2. Compute the unnormalized graph Laplacian L where L = D−W .

3. Determine f1, f2, . . . , fk, the top k eigenvectors of L.

4. Construct the matrix F ∈ R
n×k from f1, f2, . . . , fk.

5. Treat each row of F as a vertex in R
k, partition these vertices into k clusters via any

off-the-shelf method such as the k-means algorithm.

8.4 Normalized Spectral Clustering

In the literature, there are two versions of normalized graph Laplacian: Lsym and Lrm. The former
refers to a symmetric matrix, and the latter can be explained from a random walk perspective.
Close relationships exist between these two alternatives of normalized spectral clustering. These
relationships will be discussed carefully in this section.

2Here, by top, we refer to the eigenvectors with the smallest eigenvalues.
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8.4.1 Normalized Graph Laplacian

The two variations of the normalized graph Laplacian are defined as follows:

Lsym = D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2

Lrw = D−1L = I−D−1W

We list some properties of these two variations Lsym and Lrw below.

Proposition 8.4.1 The normalized graph Laplacians satisfy the following six properties [31]:

1. For arbitrary vector f ∈ R
n, we have3

f T Lsym f =
1
2

n

∑
i, j=1

Wi j(
fi√
di
− f j√

d j
)2 (8.3)

2. λ is an eigenvalue of Lsym with eigenvector u if and only if λ is also an eigenvalue of Lrm with

eigenvector w, satisfying that u = D
1
2 w.

3. λ is an eigenvalue of Lrw with eigenvector w if and only if λ and w together solve the gener-
alized eigen-problem Lw = λDw.

4. Both Lsym and Lrw are positive semidefinite.

5. The smallest eigenvalue of both Lsym and Lrw is 0, with eigenvector D
1
2 1 for Lsym and 1 for

Lrw.

6. Both Lsym and Lrw have n nonnegative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . .≤ λn.

Proof 2 Similar to the proof for Proposition 8.3.1, we can verify the first property from the
following equation:

f T Lsym f = f T (I−D−
1
2 WD−

1
2 ) f =

n

∑
i=1

f 2
i −

n

∑
i, j=1

fi f j
Wi j√
did j

=
1
2
(

n

∑
i=1

f 2
i +

n

∑
j=1

f 2
j − 2

n

∑
i, j=1

fi f j
Wi j√
did j

)

=
1
2

n

∑
i, j=1

Wi j(
fi√
di
− f j√

d j
)2

To prove property 2, we replace u with D
1
2 w in the eigenvalue equation of Lsym:

Lsymu = LsymD
1
2 w = D−

1
2 LD−

1
2 D

1
2 w = D−

1
2 Lw = D

1
2 λw = λu

Property 3 follows directly by multiplying the eigenvalue equation of Lrm with D from the left:

DLrmw = Dλw

Lw = λDw

Since f T Lsym f ≥ 0 and both D and W are symmetric, Lsym is then symmetric and positive semi-
definite. This property also fits Lrm due to property 2. Property 5 can be proved directly as Lrw1= 0,
and the same statement for Lsym follows from property 2. Due to the fact that Lsym and Lrm are both
real symmetric matrices, their eigenvalues should be also real numbers. Then property 6 is proved

based on property 5.

3The same case does not hold for Lrw.
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8.4.2 Spectrum Analysis

As in the case of the spectrum analysis for unnormalized spectral clustering, we have a sim-
ilar proposition [31] on the multiplicity of the 0 eigenvalues. The following proposition relies on
Proposition 8.4.1:

Proposition 8.4.2 The multiplicity k of eigenvalue 0 of both Lsym and Lrw equals the number of con-
nected components A1,A2, . . . ,Ak in the graph. For Lrw, the eigenspace of eigenvalue 0 is spanned by
the indicator vectors 1A1 ,1A2 , . . . ,1Ak of those components. For Lsym, the eigenspace of eigenvalue

0 is spanned by D
1
2 1Ai .

8.4.3 Normalized Spectral Clustering Algorithm

We will introduce two normalized spectral clustering algorithms based on the two normalized
graph Laplacian variants. These are aimed at finding orthonormal vectors f1, f2, . . . , fk with the
following objective functions (assume F ∈ R

n×k is a matrix consisting of orthogonal vectors), re-
spectively:

min
F

Tr(FT LsymF) s.t. FT F = I (8.4)

min
F

Tr(FT LF) s.t. FT DF = I (8.5)

We first introduce the normalized spectral clustering algorithm based on Lsym. In this case, the

eigenspace of eigenvalue 0 is spanned by D
1
2 1Ai instead of 1Ai . Therefore, before applying k-means,

one row normalization step is usually adopted for Lsym in order to make each row comparable in the
Euclidean space. This is an additional step, which needs to be applied, beyond what is discussed for
the case of unnormalized spectral clustering.

The algorithm is shown below.

Normalized Spectral Clustering (symmetric version)

1. Construct similarity graph by one of the methods described in Section 8.2. Let W be the
adjacency matrix and D be the degree matrix.

2. Compute symmetric normalized graph Laplacian Lsym where Lsym = D−
1
2 LD−

1
2 .

3. Determine f1, f2, . . . , fk, the top k eigenvectors of Lsym.

4. Construct the matrix F ∈ R
n×k from f1, f2, . . . , fk.

5. Normalize the rows of F to 1 such that ∀i≤ n,∑ j F2
i j = 1.

6. Treat each row of F as a vertex in R
k, partition these vertices into k clusters via k-means

algorithm.

The other version of normalized spectral clustering algorithms is based on Lrm. This version is
more similar to the unnormalized case, because their eigenspaces are both spanned by 1Ai in the
ideal case where there are k connected components. Therefore, their procedures are almost the same
except for the computation step for the graph Laplacian.
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Normalized Spectral Clustering (random walk version)

1. Construct similarity graph by one of the methods described in Section 8.2. Let W be the
adjacency matrix and D be the degree matrix.

2. Compute unnormalized graph Laplacian L where L = D−W .

3. Find f1, f2, . . . , fk, the top k eigenvectors of the generalized eigenproblem L f = λD f .

4. Form the matrix F ∈ R
n×k from f1, f2, . . . , fk.

5. Treat each row of F as a vertex in R
k, partition these vertices into k clusters via k-means

algorithm.

8.5 Graph Cut View

In the last two sections, we introduced the definitions for different formulations of graph Lapla-
cians and specific procedures for all three kinds of spectral clustering algorithms. Although we have
analyzed the spectrum of both unnormalized and normalized Laplacian matrices, the intuition be-
hind the graph Laplacians is not completely clear. Therefore, in this section, the spectral clustering
method will be presented from the perspective of the graph cut.

Given a graph G= (V,E), suppose we have two subsets of vertices A1,A2, satisfying A1
⋂

A2 = /0
and A1

⋃
A2 ⊆ V . We then introduce the definition of the cut as the sum of weights of the edges

across the two subsets:
cut(A1,A2) = ∑

vi∈A1,v j∈A2

Wi j

Here, Wi j is the weight of the edge between vertices i and j. It is evident that the cut describes the
closeness between these two subsets in the graph. In other words, a smaller value of the cut indicates
greater separability of the two subsets.

In graph theory, a minimum cut (MinCut) of a graph is a cut with the smallest possible value
under the condition A1

⋃
A2 =V . This is also the most direct way to construct the partition. MinCut

is a classical problem in the literature and relatively easy to solve. More details of MinCut may be
found in [49].

By extending the cut definition from two sets to the multi-set situation, we can reformulate the
cut definition as follows:

cut(A1,A2, . . . ,Ak) =
k

∑
i=1

cut(Ai,Ai)

where Ai stands for the set of vertices {v j|v j /∈ Ai}.
Although MinCut is an intuitive way to partition the graph, it suffers from a critical problem,

which is quite common in graph partitioning. In many cases, MinCut separates an individual vertex
or a small set of vertices from the remaining graph, overlooking the balance between the sizes of
different partitions. Some normalization strategies can be incorporated into the objective function
of MinCut to circumvent this problem. Two examples of such normalized objective functions are
the Ratio Cut (RatioCut) [19] and Normalized Cut (NCut) [43].
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The RatioCut is defined as follows:

RatioCut(A1, . . . ,Ak) =
k

∑
i=1

cut(Ai,Ai)

|Ai|
Here, |Ai| denotes the number of vertices belonging to Ai. By minimizing this measure, the partitions
with more balanced cluster sizes are preferred.

The objective function for NCut is defined as follows:

NCut(A1, . . . ,Ak) =
k

∑
i=1

cut(Ai,Ai)

assoc(Ai,V )

where assoc(Ai,V )=∑v j∈Ai
(d j). Different from RatioCut which measures the balance by the cluster

size, NCut focuses on the total degree within different clusters.
The incorporation of normalization into the objective function makes it NP-hard [53]. However,

by relaxing some constraints, spectral clustering is a way to give the approximate solution. Specif-
ically, unnormalized spectral clustering can be used to solve the relaxed RatioCut problem, and
normalized spectral clusterings are designed to solve the relaxed NCut problem.

8.5.1 Ratio Cut Relaxation

Suppose we already have k vectors { fi}k
i=1 indicating the cluster labels for the vertices in the

graph where fi = ( fi1, . . . , fin)
T . Define that:

fi j =

⎧
⎪⎨

⎪⎩

1
√|Ai|

if v j ∈ Ai

0 otherwise.

(8.6)

Then, under this condition, for each cluster i among all k clusters, we can rewrite Equation 8.1
of the unnormalized graph Laplacian as follows:

f T
i L fi =

1
2

n

∑
j,l=1

Wjl( fi j− fil)
2

=
1
2

(

∑
v j∈Ai,vl /∈Ai

Wjl(
1
√|Ai|

− 0)2 + ∑
v j /∈Ai,vl∈Ai

Wjl(0− 1
√|Ai|

)2
)

=
1
2
(

cut(Ai,Ai)

|Ai| )+
1
2
(

cut(Ai,Ai)

|Ai| )

=
cut(Ai,Ai)

|Ai|
The RatioCut measure is linked to the unnormalized graph Laplacian because of the following

calculation:

k

∑
i=1

f T
i L fi = Tr(FT LF)

=
k

∑
i=1

cut(Ai,Ai)

|Ai|
= RatioCut(A1, . . . ,Ak)

where F ∈R
n×k is formed from f1, f2, . . . , fk.
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Moreover, according to Equation 8.6, fi satisfies the following:

f T
i fi =

n

∑
j=1

f 2
i j = |Ai| 1

|Ai| = 1

It is also easy to check that any two different column vectors of F are orthogonal.
Now the RatioCut problem is equivalent to the following:

min
A1,...,Ak

Tr(FT LF) s.t. FT F = I (8.7)

Note that fi j can only be 0 or 1/
√|Ai|. The objective function is therefore discrete, which is

known to be NP-hard in the general case. A relaxation of this problem allows fi j to take on arbitrary
real values. This implies the following:

min
F∈Rn×k

Tr(FT LF) s.t. FT F = I

The aforementioned objective function is exactly the same as the objective function in Equation
(8.2) for unnormalized spectral clustering.

According to Rayleigh-Ritz theorem [30], to minimize the above reflexed RatioCut objective
function is equivalent to minimizing Rayleigh quotient of the unnormalized spectral clustering,
where the Rayleigh quotient R(L, f ) is defined as follows:

R(L, f ) =
f T L f
f T f

The Rayleigh quotient (objective function value) reaches its minimum value (the smallest eigen-
value of L) when f is the corresponding eigenvector4. Therefore, the solution of Equation (8.2) is
obtained by choosing the top k eigenvectors of L. Later, we need to convert the real valued ma-
trix F back to discrete indicators. As mentioned in Section 8.3.4, the k-means approach can be the
candidate algorithm to be adopted on the rows of F .

8.5.2 Normalized Cut Relaxation

Similar to RatioCut, we first define the indicator vectors fi = ( fi1, . . . , fin)
T where 1≤ i≤ k such

that:

fi j =

⎧
⎪⎨

⎪⎩

1
√

assoc(Ai,V )
if v j ∈ Ai

0 otherwise.

(8.8)

Under this condition, we can rewrite Equation 8.1 of the unnormalized graph Laplacian as fol-
lows:

f T
i L fi =

1
2

n

∑
j,l=1

Wjl( fi j− fil)
2

=
1
2

(

∑
v j∈Ai,vl /∈Ai

Wjl
1

assoc(Ai,V )
+ ∑

v j /∈Ai,vl∈Ai

Wjl
1

assoc(Ai,V )

)

=
1
2
(

cut(Ai,Ai)

assoc(Ai,V )
)+

1
2
(

cut(Ai,Ai)

assoc(Ai,V )
)

=
cut(Ai,Ai)

assoc(Ai,V )

4The other eigenvalues and corresponding eigenvectors of L follow the same way.
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The NCut measure can be linked with the graph Laplacian, based on the following calculation:

k

∑
i=1

f T
i L fi = Tr(FT LF)

=
k

∑
i=1

cut(Ai,Ai)

assoc(Ai,V )

= NCut(A1, . . . ,Ak)

The matrix F ∈R
n×k can be constructed with the k column vectors f1, f2, . . . , fk .

According to Equation 8.8, fi satisfies the following:

f T
i D fi =

n

∑
j=1

d j f 2
i j =

∑v j∈Ai
d j

assoc(Ai,V )
=

assoc(Ai,V )

assoc(Ai,V )
= 1

For any pair of columns fi, f j from F , it is easy to show that they are orthogonal.
The NCut objective function is equivalent to the following:

min
A1,...,Ak

Tr(FT LF) s.t. FT DF = I

Similar to the RatioCut problem, the value of fi j is discrete, which is NP-hard in the general
case. By relaxing fi j to take on real values, the problem is reduced to the following:

min
F∈Rn×k

Tr(FT LF) s.t. FT DF = I

This is exactly the same as the objective function in Equation (8.5) for normalized spectral cluster-
ing.

If we define P = D
1
2 F according to Proposition 8.4.1, and substitute F by P in the above relaxed

objective function for NCut, we have

min
P∈Rn×k

Tr(PT D−
1
2 LD−

1
2 P) s.t. PT P = I

This is exactly the same as the symmetric version of objective function in Equation (8.4) for nor-
malized spectral clustering. The relaxed NCut problem can be solved by simply computing the first
k eigenvectors of Lrw. The first k eigenvectors of the generalized eigenproblem L f = λD f , which is
the method adopted in [43]. To convert the real value matrix F (the first k eigenvectors of Lrw) back
to discrete indicators, k-means could be adopted.

We can also compute the first k eigenvectors of Lsym instead of Lrw according to [37]. For P (the

first k eigenvectors of Lsym), we need row normalization before discretization because P = D
1
2 F .

8.6 Random Walks View

A random walk on a graph is a Markov chain which can be described by an n×n square matrix
M, where n is the number of vertices in the graph. The matrix M denotes the transition probabilities.
Therefore, the conditional probability of the next state being vertex v j, given the current state vi, is
given by 0 ≤ P(vi|v j) = Mi j ≤ 1. If there is no edge from vertex vi to vertex v j, then Mi j = 0. The
matrix M is a stochastic matrix. Therefore, all its entries are nonnegative and every row adds up to
one.
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A formal relationship analysis between NCut and random walks has been provided in [32].
Specifically, the transition probability Mi j is proportional to the edge weight Wi j and is computed
by the following:

Mi j =
Wi j

di

If we use matrix operations to represent this computation, we have:

M = D−1W

In the following, we will use the transition matrix M to achieve a better understanding of the
normalized spectral clustering algorithm. First, define π = (π1, . . . ,πn)

T to be a vector with length
n as follows:

πi =
di

assoc(V,V)

Here, assoc(V,V) represents the total degrees in the graph. It is easy to verify that MT π = π and,
thus, that π is a stationary distribution of the Markov chain.

Assume in the graph G = (V,E), we have two disjoint subsets A and A. Define MAA = P(A→
A|A) as the probability of the random walk transiting from set A to set A in one step if the current
state is in A and the random walk is started from its stationary distribution.

MAA =
∑vi∈A,v j∈A πiMi j

∑vi∈A πi

=
∑vi∈A,v j∈A

Wi j
assoc(V,V)

∑vi∈A
di

accoc(V,V)

=
∑vi∈A,v j∈A Wi j

assoc(A,V )

=
cut(A,A)

assoc(A,V )

From this, we now have:
NCut(A,A) = MAA +MAA

If the NCut measure is small for a certain partition A and A, then the probability of the walk
moving from one partition to the other is small. In other words, when minimizing NCut, we are
trying to partition the set V into different groups such that the random walk, once in one of the
parts, tends to remain in it [32].

This random walk view gives a new and intuitive characterization of the NCut algorithm. The
NCut algorithm is just another view of spectral clustering. Moreover, as the random walk is essen-
tially a Markov chain on the graph, it provides spectral clustering algorithm with a probabilistic
foundation.

8.7 Connection to Laplacian Eigenmap

The Laplacian eigenmap algorithm [2] is a very successful method for dimensionality reduc-
tion and is closely related to spectral clustering. Dimensionality reduction is also called subspace
learning or feature extraction, aiming at extracting low-dimensional structure dimensionality from
high-dimensional data. One of the most popular dimensionality reduction algorithms is Principal
Component Analysis (PCA) which gives the solution by projecting the original high-dimensional
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data onto the low-dimensional linear subspace spanned by the leading eigenvectors of the data’s
covariance matrix.

In many real-world problems, the data is not always sampled from a linear subspace. For exam-
ple, it is always believed that the face images are sampled from a nonlinear low-dimensional man-
ifold which is embedded in the high-dimensional ambient space. This has motivated researchers to
consider manifold-based techniques for dimensionality reduction and Laplacian eigenmap is just
one of them. The basic idea of Laplacian eigenmap is also based on spectral graph theory [8]. Its
objective function is similar to that in normalized spectral clustering:

argminF Tr(FT LF) s.t. FT DF = I

where F is considered to be the new low-dimensional representation.
We can reconsider the following equation from the dimensionality reduction point of view:

f T L f =
1
2

n

∑
i, j=1

Wi j( fi− f j)
2

The intuition is that for any pair of data points, if they are near to each other on the high-
dimensional space (a space in which a low-dimensional manifold is embedded), they should still be
close in the mapped low-dimensional space. In real life, the underlying manifold is often unknown.
Similar to [50], the geodesic distance between all pairs of points on the manifold can be reflected
by their shortest path distance on the adjacency graph. Therefore, the minimization of the afore-
mentioned cost function based on the graph preserves the local distance between every pair of data
points. The additional constraint FT DF = I fixes the arbitrary scaling factor in the embedding.

Figure 8.3 is used in [50] to illustrate how geodesic paths work for nonlinear dimensionality re-
duction. In the left figure, for two arbitrary points (circled) on a nonlinear manifold, their Euclidean
distance in the high-dimensional input space (length of dashed line) may not accurately reflect their
intrinsic similarity, as measured by geodesic distance along the low-dimensional manifold (length
of solid curve). The figure on the right shows an approximation to the true geodesic path, as the
shortest path in adjacency matrix W .

We can see that the only difference between these two algorithms is that spectral clustering
makes one step further to cluster the information in the new dimension. It is discussed in [3] that
for the local approaches to do dimensionality reduction, although they attempt only to approximate
or preserve neighborhood information, they may also be interpreted as imposing a soft clustering of
the data (which may be converted to a hard clustering by a variety of heuristic techniques such as
k-means). In this sense, the local approaches to dimensionality reduction impose a natural clustering
on the data.

FIGURE 8.3: The “swiss roll” data set, illustrating how geodesic paths work for nonlinear dimen-
sionality reduction.
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8.8 Connection to Kernel k-Means and Nonnegative Matrix Factorization

Recent studies [12, 13] show that spectral clustering is theoretically closely related to two
other popular clustering algorithms: kernel k-means and nonnegative matrix factorization [25]. It
is proved that these three are unified in a simple way: they are different prescriptions of the same
problem with slightly different constraints and optimization solutions.

It is known that k-means uses k centroids to characterize the data. The objective function is to
minimize the sum of squared errors [13]:

J =
k

∑
i=1

∑
j∈Ai

||x j−mi||2 = c−
k

∑
i=1

1
|Ai| ∑

j,l∈Ai

xT
j xl (8.9)

where mi = ∑ j∈Ai
x j/|Ai| is the centroid of cluster Ai of |Ai| points, and c = ∑ j ||x j||2.

We can represent the solution by k nonnegative indicator vectors:

F = ( f1, · · · , fk), f T
i f j = δi j

where

fi j =

⎧
⎪⎨

⎪⎩

1
√|Ai|

if x j ∈ Ai

0 otherwise.

We can rewrite Equation 8.9 as J = Tr(XT X)−Tr(FT XT XF). As the first term is a constant,
minimizing J is equal to the following:

maxTr(FT GF)

Here, G = XT X is a pairwise similarity matrix called inner-product linear kernel matrix which can
be extended to any other kernels. It is clear that if we set the kernel matrix G to be the negative of
unnormalized graph Laplacian5 −L =W −D, the objective function of kernel k-means clustering is
equivalent to that of RatioCut in Equation 8.7. Therefore, for the same objective function, spectral
clustering first relaxes F to be real value and computes it through solving an eigen-decomposition
problem. The clustering labels are finally obtained by running k-means on F . Different from this
“global” minimum after relaxation of F , kernel k-means uses an iterative algorithm similar to k-
means to directly partition all data points, which is essentially a local search. It is worth noting that
in [12], a weighted kernel k-means is proposed and the authors also prove it equivalent to spectral
clustering where kernel matrix G is set to D−1WD−1 and the weight matrix for data points equals
to D.

Nonnegative matrix factorization (NMF) aims at factorizing X into two nonnegative matrices,

X ≈UV T

where U ∈Rn×k
+ and V ∈Rm×k

+ . As k�min(m,n), UV T can be viewed as a low-rank approximation
of X . The clustering aspect of NMF is studied in [57, 18].

Now we consider the symmetric NMF of

G≈ FFT

5If G is set to be I−Lsym, then the objective function is equivalent to NCut, which is proved in [13].
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The factorizations can be obtained by the least squares minimization:

F = argminF≥0 ||G−FFT ||2
= argminF≥0 ||G||2− 2Tr(FT GF)+ ||FT F ||2
= argmaxF≥0 Tr(FT GF)

Again if we set G to be −L = W −D, the objective function of NMF is very similar to unnor-
malized spectral clustering except that for NMF we require F to be nonnegative while for spectral
clustering F is expected to be orthonormal.

8.9 Large Scale Spectral Clustering

The general spectral clustering method needs to construct an adjacency matrix and calculate the
eigen-decomposition of the corresponding Laplacian matrix. Both of these two steps are computa-
tional expensive. For a data set consisting of n data points with m dimensions, the above two steps
will have time complexities of O(n2m) and O(n3), respectively. This is an unreasonable burden for
large-scale applications.

Fortunately, if we only want to construct an approximate adjacency matrix with a few number of
nearest neighbors, there is a shortcut for reducing the complexity. This is called approximate nearest
neighbor search. We first introduce randomized kd-trees [45, 36]. A kd-tree partitions the space by
hyperplanes that are perpendicular to the coordinate axes. At each node of the tree, the correspond-
ing data points are partitioned into two halves with a hyperplane through a specified dimension
which exhibits the greatest variance. As kd-tree’s performance rapidly degrades with the number of
dimensions increasing, Silpa-Anan and Hartley [45] recently have proposed an improved version
of the kd-tree algorithm in which multiple randomized kd-trees are created. By comparison, the
randomized trees are built by choosing the split dimension randomly from the first few dimensions
on which data has the greatest variance. The other available technique is called locality-sensitive
hashing (LSH) [10] which offers probabilistic guarantees of retrieving data points similar to the
query. The basic idea is to compute a set of functions that reduce the dimensionality of the data
points through certain mathematical operations. By concatenating several such functions to form a
hash function, data points mapped in the same bin as the query are returned as candidates of nearest
neighbors with probabilistic guarantees. Moreover, several hash tables can be built in the same way
to further enhance the performance. A few libraries for approximate nearest neighbor search are
available, including FLANN [36] and ANN [35].

For the problem of eigen-decomposition, state-of-the-art eigensolvers can be categorized into
three classes: local, global, and extreme solvers [27]. The power method is the simplest local solver,
which only computes the maximum eigenvalue and its associated eigenvector. QR-decomposition
method is a typical global solver, which computes all the eigenvalues and eigenvectors. Extreme
eigensolvers compute several extreme (smallest or largest) eigenvalues and the corresponding eigen-
vectors, which is obviously the most suitable for spectral clustering since the number of clusters k
usually is not too large. Typical examples of extreme eigensolvers include Lanczos, preconditioned
conjugate gradient (PCG), and Jacobi-Davidson (JD) methods. Interested readers can refer to [41]
for details. Several software implementations of the Lanczos method are publicly available and are
well maintained, e.g., ARPACK [26]. PCG and JD methods also have some implementations avail-
able [22, 48]. If the Laplacian matrix is sparse, i.e., the similarity graph is not fully connected, these
state-of-art eigensolvers can benefit from this property because most elements are zero and could
be removed from the computation.
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Besides this, many works have been proposed to accelerate spectral clustering itself instead of
focusing on the general eigensolvers. [16] adopts the classical Nyström method which was orig-
inally proposed for finding numerical approximations to eigenfunction problems. It first chooses
samples randomly among the data points to obtain the small-size eigenvectors and then extrapo-
lates the solution for the whole dataset with weights. The work in [44] reduces the original data set
to a relatively small number of data points in a biased way. The first step is to apply an efficient
clustering algorithm such as k-means to get the initial partitions. Then data points near the same
centroid are merged and viewed as one. By some additional similarity computations for such new
representations, the algorithm can operate directly on this smaller graph. Similar to this idea, in [58],
all data points are collapsed into centroids through k-means or random projection trees so that the
later eigen-decomposition needs to be applied only on the centroids. [42] uses random projection for
another purpose which is to reduce the dimensionality of X (i.e., m mentioned at the beginning) and
therefore to help save time in constructing the adjacency matrix. Additionally, random sampling
is later applied to drastically reduce the size of data points within the eigen-decomposition step.
[4, 27] introduce early stop strategies to speed up eigen-decomposition. It is based on observation
that well-separated data points will converge to the final embedding more quickly, and hence, we
can sequentially depress the scale of the Laplacian matrix in the iteration steps of conjugate-based
eigensolvers without inferencing the final clustering results by much. In [6], landmark points are
first selected randomly or through k-means among all the data points to serve as codebook. Later
each data point can be encoded in the form of linear combinations of these landmarks. After con-
structing the affinity matrix by inner product using such landmark representations, acceleration can
be achieved since the complexity now is related to the number of landmark points which is far less
than n. Different from the above methods, authors in [21] work on resistance distance embedding
which has an idea similar to spectral clustering and also has quite similar clustering capability. The
proposed method does not require using any sampling technique or computing any eigenvector.
Instead it uses random projection and a linear time solver of Spielman and Teng [47] to find the
approximate and accurate embedding.

To address resource bottlenecks of both memory use and computation time, another promising
direction is to make use of distributed system. In [5], a parallel framework is proposed which first
distributes n data instances onto p distributed machine nodes. On each node, similarities between
local data and the whole set are computed in a way that uses minimal disk I/O. The eigenvector
matrices are stored on distributed nodes to reduce per-node memory use. Finally, together with
parallel eigensolver and k-means, the proposed parallel spectral clustering achieves good speedup
with large data sets. Additionally, for constructing the sparse similarity matrix, the authors choose
MapReduce because this step may be the most time consuming and having a fault tolerant mecha-
nism is essential. For eigen-decomposition and the k-means step, MPI-based open source softwares
are adopted. Gao et al. [17] use a different approach to first map data points into buckets and then
implement spectral clustering for each bucket simultaneously. The main idea is within the prepro-
cess step, which is to adopt locality sensitive hashing (LSH) [10] to create signatures (i.e., M-bit
binary numbers) for data points and later to project near-duplicate signatures6 into one bucket. The
hash function they use to generate the signatures falls into the family of random projection. Besides
this, they propose the MapReduce algorithm for LSH and call the spectral clustering module in
Apache Mahout [40] which is also implemented on top of Apache Hadoop using the MapReduce
paradigm.

6Two M-bit signatures are considered to be near-duplicate if they have at least M− ε bits in common.
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8.10 Further Reading

The family of spectral clustering has become popular especially since the works in [37] and
[43]. Since then, several works have been proposed to slightly change the original framework and
achieve better clustering results. In [59], the final k-means step on the eigenvectors shared by the
family of spectral clustering is explained not to be optimal. The authors clarify the role of eigen-
vectors obtained from graph Laplacian as a generator of all optimal solutions through orthonormal
transforms. A better solution is then proposed by rotating normalized eigenvectors to obtain an op-
timal segmentation. Their method iterates between nonmaximum suppression and using SVD to
recover the rotation. Later in [60], it is pointed out that this iterative method can easily get stuck in
local minima and thus does not reliably find the optimal alignment. To find the best alignment for
a set of eigenvectors, the authors define a new cost function which measures the alignment quality
of a set of vectors and adopts a gradient descent scheme which provably converges. However, this
paper also mentions that such alignments might only be effective when the data is not highly noisy.
Another insight of this paper concerns the construction of adjacency matrix W . It suggests that in the

fully connected graph, any two vertices are connected and the value of Wi j is defined to be e
− ||xi−x j ||2

σiσ j .
Here σi is called a local scale and is set to be the distance between vertex i and its certain neighbor
(7th nearest neighbor in the paper). The intuition behind this method is that in reality data resides
in multiple scales (one cluster is tight and the other is sparse) and local scaling automatically finds
the two scales and results in high affinities within clusters and low affinities across clusters. Later
a more natural parameterization of the neighborhood density based on the empty region graphs is
proposed in [9] which is claimed to be not sensitive to parameters and data perturbation.

Many papers have also been published to discover the theoretical relations of spectral clustering
to other algorithms. As discussed in Section 8.8, there exist close links among spectral cluster-
ing, kernel k-means, and nonnegative matrix factorization. Besides this, relations between spectral
clustering and kernel principal component analysis (KPCA) are built on the fact that the Laplacian
eigenmap can be interpreted as KPCA with kernel matrix set to be the Moore-Penrose inverse of L
[20]. From Section 8.7 we know that Laplacian eigenmap can be essentially viewed as a nonlinear
dimensionality reduction method which is almost the same as spectral clustering except for the final
k-means step.

Spectral clustering algorithms are extended to many nonstandard data types compared to those
introduced at the beginning of this chapter. In [11], a co-clustering algorithm is proposed to the
bipartite graph which is a kind of graph that can be divided into two sets such that no two data
points in the same set are connected, e.g., document–word graph. [28] was later published to address
the clustering problem through collective factorization for heterogeneous data types which is more
complicated and general than the bipartite graph case. For network data where only nodes and
links are observed, a spectral clustering-like algorithm [56] is designed for optimizing “modularity”
measure instead of “cut” measure because the former is also popular in the community detection.
Another interesting extension to incorporate is temporal information. Chi et al. [7] present two
frameworks in evolutionary spectral clustering through regularizing one additional cost on temporal
smoothness. If the data points are observed in a stream-like way, [51] has been proposed to update
the clustering directly without evaluating the entire affinity matrix. In [38], a more general algorithm
allowing similarity changes between existing data points has been developed based on incrementally
updating the eigenvectors.

Besides all these, in the machine learning community, spectral clustering techniques usually ap-
pear with other learning tasks. For example, in the semisupervised scenario, pairwise constraints,
i.e., must-link and cannot-link, are incorporated into spectral clustering as the user guidance for
the partition [29]. Different from this, in [61], a few class labels are directly provided and a semi-
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supervised classification function similar to spectral clustering is proposed requiring the smoothness
of inference between known labeled and unlabeled data. Multi-view learning is another hot topic
where multiple complementary representations of the data are presented. In [62], the spectral clus-
tering approach is generalized to multiple views via a random walk formulation. The work in [23]
approaches the problem by adopting a co-training framework such that the similarity matrix in one
view is affected by the similarity estimated based on the eigenvectors of graph Laplacian in the
other view. In [24], a co-regularization framework is proposed to enforce the pairwise similarities
computed from the eigenvectors learned from different views to be close with each other. Opposite
to multi-view algorithms which learn the latent consensus from multiple representations, the work
in [39] tries to find multiple nonredundant clustering results from a single data view through pe-
nalizing for redundancy between different results. There are also extensions of spectral clustering
algorithms in the field of active learning. The work in [54] formulates this problem as incrementally
querying the oracle about pairwise relations mentioned above between chosen data points. In [55],
the “active” part lies in querying the pairwise similarity under the assumption that the adjacency
matrix W is expensive to obtain or compute.

In the last few years, many papers have been published concerning combinations of spectral
clustering with different data types, learning tasks, and applications. Interested readers are encour-
aged to further explore the literature in these directions.
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9.1 Introduction

The general definition of the task of clustering as to find a set of groups of similar objects within
a data set while keeping dissimilar objects separated in different groups or the group of noise is very
common. Although Estivill-Castro criticizes this definition for including a grouping criterion [47],
this criterion (similarity) is exactly what is in question among many different approaches. Especially
in high-dimensional data, the meaning and definition of similarity is right at the heart of the problem.
In many cases, the similarity of objects is assessed within subspaces, e.g., using a subset of the
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dimensions only, or a combination of (a subset of) the dimensions. These are the so-called subspace
clustering algorithms. Note that for different clusters within one and the same clustering solution
usually different subspaces are relevant. Therefore subspace clustering algorithms cannot be thought
of as variations of usual clustering algorithms using just a different definition of similarity. Instead,
the similarity measure and the clustering solution are usually derived simultaneously and depend on
each other. In this overview, we focus on these methods. The emerging field of subspace clustering
is still raising a lot of open questions. Many methods have been proposed, though, putting the
emphasis on different aspects of the problem.

While we give a concise overview on the problems,1 the problem settings, and types of solutions,
other overviews on the topic of subspace clustering can be found in the literature. The first survey
to discuss the young field was presented by Parsons et al. [114]. This survey earned the merits of
putting the community’s attention to the problem and sketching a couple of early algorithms. Later
on, however, the problem was studied in much more detail and categories of similar approaches have
been defined [90]. A short discussion of the fundamental problems and strategies has been provided
by Kröger and Zimek [94]. Vidal focused on a specific subtype of the problem from the point of
view of machine learning and computer vision [128]. Assent gives an overview in the context of
high-dimensional data of different provenance, including time series and text documents [17]. Sim
et al. [122] discuss “enhanced” subspace clustering; i.e., they point out specific open problems in
the field and discuss methods specifically addressing those problems. Kriegel et al. [91] give a
concise overview and point to open questions as well. Some recent textbooks [73, 57] sketch some
example algorithms and cursorily touch on some problems. Recent experimental evaluation studies
have covered some selections of a specific subtype of subspace clustering, algorithms for clustering
in axis-parallel subspaces [104, 108].

As a book chapter, this survey is intended to give an overview on the fundamental problems
that clustering is confronted with in high-dimensional data (associated with the infamous curse
of dimensionality—Section 9.2). Based on that, we sketch (Section 9.3) the basic problem setting
for specialized algorithms (known as subspace clustering, projected clustering, and the like) as
well as some fundamental algorithms (Section 9.4). Finally, we point to open questions and issues
of ongoing research in this area (Section 9.5), and we summarize and conclude the discussion in
Section 9.6.

9.2 The “Curse of Dimensionality”

9.2.1 Different Aspects of the “Curse”

The motivation of specialized solutions for analyzing high-dimensional data has often been
given with a general reference to the so-called curse of dimensionality. This general term relates to
a bundle of rather different problems. Some of these are elaborated in more detail in the literature
concerned with index structures [30]. Here, we highlight aspects of the problem that are often seen
in relation to subspace clustering although they are of different nature and importance [90, 91].

Aspect 1: Optimization Problem

Historically, the first aspect has been described by Bellman [23], who coined the term “curse
of dimensionality” in the context of optimization problems. Clearly the difficulty of any global
optimization approach increases exponentially with an increasing number of variables (dimensions).

1This chapter is based on previously published surveys [90, 91] but it provides some updates as well as occasionally more
detailed explanations, and it rounds things off in a partly different way.
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This problem is particularly well known in the area of pattern recognition. At a general level, this
problem relates to the clustering problem. Seeking a clustering of a data set is assuming that the
data are generated by several functions (statistical processes). Hence, ideally, a clustering model
would enable the user to identify the functional dependencies resulting in the data set at hand and,
thus, to eventually find new and interesting insights in the domain of the data set (i.e., models of the
statistical processes). Those functions are more complex when several attributes contribute to the
actual relationships.

Aspect 2: Concentration Effect of Lp-Norms

The second aspect of the curse of dimensionality is the deterioration of expressiveness of the
most commonly used similarity measures, the Lp-norms, with increasing dimensionality. In their
general form, for x,y ∈ R

d , Lp-norms are given as

‖x− y‖p = p

√√
√
√

d

∑
i=1

|xi− yi|p. (9.1)

The choice of p is crucial in high-dimensional data according to several studies [27, 76, 11]. The
key result of Beyer et al. [27] states the following: if the ratio of the variance of the length of any
point vector x ∈ R

d (denoted by ‖x‖) to the length of the mean point vector (denoted by E [‖x‖])
converges to zero with increasing data dimensionality, then the proportional difference between the
farthest-point distance Dmax and the closest-point distance Dmin (the relative contrast) vanishes.
Formally:

lim
d→∞

var

( ‖x‖
E [‖x‖]

)
= 0 =⇒ Dmax−Dmin

Dmin
→ 0. (9.2)

The precondition has been described as being valid for a broad range of data distributions. Intu-
itively, the relative contrast of (Lp) distances does diminish as the dimensionality increases. This
concentration effect of the distance measure reduces the utility of the measure for discrimination.

Distance Concentration and Clustering

The distance-concentration effect means that far and close neighbors have similar distances,
if they belong to the same distribution (and some mild conditions apply on the nature of the dis-
tribution). As clustering is concerned with data from different distributions, the crucial question
is whether these distributions are sufficiently separated. In that case, distance concentration is
not an issue for the separation of different clusters.

The behavior of integer Lp-norms (i.e., p ∈ N) in high-dimensional spaces has been studied by
Hinneburg et al. [76]. The authors showed by means of an analytic argument that L1 and L2 are the
only integer norms useful for higher-dimensional spaces. In addition, they studied the use of projec-
tions for discrimination, the effectiveness of which depends on localized dissimilarity measures that
did not satisfy the symmetry and triangle inequality conditions of distance metrics. Fractional Lp

distance measures (with 0 < p < 1) have been studied in a similar context by Aggarwal et al. [11].
The authors observe that smaller values of p offer better results in higher-dimensional settings.2

These studies are often quoted as a motivation of specialized approaches in high-dimensional
data. It should be noted, though, that all these studies generally assume that the complete data set
follow a single data distribution, subject to certain restrictions. When the data, instead, is actually

2The concentration of the cosine similarity has been studied by Radovanović et al. [119].
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generated by a mixture of distributions, the concentration effect is not always observed. To notice
this is important here, as clustering is usually concerned with data generated by different distribu-
tions, ideally with one of the resulting clusters capturing one of the distributions.

Distances between members of different distributions may not necessarily tend to the global
mean as the dimensionality increases. The fundamental differences between data following a single
distribution and data following several distributions are discussed in detail by Bennett et al. [25]. The
authors demonstrate that nearest-neighbor queries are both theoretically and practically meaningful
when the search is limited to objects from the same cluster (distribution) as the query point, and
other clusters (distributions) are well separated from the cluster in question. The key concept is that
of pairwise stability of clusters, which is said to hold whenever the mean distance between points of
different clusters dominates the mean distance between points belonging to the same cluster. When
the clusters are pairwise stable, for any point belonging to a given cluster, its nearest neighbors
tend to belong to the same cluster. Here, a nearest-neighbor query whose size is of the order of
the cluster size can be considered meaningful, whereas differentiation between nearest and farthest
neighbors within the same cluster may still be meaningless. Overall, this aspect of the curse of
dimensionality is anything but well studied, as noted recently [54]. Nevertheless, this aspect should
be considered as a serious impediment for any data mining, indexing, or similarity search application
in high-dimensional data. Recent studies discuss in practical settings this aspect of the curse of
dimensionality and highlight that it does not apply when the data are following different, well-
separated distributions [78, 26], since in that case the precondition does not hold. Hence, regarding
the separation of clusters, the following aspects are far more important in the scenario of subspace
clustering.

Aspect 3: Irrelevant Attributes

A third aspect is often confused with the previous aspect but it is actually independent. In order to
find rules describing some occurring phenomena, in many domains a glut of data is collected where
single entities are described with many possibly related attributes. Among the features of a high-
dimensional data set, for any given query object, many attributes can be expected to be irrelevant to
describing that object. Irrelevant attributes can interfere with the performance of similarity queries
for that object. The relevance of certain attributes may differ for different groups of objects within
the same data set. Thus, since groups of data are defined by some of the available attributes only,
many irrelevant attributes may interfere with the efforts to find these groups. Irrelevant attributes are
often also referred to as “noise.”

Distance Concentration, Clustering, and Relevance of Attributes

There is an important interplay between Aspect 3 and Aspect 2, as many additional irrel-
evant attributes (noisy features) can obfuscate the separation of different distributions in the
high-dimensional space. This has been studied in detail by Houle et al. [78]. Additional rele-
vant attributes, i.e., attributes that carry information regarding the separation of different distri-
butions are actually helpful rather than proving to be obstacles. In that case, more dimensions
will actually make the clustering easier instead of more difficult!

Aspect 4: Correlated Attributes

In a data set containing many attributes, there may be some correlations among subsets of at-
tributes. From the point of view of feature reduction, all but one of these attributes may be redun-
dant. However, from the point of view of a domain scientist who collected these attributes in the
first place, it may be an interesting new insight that there are so far unknown connections between
features [5]. As for the previous problem, this phenomenon may be differently relevant for different
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subgroups of a data set as correlations among attributes that are characteristic for a cluster will be
different for other clusters of the data set.

With respect to spatial queries, the observation that the intrinsic dimensionality of a data set
usually is lower than the embedding dimensionality (based on interdependencies among attributes)
has often been attributed to overcoming the curse of dimensionality [48, 24, 113, 85]. Durrant and
Kabán [45] show that the correlation between attributes is actually an important effect for avoiding
the concentration of distances. Correlated attributes will probably also result in an intrinsic dimen-
sionality that is considerably lower than the representational (embedding) dimensionality. This ef-
fect led to confronting the curse of dimensionality with the self-similarity blessing [85]. As opposed
to the conjecture of Beyer et al. [27] and François et al. [54], however, Durrant and Kabán [45]
also show that a low intrinsic dimensionality alone does not suffice to avoid the concentration, but
essentially the correlation between attributes needs to be strong enough. Let us note that, actually,
different aspects such as a strong cluster-structure of data [25] and low intrinsic dimensionality
[85] may be merely symptoms for a strong, though possibly latent, correlation between attributes.
Durrant and Kabán also identify irrelevant dimensions as the core of the problem of the curse. In
essence, the ratio between noise (e.g., irrelevant attributes or additive noise masking information
in relevant attributes) and (latent) correlation in the attributes of a dataset will determine whether
asking for the “nearest neighbor” is actually meaningful or not.

Intrinsic Dimensionality vs. Embedding Dimensionality

An important implication of a strong correlation between several attributes is that the so-
called intrinsic dimensionality of a data set can be considerably lower than the so-called embed-
ding dimensionality, i.e., the number of features of the data set. In short, the intrinsic dimen-
sionality (or expansion dimension), as opposed to the embedding dimensionality, describes how
much space is actually used by the data. These concepts have been discussed, e.g., by Gupta et
al. [65].

However, Aspects 1, 2, and 3 could still apply, depending on the number and nature of the
remaining uncorrelated attributes.

Aspect 5: Varying Relative Volume of an ε-Hypersphere

The relative volume of an ε-hypersphere (i.e., using the L2-norm as query distance) as compared
to the volume of the data space varies extremely with the change of dimensionality. The data space is
usually seen as a hypercube. Hence, the possibly maximally occurring distance (along the diagonal)
is growing with the square root of the dimensionality. If we choose ε big enough to cover the
complete data space in one or two dimensions, slowly but steadily the corners of the data space
will grow beyond the range of the hypersphere. Figuratively speaking, we could imagine the high-
dimensional data space almost consisting of only corners.

As a consequence, what may seem a reasonable value of ε for a 3-dimensional query space may
in a 20-dimensional space be extremely unrealistic (i.e., the corresponding query is a priori unlikely
to contain any point at all) or, vice versa, choosing ε big enough to cover some reasonable volume in
a 20-dimensional space would engulf some 3-dimensional subspace completely. This is an effect to
keep in mind when designing subspace clustering algorithms. This effect (among others) has been
discussed in more detail, although with respect to outlier detection in high-dimensional data, by
Zimek et al. [142].
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9.2.2 Consequences

The third and fourth of these aspects of the curse of dimensionality have been actually the
main motivation for developing specialized methods for clustering in subspaces of potentially high-
dimensional data even though this was not always clearly recognized. The superficial reference to
the second aspect that can often be found in the literature misses the point. But even so the proposed
approaches, perhaps partly unintentionally, actually tackled mainly Aspect 3 and Aspect 4.

For decades, research in statistics was concerned with the effect of irrelevant (noise) attributes
(sometimes called masking variables [53]) on the performance of clustering algorithms [100, 52, 59,
127]. They discuss how to identify such noise attributes that do not contribute to the cluster structure
at all. The clustering task should then concentrate on the remaining attributes only. In some cases, the
contribution of attributes may be weighted instead of a discrete decision (contributing or masking).
This view of the problem is obviously closely related to dimensionality reduction [66, 132].

The field of subspace clustering as we sketch it here assumes a more complex view. The reason-
ing is that dimensionality reduction as a first step prior to clustering is not always resolving these
issues since the correlation of attributes or the relevance vs. irrelevance of attributes is usually char-
acteristic for some clusters but not for complete data sets. In other words, masking variables may be
masking certain clusters but may help to discover others.

The phenomenon that different features or a different correlation of features may be relevant for
different clusters within a single clustering solution has been called local feature relevance or local
feature correlation [90]. Feature selection or dimensionality reduction techniques are global in the
following sense: they generally compute only one subspace of the original data space in which the
clustering can then be performed. In contrast, the problem of local feature relevance or local fea-
ture correlation describes the observation that multiple subspaces are needed because each cluster
may exist in a different subspace. The critical requirement for the design of subspace clustering
algorithms is hence the integration of some heuristic for deriving the characteristic subspace for a
certain subgroup of a data set with some heuristic for finding a certain subgroup of a data set that
exhibits a sufficient level of similarity in a certain subspace of the data space — obviously a circular
dependency of two subtasks (subspace determination vs. cluster assignment) already in the most
basic problem description.

Aspect 5 is a problem whenever ε-range queries of different dimensionality are compared, which
is done in many of the available algorithms.

9.3 Clustering Tasks in Subspaces of High-Dimensional Data

For the design of specific clustering algorithms suitable for high-dimensional data all the aspects
of the curse of dimensionality, as sketched above, are relevant. However, motivating specialized
approaches to clustering in subspaces are mainly the phenomena of irrelevant attributes (Aspect 3)
and correlated attributes (Aspect 4). These two phenomena result in different types of subspaces
which pose different challenges to concrete algorithms.

9.3.1 Categories of Subspaces

9.3.1.1 Axis-Parallel Subspaces

The distinction between relevant and irrelevant attributes generally assumes that the variance of
the occurring values for a relevant attribute over all points of the corresponding cluster is rather small
compared to the overall range of attribute values whereas the variance for irrelevant attributes within
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a given cluster is high (or indistinguishable from the values of the same attribute for other clusters
or for background noise). For example, one could assume a relevant attribute for a given cluster
being normally distributed with a small standard deviation whereas irrelevant attribute values are
uniformly distributed over the complete data space. The geometrical intuition of these assumptions
relates to the points of a cluster being widely scattered in the direction of irrelevant axes while being
densely clustered along relevant attributes. When selecting the relevant attributes only (by projection
onto the corresponding subspace, i.e., the subspace spanned by these attributes), the cluster would
appear as a full-dimensional cluster in this subspace. In the full-dimensional space (including also
the irrelevant attributes) the cluster points form a hyperplane parallel to the irrelevant axes. Due to
this geometrical appearance, this type of cluster is addressed as an axis-parallel subspace cluster.

9.3.1.2 Arbitrarily Oriented Subspaces

If two attributes ai and a j are linearly correlated for a set of points, the points will be scattered
along a hyperplane defined by some linear dependency between both attributes that corresponds to
the correlation. The subspace orthogonal to this hyperplane is then a subspace where the points clus-
ter densely irrespective of the variance of combined values of ai and a j. This subspace is arbitrarily
oriented and hence the more general case compared to axis-parallel subspaces.

9.3.1.3 Special Cases

While the aforementioned types of subspaces have a direct relationship to aspects of the curse
of dimensionality as discussed above, it should be noted that from the point of view of existing clus-
tering algorithms there are special types of subspaces. In fact, there is a large family of algorithms,
addressed as “bi-clustering,” “co-clustering,” “two-mode clustering,” or “pattern-based clustering”
[90, 99].

Considering the spatial intuition of subspaces for subspace clustering, these algorithms address
different kinds of subspaces such as very specific rotations only (e.g., points that form a cluster are
scattered along the bisecting line) or specific half-spaces (e.g., in some subspace, only points located
on one side of the bisecting line can form a cluster). Thus, the types of the subspaces considered by
these methods do not directly relate to the phenomena of the curse of dimensionality discussed here
but rather are the products of specific cluster models.

As these clustering methods are predominantly used in biological data analysis, refer to Chapter
16 for an overview on this family of methods. The spatial intuition that comes with these cluster
models has been elaborated in detail by Kriegel et al. [90].

9.3.2 Search Spaces for the Clustering Problem

Recognizing the different categories of subspaces can guide us to recognize different categories
of subspace clustering algorithms. If we describe the problem in general as find clusters, where each
cluster can reside in a different subspace, it is obvious that the problem of finding the subspaces
containing clusters is in general intractable. The number of arbitrarily oriented subspaces is infinite.
Even the number of axis-parallel subspaces is exponential in the number of dimensions (we can see
this as a result of the first aspect of the curse of dimensionality). Also, since different subspaces
can be relevant for different clusters, global feature reduction is not a solution. Aside from the
search space for interesting subspaces, the search space for clustering solutions is also challenging,
as clustering in general is an NP-complete problem [125]. Even worse here: the search for clusters
and the search for subspaces are depending on each other. Neither is it a good solution to, first,
find the subspaces and then find the clusters in the subspaces, as this results in a quite redundant
set of clusters (we will discuss this problem of redundancy in more detail later). Nor is it a viable
approach to, first, find the clusters and then define the subspace for each cluster. Hence the definition
of a cluster, that comes along with an algorithmic heuristic for clustering, and the heuristic to derive
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a subspace for each cluster are closely related for each approach. Yet how this relationship is defined
in particular will be differing in the different approaches.

Many heuristics and assumptions for efficiently solving the clustering problem have been dis-
cussed in the past decades. We will focus on the subspace search problem in this chapter. However,
for the sake of completeness, we should keep in mind the fact that the solutions discussed here also
rely on assumptions and heuristics that consider the clustering problem (i.e., whether, for example,
a partitioning or a density-based clustering paradigm is used or adapted). These assumptions and
heuristics are reflected by the underlying clustering model that specifies the meaning of clusters and
the algorithms to compute such clusters. One important aspect to describe the meaning of clusters
that has an impact on the subspace search problem is the choice of a certain distance or similar-
ity measure. Which data points are considered more similar than others and, thus, cluster together,
crucially depends on this choice. Some approaches are based on neighborhood in Euclidean space,
typically using an Lp-norm as distance measure. Others take into account a similar “behavior” of
attribute values over a certain range of attributes (often called “patterns”). But different approaches
also make use of the definition of similarity in different ways, based on different intuitions of the
meaning of a cluster and resulting in different cluster models. If we stay with the notion of Euclidean
distances (or, more general, Lp-norms), the selection of a subspace for a cluster will mean that sim-
ilarity of points is defined in different ways for different clusters. In the case of an axis-parallel
subspace, only a subset of the attributes is considered to compute the Lp-distance. For arbitrarily
oriented subspaces, correlations of attributes are considered and combinations thereof are computed
to define a rotated subspace distance (such as some variant of a Mahalanobis distance).

9.4 Fundamental Algorithmic Ideas

Different paradigms of clustering heuristics are discussed in other chapters. Here, we survey
some fundamental algorithmic ideas and example approaches according to the different heuristic
restrictions of the search space for subspaces.

9.4.1 Clustering in Axis-Parallel Subspaces

9.4.1.1 Cluster Model

So far, most research in this field mainly transferred the full-dimensional cluster models of dif-
ferent clustering techniques into some (or many)—more or less—interesting subspaces (i.e., subsets
of attributes) of a data space. Hence, there is no established “subspace cluster model” describing
axis-parallel subspace clusters concisely. Instead, there are only cluster models describing clusters
in a subspace as if the corresponding subspace were the full-dimensional data space. The first sta-
tistically sound model for axis-parallel subspace clusters was proposed by Moise and Sander [101].
It is based on the assumption (statistically speaking: hypothesis) that values of a relevant attribute
for a subspace cluster are not uniformly distributed over the complete attribute domain (i.e., the null
hypothesis is a uniform distribution of irrelevant attributes over the complete domain) and that this
hypothesis satisfies a statistical test.

9.4.1.2 Basic Techniques

The number of possible axis-parallel subspaces where clusters could reside is exponential in the
dimensionality of the data space. Hence, the main task of research in the field was the development
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of appropriate subspace search heuristics. Starting from the pioneering approaches to axis-parallel
subspace clustering, two opposite basic techniques for searching subspaces were pursued, namely,
top-down search [12] and bottom-up search [14].

Top-Down Subspace Search. The rational of top-down approaches is to determine the sub-
space of a cluster starting from the full-dimensional space. This is usually done by determining
a subset of attributes for a given set of points—potential cluster members—such that the points
meet the given cluster criterion when projected onto this corresponding subspace. Obviously, the
dilemma is that for the determination of the subspace of a cluster, at least some cluster members
must be identified. On the other hand, in order to determine cluster memberships, the subspace of
each cluster must be known. To escape this circular dependency, most of the top-down approaches
rely on a rather strict assumption, which has been called the locality assumption [90]. It is assumed
that the subspace of a cluster can be derived from the local neighborhood (in the full-dimensional
data space) of the (provisional) cluster center or the (provisional) cluster members. In other words, it
is assumed that even in the full-dimensional space, the subspace of each cluster can be learned from
the local neighborhood of cluster representatives or cluster members—an assumption that may make
sense if the dimensionality of the sought subspaces is not much smaller than the dimensionality of
the complete data space.

Other top-down approaches that do not rely on the locality assumption use random sampling as
a heuristic in order to generate a set of potential cluster members.

Bottom-Up Subspace Search. The exponential search space of all possible subspaces of
a data space that needs to be traversed is equivalent to the search space of the frequent item-set
problem in market basket analysis in the area of transaction databases. For example, an item-set
may contain items A, B, C, etc. The key idea of the APRIORI algorithm [15] is to start with item-
sets (called “transactions”) of size 1 (containing a certain item, irrespective of other items possibly
also contained in the transaction) and exclude those larger item-sets from the search that cannot be
frequent anymore, given the knowledge of which smaller item-sets are frequent. For example, if a
1-item-set containing A is not frequent (i.e., we count such an item-set less than a given minimum
support threshold), all 2-item-sets, 3-item-sets, etc., containing A (e.g., {A,B},{A,C},{A,B,C})
cannot be frequent either (otherwise item-sets containing A would have been frequent as well) and
need not be tested for exceeding the minimum support threshold. Theoretically, the search space
remains exponential, yet practically the search is usually substantially accelerated.

Transferring the item-set problem to subspace clustering, each attribute represents an item and
each subspace cluster is a transaction of the items representing the attributes that span the corre-
sponding subspace. Finding item-sets with frequency 1 then relates to finding all combinations of
attributes that constitute a subspace containing at least one cluster. This observation is the rationale
of many of the early bottom-up subspace clustering approaches. The subspaces that contain clus-
ters are determined starting from all 1-dimensional subspaces that accommodate at least one cluster
by employing a search strategy similar to frequent item-set mining algorithms. To apply any effi-
cient frequent item-set mining algorithm, the cluster criterion must implement a downward closure
property (also called monotonicity property):

If subspace S contains a cluster, then any subspace T ⊆ S must also contain a cluster.

For pruning (i.e., excluding specific subspaces from consideration), the antimonotonic reverse
implication can be used.

If a subspace T does not contain a cluster, then any superspace S⊇ T also cannot contain
a cluster.

Let us note that there are bottom-up algorithms that do not use an APRIORI-like subspace search
but instead apply other search heuristics.
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Applying an efficient subspace search strategy addresses Aspect 1 of the curse of dimensionality.
Selecting a subset of attributes as relevant corresponds to Aspect 3 of the curse of dimensionality.
Aspect 2 needs to be considered when adapting similarity measures to local neighborhoods and is
differently important in the different approaches. Aspect 5 is often the main problem for this kind
of approach since the monotonicity usually requires the same distance thresholds in subspaces of
different dimensionalities.

9.4.1.3 Clustering Algorithms

The two basic techniques resulted initially in two “subspace” clustering paradigms that have
been named by the pioneers in this field “subspace clustering” [14] and “projected clustering” [12].
For the latter, a variant has emerged sometimes called “soft projected clustering” [82]. Many algo-
rithms, however, do not clearly fit in one of these categories. We therefore list some examples as
“hybrid approaches.”

Projected Clustering. The objective of projected clustering is to find a set of tuples (Oi,Di),
where Oi is the set of objects belonging to cluster i and Di is the subset of attributes where the points
Oi are “similar” according to a given cluster criterion.

The approach introducing the task of “projected clustering” is PROCLUS [12], a k-medoid-
like clustering algorithm. PROCLUS randomly determines a set of potential cluster centers M on
a sample of points first. In the iterative cluster refinement phase, for each of the k current medoids
the subspace is determined by minimizing the standard deviation of the distances of the points in
the neighborhood of the medoids to the corresponding medoid along each dimension. Points are
then assigned to the closest medoid considering the relevant subspace of each medoid. The clusters
are refined by replacing bad medoids with new medoids from M as long as the clustering quality
increases. A postprocessing step identifies noise points that are too far away from their closest
medoids. The algorithm always outputs a partition of the data points into k clusters (each represented
by its medoid) with corresponding subspaces and a (potentially empty) set of noise points.

The k-medoid-style cluster model of PROCLUS tends to produce equally sized clusters that have
spherical shape in their corresponding subspaces. In addition, since the set M of possible medoids is
determined in a randomized procedure, different runs of PROCLUS with the same parametrization
usually result in different clusterings.

Variations of PROCLUS are, for example, FINDIT [130] and SSPC [134]. FINDIT employs
additional heuristics to enhance efficiency and clustering accuracy. SSPC offers the capability of
further enhancing accuracy by using domain knowledge in the form of labeled objects and/or labeled
attributes.

PreDeCon [31] applies the density-based traditional (full-dimensional) clustering algorithm DB-
SCAN [46] using a specialized distance measure that captures the subspace of each cluster. The
definition of this specialized subspace distance is based on the so-called subspace preference that is
assigned to each point p, representing the maximal-dimensional subspace in which p clusters best.
A dimension is considered to be relevant for the subspace preference of a point p if the variance
of points in the Euclidean ε-neighborhood of p is smaller than a user-defined threshold δ. The spe-
cialized subspace distance between points is a weighted Euclidean distance where the dimensions
relevant for the subspace preference of a point are weighted by a constant κ� 1 while the remaining
dimensions are weighted by 1. PreDeCon determines the number of clusters automatically, and han-
dles noise implicitly. In addition, its results are determinate and the clusters may exhibit any shape
and size in the corresponding subspace. However, PreDeCon requires the user to specify a number
of input parameters that are usually hard to guess. Especially ε, the neighborhood radius, has rather
different meaning in a different dimensionality (cf. Aspect 5 of the curse of dimensionality) but is
used both for the first guess of neighborhood (locality assumption) in the full-dimensional space as
well as for the adapted neighborhood in some lower-dimensional space.
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CLTree [96] is a method that presents an interesting variation of the theme. The basic idea is
to assign a common class label to all existing points and to add additionally points uniformly dis-
tributed over the data space and labeled as a different class. Then a decision-tree is trained to separate
the two classes. As a consequence, the attributes are split independently, adaptively, and in a flexi-
ble order of the attributes. However, selecting a split is based on the evaluation of information gain
which is rather costly. Furthermore, the density of the superimposed artificial data can be expected
to heavily influence the quality of the results. Since the distribution parameters of existing clusters
are unknown beforehand, finding a suitable parametrization seems rather hard. Another problem is
the merging of adjacent regions. A cluster can easily become separated if the corresponding bins do
not “touch” each other.

Soft Projected Clustering. There is a rich literature concerned with so-called soft projected
clustering [43, 55, 79, 82, 29, 42, 98]. These are usually optimization approaches derived from k-
means type clustering, learning some weight vector for the different weighting of attributes. There-
fore, weights wi for attributes i = 1, . . . ,d are introduced into the distance measure:

‖(x− y)‖w
p = p

√√
√
√

d

∑
i=1

wi · |xi− yi|p. (9.3)

Usually, in these approaches, all weights are restricted at least to the condition

0 < wi ≤ 1, (9.4)

i.e., to ensure the applicability of optimization techniques, no weight can become 0. In terms of
subspace clustering, this means that no attribute is truly omitted and, hence, the resulting clustering
resides in the full-dimensional, though skewed data space. The fact that the clustering is not truly
searched for in a projected space (i.e., no hard subspace is assigned to a specific cluster) is indicated
by the term soft. However, these approaches are often generally named “subspace clustering,” not
reflecting the differences discussed here. Essentially, all these approaches can be seen as variants of
EM-clustering [40].

Geometrically, the effect of these approaches is just to allow the shape of clusters to become
axis-parallel ellipsoids instead of spheres. This does not necessarily account for relevance or irrel-
evance of different attributes. It seems more related to some sort of normalization of attributes per
cluster.

An example for these methods is LAC (Locally Adaptive Clustering) [43], which starts with k
centroids and k sets of d weights (for d attributes). The algorithm proceeds to approximate a set of
k Gaussians by adapting the weights.

COSA [55], another prominent example, does not derive a clustering but merely a similarity
matrix that can be used by an arbitrary clustering algorithm afterwards. The matrix contains weights
for each point specifying a subspace preference of the points similar to PreDeCon. The weights for a
point p are determined by starting with the Euclidean k-nearest neighbors of p and by computing the
average distance distribution of the k-nearest neighbors along each dimension. Roughly speaking,
the weight for a given attribute is computed as the ratio between the distances of the point p to all
k-nearest neighbors of p in that attribute and the average distances of p to all k-nearest neighbors of
p in all attributes. Thus, the higher the variance of the k-nearest neighbors along an attribute is, the
higher is the weight that is assigned to that attribute. The weight, however, cannot become 0. As long
as the weight vectors still change, the k-nearest neighbors are again determined using the current
weights and the weights are recomputed. The number of neighbors k is an input parameter. Very
different from PreDeCon, the weights can have arbitrary values rather than only two fixed values. In
addition, the weighting matrix is tested using several full-dimensional clustering algorithms rather
than integrating it into only one specific algorithm. Note that the effect of weight vectors is very
different in density-based approaches such as PreDeCon where the shape of clusters is not defined
beforehand.
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As we have seen, these approaches miss the complex interrelation of different problems in high-
dimensional data. For further references, the reader may therefore refer to some other examples
of recent work in this direction. Although the connections and differences to the algorithms as we
outline here are not made clear there, detailed sections on related work are suitable as introduction
to the history of “soft” projected clustering approaches provided in some papers specialized on this
direction [79, 29, 82].

Subspace Clustering. Subspace clustering in a narrower sense pursues the goal of finding all
clusters in all subspaces of the entire feature space. This goal obviously is defined to correspond
to the bottom-up technique used by these approaches, based on some antimonotonic property of
clusters allowing the application of the APRIORI search heuristic. However, the relationship of
the definition of subspace clustering (find all clusters in all subspaces) and the subspace search
strategy (bottom-up, applying an APRIORI-like heuristic) is historical and hence contingent rather
than essential. We consider the problem definition as guiding category, regardless of the algorith-
mic approach. Nevertheless, the majority of approaches actually consist of some adaptation of the
APRIORI search heuristic.

The pioneer approach for finding all clusters in all subspaces coining the term “subspace clus-
tering” for this specific task has been CLIQUE [14], using a grid-based clustering notion. The data
space is partitioned by an axis-parallel grid into equi-sized units of width ξ. Only units which contain
at least τ points are considered as dense. A cluster is defined as a maximal set of adjacent dense units.
Since dense units satisfy the downward closure property, subspace clusters can be explored rather
efficiently in a bottom-up way. Starting with all 1-dimensional dense units, (k + 1)-dimensional
dense units are computed from the set of k-dimensional dense units in an APRIORI-like procedure.
If a (k+ 1)-dimensional unit contains a projection onto a k-dimensional unit that is not dense, then
the (k+ 1)-dimensional unit cannot be dense either. Furthermore, a heuristic that is based on the
minimum description length principle is introduced to discard candidate units within less interest-
ing subspaces (i.e., subspaces that contain only a very small number of dense units). This way, the
efficiency of the algorithm is enhanced but at the cost of incomplete results (i.e., possibly some true
clusters are lost).

There are some variants of CLIQUE; let us consider three well-known examples. The method
ENCLUS [34] also relies on a fixed grid but searches for subspaces that potentially contain one or
more clusters rather than for dense units. Three quality criteria for subspaces are introduced, one
of them implements the downward closure property. The method MAFIA [111] uses an adaptive
grid. The generation of subspace clusters is similar to CLIQUE. Another variant of CLIQUE called
nCluster [97] allows overlapping windows of length δ as 1-dimensional units of the grid.

In summary, all grid-based methods use a simple but rather efficient cluster model. The shape
of each resulting cluster corresponds to a polygon with axis-parallel lines in the corresponding
subspace. Obviously, the accuracy and the efficiency of CLIQUE and its variants primarily depend
on the granularity and the positioning of the grid. A higher grid granularity results in higher runtime-
requirements but will most likely produce more accurate results.

Projected Clustering vs. Subspace Clustering

The distinction between the terms “projected clustering” and “subspace clustering” is not
uniform in the literature but traditionally, dating back to the pioneering approaches CLIQUE and
PROCLUS, the tasks are discerned as follows:

Projected clustering aims at a partitioning of the data set where each data point belongs
to exactly one cluster, and each cluster is assigned a specific subset of attributes. Projected on
these attributes, the cluster adheres to the clustering criterion as defined by the applied clustering
algorithm.
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Subspace clustering aims at finding all clusters in all subspaces. As a consequence, each
data point can belong to many clusters simultaneously (i.e., the clusters can substantially overlap
in different subspaces). This approach usually results in very redundant clusters in the retrieved
clustering.

Many approaches proposed in the literature do not clearly fit in one of these traditional cate-
gories and the tendency of opinion in research is that more suitable problem descriptions should
lie somewhere in between these archetypical categories, i.e., allowing for overlap of clusters,
but restricting the redundancy of results. Eventually, what is a suitable clustering should not be
defined by the algorithm but by the domain-specific requirements.

Note that these categories are not (or only coincidentally in the early approaches) related to
the categories of subspace search heuristics (top-down vs. bottom-up).

SUBCLU [84] uses the DBSCAN cluster model of density-connected sets [46]. It is shown that
density-connected sets satisfy the downward closure property. This enables SUBCLU to search for
density-based clusters in subspaces in an APRIORI-like style. The resulting clusters may exhibit an
arbitrary shape and size in the corresponding subspaces. In fact, for each subspace SUBCLU com-
putes all clusters that would have been found by DBSCAN applied to that subspace only. Compared
to the grid-based approaches, SUBCLU achieves a better clustering quality but requires a higher
runtime.

It has been observed that a global density threshold, as used by SUBCLU and the grid-based
approaches, leads to a bias toward a certain dimensionality (recall Aspect 5 of the curse of dimen-
sionality). On the one hand, a tighter threshold which is able to separate clusters from noise well
in low-dimensional subspaces tends to lose clusters in higher-dimensional subspaces. On the other
hand, a more relaxed threshold which is able to detect high-dimensional clusters will produce an
excessive amount of low-dimensional clusters. Motivated by this problem, the dimensionality un-
biased cluster model DUSC [18] (and some variants [19, 70, 105, 106]) has been proposed. DUSC
is based on a density measure that is adaptive to the dimensionality. As a major drawback, this ap-
proach is lacking of antimonotonic properties and, thus, pruning the search space is not possible.
A “weak density” is thus defined as a remedy, providing antimonotonic properties. This remedy,
however, introduces a global density threshold again, which renders the intended solution of the
motivating problem ineffective. As this example shows, the curse of dimensionality should always
be expected to keep haunting the researcher.

The initial problem formulation for projected clustering, finding all clusters in all subspaces
[14], that was adopted in many papers afterwards, is rather questionable since the information gained
by retrieving such a huge set of clusters with high redundancy is not very useful. This description
of the objective of subspace clustering is based on a rather naı̈ve use of the concept of frequent
item-sets in subspace clustering [129]. What constitutes a good subspace clustering result is defined
here apparently in close relationship to the design of the algorithm, i.e., the desired result appears to
be defined according to the expected result (as opposed to in accordance to what makes sense). The
tool “frequent item-set mining” was first, and the problem of “finding all clusters in all subspaces”
has apparently been defined in order to have some new problem where the tool can be applied
straightforwardly. The resulting clusters are usually highly redundant and, hence, to a major extend
useless.

Therefore, subsequent methods often concentrated on possibilities of concisely restricting the
resulting set of clusters by somehow assessing and reducing the redundancy of clusters, for example,
to keep only clusters of highest dimensionality. Related approaches aim at reporting only the most
representatives of a couple of redundant subspace clusters [19, 70, 105]. A broader overview on
these issues in subspace clustering has been recently presented by Sim et al. [122].
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Let us note that the statistical significance of subspace clusters (as defined by Moise and Sander
[101]), is not an antimonotonic property and hence does in general not allow for APRIORI-like
bottom-up approaches finding only meaningful (i.e., significant) clusters.

Hybrid Approaches. It is our impression that recently the majority of approaches do not stick
to the initial concepts any more, but pursue some hybrid approach [117, 133, 136, 87, 3, 103, 72]. In
general, the result is neither a clear partitioning without overlap nor an enumeration of all clusters
in all subspaces. Still the problem definition may remain unclear and each approach defines its own
goal. A fair comparison of the true merits of different algorithms thus remains difficult.

DOC [117] uses a global density threshold to define a subspace cluster by means of hypercubes
of fixed side-length w containing at least α points. A random search algorithm is proposed to com-
pute such subspace clusters from a starting seed of sampled points. A third parameter β specifies the
balance between the number of points and the dimensionality of a cluster. This parameter affects
the dimensionality of the resulting clusters and, thus, DOC usually also has problems with subspace
clusters of significantly different dimensionality. Due to the very simple clustering model, the clus-
ters may contain additional noise points (if w is too large) or not all points that naturally belong to
the cluster (if w is too small). One run of DOC may (with a certain probability) find one subspace
cluster. If k clusters need to be identified, DOC has to be applied at least k times. If the points as-
signed to the clusters found so far are excluded from subsequent runs, DOC can be considered as
a pure projected clustering algorithm because each point is uniquely assigned to one cluster or to
noise (if not assigned to a cluster). On the other hand, if the cluster points are not excluded from
subsequent runs, the resulting clusters of multiple runs may overlap. Usually, DOC cannot produce
all clusters in all subspaces.

MINECLUS [135, 136] is based on an idea similar to DOC, but proposes a deterministic method
to find an optimal projected cluster given a sample seed point. The authors transform the problem
into a frequent item-set mining problem and employ a modified frequent pattern tree growth method.
Further heuristics are introduced to enhance efficiency and accuracy.

HiSC [4] and the more advanced extension DiSH [3] follow a similar idea as PreDeCon but
use a hierarchical clustering model. This way, hierarchies of subspace clusters can be discovered
(i.e., the information that the subspace of a lower-dimensional cluster is composed of a subset of the
attributes of the subspace of a higher-dimensional cluster). The distance between points and clusters
reflects the dimensionality of the subspace that is spanned by combining the corresponding subspace
of each cluster. As in COSA, the weighting of attributes is learned for each object, not for entire
clusters. The learning of weights, however, is based on single attributes, not on the entire feature
space. DiSH uses an algorithm that is inspired by the density-based hierarchical clustering algorithm
OPTICS [16]. However, DiSH extends the cluster ordering computed by OPTICS in order to find
hierarchies of subspace clusters with multiple inclusions (a lower-dimensional subspace cluster may
be embedded in multiple higher-dimensional subspace clusters).

HARP [133] is a hierarchical clustering algorithm similar to single-link clustering [126, 121] but
uses a specialized distance function between points and clusters or between clusters and clusters and
does not produce a hierarchy of subspace clusters. Starting with singleton clusters, HARP iteratively
merges clusters as long as the resulting cluster has a minimum number of relevant attributes. A
relevance score is introduced for attributes based on a threshold that starts at some harsh value and
is progressively decreased while clusters increase in size. By design, HARP has problems finding
low-dimensional clusters. The resulting dendrogram can be cut at any level in order to produce a
unique assignment of points to clusters.

SCHISM [120] mines interesting subspaces rather than subspace clusters; thus, it is not exactly
a subspace clustering algorithm but solves a related problem: find subspaces to look for clusters. It
employs a grid-like discretization of the database and applies a depth-first search with backtracking
to find maximally interesting subspaces.

FIRES [87] computes 1-dimensional clusters using any clustering technique the user is most
accustomed to in a first step. These 1-dimensional clusters are then merged by applying a sort of
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clustering of clusters. The similarity of clusters is defined by the number of intersecting points.
The resulting clusters represent hyper-rectangular approximations of the true subspace clusters. In
an optional postprocessing step, these approximations can be refined by applying any clustering
algorithm to the points included in the approximation projected onto the corresponding subspace.
Though using a bottom-up search strategy, FIRES is rather efficient because it does not employ a
worst-case exhaustive search procedure but a heuristic that is scaling polynomially in the dimen-
sionality of the data space. However, the user can expect to pay for this performance boost by a loss
of clustering accuracy. It cannot be specified whether the subspace clusters produced by FIRES may
overlap or not, this partly depends on the clustering algorithms used in the intermediate steps of the
framework. In general, the clusters may overlap but usually FIRES will not produce all clusters in
all subspaces.

P3C [102, 103] starts with 1-dimensional intervals that are likely to approximate higher-
dimensional subspace clusters. These intervals are merged using an APRIORI-like bottom-up search
strategy. The maximal-dimensional subspace cluster approximations resulting from this merging
procedure are reported as so-called cluster cores. In a refinement step, the cluster cores are refined
by using an EM-like clustering procedure. Each cluster core is taken as one initial cluster for the
EM algorithm. Points are assigned to the closest cluster core using the Mahalanobis distance. The
final output of P3C is a matrix that records for each data point its probability of belonging to each
projected cluster. From this matrix, a disjoint partitioning of the data points into clusters can be
obtained by assigning each point to the cluster with the highest probability. If overlapping clusters
are allowed, each point can be assigned to all clusters with a probability larger than 1/k. P3C does
not produce all clusters in all subspaces as any APRIORI-style algorithm does but reports only the
results of the final cluster computation step using EM.

Moise and Sander [101] provided a first attempt to formulate the search for statistically signif-
icant subspace clusters as an optimization problem. In addition, the authors proposed an iterative
algorithm called STATPC to search locally optimized solutions for this optimization problem.

Interesting recent developments combine techniques from ensemble clustering [58] with ideas
from subspace clustering, resulting in “subspace clustering ensembles” [41] or “projective clustering
ensembles” [64, 63, 62].

9.4.2 Clustering in Arbitrarily Oriented Subspaces

9.4.2.1 Cluster Model

A model for correlation clusters, i.e., clusters residing in arbitrarily-oriented subspaces, can be
based on a linear equation system describing the λ-dimensional hyperplane accommodating the
points of a correlation cluster C ⊂ R

d . This equation system will consist of d−λ equations for d
variables, and the affinity, e.g. given by the mean point xC = (x̄1 · · · x̄d)

T of all cluster members:

v1(λ+1) · (x1− x̄1)+ v2(λ+1) · (x2− x̄2)+ · · ·+ vd(λ+1) · (xd− x̄d) = 0
v1(λ+2) · (x1− x̄1)+ v2(λ+2) · (x2− x̄2)+ · · ·+ vd(λ+2) · (xd− x̄d) = 0

...
v1d · (x1− x̄1) + v2d · (x2− x̄2) + · · ·+ vdd · (xd− x̄d) = 0

(9.5)

where vi j is the value at row i, column j in the eigenvector matrix VC derived (e.g., by principle com-
ponent analysis (PCA) [83]) from the covariance matrix of C . The first λ eigenvectors (also called
strong eigenvectors) give the directions of high variance and span the hyperplane accommodating C .
The remaining d−λ weak eigenvectors span the perpendicular subspace. The corresponding linear
equation system can therefore also be given by

V̂
T

C · x = V̂
T

C · xC (9.6)
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The defect of V̂
T

C gives the number of free attributes, the remaining attributes may actually be in-
volved in linear dependencies. The equation system is by construction at least approximately ful-
filled for all points x ∈ C and hence provides an approximate quantitative model for the cluster [5].
The degree of allowed deviation of cluster members from the hyperplane and the method of assess-
ment differs from approach to approach. Hence, also in the area of arbitrarily-oriented clustering,
future research should consider refined and more concise models.

9.4.2.2 Basic Techniques and Example Algorithms

Basic techniques to find arbitrarily oriented subspaces accommodating clusters are principle
component analysis (PCA) and the Hough-transform. The first approach to this generalized pro-
jected clustering was the algorithm ORCLUS [13], using ideas similar to the axis-parallel approach
PROCLUS [12]. ORCLUS is a k-means–like approach, picking kc > k seeds at first, assigning the
data objects to these seeds according to a distance function that is based on an eigensystem of the
corresponding cluster assessing the distance along the weak eigenvectors only (i.e., the distance in
the projected subspace where the cluster objects exhibit high density). The eigensystem is iteratively
adapted to the current state of the updated cluster. The number kc of clusters is reduced iteratively
by merging closest pairs of clusters until the user-specified number k is reached. The closest pair of
clusters is the pair with the least average distance in the projected space (spanned by the weak eigen-
vectors) of the eigensystem of the merged clusters. Starting with a larger value for the parameter kc

increases the effectiveness, but also the runtime.
In contrast to ORCLUS, the algorithm [32] is based on a density-based clustering paradigm [88].

Thus, the number of clusters is not decided beforehand but clusters grow from a seed as long as a
density criterion is fulfilled. Otherwise, another seed is picked to start a new cluster. The density
criterion is a required minimal number of points within the neighborhood of a point, where the
neighborhood is ascertained based on distance matrices computed from the eigensystems of two
points. The eigensystem of a point p is based on the covariance matrix of the ε-neighborhood of p
in Euclidean space. A parameter δ discerns large from small eigenvalues in the eigenvalue matrix
Ep; then large eigenvalues are replaced by 1 and small eigenvalues by a value κ� 1. Using the
adapted eigenvalue matrix E′p, a correlation similarity matrix for p is obtained by V p ·E′p ·VT

p. This
matrix is then used to derive the distance of two points, q and p, w.r.t. p, as the general quadratic
form distance:

√
(p− q)T ·V p ·E′p ·VT

p · (p− q). (9.7)

Applying this measure symmetrically to q and choosing the maximum of both distances helps to
decide whether both points are connected by a similar correlation of attributes and, thus, are similar
and belong to each other’s correlation neighborhood. Regarding the choice of parameters, 4C suffers
from similar problems as PreDeCon, especially from the hard to guess neighborhood size ε that is
used in both the Euclidean full-dimensional neighborhood and the adapted subspace neighborhood
(recall Aspect 5 of the curse of dimensionality).

As a hierarchical approach, HiCO [8] defines the distance between points according to their local
correlation dimensionality and subspace orientation and uses hierarchical density-based clustering
[16] to derive a hierarchy of correlation clusters.

COPAC [7] is based on ideas similar to 4C but disposes of some problems such as meaningless
similarity matrices due to sparse ε-neighborhoods. Instead of the problematic ε-range queries, CO-
PAC is using a fixed number k of neighbors for the computation of local data characteristics—which
raises the question of how to choose a good value for k. However, at least choosing k > λ ensures a
meaningful definition of a λ-dimensional hyperplane. Essentially, choosing k large enough but not
larger than the expected minimum cluster size is a reasonable guideline. Thus, the point taken in
COPAC that choosing the neighborhood in terms of the number of points rather than their distance,
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is worth considering. The main point in COPAC, however, is a considerable speed-up by partition-
ing the data set based on the observation that a correlation cluster should consist of points exhibiting
the same local correlation dimensionality (i.e., the same number of strong eigenvectors in the co-
variance matrix of the k nearest neighbors). Thus, the search for clusters involves only the points
with equal local correlation dimensionality. By creating one partition for each occurring correlation
dimensionality, the time complexity rapidly decreases on average by getting rid of a squared factor
d2 in a d-dimensional data set.

Another related algorithm is ERiC [6], also deriving a local eigensystem for a point based on
the k nearest neighbors in Euclidean space. Here, the neighborhood criterion for two points in a
DBSCAN-like procedure is an approximate linear dependency and the affine distance of the corre-
lation hyperplanes as defined by the strong eigenvectors of each point. As in COPAC, the property
of clusters to consist of points exhibiting an equal local correlation dimensionality is exploited for
the sake of efficiency. Furthermore, the resulting set of clusters is also ordered hierarchically to
provide the user with a hierarchy of subspace clusters. In finding and correctly assigning complex
patterns of intersecting clusters, COPAC and ERiC improve considerably over ORCLUS and 4C.

There are further examples of algorithms based on PCA [33, 95, 139, 20]. Some similar methods
can be found in the survey of Vidal [128]. Many of these methods based on PCA use the eigensystem
to adapt similarity measures in a soft way and, hence, can also be seen as variants of EM-clustering
[40] (as far as they employ the partitioning clustering paradigm). A general framework has been
proposed to increase the robustness of PCA-based correlation clustering algorithms [89].

The algorithm CASH [2, 1] is finding arbitrarily oriented subspace clusters by means of the
Hough-transform [77, 44]. The Hough-transform was originally designed to map the points from
a 2-dimensional data space (also called picture space) of Euclidean coordinates (e.g., pixels of an
image) into a parameter space. The parameter space represents all possible 1D lines in the original
2D data space. In principle, each point of the data space is mapped into an infinite number of points
in the parameter space which is not materialized as an infinite set but instead as a trigonometric
function in the parameter space. Each function in the parameter space represents all lines in the
picture space crossing the corresponding point in the data space. An intersection of two curves in
the parameter space indicates a line through the two corresponding points in the picture space.

The objective of a clustering algorithm is to find intersections of many curves in the parameter
space representing lines through many database objects. The key feature of the Hough-transform is
that the distance of the points in the original data space is not considered any more. Objects can be
identified as associated to a common line even if they are far apart in the original feature space. As a
consequence, the Hough-transform is a promising candidate for developing a principle for subspace
analysis that does not require the locality assumption and, thus, enables a global subspace cluster-
ing approach. CASH [2, 1] follows a grid-based approach to identify dense regions in the parameter
space, successively attribute-wise dividing the space and counting the functions intersecting each of
the resulting hyperboxes. In a depth-first search, most promising paths in the search tree are searched
first. A hyperbox is divided along one axis if it contains enough functions to allow for dense child
boxes in turn. If a dense subspace is found, the algorithm is applied on the data set accounted for
by the corresponding hyperbox projected on the corresponding subspace. This recursive descent al-
lows for finding lower-dimensional subspace clusters and implicitly yields a hierarchy of arbitrarily
oriented subspaces and their accommodated clusters. However, if there are no correlation clusters in
the original data space and, hence, no dense regions in the parameter space (but still, the hyperboxes
remain dense enough to qualify as promising candidates), the complete search space is enumer-
ated resulting in a worst case time complexity exponential in d. Probably, some more sophisticated
heuristic may make this promising idea more practical for really high-dimensional data.

The Hough-transform is an example of using a technique in analysis of high-dimensional data
that was originally developed in the context of image analysis (hence for 2-dimensional data). Other
examples are the usage of image-filter techniques [35]. Occasionally, RANSAC [51] or other ran-
dom sampling techniques have been used [74, 75].
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As mentioned, approaches to clustering in arbitrarily oriented subspaces are also known as “cor-
relation clustering” [32, 141]. It should be noted, though, that this term is ambiguously used also
for a completely different problem in machine learning where a partitioning of the data correlate as
much as possible with a pairwise similarity function f learned from past data [22].

9.5 Open Questions and Current Research Directions

Some interesting current research directions have found attention in the workshop series on
“Discovering, Summarizing and Using Multiple Clusterings” (MultiClust) at KDD 2010 [50], at
ECML/PKDD 2011 [109], and at SDM 2012 [110]. Intriguingly, problems known in subspace clus-
tering meet similar problems in other areas such as ensemble clustering, alternative clustering, or
multiview clustering [93]. Such problems common to all of these areas are (i) how to treat diversity
of clustering solutions (are diverse clustering solutions to be unified or to be presented individu-
ally?), (ii) how to effectively summarize and present diversity to a user of clustering algorithms,
(iii) how to treat redundancy of clusters, and (iv) how to assess similarity between multiple clus-
tering solutions. Also, relationships to frequent pattern mining, which was godfather at the origin
of subspace clustering, have been discussed from a more recent point of view on research in both
fields [129].

As we have pointed out, redundancy of subspace cluster results is a problem inherited from the
bottom-up strategy of the very first approaches, borrowed from frequent pattern mining. For current
research on subspace clustering, getting rid of too much redundancy is a major topic [19, 70, 105].
Research on multiview clustering [28, 36, 80, 72] seems to approach the problem from the opposite
direction but eventually is aiming at the same issue, seeking to allow some redundancy at least
in order to not exclude possibly interesting concepts although they might partially have a certain
overlap with other concepts. A related though distinct way of tackling the problem of redundancy
and distinctiveness of different clusters is to seek diverse clusterings by directly assessing a certain
notion of distance between different partitions (so-called alternative clustering approaches [60, 61,
21, 38, 118, 39, 37, 116]).

A question related to the redundancy issue concerns the appropriate density level. This is a gen-
eral problem also in density-based clustering [88], but for clustering in subspaces, the problem is
aggravated. Setting a fixed density threshold for an APRIORI-style subspace search is not appropri-
ate for all possible subspaces. Consider for example some CLIQUE-style grid approach: the volume
of a hypercube increases exponentially with the dimensionality; hence, the density decreases rapidly.
As a consequence, any chosen threshold introduces a bias to identify clusters of (up to) a certain
dimensionality. This observation motivates research on adaptive density thresholds [18, 106]. When
using Euclidean distance (L2), the appropriate choice of an ε-range becomes extremely challenging
as well, not only for subspace, but also for projected clustering or arbitrarily oriented clustering, due
to the rather counter-intuitive behavior of the volume of the hypersphere with increasing dimensions
(which we discussed as Aspect 5 of the curse of dimensionality). Choosing the size of the neighbor-
hood in terms of objects rather than in terms of a radius (i.e., using k nearest neighbors instead of
an ε-range query) has been advocated as a workaround for this problem [7], to solve at least certain
aspects such as having a well-defined (nonempty) set of objects for the density estimation or for the
estimation of spatial characteristics of the neighborhood.

A rather unclear problem in arbitrarily oriented clustering is the significance of arbitrarily ori-
ented clusters. (As discussed above, for axis-parallel subspace clustering at least some first steps
have been taken [101].) Also for overlapping clusters, a common result in subspace clustering but
also in other domains, a proper evaluation procedure is not known. Different approaches to evalu-
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ation have different weaknesses and all neglect certain requirements. This problem is sketched and
discussed in more detail by Färber et al. [49]. Only some preliminary first steps toward improved
evaluation methodology can be found in the literature [115, 92, 69, 9].

As a consequence, a comprehensive study experimentally comparing the merits of a broad se-
lection of the different algorithms is still missing in the literature. There are only two preliminary
attempts to compare a certain selection of subspace clustering algorithms [104, 108], where the ap-
plied evaluation procedures are not entirely convincing. Some of the algorithms discussed in this
chapter are available in a unified implementation in the ELKI3 framework [9].

Despite the unresolved issues in the basic techniques for real-valued feature vectors, there are
already attempts to generalize subspace clustering for applications to more complex data. So-called
3D data add a third component (e.g., time) to objects and attributes. This means, instead of a data
matrix, a data tensor of 3rd order is mined [140, 123, 81, 124]. While 3D data applications do
have complete access to the third component (such as different points in time), applications to dy-
namic or stream data usually do not. These require a clustering algorithm to grasp the (subspace-)
clustering structure with a single scan of the stream (and possibly some postprocessing on a sum-
mary structure). There are also first attempts to address subspace clustering in dynamic or stream
data [10, 138, 86, 112]. Other challenges are given when the data are not of (purely) numeric na-
ture but are, completely or partially, categorical [137, 107], or when the data are uncertain [71].
When some objects are labeled, this information can be used for semisupervised subspace clus-
tering [134, 131, 56]. Lately, some subspace clustering approaches can use additionally available
graph information simultaneously with the clustering process [68, 67]. A recent survey discusses
such problems and approaches as “enhanced subspace clustering” [122].

9.6 Conclusion

Research in data mining and related disciplines such as statistics, pattern recognition, machine
learning, and also applied sciences (e.g., bioinformatics) has led to a large variety of clustering
techniques and also addressed the specialized problem of clustering high-dimensional data. New
approaches to that problem are proposed in numerous conferences and journals every year. However,
many researchers agree that there is no such thing as a general clustering technique suitable to all
problems and universally applicable to arbitrary data sets. The aim of the concrete task of data
analysis influences the choice of the clustering algorithm and obviously also the interpretation of
the results of the clustering process. This is true for clustering in general, but even more so when
facing tasks involving high-dimensional data.

In this chapter, in order to guide the readers to the literature most appropriate to the task they
are facing, we distinguished different problem settings, namely, axis-parallel subspace clustering
with the families of “subspace clustering” (in a narrower sense), “(soft) projected clustering,” and
an increasing number of “hybrid” approaches; as well as clustering in arbitrarily oriented subspaces
(also called “correlation clustering”). Among these fields, one can find different problem settings
addressed by “bi-clustering” approaches. All these different families address different aspects of
the so-called “curse of dimensionality.” The curse of dimensionality, however, is nothing we could
resolve. There are different aspects of this “curse” and, usually, if one of these aspects is taken into
consideration by some approach, other aspects will keep haunting the researcher.

Different approaches come with a different bias. The domain expert should decide which bias—
if any—is most meaningful in a given application. For example, it could be meaningful in a given
application to specifically search for axis-parallel subspace clusters. This means, in turn, the use of

3http://elki.dbs.ifi.lmu.de/
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algorithms (e.g., P3C or of “soft” projected clustering algorithms) is discouraged in such a scenario
or otherwise the results are to be closely inspected, since some approaches can possibly result in
arbitrarily oriented clusters although the algorithms are designed to search for axis-parallel ones.
Hence, the choice of a clustering approach as adequate to the problem at hand should be based
on knowledge of the basic principles and heuristic restrictions upon which the particular cluster-
ing algorithm is based. Similarly, the interpretation of clustering results should be guided by the
knowledge of the kinds of patterns a particular algorithm can or cannot find.

The family of axis-parallel subspace and projected clustering algorithms assumes that data ob-
jects belonging to the same cluster are located near each other in Euclidean space but allows assess
to the corresponding distance of objects w.r.t. subsets of the attributes due to the problem of irrel-
evant attributes. Pattern-based approaches often disregard the assumption that a cluster consists of
objects that are near each other in the Euclidean space or some Euclidean subspace and, instead,
aim at collecting objects following a similar behavioral pattern over a subset of attributes. These
patterns relate to simple positive correlations among the considered attributes. Correlation cluster-
ing algorithms generalize this approach to arbitrary complex positive or negative correlations but
often assume, again, a certain density of the points in Euclidean space, too. Finally, let us note
that the different notions of similarity employed by the different classes of algorithms usually can-
not be used interchangeably. Rather the algorithms of each class are more or less tailored to the
class-specific notions of similarity. The user should not ask: “Which is the best clustering algorithm
ever?” but rather: “Which clustering algorithm (with its assumptions and restrictions) is best suited
for my problem?” With this chapter it was intended to give some useful guidelines to this end.
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10.1 Introduction

In recent years, advances in hardware technology have allowed us to automatically record trans-
actions and other pieces of information of everyday life at a rapid rate. Such processes generate huge
amounts of online data which grow at an unlimited rate. These kinds of online data are referred to
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as data streams. The issues on management and analysis of data streams have been researched
extensively in recent years because of their emerging, imminent, and broad applications [1].

Many important problems such as clustering and classification have been widely studied in the
data mining community. The problem has been investigated classically in the context of a wide vari-
ety of methods such as the k-means, k-medians, density-based methods, and probabilistic clustering
methods. A detailed discussion of different kinds of clustering methods may be found in [42, 44].
Most of the classical methods in the literature are not necessarily designed in the context of very
large data sets and data streams. The stream scenario brings a unique set of challenges with it, which
cannot be addressed by most of the classical methods proposed in [42, 44].

The specific challenges in the context of stream scenario are as follows:

• Streams typically have massive volume, and it is often not possible to store the data explicitly
on disk. Therefore, the data needs to be processed in a single pass, in which all the summary
information required for the clustering process needs to be stored and maintained. The time
needed to process each record must be small and constant. Otherwise, the model construction
process would never be able to catch up with the stream.

• The patterns in the data stream may continuously evolve over time [3]. From a stream mining
perspective, this implies that the underlying cluster models need to be continuously updated.
A usable model must be available at any time, because the end of stream computation may
never be reached, and an analyst may require results at any point in time.

• Different domains of data may pose different challenges to data stream clustering. For ex-
ample, in a massive domain of discrete attributes, it may not be possible to store summary
representations of the clusters effectively without increasing the computational complexity of
the problem significantly. Therefore, space-efficient methods need to be designed for massive-
domain clustering of data streams.

Clearly, the issue of scalability is a primary one from the perspective of stream processing, but
by no means is it the only issue. In the context of stream processing, temporal locality is also quite
important, because the underlying patterns in the data may evolve, and therefore, the clusters in the
past history may no longer remain relevant to the future. The issue of scalability also arises in the
context of data clustering of very large data sets [31, 37, 51, 63]. In such cases, the major constraint
is that the algorithm should require no more than one (or at least a small constant number of)
pass(es) over the data. This is because I/O operations are traditionally quite expensive in databases,
as compared to main memory operations. Therefore, the optimum performance is often achieved,
when the underlying algorithm is designed to minimize the number of passes over the data, rather
than minimize the number of CPU operations. In the context of data streams, temporal locality
issues are also very important and should not be ignored in the clustering process. Therefore, a
variety of stream clustering algorithms attempt to take such temporal issues into account with the
use of snapshot-based methods, decay-based techniques, windowing, etc. We will make an effort to
point out such techniques where they are used.

This chapter is organized as follows. In the next section, we will study clustering methods which
are based on the k-means or the k-medians methodology. In Section 10.3, we will study density-
based methods for stream clustering. Section 10.4 discusses probabilistic algorithms for clustering
data streams. High dimensional streaming algorithms are introduced in Section 10.5. Methods for
discrete and categorical stream clustering introduced in Section 10.6. Methods for clustering text
streams are discussed in Section 10.7. Other scenarios for data stream clustering are discussed in
Section 10.8. The conclusions and summary are presented in Section 10.9.
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10.2 Methods Based on Partitioning Representatives

A number of methods for clustering are based on partitioning representatives. These include
methods such as the k-means– and k-medians–based methods. In these techniques, the clusters are
defined by a set of data points, which are drawn either directly from the data set or otherwise.
The cluster membership of the remaining points are defined by assigning them to their closest
representative. In the classical literature, such methods are iterative and require multiple passes
over the data in order to estimate the representatives accurately. However, in the stream scenario,
multiple passes are not required because a sufficient amount of data is available for estimating the
representatives efficiently in even one pass of the data. In this section, we will first discuss the stream
clustering methods, which are based on the partitioning methodology.

10.2.1 The STREAM Algorithm

The STREAM framework [36, 53] is based on the k-medians clustering methodology. The core
idea is to break the stream into chunks, each of which is of manageable size and fits into main
memory. Thus, for the original data stream D, we divide it into chunks D1 . . .Dr . . ., each of which
contains at most m data points. The value of m is defined on the basis of a predefined memory
budget.

Since each chunk fits in main memory, a variety of more complex clustering algorithms can be
used for each chunk. The methods in [36, 53] use a variety of different k-medians–style algorithms
for this purpose. The choice the subroutine is crucial to the quality of the underlying algorithm,
and will be discussed in detail below. In k-medians algorithms, we pick a set S of k representatives
from each chunk Di, so that each point in Di is assigned to its closest representatives. The goal is
to pick the representatives in such a way, so as to minimize the Sum of Squared Error (SSE) of the
assigned data points from these representatives. For a set of m data points X1 . . .Xm in S , and a set
of k representatives Y = Y1 . . .Yk, the objective function is defined as follows:

Ob jective(S ,Y ) = ∑
Xi∈S ,Xi⇐Yji

dist(Xi,Yji) (10.1)

The assignment operator is denoted by ⇐ in the above. The sum of squared distances between a
pair of records is denoted by dist(·, ·).

After the first chunk has been processed, we now have a set of k medians, which are stored away.
The number of points assigned to each representative is stored as a “weight” for that representative.
Such representatives are considered level-1 representatives. The next chunk is independently pro-
cessed in order to find its k optimal median representatives. Thus, at the end of processing the
second chunk, we will have 2 · k such representatives. Thus, the memory requirement for storing
the representatives also increases with time, and after processing r chunks, we will have a total of
r · k representatives. When the number of representatives exceeds m, a second level of clustering
is applied to this set of r · k points, except that the stored weights on the representatives are also
used in the clustering process. The resulting representatives are stored as level-2 representatives.
In general, when the number of representatives of level-p reaches m, they are converted to k level-
(p+ 1) representatives. Thus, the process will result in increasing the number of representatives at
all levels, though the number of representatives in higher levels will increase exponentially slower
than the lower levels. At the end of processing the entire data stream (or when a specific need for
the clustering result arises), all remaining representatives of different levels are clustered together
in one final application of the k-medians subroutine.

Clearly, the choice of the particular algorithm which is used for the k-medians problem is critical
in providing an effective solution. The other factor which impacts the quality of the final output is
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the effect of the problem decomposition into chunks followed by hierarchical clustering. How does
such a problem decomposition affect the final quality of the output? It has been shown in [53], that
the final quality of the output cannot be arbitrarily worse than the particular subroutine which is
used at the intermediate stage for k-medians clustering.

Lemma 10.2.1 Let the subroutine used for k-medians clustering in the STREAM algorithm have
an approximation factor of c. Then, the STREAM algorithm will have an approximation factor of
no worse than 5 · c.

The work in [53] extends the original work in [36] by designing a more effective subroutine for
the k-medians problem. This solution is based on the problem of facility location. We note that
the Lagrangian relaxation of the clustering problem can be modeled as a facility location problem,
wherein we relax the constraint on the number of representatives and incorporate it into the objective
function with a Lagrangian multiplier. These representative are analogous to facilities in the context
of the facility location problem, where the cost associated with a representative, can be physically
visualized as the cost of “building” a facility, in order to service its assigned clients (data points).
Thus, we add a cost λ (Lagrangian parameter) for each facility included. The cost of assignments is
the same as previously. Thus, the new objective function in terms of the set of facilities Y may be
expressed as follows:

Ob jective(S ,Y ) = ∑
Xi∈S ,Xi⇐Yji

dist(Xi,Yji)+λ · |Y | (10.2)

Unlike the previous case, the cardinality of Y may not necessarily be k at the optimal value of
the objective function, unless the value of the Lagrangian parameter (or facility cost) λ is picked
appropriately. In order to use this approach to solve the k-medians subroutine, two steps are needed
[53]:

• Given a particular value of λ, how do we determine the optimal objective function value?

• How do we determine the value of λ in such a way that the number of facilities in the optimal
solution is k?

The latter step of the solution is easy. As long as the optimal number of facilities changes monoton-
ically with λ, one can use binary search on λ in order to determine the appropriate value. It is shown
in [53] that the optimal number of facilities indeed changes monotonically with k.

In order to solve the first part of the problem, a local search algorithm called LSEARCH is
proposed. In this algorithm, we start off with a current set of open facilities O, and a particular
assignment of data points to these facilities (which is not necessarily optimal). Then, we repeat-
edly examine a randomly selected facility x, which is currently not included in O, and compute the
improvement in the objective function by adding x to O and closing other facilities. This improve-
ment in objective function is referred to as gain(x). Certain rules of reassignment of data points to
facilities and closing facilities are used for this purpose, as discussed below.

Specifically, any data point is allowed to be reassigned to x, when x is added to O (if there
is an improvement), and it is also allowed to close a facility y and assign all of its points to x.
The latter case would result in a gain, as long as the cost of the reassignment together to x is no
greater than the savings from closing y. The cost of opening x is always subtracted from the overall
gains. Thus, the value of gain(x) may be positive or negative. The facility x is added to O, only if
gain(x) > 0. This process is repeated over all facilities in random order, and the final set of open
facilities and reassignments represents one possible locally optimal solution. This process would
need to be repeated Ω(log(m)) times in order to provide guarantees on the underlying quality.

A major limitation of the STREAM algorithm is that it is not particularly sensitive to evolution
in the underlying data stream. In many cases, the patterns in the underlying stream may evolve and
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change significantly. Therefore, it is critical for the clustering process to be able to adapt to such
changes and provide insights over different time horizons. In this sense, the CluStream algorithm is
able to provide significantly better insights at differing levels of temporal granularity.

10.2.2 CluStream: The Microclustering Framework

Since stream data naturally imposes a one-pass constraint on the design of the algorithms, it
becomes more difficult to provide such a flexibility in computing clusters over different kinds of
time horizons using conventional algorithms. For example, a direct extension of the stream-based
k-means algorithm in [53] to such a case would require a simultaneous maintenance of the interme-
diate results of clustering algorithms over all possible time horizons. Such a computational burden
increases with progression of the data stream and can rapidly become a bottleneck for online imple-
mentation. Furthermore, in many cases, an analyst may wish to determine the clusters at a previous
moment in time, and compare them to the current clusters. This requires even greater bookkeeping
and can rapidly become unwieldy for fast data streams.

Therefore, a natural design to stream clustering would separate out the process into an online
microclustering component and an offline macroclustering component. The online micro-clustering
component requires a very efficient process for storage of appropriate summary statistics in a fast
data stream. The offline component uses these summary statistics in conjunction with other user
input in order to provide the user with a quick understanding of the clusters whenever required.

It is assumed that the data stream consists of a set of multidimensional records X1 . . .Xk . . .
arriving at time stamps T1 . . .Tk . . .. Each Xi is a multidimensional record containing d dimensions
which are denoted by Xi = (x1

i . . .x
d
i ).

The micro-clustering framework is designed to capture summary information about the data
stream, in order to facilitate clustering and analysis over different time horizons. This summary
information is defined by the following structures:

• Microclusters: We maintain statistical information about the data locality in terms of micro-
clusters. These microclusters are defined as a temporal extension of the cluster feature vector
[63]. The additivity property of the microclusters makes them a natural choice for the data
stream problem.

• Pyramidal Time Frame: The microclusters are stored at snapshots in time which follow a
pyramidal pattern. This pattern provides an effective trade-off between the storage require-
ments and the ability to recall summary statistics from different time horizons.

The summary information in the microclusters is used by an offline component which is depen-
dent upon a wide variety of user inputs such as the time horizon or the granularity of clustering. We
will first begin by defining the concept of microclusters and pyramidal time frame more precisely.

10.2.2.1 Microcluster Definition

Microclusters are defined as follows.

Definition 10.2.1 A microcluster for a set of d-dimensional points Xi1 . . .Xin with time stamps
Ti1 . . .Tin is the (2 · d + 3) tuple (CF2x,CF1x,CF2t ,CF1t ,n), wherein CF2x and CF1x each cor-
respond to a vector of d entries. The definition of each of these entries is as follows:

• For each dimension, the sum of the squares of the data values is maintained in CF2x. Thus,
CF2x contains d values. The p-th entry of CF2x is equal to ∑n

j=1(x
p
i j
)2.

• For each dimension, the sum of the data values is maintained in CF1x. Thus, CF1x contains
d values. The p-th entry of CF1x is equal to ∑n

j=1 xp
i j

.
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• The sum of the squares of the time stamps Ti1 . . .Tin is maintained in CF2t .

• The sum of the time stamps Ti1 . . .Tin is maintained in CF1t .

• The number of data points is maintained in n.

The data stream clustering algorithm proposed in [5] can generate approximate clusters in any user-
specified length of history from the current instant. This is achieved by storing the microclusters at
particular moments in the stream which are referred to as snapshots. At the same time, the current
snapshot of microclusters is always maintained by the algorithm. Consider for example, the case
when the current clock time is tc and the user wishes to find clusters in the stream based on a history
of length h. Then, the macroclustering algorithm will use some of the additive properties of the
microclusters stored at snapshots tc and (tc−h) in order to find the higher level clusters in a history
or time horizon of length h. Of course, since it is not possible to store the snapshots at each and
every moment in time, it is important to choose particular instants of time at which it is possible to
store the state of the microclusters so that clusters in any user specified time horizon (tc− h, tc) can
be approximated. This was achieved in [5] with the use of the concept of a pyramidal time frame.

10.2.2.2 Pyramidal Time Frame

In this technique, the snapshots are stored at differing levels of granularity depending upon the
recency. Snapshots are classified into different orders which can vary from 1 to log(T ), where T is
the clock time elapsed since the beginning of the stream. The order of a particular class of snapshots
defines the level of granularity in the time at which the snapshots are maintained. The snapshots of
different order are maintained as follows:

• Snapshots of the i-th order occur at time intervals of αi, where α is an integer and α ≥ 1.
Specifically, each snapshot of the i-th order is taken at a moment in time when the clock value
is exactly divisible by αi.

• At any given moment in time, only the last αl + 1 snapshots of order i are stored.

The above definition allows for considerable redundancy in storage of snapshots. For example, the
clock time of 8 is divisible by 20, 21, 22, and 23 (where α = 2). Therefore, the state of the micro-
clusters at a clock time of 8 simultaneously corresponds to order 0, order 1, order 2, and order 3
snapshots. From an implementation point of view, a snapshot needs to be maintained only once. The
following observations are true:

• For a data stream, the maximum order of any snapshot stored at T time units since the begin-
ning of the stream mining process is logα(T ).

• For a data stream the maximum number of snapshots maintained at T time units since the
beginning of the stream mining process is (αl + 1) · logα(T ).

• For any user specified time window of h, at least one stored snapshot can be found within
(1+ 1/αl−1) units of the current time.

While the first two results are quite easy to see, the last one needs to be proven formally [5]. We
summarize this result as follows:

Lemma 10.2.2 Let h be a user-specified time horizon, tc be the current time, and ts be the time of
the last stored snapshot of any order just before the time tc− h. Then tc− ts ≤ (1+ 1/αl−1) ·h.
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Order of
Snapshots

Clock Times (Last 5 Snapshots)

0 55 54 53 52 51
1 54 52 50 48 46
2 52 48 44 40 36
3 48 40 32 24 16
4 48 32 16
5 32

TABLE 10.1: An example of snapshots stored for α = 2 and l = 2

Proof: See [5].
For larger values of l, the time horizon can be approximated as closely as desired. For example,

by choosing l = 10, it is possible to approximate any time horizon within 0.2%, while a total of
only (210 + 1) · log2(100 ∗ 365 ∗ 24 ∗ 60 ∗ 60)≈ 32343 snapshots are required for 100 years. Since
historical snapshots can be stored on disk and only the current snapshot needs to be maintained in
main memory, this requirement is quite feasible from a practical point of view. It is also possible to
specify the pyramidal time window in accordance with user preferences corresponding to particular
moments in time such as beginning of calendar years, months, and days.

In order to clarify the way in which snapshots are stored, let us consider the case when the
stream has been running starting at a clock time of 1, and a use of α = 2 and l = 2. Therefore
22 + 1 = 5 snapshots of each order are stored. Then, at a clock time of 55, snapshots at the clock
times illustrated in Table 10.1 are stored.

We note that a large number of snapshots are common among different orders. From an imple-
mentation point of view, the states of the microclusters at times of 16, 24, 32, 36, 40, 44, 46, 48, 50,
51, 52, 53, 54, and 55 are stored. It is easy to see that for more recent clock times, there is less dis-
tance between successive snapshots (better granularity). We also note that the storage requirements
estimated in this section do not take this redundancy into account. Therefore, the requirements
which have been presented so far are actually worst-case requirements.

10.2.2.3 Online Clustering with CluStream

The microclustering phase is the online statistical data collection portion of the algorithm. The
aim is to maintain statistics at a sufficiently high level of (temporal and spatial) granularity so that it
can be effectively used by the offline components such as horizon-specific macroclustering as well
as evolution analysis. The algorithm works in an iterative fashion, by always maintaining a current
set of microclusters. It is assumed that a total of q microclusters are stored at any moment by the
algorithm. We will denote these microclusters by M1 . . .Mq. Associated with each microcluster i,
we create a unique id whenever it is first created. If two microclusters are merged (as will become
evident from the details of our maintenance algorithm), a list of ids is created in order to identify the
constituent microclusters. The value of q is determined by the amount of main memory available
in order to store the microclusters. Therefore, typical values of q are significantly larger than the
natural number of clusters in the data but are also significantly smaller than the number of data
points arriving in a long period of time for a massive data stream. These microclusters represent the
current snapshot of clusters which change over the course of the stream as new points arrive. Their
status is stored away on disk whenever the clock time is divisible by αi for any integer i. At the
same time any microclusters of order r which were stored at a time in the past more remote than
αl+r units are deleted by the algorithm.
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Whenever a new data point Xik arrives, the microclusters are updated in order to reflect the
changes. Each data point needs to be either absorbed by a microcluster or put in a cluster of its own.
The first preference is to absorb the data point into a currently existing microcluster. The distance
of each data point to the microcluster centroids M1 . . .Mq is determined. The distance value of the
data point Xik to the centroid of the microcluster M j is denoted by dist(M j ,Xik). Since the centroid
of the microcluster is available in the cluster feature vector, this value can be computed relatively
easily. This distance is used to compute the distance of the cluster Mp to the data point Xik . In many
cases, the point Xik does not naturally belong to the cluster Mp. These cases are as follows:

• The data point Xik corresponds to an outlier.

• The data point Xik corresponds to the beginning of a new cluster because of evolution of the
data stream.

While the two cases above cannot be distinguished until more data points arrive, the data point
Xik needs to be assigned a (new) microcluster of its own with a unique id. In order to make this
decision, the cluster feature vector of Mp is used to decide if this data point falls within the maximum
boundary of the microcluster Mp. If so, then the data point Xik is added to the microcluster Mp using
the CF additivity property. The maximum boundary of the microcluster Mp is defined as a factor of
t of the RMS deviation of the data points in Mp from the centroid. We define this as the maximal
boundary factor. We note that the RMS deviation can be defined only for a cluster with more than
one point. For a cluster with only one previous point, the maximum boundary is defined in a heuristic
way. Specifically, it is chosen to be r times that of the next closest cluster.

If the data point does not lie within the maximum boundary of the nearest microcluster, then
a new microcluster must be created containing the data point Xik . This newly created microcluster
is assigned a new id which can identify it uniquely at any future stage of the data steam process.
However, in order to create this new microcluster, the number of other clusters must be reduced
by one in order to create memory space. This can be achieved by either deleting an old cluster or
joining two of the old clusters. Our maintenance algorithm first determines if it is safe to delete any
of the current microclusters as outliers. If not, then a merge of two microclusters is initiated.

The first step is to identify if any of the old microclusters are possibly outliers which can be
safely deleted by the algorithm. While it might be tempting to simply pick the microcluster with
the fewest number of points as the microcluster to be deleted, this may often lead to misleading
results. In many cases, a given microcluster might correspond to a point of considerable cluster
presence in the past history of the stream, but may no longer be an active cluster in the recent stream
activity. Such a microcluster can be considered an outlier from the current point of view. An ideal
goal would be to estimate the average timestamp of the last m arrivals in each microcluster, and
delete the microcluster with the least recent timestamp. While the above estimation can be achieved
by simply storing the last m points in each microcluster, this increases the memory requirements of
a microcluster by a factor of m. Such a requirement reduces the number of microclusters that can be
stored by the available memory and therefore reduces the effectiveness of the algorithm.

It is also necessary to approximate the average timestamp of the last m data points of the cluster
M . This is achieved by using the data about the timestamps stored in the microcluster M . We
note that the timestamp data allows the calculation of the mean and standard deviation1 of the
arrival times of points in a given microcluster M . Let these values be denoted by μM and σM
respectively. Then, the time of arrival of the m/(2 ·n)-th percentile of the points in M is computed
under the assumption that the timestamps are normally distributed. This timestamp is used as the
approximate value of the recency. We shall call this value the relevance stamp of cluster M . When
the smallest such stamp of any microcluster is below a user-defined threshold δ, it can be eliminated

1The mean is equal to CF1t/n. The standard deviation is equal to
√

CF2t/n− (CF1t/n)2.
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and a new microcluster can be created with a unique id corresponding to the newly arrived data
point Xik .

In some cases, none of the microclusters can be readily eliminated. This happens when all rel-
evance stamps are sufficiently recent and lie above the user-defined threshold δ. In such a case, the
closest microclusters are merged. The new microcluster no longer corresponds to one id. Instead, an
idlist is created which is a union of the the ids in the individual microclusters. Thus, any microclus-
ter which is the result of one or more merging operations can be identified in terms of the individual
microclusters merged into it.

While the above process of updating is executed at the arrival of each data point, an additional
process is executed at each clock time which is divisible by αi for any integer i. At each such time,
the current set of microclusters is stored on disk, together with its id list, and indexed by its time
of storage. The least recent snapshot of order i is deleted, if αl + 1 snapshots of such order have
already been stored on disk, and if the clock time for this snapshot is not divisible by αi+1. In the
latter case, the snapshot continues to be a viable snapshot of order (i+ 1). These microclusters can
then be used to form higher level clusters or an evolution analysis of the data stream.

It should be pointed out that the microclustering model can be used in conjunction with fast
indexing structures in order to allow anytime stream mining. This is particularly important in the
context of data streams, since the stream speed is not known on an a priori basis. A particular
approach along this direction is the ClusTree method [46], which allows the adaptation of the gran-
ularity of the cluster model to the stream speed. The broader principle is that it is possible to follow
the anytime paradigm to spend as much (or as little) time as dynamically available to digest new
events.

While the use of snapshots is a natural way for examining the evolving stream at a variety of
different granularities, other methods are possible for capturing the evolution of the data stream
by incorporating decay into the microclusters [6], or by using sliding windows in conjunction with
an exponential histogram of the temporal cluster feature vector [65]. These methods are generally
preferable, if the level of evolution in the data stream is known in advance. These different methods
have differing trade-offs between memory requirements and flexibility, but their goals are similar in
terms of capturing the evolution of the data stream.

10.3 Density-Based Stream Clustering

Density-based methods [18, 30] construct a density profile of the data for clustering purposes.
Typically, kernel density estimation methods [58] are used in order to construct a smooth density
profile of the underlying data. Subsequently, the data are separated out into density-connected re-
gions. These density connected regions may be of different shapes and sizes. One of the advantages
of density-based algorithms is that an implicit shape is not assumed for the clusters. For example,
when Euclidian distance functions are used, it is always assumed that the clusters have spheri-
cal shapes. Similarly, the Manhattan metric assumes that the clusters are of a diamond shape. In
density-based clustering, connected regions of high density may often have arbitrary shapes. An-
other aspect of density-based clustering is that it does not predecide the number of clusters. Rather, a
threshold on the density is used in order to determine the connected regions. Of course, this changes
the nature of the parameter which needs to be presented to the algorithm (density threshold instead
of number of clusters), but it does not necessarily make the approach parameter-free.

The main challenge in the stream scenario is to construct density-based algorithms which can
be efficiently executed in a single pass of the data, since the process of density estimation may be
computationally intensive. There are two broad classes of techniques:
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• The first class of techniques extends the microclustering technique to this case, by relaxing
the constraint on the number of microclusters, and imposing a constraint on the radius and
“weight” of each microcluster. The dense regions are generated by connecting together the
dense microclusters which satisfy a condition on connectivity similar to that in [30].

• The second class of techniques divides the data space into grids and then determines the dense
grids. The dense regions in the data are reconstructed by piecing together the connected dense
grids.

We will discuss both these classes of techniques in this section.

10.3.1 DenStream: Density-Based Microclustering

The DenStream algorithm [24] approach combines microclustering with a density-estimation
process for effective clustering. The first step is to define a core object, which is defined as an
object, in the ε-neighborhood of which the weight of the data points is at least μ. A density area is
defined as the union of the ε neighborhoods of the core objects.

In the context of streaming data, it is difficult to determine these dense regions naturally. There-
fore, dense regions of smaller granularity are defined in the form of core microclusters. A core
microcluster is defined a set of data points with weight at least μ and for which the radius of the
microcluster about its center is less than ε. We note that the weight of a data point is based on a
decay weighted function of the time that it last arrived. Therefore, if δt is the time since a data point
arrived, its weight is given by:

f (δt) = 2−δt (10.3)

Since the radius of the microcluster is constrained to be less than ε, it implies that the number of
microclusters is much larger than the number of natural clusters in the data for small values of ε. At
the same time, the number of core microclusters is much smaller than the number of points in the
data stream, since each cluster contains a weight of at least μ. We note that the key difference from
the standard microclustering definition is that the number of microclusters is not constrained, though
the radius of each microcluster is constrained. Thus, this approach approaches a different parameter
set to the underlying application. The core microcluster is also referred to as a c-microcluster.

One immediate observation is that when a microcluster is first formed by such an algorithm, it
is unlikely to contain the requisite weight of data points required to be defined as a microcluster.
Therefore, the concepts of potential core microcluster and outlier microcluster are defined in [24].
In the former case, the microcluster contains a weight of at least β ·μ (for some β ∈ (0,1)), and in
the latter case, it contains a weight less than β ·μ. Furthermore, since the weights of points decay
over time, a cluster may also change from being a p-microcluster to an o-microcluster, if sufficient
data points are not added to it in order to compensate for the decay. Thus, during its lifecycle, a
microcluster may move from being an outlier microcluster to being a potential core microcluster,
and finally to the stage of being a core microcluster. These two kinds of microclusters are referred
to as p-microclusters and o-microclusters respectively.

When a new data point arrives, the following can be the possibilities in terms of what is done
with it:

• The first step is to try to insert it into a p-microcluster, as long as it is possible to do so,
without violating the radius constraint.

• If the first step is not possible, the next step is to try to insert it into an o-microcluster, as long
as this can be done without violating the radius constraint.

• If the first and second steps are not possible, then a new o-microcluster is created containing
this data point.
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One challenge of this approach is that the number of o-microclusters will increase with time, as
new o-microclusters are created, and some of the p-microclusters decay back to o-microclusters.
Therefore, from time to time, we purge some of the o-microclusters, which will allow potential
for becoming p-microclusters. The larger the time δt that has elapsed since the creation of an o-
microcluster, the larger its weight is expected to be. Therefore, every Tp time periods, we prune all
those microclusters, whose weight is less than the threshold ψ(δt), where:

ψ(δt) =
2−λ·(δt+Tp)− 1

2−λ·(Tp)− 1
(10.4)

This process continues in order to maintain the microclusters dynamically. We note that the indi-
vidual microclusters can be reconstructed into density-connected regions in order to create the final
set of clusters of arbitrary shape. The overall approach for creating the clusters of arbitrary shape is
discussed in detail in in [24].

10.3.2 Grid-Based Streaming Algorithms

Grid-based methods are a class of density-based streaming algorithms, in which a grid structure
is used in order to quantify the density at each point in the data. The core idea is that the data is dis-
cretized into ranges along each dimension, and this also results in dividing the data into cells along
different dimensions. The number of points in each cell defines the density of that cell. Then, the
dense cells in the data can be aggregated in order to determine the dense regions for the clustering.

10.3.2.1 D-Stream Algorithm

A method called D-Stream for real-time density based clustering of streaming data was proposed
in [25]. The algorithm has many similarities with [30] in terms of trying to determine fine-grained
regions of high density. The main difference at the conceptual level is that this is done with the use
of grids rather than microclusters. As in the previous case, a decay function f (δt(X)) is used to
denote the weight of a point X since the time of its arrival δt(X , tc) units ago from the current time
tc:

f (δt(X , tc)) = μ−δt(X ,tc) (10.5)

Here, we assume that μ> 1, which is slightly different from the notations in [25]. We note that this
decay function is identical to that proposed in [6, 30], by defining the relationship with respect to
the parameter λ and assuming that μ= 2λ. Under the assumption of [25] that exactly one record
arrives at each timestamp, it can be shown that the sum of the weights of all data points is no larger
than μ/(μ− 1).

The grids are defined by discretizing these ranges along each dimension. For the i-th dimension,
the discretization is performed into pi different ranges along the ith dimension. This discretization
naturally defines a total of η = ∏i pi d-dimensional cells. For each cell S, its weight W (S, tc) is
defined as the current time tc as follows:

W (S, tc) = ∑
X∈S

f (δt(X), tc) (10.6)

We note that the grid is essentially analogous to the radius constrained microcluster defined in the
DenStream algorithm. Thus, as in the case of DenStream, the density of a grid is constantly changing
over time. However, it is never necessary to update any decay-based statistics either in grids or
microclusters in each instance [6, 25]. This is because all grids decay at the same proportional rate,
and the update can be lazily performed only when the density value in the grid is updated with the
addition of a new data point.
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The next step is to define what it means for a grid to be dense. Since the total density over all
grids is no larger than μ/(μ− 1), it follows that the average density of each grid is no larger than
μ/(η · (μ−1)). Therefore, a grid is defined as dense, when its density is a constant times larger than
this factor. This is essentially analogous to the concept of a c-microcluster defined in [30]. Analo-
gous to the concept of an o-microcluster, and a p-microcluster, the work in [25] divides the nondense
grid-cells into sparse grid cells and transitional grid cells, with the use of a smaller threshold on the
density. Grid cells can change between the different states of being sparse, transitional, or dense,
both because of the addition of new data points and also because of decay.

One observation is that the number of grid-cells η = ∏d
i=1 pi is exponentially dependent upon

the dimensionality d. However, in practice, most of these grid-cells are empty, and the information
for empty grids need not be stored. This may not be sufficient in many real applications, where
many outlier points may sporadically appear in the data. The work in [25] designs methods for
identifying and removing such sporadic grids from the data. The maintained dense grids can then be
consolidated into larger dense regions in the data. As in the case of [30], this is defined in the form of
density-connected grids, where adjacency of two dense grids is treated as a density-connection. For
the precise details of the dense region construction, we refer the reader to [25]. Thus, it is evident
that grid-based and microcluster-based density clusters share a number of conceptual similarities at
various stages of the algorithm.

One weakness of the approach is that a significant number of nonempty grid cells need to be
discarded in order to keep the memory requirements in check. In many cases, such grid-cells occur
at the borders of the clusters. The discarding of such cells may lead to degradation in cluster quality.
Therefore, a method has been proposed in [43] to design a variation of the D-Stream method (known
as DD-Stream), which includes the data points at the borders into adjacent denser grids, which are
retained by the algorithm. It has been shown that such an approach leads to some improvements in
cluster quality.

10.3.2.2 Other Grid-Based Algorithms

The method in [35] updates a full-dimensional grid of the incoming data stream. The clusters
are discovered from the updated density values in this grid. At any given time, the density values in
the grid can be used in order to determine the updated and most effective clusters.

An important point to be kept in mind is that grid-based algorithms require the discretization
of the data along the different dimensions in order to create the grid cells. The granularity of the
discretization is a critical design choice at the very beginning of the algorithm. Unfortunately, at the
beginning of the stream arrival, very little may be known about how the underlying data points are
distributed, and therefore, it is difficult to choose the level of discretization along each dimension in
an optimal way. Furthermore, the appropriate level of discretization for each data locality may be
different, and a single global level of discretization may be suboptimal over different data localities.

Therefore, the work in [56] uses a dynamic approach called Statsgrid for the discretization
process, wherein the data cells are recursively partitioned based on their local density. The algorithm
starts off with cells of equal size. As data points are added to the cells, and the number of points
in a cell becomes sufficiently large, the algorithm partitions the cell into two along one of the
dimensions. This process can of course be repeated recursively each time any of the children cells
become dense. At some point, the maximum level of allowed granularity is reached, and such a cell
is called a unit cell, which cannot be further divided. We note that this approach naturally leads to
a hierarchical clustering of the data, which can be very useful in many applications. Nevertheless,
the work does not use temporal decay and, therefore, does not adjust very well to an evolving data
stream.

This method has therefore been extended to the CellTree method [55], which allows decay in
the statistics. It explicitly uses a CellTree data structure in order to maintain the hierarchical rela-
tionships among the grid cells. Furthermore, when the data cells decay with time, it may be possible
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to merge adjacent cells. Therefore, the method in [55] provides greater flexibility, than discussed in
the original algorithm.

10.4 Probabilistic Streaming Algorithms

One of the common methods for probabilistic clustering is that of mixture modeling, in which
the data is assumed to be generated by a mixture of known distributions such as the Gaussian dis-
tribution. The parameters of this distribution are then typically learned with an EM algorithm from
the actual data records [59]. The main argument in [59] is that probability density-based clustering
algorithms are much more efficient than applying EM on the entire data set. On the other hand, it
has been shown that it is possible to use the EM-algorithm in order to provide an efficient update
process for newly arriving data. Nevertheless, since the EM algorithm requires one to learn a large
number of parameters, such an approach is unlikely to be effective when the underlying data is
evolving rapidly.

Another area in which probabilistic models are commonly used for clustering is for the case of
text. A common technique which is used to create a soft clustering of the data for the case of text
is topic modeling [41]. In this technique, soft clusters are associated with the data in which words
and documents are probabilistically assigned to the different partitions. Since the topic modeling
approach uses an EM algorithm, it can sometimes be slow in practice. Therefore, a method has been
proposed in [20] for topic modeling over text streams. The work in [20] proposes online variants of
three common batch algorithms for topic modeling. These correspond to the Latent Dirichlet Allo-
cation (LDA) [22], Dirichlet Compound Multinomial (DCM) mixtures [29] and von-Mises Fisher
(vMF) mixture models [21]. It is shown in [20] that the online variant of the vMF approach pro-
vides the best results. A detailed study of these topic modeling algorithms is beyond the scope of
this survey. Interested readers are referred to [20].

10.5 Clustering High-Dimensional Streams

In many circumstances, data stream are very high-dimensional because a large number of fea-
tures are available for the mining process. The high-dimensional case presents a special challenge
to clustering algorithms even in the traditional domain of static data sets. This is due to the spar-
sity of the data in the high-dimensional case. In high-dimensional space, all pairs of points tend to
be almost equidistant from one another. As a result, it is often unrealistic to define distance-based
clusters in a meaningful way. Some recent work on high-dimensional data uses techniques for pro-
jected clustering which can determine clusters for a specific subset of dimensions [10, 17]. In these
methods, the definitions of the clusters are such that each cluster is specific to a particular group
of dimensions. This alleviates the sparsity problem in high-dimensional space to some extent. Even
though a cluster may not be meaningfully defined on all the dimensions because of the sparsity of
the data, some subset of the dimensions can always be found on which particular subsets of points
form high quality and meaningful clusters. Of course, these subsets of dimensions may vary over
the different clusters. Such clusters are referred to as projected clusters [10].
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10.5.1 The HPSTREAM Method

The microclustering method can also be extended to the case of high-dimensional projected
stream clustering. The algorithm is referred to as HPSTREAM. In [6, 7], methods have been pro-
posed for high-dimensional projected clustering of data streams. The basic idea is to use an (incre-
mental) algorithm in which we associate a set of dimensions with each cluster. This corresponds to
the standard microclustering method as discussed in [6], with the main difference that the distances
from data points to clusters are computed on the basis of dimension-specific clusters. Therefore,
additional information needs to be associated with a cluster in order to capture the set of dimensions
associated with it. The set of dimensions is represented as a d-dimensional bit vector B(Ci) for each
cluster structure in F C S . This bit vector contains a 1 bit for each dimension which is included in
cluster Ci. In addition, the maximum number of clusters k and the average cluster dimensionality l
is used as an input parameter. The average cluster dimensionality l represents the average number of
dimensions used in the cluster projection. An iterative approach is used in which the dimensions are
used to update the clusters and vice-versa. The structure in F C S uses a decay-based mechanism in
order to adjust for evolution in the underlying data stream. For a data point, which arrived δt units
ago, its weight is assumed to be 2−λ·δt , where λ is the decay rate.

Therefore, the microclusters for the HPSTREAM algorithm contain decay-based statistics,
wherein the microclusters are similar to the CluStream algorithm. Furthermore, the overall frame-
work of the HPSTREAM algorithm is quite similar, because data points are assigned to microclusters
on the basis of their projected distances. The main difference is that each component of the addi-
tive microcluster statistics is a decay-based weight. In addition, the bit vector corresponding to the
choice of dimensions is stored with the microcluster statistics. Clearly, a number of changes need to
be incorporated into the CluStream approach in order to account for these changes:

• We note that the decay-based statistics ensure that the weights of the microclusters change
in each timestamp. However, it is not necessary to update the statistics at each timestamp,
since all the microclusters decay at the same rate. Rather, we perform the update only when
a new point is inserted into the data. When a new point is inserted, and δx is the time interval
since the last time, then all microcluster statistics are multiplied by 2−λ·δx before adding a
data point to the microcluster statistics.

• The average distance to each cluster is now computed on the basis of the projected dimensions
specific to that cluster. The bit vector in the microcluster statistics is used in order to decide
on the exact set of dimensions to use.

• The projected dimensions in the different clusters are updated periodically, so that the most
compact dimensions are retained for each cluster. The corresponding bit vector in the micro-
cluster statistics is updated.

It has been shown in [6], that the incorporation of projections can significantly improve the
effectiveness of the approach. Details are discussed in [6].

10.5.2 Other High-Dimensional Streaming Algorithms

A variety of other high-dimensional streaming clustering algorithms have been proposed after
the first HPSTREAM framework. In particular, a grid-based algorithm was proposed in [49] for high-
dimensional projected clustering of data streams. High-dimensional projected clustering has also
been applied to other domains such as uncertain data. For example, methods for high- dimensional
projected clustering of uncertain data streams have been proposed in [4, 60].

Most of the methods discussed in the literature use a k-means-type approach, which fixes the
number of clusters in the data. Furthermore, a k-means-type approach also makes implicit assump-
tions about the shapes of the underlying clusters. The work in [52] proposes a density-based method
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for high-dimensional stream clustering. Such an approach has the virtue of recognizing the fact that
the number and shape of the clusters in the stream may vary over time. The work in [52] pro-
poses HDDSTREAM, which is a method for high-dimensional stream clustering. It generalizes the
density-based approach proposed in [30] in order to incorporate subspace analysis in the cluster-
ing process. Since the method in [30] was originally designed to handle variations in the number
of clusters in the stream, as well as different shapes of clusters, these virtues are inherited by the
HDDSTREAM method of [52] as well.

A number of methods have also been proposed for high-dimensional projected clustering of
dynamic data [47, 62]. While these methods can be effectively used for dynamic data, they do
require access to the raw data for clustering purposes. Therefore, these methods are not streaming
techniques in the strict sense.

10.6 Clustering Discrete and Categorical Streams

Many data streams are defined on a domain of discrete values in which the attributes are un-
ordered and take on one of a very large number of possible discrete values. In such cases, the cluster
feature vector of the microclustering approach does not represent the values in the underlying data
well. Therefore, methods are required in order to perform stream clustering algorithms in such sce-
narios. The simplest case of categorical stream clustering is that of binary data in which the data take
on values from {0,1}. Binary data can be considered both quantitative and symbolic, and therefore,
almost all stream algorithms can be used directly for this case.

10.6.1 Clustering Binary Data Streams with k-Means

The simplest case of categorical data is binary data, in which the discrete attributes may take
on only one of two possible values. Binary data is also a special case of quantitative data, be-
cause an ordering can always be assigned to discrete values as long as there are only two of them.
Therefore, virtually all of the streaming algorithms can be used for binary data. Nevertheless, it
can sometimes be useful to leverage a method which is specifically designed for the case of binary
data.

An algorithm for utilizing optimizations of k-means algorithms for data streams is proposed
in [54]. The main observation in [54] is that the binary transactions are often sparse. This can be
used in order to greatly speed up the distance computations. Since distance computations form the
bottleneck operation for such algorithms, a speedup of the distance computations also greatly speeds
up the underlying algorithm. From a practical point of view, this means that only a small fraction
of the features in the transaction take on the 1-value. Therefore, the general approach used in [54]
is that first the distance of the null transaction to each of the centroids is computed. Subsequently,
for each position in the transaction, the effect of that position on the distances is computed. Since
many distance functions are separable functions across different dimensions, this can be achieved
quite effectively. It has been shown in [54] that these speedups can be implemented very effectively
at no reduction in quality of the underlying results.

10.6.2 The StreamCluCD Algorithm

The Squeezer algorithm is a one-pass algorithm for clustering categorical data [39]. The Stream-
CluCD approach [40] is the streaming extension of this framework. The essential idea behind the
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algorithm is that when a data point comes in, it is placed into a cluster of its own. For subsequent in-
coming points, we compute their similarity to the existing clusters in the data. If the incoming points
are sufficiently similar to one of the existing clusters, then they are placed in that cluster. Otherwise,
the incoming data point is placed in a cluster of its own. A key operation in the StreamCluCD algo-
rithm is to maintain the frequency counts of the attribute values in each cluster. The lossy counting
approach introduced in [50] is used for this purpose. The motivation for this is to reduce the mem-
ory footprint for maintaining the frequency counts. The issue of memory requirements becomes
especially important when the number of possible discrete values of each attribute increases. This
is referred to as the massive-domain scenario and will be discussed in the next section.

10.6.3 Massive-Domain Clustering

Massive-domains are those data domains in which the number of possible values for one or more
attributes is very large. Examples of such domains are as follows:

• In network applications, many attributes such as IP-addresses are drawn over millions of
possibilities. In a multidimensional application, this problem is further magnified because of
the multiplication of possibilities over different attributes.

• Typical credit-card transactions can be drawn from a universe of millions of different possi-
bilities depending upon the nature of the transactions.

• Supermarket transactions are often drawn from a universe of millions of possibilities. In such
cases, the determination of patterns which indicate different kinds of classification behavior
may become infeasible from a space- and computational-efficiency perspective.

The massive domain size of the underlying data restricts the computational approach which may be
used for discriminatory analysis. Thus, this problem is significantly more difficult than the standard
clustering problem in data streams. Space-efficiency is a special concern in the case of data streams,
because it is desirable to hold most of the data structures in main memory in order to maximize the
processing rate of the underlying data. Smaller space requirements ensure that it may be possible
to hold most of the intermediate data in fast caches, which can further improve the efficiency of
the approach. Furthermore, it may often be desirable to implement stream clustering algorithms
in a wide variety of space-constrained architectures such as mobile devices, sensor hardware, or
cell processors. Such architectures present special challenges to the massive-domain case if the
underlying algorithms are not space-efficient.

The problem of clustering can be extremely challenging from a space and time perspective in the
massive-domain case. This is because one needs to retain the discriminatory characteristics of the
most relevant clusters in the data. In the massive-domain case, this may entail storing the frequency
statistics of a large number of possible attribute values. While this may be difficult to do explic-
itly, the problem is further intensified by the large volume of the data stream which prevents easy
determination of the importance of different attribute-values. The work in [2] proposes a sketch-
based approach in order to keep track of the intermediate statistics of the underlying clusters. These
statistics are used in order to make approximate determinations of the assignment of data points to
clusters. A number of probabilistic results are provided in [2], which indicate that these approxi-
mations are sufficiently accurate to provide similar results to an infinite-space clustering algorithm
with high probability.

The data stream D contains d-dimensional records denoted by X1 . . .XN . . .. The attributes of
record Xi are denoted by (x1

i . . .x
d
i ). It is assumed that the attribute value xk

i is drawn from the un-
ordered domain set Jk = {vk

1 . . .v
k
Mk}. The value of Mk denotes the domain size for the kth attribute.

The value of Mk can be very large and may range in the order of millions or billions. From the point
of view of a clustering application, this creates a number of challenges, since it is no longer possible
to hold the cluster statistics in a space-limited scenario.
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Algorithm CSketch(Labeled Data Stream: D,

NumClusters: k)
begin
Create k sketch tables of size w ·h each;

Initialize k sketch tables to null counts;

repeat
Receive next data point X from D;

Compute the approximate dot product of incoming data

point with each cluster-centroid with the use of the

sketch tables;

Pick the centroid with the largest approximate

dot product to incoming point;

Increment the sketch counts in the chosen table

for all d dimensional value strings;

until(all points in D have been processed);

end

FIGURE 10.1: The sketch-based clustering algorithm (CSketch Algorithm).

The work in [2] uses the count-min sketch [26] for the problem of clustering massive-domain
data streams. In the count-min sketch, a hashing approach is utilized in order to keep track of the
attribute-value statistics in the underlying data. We use w = �ln(1/δ)� pairwise independent hash
functions, each of which maps onto uniformly random integers in the range h = [0,e/ε], where e is
the base of the natural logarithm. The data structure itself consists of a 2-dimensional array with w ·h
cells with a length of h and width of w. Each hash function corresponds to one of w 1-dimensional
arrays with h cells each. In standard applications of the count-min sketch, the hash functions are
used in order to update the counts of the different cells in this 2-dimensional data structure. For
example, consider a 1-dimensional data stream with elements drawn from a massive set of domain
values. When a new element of the data stream is received, we apply each of the w hash functions
to map onto a number in [0 . . .h− 1]. The count of each of the set of w cells is incremented by 1.
In order to estimate the count of an item, we determine the set of w cells to which each of the w
hash-functions map and compute the minimum value among all these cells. Let ct be the true value
of the count being estimated. We note that the estimated count is at least equal to ct , since we are
dealing with nonnegative counts only, and there may be an overestimation due to collisions among
hash cells. As it turns out, a probabilistic upper bound to the estimate may also be determined. It
has been shown in [26], that for a data stream with T arrivals, the estimate is at most ct + ε ·T with
probability at least 1− δ.

The CSketch algorithm (Figure 10.1) uses number of clusters k and data stream D as input to
the algorithm. The clustering algorithm is partition based and assigns incoming data points to the
most similar cluster centroid. The frequency counts for the different attribute values in the cluster
centroids are incremented with the use of the sketch table. These frequency counts can be main-
tained only approximately because of the massive domain size of the underlying attributes in the
data stream. Similarity is measured with the computation of the dot-product function between the
incoming point and the centroid of the different clusters. This computation can be performed only
approximately in the massive-domain case, since the frequency counts for the values in the different
dimensions cannot be maintained explicitly. For each cluster, we maintain the frequency sketches of
the records which are assigned to it. Specifically, for each cluster, the algorithm maintains a separate
sketch table containing the counts of the values in the incoming records. The same hash function
is used for each table. The algorithm starts off by initializing the counts in each sketch table to 0.
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Subsequently, for each incoming record, we will update the counts of each of the cluster-specific
hash tables. In order to determine the assignments of data points to clusters, the dot products of the
d-dimensional incoming records to the frequency statistics of the values in the different clusters are
computed. This is sometimes not possible to do explicitly, since the precise frequency statistics are
not maintained. Let q j

r(xr
i ) represents the frequency of the value xr

i in the jth cluster. Let mi be the
number of data points assigned to the jth cluster. Then, the d-dimensional statistics of the record
(x1

i . . .x
d
i ) for the jth cluster are given by (q j

1(x
1
i ) . . .q

j
d(x

d
i )). Then, the frequency-based dot product

D j(Xi) of the incoming record with statistics of cluster j is given by the dot product of the fractional
frequencies (q j

1(x
1
i )/m j . . .q

j
d(x

d
i )/m j) of the attribute values (x1

i . . .x
d
i ) with the frequencies of these

same attribute values within record Xi. We note that the frequencies of the attribute values with the
record Xi are unit values corresponding to (1, . . .1). Therefore, the corresponding dot product is the
following:

D j(Xi) =
d

∑
r=1

q j
r(x

r
i )/m j (10.7)

The incoming record is assigned to the cluster for which the estimated dot product is the largest.
We note that the value of q j

r(xr
i ) cannot be known exactly, but can only be estimated approximately

due to the massive-domain constraint. There are two key steps which use the sketch table during the
clustering process:

• Updating the sketch table and other required statistics for the corresponding cluster for each
incoming record.

• Comparing the similarity of the incoming record to the different clusters with the use of the
corresponding sketch tables.

First, we discuss the process of updating the sketch table, once a particular cluster has been
identified for assignment. For each record, the sketch-table entries corresponding to the attribute
values on the different dimensions are incremented. For each incoming record Xi, the w hash func-
tions are applied to the strings corresponding to the attribute values in it. Let m be the index of the
cluster to which the data point is assigned. Then, exactly d ·w entries in the sketch table for clus-
ter m are updated by applying the w hash functions to each of the d strings which are denoted by
x1

i ⊕ 1 . . .xd
i ⊕ d. The corresponding entries are incremented by one unit each.

In order to pick a cluster for assignment, the approximate dot products across different clusters
need to be computed. The record is converted to its sketch representation by applying the w hash
functions to each of these d different attribute values. We retrieve the corresponding d sketch-table
entries for each of the w hash functions and each cluster. For each of the w hash functions for
the sketch table for cluster j, the d counts are simply estimates of the value of q j

1(x
1
i ) . . .q

j
d(x

d
i ).

Specifically, let the count for the entry picked by the lth hash function corresponding to the rth
dimension of record Xi in the sketch table for cluster j be denoted by ci jlr. Then, we estimate the
dot product Di j between the record Xi and the frequency statistics for cluster j as follows:

Di j = minl

d

∑
r=1

ci jlr/m j (10.8)

The value of Di j is computed over all clusters j, and the cluster with the largest dot product to the
record Xi is picked for assignment.

It has been shown in [2] that this assignment process approximates an infinite space clustering
algorithm quite well. This is characterized in terms of assignment errors because of the approx-
imation process. An important point to be kept in mind is that in many cases an incoming data
point may match well with many of the clusters. Since similarity functions such as the dot product
are heuristically defined, small errors in ordering (when bq is small) are not very significant for
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the clustering process. Similarly, some of the clusters correspond to outlier points and are sparsely
populated. Therefore, it is more important to ensure that assignments to “significant clusters” (for
which fp is above a given threshold) are correct. Therefore, the work in [2] defines the concept of
an ( f ,b)-significant assignment error as follows:

Definition 10.6.1 An assignment error which results from the estimation of dot products is said to
be ( f ,b)-significant, if a data point is incorrectly assigned to cluster index p which contains at least
a fraction f of the points, and the correct cluster for assignment has index q which satisfies the
following relationship:

Dip ≥ Diq + b (10.9)

It has been shown in [2] that it is possible to bound the probability of an ( f ,b)-significant error in a
given assignment.

Lemma 10.6.1 The probability of an ( f ,b)-significant error in an assignment is at most equal to
k · (d2/(b · f ·h))w.

This can be used to further bound the probability that there is no ( f ,b)-significant error over the
entire course of the clustering process of N data points.

Lemma 10.6.2 Let us assume that N · k · (d2/(b · f ·h))w < 1. The probability that there is at least
one ( f ,b)-significant error in the clustering process of N data points is given by at most N·k

(b· f ·h/d2)w .

In addition, the experimental results in [2] show that the clustering process can be replicated almost
exactly in practice with the use of this approximation process. Thus, the work in [2] proposes a fast
and space-efficient method for clustering massive-domain data streams.

10.7 Text Stream Clustering

The problem of streaming text clustering is particularly challenging in the context of text data
due to the clusters needing to be continuously maintained in real time. One of the earliest methods
for streaming text clustering was proposed in [64]. This technique is referred to as the Online
Spherical k-Means (OSKM) Algorithm, which reflects the broad approach used by the methodology.
This technique divides the incoming stream into small segments, each of which can be processed
effectively in main memory. A set of k-means iterations is applied to each such data segment in
order to cluster them. The advantage of using a segment-wise approach for clustering is that since
each segment can be held in main memory, we can process each data point multiple times as long
as it is held in main memory. In addition, the centroids from the previous segment are used in
the next iteration for clustering purposes. A decay factor is introduced in order to age-out the old
documents, so that the new documents are considered more important from a clustering perspective.
This approach has been shown in [64] to be extremely effective in clustering massive text streams.

A different method for clustering massive text and categorical data streams is discussed in [12].
This method uses an approach which examines the relationship between outliers, emerging trends,
and clusters in the underlying data. Old clusters may become inactive and eventually get replaced
by new clusters. Similarly, when newly arriving data points do not naturally fit in any particular
cluster, these need to be initially classified as outliers. However, as time progresses, these new
points may create a distinctive pattern of activity which can be recognized as a new cluster. The
temporal locality of the data stream is manifested by these new clusters. For example, the first web
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page belonging to a particular category in a crawl may be recognized as an outlier but may later
form a cluster of documents of its own. On the other hand, the new outliers may not necessarily
result in the formation of new clusters. Such outliers are true short-term abnormalities in the data
since they do not result in the emergence of sustainable patterns. The approach discussed in [12]
recognizes new clusters by first recognizing them as outliers. This approach works with the use of
a summarization methodology, in which we use the concept of condensed droplets [12] in order to
create concise representations of the underlying clusters.

As in the case of the OSKM algorithm, we ensure that recent data points are given greater
importance than older data points. This is achieved by creating a time-sensitive weight for each
data point. It is assumed that each data point has a time-dependent weight defined by the function
f (t), which is also referred to as the fading function. The fading function f (t) is a nonmonotonic
decreasing function which decays uniformly with time t. The aim of defining a half-life is to quantify
the rate of decay of the importance of each data point in the stream clustering process. The decay rate
is defined as the inverse of the half-life of the data stream. We denote the decay rate by λ = 1/t0. We
denote the weight function of each point in the data stream by f (t) = 2−λ·t . From the perspective of
the clustering process, the weight of each data point is f (t). It is easy to see that this decay function
creates a half-life of 1/λ. It is also evident that by changing the value of λ, it is possible to change
the rate at which the importance of the historical information in the data stream decays.

When a cluster is created during the streaming process by a newly arriving data point, it is
allowed to remain as a trend-setting outlier for at least one half-life. During that period, if at least
one more data point arrives, then the cluster becomes an active and mature cluster. On the other
hand, if no new points arrive during a half-life, then the trend-setting outlier is recognized as a
true anomaly in the data stream. At this point, this anomaly is removed from the list of current
clusters. We refer to the process of removal as cluster death. Thus, a new cluster containing one
data point dies when the (weighted) number of points in the cluster is 0.5. The same criterion is
used to define the death of mature clusters. A necessary condition for this criterion to be met is that
the inactivity period in the cluster has exceeded the half-life 1/λ. The greater the number of points
in the cluster, the greater the level by which the inactivity period would need to exceed its half-life in
order to meet the criterion. This is a natural solution, since it is intuitively desirable to have stronger
requirements (a longer inactivity period) for the death of a cluster containing a larger number of
points.

The statistics of the data points are captured in summary statistics, which are referred to as
condensed droplets. These represent the word distributions within a cluster and can be used to
compute the similarity of an incoming data point to the cluster. The overall algorithm proceeds
as follows. At the beginning of algorithmic execution, we start with an empty set of clusters. As
new data points arrive, unit clusters containing individual data points are created. Once a maximum
number k of such clusters have been created, we can begin the process of online cluster maintenance.
Thus, we initially start off with a trivial set of k clusters. These clusters are updated over time with
the arrival of new data points.

When a new data point X arrives, its similarity to each cluster droplet is computed. In the case
of text data sets, the cosine similarity measure between DF1 and X is used. The similarity value
S(X ,C j) is computed from the incoming document X to every cluster C j. The cluster with the
maximum value of S(X ,C j) is chosen as the relevant cluster for data insertion. Let us assume that
this cluster is Cmindex. We use a threshold denoted by thresh in order to determine whether the
incoming data point is an outlier. If the value of S(X ,Cmindex) is larger than the threshold thresh,
then the point X is assigned to the cluster Cmindex. Otherwise, we check if some inactive cluster
exists in the current set of cluster droplets. If no such inactive cluster exists, then the data point X
is added to Cmindex. On the other hand, when an inactive cluster does exist, a new cluster is created
containing the solitary data point X . This newly created cluster replaces the inactive cluster. We note
that this new cluster is a potential true outlier or the beginning of a new trend of data points. Further
understanding of this new cluster may only be obtained with the progress of the data stream.
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In the event that X is inserted into the cluster Cmindex, we update the statistics of the cluster to
reflect the insertion of the data point and temporal decay statistics. Otherwise, we replace the most
inactive cluster by a new cluster containing the solitary data point X . In particular, the replaced
cluster is the least recently updated cluster among all inactive clusters. This process is continuously
performed over the life of the data stream, as new documents arrive over time. The work in [12]
also presents a variety of other applications of the stream clustering technique such as evolution and
correlation analysis.

A different way of utilizing the temporal evolution of text documents in the clustering process
is described in [38]. Specifically, the work in [38] uses bursty features as markers of new topic
occurrences in the data stream. This is because the semantics of an up-and-coming topic are often
reflected in the frequent presence of a few distinctive words in the text stream. At a given time, the
nature of relevant topics could lead to bursts in specific features of the data stream. Clearly, such
features are extremely important from a clustering perspective. Therefore, the method discussed in
[38] uses a new representation, which is referred to as the bursty feature representation for mining
text streams. In this representation, a time-varying weight is associated with the feature depending
upon its burstiness. This also reflects the varying importance of the feature to the clustering process.
Thus, it is important to remember that a particular document representation is dependent upon the
particular instant in time at which it is constructed.

Another issue which is handled effectively in this approach is an implicit reduction in dimen-
sionality of the underlying collection. Text is inherently a high-dimensional data domain, and the
preselection of some of the features on the basis of their burstiness can be a natural way to reduce the
dimensionality of document representation. This can help in both the effectiveness and efficiency of
the underlying algorithm.

The first step in the process is to identify the bursty features in the data stream. In order to
achieve this goal, the approach uses Kleinberg’s 2-state finite automaton model [45]. Once these
features have been identified, the bursty features are associated with weights which depend upon
their level of burstiness. Subsequently, a bursty feature representation is defined in order to reflect
the underlying weight of the feature. Both the identification and the weight of the bursty feature
are dependent upon its underlying frequency. A standard k-means approach is applied to the new
representation in order to construct the clustering. It is shown in [38] that the approach of using
burstiness improves the cluster quality. One criticism of the work in [38] is that it is mostly focused
on the issue of improving effectiveness with the use of temporal characteristics of the data stream,
and does not address the issue of efficient clustering of the underlying data stream.

In general, it is evident that feature extraction is important for all clustering algorithms. While
the work in [38] focuses on using temporal characteristics of the stream for feature extraction, the
work in [48] focuses on using phrase extraction for effective feature selection. This work is also
related to the concept of topic modeling, which will be discussed in detail in Chapter 13 because
the different topics in a collection can be related to the clusters in a collection. The work in [48]
uses topic-modeling techniques for clustering. The core idea in the work of [48] is that individual
words are not very effective for a clustering algorithm because they miss the context in which the
word is used. For example, the word star may refer either to a celestial body or to an entertainer.
On the other hand, when the phrase fixed star is used, it becomes evident that the word star refers
to a celestial body. The phrases which are extracted from the collection are also referred to as topic
signatures.

The use of such phrasal clarification for improving the quality of the clustering is referred to
as semantic smoothing because it reduces the noise which is associated with semantic ambiguity.
Therefore, a key part of the approach is to extract phrases from the underlying data stream. After
phrase extraction, the training process determines a translation probability of the phrase to terms
in the vocabulary. For example, the word planet may have high probability of association with the
phrase fixed star, because both refer to celestial bodies. Therefore, for a given document, a rational
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probability count may also be assigned to all terms. For each document, it is assumed that all terms
in it are generated either by a topic-signature model or a background collection model.

The approach in [48] works by modeling the soft probability p(w|Cj) for word w and cluster
Cj. The probability p(w|Cj) is modeled as a linear combination of two factors: (a) a maximum
likelihood model which computes the probabilities of generating specific words for each cluster
and (b) an indirect (translated) word-membership probability which first determines the maximum
likelihood probability for each topic signature and then multiplies with the conditional probability
of each word, given the topic signature. We note that we can use p(w|Cj) in order to estimate
p(d|Cj) by using the product of the constituent words in the document. For this purpose, we use the
frequency f (w,d) of word w in document d:

p(d|Cj) = ∏
w∈d

p(w|Cj)
f (w,d) (10.10)

We note that in the static case, it is also possible to add a background model in order to improve
the robustness of the estimation process. This is, however, not possible in a data stream because
of the fact that the background collection model may require multiple passes in order to build ef-
fectively. The work in [48] maintains these probabilities in online fashion with the use of a cluster
profile, that weights the probabilities with the use of a fading function. We note that the concept
of cluster profile is analogous to the concept of condensed droplet introduced in [12]. The key al-
gorithm (denoted by OCTS) is to maintain a dynamic set of clusters into which documents are
progressively assigned with the use of similarity computations. It has been shown in [48] how the
cluster profile can be used to efficiently compute p(d|Cj) for each incoming document. This value
is then used to determine the similarity of the documents to the different clusters and assign the doc-
uments to their closest cluster. We note that the methods in [12, 48] share a number of similarities
in terms of (a) maintenance of cluster profiles, (b) use of cluster profiles (or condensed droplets)
to compute similarity and assignment of documents to most similar clusters, and (c) the rules used
to decide when a new singleton cluster should be created or one of the older clusters should be
replaced.

The main difference between the two algorithms is the technique which is used in order to com-
pute cluster similarity. The OCTS algorithm uses the probabilistic computation p(d|Cj) to compute
cluster similarity, which takes the phrasal information into account during the computation process.
One observation about OCTS is that it may allow for very similar clusters to coexist in the current
set. This reduces the space available for distinct cluster profiles. A second algorithm called OCTSM
is also proposed in [48], which allows for merging of very similar clusters. Before each assignment,
it checks whether pairs of similar clusters can be merged on the basis of similarity. If this is the case,
then we allow the merging of the similar clusters and their corresponding cluster profiles. Detailed
experimental results on the different clustering algorithms and their effectiveness are presented in
[48]. A comprehensive review of text stream clustering algorithms may be found in the chapters on
data clustering and streaming algorithms in [15].

10.8 Other Scenarios for Stream Clustering

Data stream clustering is a fundamental problem, and numerous other domains arise, in which
the data occurs naturally in the streaming context. In this section, we provide a brief introduction to
these different data domains, along with pointers to the relevant literature.
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10.8.1 Clustering Uncertain Data Streams

Uncertain data streams arise quite often in the context of sensor data or other hardware collection
technology such as RFID in which there are significant errors in the data collection process. In many
of these cases, the errors in the data can be approximated either in terms of statistical parameters,
such as the standard deviation, or in terms of probability density functions (pdfs). Such statistical
information increases the richness of the noisy data because it provides information about the parts
of data which are less reliable, and should therefore be emphasized less in the mining process.

In this context, a method called UMicro for clustering uncertain data streams is proposed in
[13]. This method enhances the microclusters with additional information about the uncertainty
of the data points in the clusters. This information is used to improve the quality of the distance
functions for the assignments. This approach has been further improved for the case of projected
clustering of uncertain data streams [4, 60]. We are not providing a detailed discussion of these
methods, since they are discussed in detail in the chapter on uncertain data clustering.

10.8.2 Clustering Graph Streams

Graph streams are created by edge-centered activity in numerous social and information net-
works. Many different kinds of streaming and clustering models are possible, depending on the
application scenario. These different models are as follows:

• The stream is a sequence of objects, each of which is a small graph containing a subset of
nodes and edges. We wish to determine similar objects in the stream based on the similarities
between the nodes and edges. For example, the DBLP bibliographic network has an incom-
ing stream of graph objects corresponding to the coauthored papers. It may be desirable to
determine clusters of objects with similar structure. An algorithm for this problem, known as
Gmicro is proposed in [14]. The microclustering representation is extended to handle edges,
and a sketch based compression is used on the edges in order to reduce the impact of the
massive domain of the edges.

• The stream is a sequence of objects, each of which is a small graph containing a subset of
nodes and edges. We wish to determine node sets which co-occur frequently in these objects,
and are also densely connected together. A method is proposed in [8] with the use of min-
hash-based graph stream summarization.

• The stream is a sequence of either objects or edges. It is desirable to determine dense node
clusters in the graph.

The last problem is particularly general and is also related to general problem of dynamic commu-
nity detection. In this context, a method was proposed for creating dynamic partitions of graphs
with the use of structural reservoir sampling of edge streams [16]. While the work in [16] is tar-
geted to outlier detection, a key intermediate step in the process is the dynamic generation of node
clusters from the edge stream. The work in [28] has further refined the structural reservoir sampling
techniques of [16] in order to provide more effective methods for node clustering in graph streams.

In many cases, such as social networks, content information is associated with the structure in the
network. For example, the tweets in a Twitter stream have both structure and content. Such streams
are referred to as social streams. The clustering of such streams requires the use of both structural
information and content in the process. The work in [9] has designed methods for clustering social
streams. Sketch-based methods are used in order to summarize the content in the social stream and
use it for the clustering process. In addition, it has been shown in [9], how this approach may be
used for event detection.

In the conventional streaming model, it is assumed that only one pass is allowed over the data,
and the amount of memory available to the application is constant, irrespective of stream length. A
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technique for determining the densest subgraph has been proposed in [19] in a weakly streaming
model, where a limited number of passes (more than one) are allowed over the data, and the amount
of available memory is sublinear in the size of the input. This approach is able to determine the
densest subgraph in passes which grow logarithmically with the graph size.

10.8.3 Distributed Clustering of Data Streams

In the context of sensor networks, the stream data is often available only in a distributed setting,
in which large volumes of data are collected separately at the different sensors. A natural approach
for clustering such data is to transmit all of the data to a centralized server. The clustering can then be
performed at the centralized server to determine the final results. Unfortunately, such an approach
is extremely expensive in terms of its communication costs due to the large volume of the data
which must be transmitted to the centralized server. Therefore, it is important to design a method
which can reduce the communication costs among the different processors. A method proposed in
[27] performs local clustering at each node and merges these different clusters into a single global
clustering at low communication cost. Two different methods are proposed in this work. The first
method determines the cluster centers by using a furthest point algorithm, on the current set of data
points at the local site. In the furthest point algorithm, the center of a cluster is picked as a furthest
point to the current set of centers. For any incoming data point, it is assigned to its closest center,
as long as the distance is within a certain factor of an optimally computed radius. Otherwise, a
reclustering is forced by applying the furthest point algorithm on current set of points. After the
application of the furthest point algorithm, the centers are transmitted to the central server, which
then computes a global clustering from these local centers over the different nodes. These global
centers can then be transmitted to the local nodes if desired. One attractive feature of the method
is that an approximation bound is proposed on the quality of the clustering. A second method for
distributed clustering proposed in [27] is the parallel guessing algorithm.

A variety of other methods have also been proposed for distributed clustering of data streams.
For example, techniques for distributed data stream clustering with the use of the k-medians ap-
proach are proposed in [61]. Another method for distributed sensor stream clustering which reduces
the dimensionality and communication cost by maintaining an online discretization may be found
in [57]. Finally, a method for distributed clustering of data streams with the use of the EM approach
is proposed in [66].

10.9 Discussion and Conclusions

The problem of clustering is fundamental to a wide variety of streaming applications, because
of its natural applicability to summarizing and representing the data in a very small space. A wide
variety of techniques have been proposed in the literature for stream clustering, such as partitioning
methods, density-based methods, and probabilistic methods. The stream clustering method has also
been extended to other data domains such as categorical, text, and uncertain data. Finally, methods
have also been proposed for clustering graph streams.

Many further directions of research are likely for this problem. These are as follows:

• Heterogeneous data streams are becoming extremely common because of applications such
as social networks, in which large amounts of heterogeneous content are posted over time. It
is desirable to determine clusters among these groups of heterogeneous objects.

• It is desirable to use a combination of links and content in order to determine clusters from
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heterogeneous activity streams. This direction of research has also found increasing interest
in the community. This is a further layer of complexity over the graph streaming scenario.

Furthermore, it would also be interesting to perform clustering streams from multiple sources, while
simultaneously learning the nature of the dynamic relationships between the different streams.
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11.1 Introduction

With the advance of Web2.0, the data size is increasing explosively. For example, Twitter data
spans several terabytes; Wikipedia data (e.g., articles and authors) is of similar size; web click-
through data is reported to reach petabyte scale [36]; Yahoo! web graph in 2002 has more than 1
billion nodes and almost 7 billion edges [27].

On the other hand, many data clustering algorithms have a high intrinsic time complexity. For
example, the classic k-means clustering is NP-hard even when k = 2. The normalized cut (NCut),
a representative spectral clustering algorithm, is also NP-hard [43]. Therefore, a key challenge for
data clustering lies in its scalability, that is, how we can speed up/scale up the clustering algorithms
with the minimum sacrifice to the clustering quality.

At the high level, many data clustering algorithms have the following procedure: after some
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initialization (e.g., randomly choose the k cluster centers in k-means), it takes some iterative pro-
cess until some convergence criteria is met. In each iteration, it adjusts/updates the cluster mem-
bership for each data point (e.g., assign, it to the closest cluster centers in k-means). Therefore,
in order to speed up/scaleup such clustering algorithms, we have three basic ways: (1) by reduc-
ing the iteration number (e.g., one-pass algorithm) [47, 22], (2) by reducing the access to the data
points (e.g., by randomized techniques) [25, 38], and (3) by distributing/parallelizing the compu-
tation [28, 13]. In this chapter, we will review some representative algorithms for each of these
categories.

Notice that another important aspect related to the scalability is for the stream data, that is, how
we can adopt the batch-mode data clustering algorithms in the case the data arrives in the stream
mode, so that ideally the algorithms scale well with respect to the size of the new arrival data as
opposed to that of the entire data set [16, 4, 35]. These issues will be discussed independently in the
chapter on density-based clustering.

11.2 One-Pass Clustering Algorithms

In this section, we will review some earlier, classic clustering algorithms which are designed for
large-scale data sets. CLARANS [39, 40] is one of the earliest algorithms to use randomized search
to fight with the exponential search space in the K-medoid clustering problem. In BIRCH [47],
a new data structure called clustering feature tree (CF-tree) was proposed to reduce the I/O cost
when the input data set exceeds the memory size. Finally, CURE [22] uses multiple representative
data points for each cluster in order to capture the irregular clustering shapes and it further adopts
sampling to speed up the hierarchical clustering procedure. Thanks to these techniques, we can often
largely reduce the iteration number in the clustering procedure. In some extreme cases, they often
generate pretty good clustering results by one pass over the input data set. We collectively call these
algorithms as one-pass clustering algorithms.

11.2.1 CLARANS: Fighting with Exponential Search Space

Let us start with one of the earliest representative clustering algorithms, i.e., Partitioning Around
Medoids (PAM) [32]. The basic idea of PAM is to choose one representative point from each cluster
(e.g., the most central data point in the cluster), which is referred to as a medoid. If we want to
find k clusters for n data points, the algorithm essentially tries to find the k best medoids. Once
such optimal k-medoid is found, the remaining (nonmedoid) data points are assigned to one of the
selected medoids according to their distance to the k-medoid. To this end, it follows an iterative
procedure where in each iteration, it tries to replace one of the current medoids by one of the
nonmedoid data points. It is easy to see that the computational cost for PAM is high: first of all,
in each iteration, we need to check all the (n−k)×k possible pairs; second, the overall search space
is exponential, i.e., we have

(n
k

)
possible k-medoid assignment. To address this issue, Clustering

Large Applications (CLARA) [32] relies on sampling to reduce the search space. Instead of trying
to find the optimal k-medoid from the original entire data set as in PAM, CLARA first takes a
sample of k from the original n data points and then calls PAM on these O(k) sampled data points
to find k-medoid. Once the optimal k-medoid is found, the remaining (nonsampled) data points are
assigned to one of these k clusters based on their distance to the k-medoid.

Conceptually, both PAM and CLARA can be regarded as graph-searching problems. In this
graph, each node is a possible clustering solution (i.e., a k-medoid), and the two nodes are linked to
each other if they only differ in 1-out-of-k medoids. PAM starts with one of the randomly chosen
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(a) PAM and CLARA (b) CLARANS

FIGURE 11.1: Each node in the graph is a possible clustering assignment (i.e., k-medoid); and each
link means that two nodes differ in only one medoid. PAM (a) starts from a randomly selected node
(e.g., node 3, dark), and greedily moves to the next best neighbor (e.g., node 2). In each iteration, it
searches all the possible neighbors (dashed arrows). It tries to search over the entire graph. CLARA
first samples a subgraph (shadowed area) and restricts the search procedure within this subgraph.
CLARANS also searches the entire graph as in PAM. But in each iteration, it only searches only
randomly sampled neighbors of the current node (dashed arrow).

nodes in the conceptual graph, and it greedily moves to one of its neighbors until it cannot find
a better neighbor. CLARA aims to reduce the search space by only searching a subgraph that is
induced by the sampled O(k) data points.

Based on this observation, Clustering Large Applications based on Randomized Sampling
(CLARANS) [39, 40] has been proposed to further improve the efficiency. As in PAM, CLARANS
aims to find a local optimal solution by searching the entire graph. But unlike in PAM, in each it-
eration, it checks only a sample of the neighbors of the current node in the graph. Notice that both
CLARA and CLARANS use sampling techniques to reduce the search space. But they conduct the
sampling in the different ways. In CLARA, the sampling is done at the beginning stage to restrict
the entire search process within a particular subgraph; whereas in CLARANS, the sampling is con-
ducted dynamically at each iteration of the search process. The empirical evaluation in [39] shows
that such dynamic sampling strategy in CLARANS leads to further efficiency improvement over
CLARA. Figure 11.1 provides a pictorial comparison between PAM, CLARA and CLARANS.

11.2.2 BIRCH: Fighting with Limited Memory

When the data size exceeds the available memory amount, the I/O cost may dominate the in-
memory computational time, where CLARANS and its earlier versions (e.g., PAM, CLARA) suffer.
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [47] was one of the first
methods to address this issue, and explicitly tries to reduce the I/O costs given the limited amount
of memory.

The key of BIRCH is to introduce a new data structure called clustering feature (CF) as well as
CF-tree. Therefore, before we present the BIRCH algorithm, let us take a short detour to introduce
these concepts.

CF can be regarded as a concise summary of each cluster. This is motivated by the fact that not
every data point is equally important for clustering and we cannot afford to keep every data point
in the main memory given that the overall memory is limited. On the other hand, for the purpose of
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FIGURE 11.2: An illustration of the CF-tree. Each node represents a cluster which consists of up
to B subclusters. Due to the additive property of CF, the CF of the parent node is simply the sum of
the CFs of its children. All the leaf nodes are chained together for efficient scanning. The diameter
of the subcluster in the leaf node is bounded by the threshold T . The bigger T is, the smaller the
tree is.

clustering, it is often enough to keep up to the second order of data moment. In order words, CF is
not only efficient, but also sufficient to cluster the entire data set.

To be specific, CF is a triple < N,LS,SS > which contains the number of the data points in
the cluster (i.e., the zero-order moment N), the linear sum of the data points in the cluster (i.e., the
first-order moment LS), and the square sum of the data points in the cluster (i.e., the second order
moment SS). It is easy to check that CF satisfies the additive property; that is, if we want to merge
two existing clusters, the CF for the merged cluster is simply the sum of the CFs of the two original
clusters. This feature is critical as it allows us to easily merge two existing clusters without accessing
the original data set.

CF-tree is a height-balanced tree which keeps track of the hierarchical clustering structure for
the entire data set. Each node in the CF-tree represents a cluster which is in turn made up of at
most B subclusters, where B is the so-called balancing factor. All the leaf nodes are chained to-
gether for the purpose of efficient scanning. In addition, for each subcluster in the leaf node, its
diameter is upper-bounded by a second parameter T (the threshold). Apparently, the larger T is, the
smaller the CF-tree is in terms of the tree height. The insertion on CF-tree can be performed in a
similar way as the insertion in the classic B-tree. Figure 11.2 presents a pictorial illustration of the
CF-tree.

There are two main steps in the BIRCH algorithm. First, as it scans the input data points, it builds
a CF-tree by inserting the data points with a default threshold T = 0. By setting the threshold T = 0,
we treat each data point as an individual cluster at the leaf node. Thus, the size of the resulting CF-
tree might be very large, which might lead to an out-of-memory issue in the middle of the scanning
process. If such a situation happens, we will need to increase the threshold T and rebuild the CF-tree
by reinserting all the leaf nodes from the old CF-tree. By grouping close data points together, the
resulting CF-tree builds an initial summary of the input data set which reflects its rough clustering
structure.

Due to the skewed input order and/or the splitting effect by the page size, the clustering struc-
ture from the initial CF-tree might not be accurate enough to reflect the real underlying clustering
structure. To address this issue, the second key step (“global clustering”) tries to cluster all the sub-
clusters in the leaf nodes. This is done by converting a subcluster with n′ data points n′ times at the
centroid and then running either an agglomerative hierarchical clustering algorithm or a modified
clustering algorithm.

Between these two main steps, there is an optional step to refine the initial CF-tree by re-
inserting its leaf entries (“tree condensing”). Usually, this leads to a much more compact CF-tree.
After the global clustering step, there is another optional step (“clustering refinement”), which re-
assigns all the data points based on the cluster centroid produced by the global clustering step.
Figure 11.3 summarizes the overall flowchart of the BIRCH algorithm.
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FIGURE 11.3: The flowchart of BIRCH algorithm.

The empirical evaluation in [47] indicates that BIRCH consistently outperforms the previous
method CLARANS in terms of both time and space efficiency. It is also more robust to the ordering
of the input data sequence. BIRCH offers some additional advantages, e.g., being robust to outliers
and being more easily parallelized.

11.2.3 CURE: Fighting with the Irregular Clusters

In both CLARANS and BIRCH, we use one single data point to represent a cluster. Conceptu-
ally, we implicitly assume that each cluster has a spherical shape, which may not be the case in some
real applications where the clusters can exhibit more complicated shapes. At the other extreme, we
can keep all the data points within each cluster, whose computational as well as space cost might
be too high for large data sets. To address this issue, clustering using representatives (CURE) [22]
proposes to use a set of well-scattered data points to represent a cluster.

CURE is essentially a hierarchical clustering algorithm. It starts by treating each data point
as a single cluster and then recursively merges two existing clusters into one until we have only
k clusters. In order to decide which two clusters to be merged at each iteration, it computes the
minimum distance between all the possible pairs of the representative points from the two clusters.
CURE uses two major data structures to enable the efficient search. First, it uses a heap to track the
distance of each existing cluster to its closest cluster. Additionally, it uses k-d tree to store all the
representative points for each cluster.

In order to speed up the computation, CURE first draws a sample of the input data set and runs
the above procedure on the sampled data. The authors further use Chernoff bound to analyze the
necessary sample size. When the original data set is large, the different clusters might overlap each
other, which in turn requires a large sample size. To alleviate this issue, CURE further uses partitions
to speed up. To be specific, it first partitions the n′ sampled data points into p partitions. Within each
partition, it then runs a partial hierarchical clustering algorithm until either a predefined number of
clusters is reached or the distance between the two clusters to be merged exceeds some threshold.
After that, it runs another clustering pass on all the partial clusters from all the p partitions (“global
clustering”). Finally, each nonsampled data point is assigned to a cluster based on its distance to the
representative point (“labeling”). Figure 11.4 summarizes the flowchart of the CURE algorithm.

The empirical evaluation in [22] shows that CURE achieves lower execution time compared to
BIRCH. In addition, as with BIRCH, CURE is also robust to outliers by shrinking the representative
points to the centroid of the cluster with a constant factor.

11.3 Randomized Techniques for Clustering Algorithms

In the previous section, we have already seen how sampling can be used to speed up the clus-
tering algorithms, e.g, to reduce the search space as in CLARA and CLARANS and to do pre-
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FIGURE 11.4: The flowchart of CURE algorithm.

clustering/partial clustering as in BIRCH and CURE. In this section, let us take one step further to
see how randomized techniques can be used to address the scalability issue in clustering.

Suppose that we want to cluster n data points in d dimensional space into k clusters. We can
represent these data points by an n×d data matrix A; and each row of this data matrix is a data point
in d dimensional space. The basic idea of various randomized techniques is to reduce the scale of the
input data matrix A, e.g., by transforming (embedding, projecting, etc.) it into a lower t-dimensional
space (t � d) and then performing clustering on this reduced space. In this section, we will review
two major types of such techniques.

11.3.1 Locality-Preserving Projection

In the locality-preserving projection (also referred to as random projection) methods, after we
project the original d-dimensional data set into a lower dimensional space, we want the pair-wise
distance to be preserved in a probabilistic sense. In many clustering algorithms, it is mainly the
pair-wise distance measure that determines the clustering structure. Thus we would expect that the
clustering results in the projected subspace would provide a reasonably good approximation to that
in the original space.

In addition to clustering, random projection itself has a broad applicability in various data min-
ing tasks (e.g., similarity search, near-duplicate detection). Here, we will first provide some general
introduction to the typical random projection algorithms and then introduce how to apply them in
the clustering setting.

A classic result for the locality-preserving projection comes from Johnson and Linden-
strauss [25], which can be formally stated as follows:

Lemma 11.3.1 Assume ε > 0, and n is an integer. Let t be a positive integer such that t ≥ t0 =
O(log(n)/ε2). For any set P with n data points in Rd space, there exist f : Rd → Rt such that for all
u,v ∈ P, we have

(1− ε)‖u− v‖2≤ ‖ f (u)− f (v)‖2(1+ ε)‖u− v‖2
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At the algorithmic level, such random projection (also referred to as “JL-embedding”) can be
performed by a linear transformation of the original data matrix A. Let R be a d× t rotation ma-
trix with its elements R(i, j) being independent random variables. Then Ã = A ·R is the projected
data matrix,1 and each of its row is a vector in t dimensional space which is the projection of the
corresponding data point in d dimensional space.

Different random projection algorithms differ in terms of different ways to construct such a
rotation matrix R. Earlier methods suggest R(i, j) as being independent Normal random variables
with mean 0 and variance 1. In [1], the authors propose two database-friendly ways to construct the
rotation matrix R. The first method sets R(i, j) = ±1 with equal probabilities of 0.5. Alternatively,
we can also set R(i, j) = ±√3 with equal probabilities of 1/6 and R(i, j) = 0 with the probability
of 2/3.

Once we have projected the original data matrix A into a low-dimensional space, the cluster-
ing can be performed in the projected subspace Ã. In [18], the authors assume that the projected
data points form a Gaussian-mixture model and further propose using the expectation-maximization
(EM) algorithm to find the soft clusters; that is, each data point i is assigned a cluster membership
probability p(l|i,θ), where l is the lth cluster and θ is a parameter for the underlying Gaussian-
mixture model. The rationality of this approach can be traced back to [14], which found that by
random projection, the original high-dimensional distribution tends to be more like Gaussian distri-
bution in the projected subspace. It was also found in [10] that eccentric clusters can be reshaped to
be more spherical by random projection.

Due to its random nature, the clustering result generated by the above procedure (RP+EM) might
be highly unstable; that is, different runs of random projections might lead to very different cluster-
ing assignment despite the fact that each of them might partially reveal the true clustering structure.
Based on this observation, the authors in [18] further propose running this RP+EM procedure mul-
tiple times followed up by an ensemble step. To be specific, after we run RP+EM multiple times
(say T in total), we construct an n× n similarity/affinity matrix P, where each element indicates
the average probability that the corresponding two data points are assigned to the same cluster, i.e.,
P(i, j) = 1

T ∑T
t=1 ∑k

l=1 p(l|i,θt )× p(l| j,θt), where l and t are the indices for clusters and different
runs, respectively. Then, an agglomerative clustering algorithm is run based on this affinity matrix
P to generate the final k clusters. The empirical evaluations show that such ensemble framework
leads to much more robust clustering results. Figure 11.5 summarizes the overall flowchart of this
clustering ensemble framework based on RP+EM.

Given that the k-means clustering is NP-hard even if k = 2, many recent research works have
focused on the so-called γ−approximation algorithms. Let us introduce an n× k cluster indictor
matrix X , where each row of X has only one nonzero element; and X(i, j) 
= 0 indicates that the data
point i belongs to the jth cluster.2 Optimal k-means searches for an indicator matrix Xopt such that
Xopt = argminX ‖A−XXTA‖2

f ro, where X is the set of all valid n× k indictor matrices.
For any γ > 1 and the failure probability 0 ≤ δγ < 1, a γ−approximation algorithm finds an

indicator matrix Xγ such that with the probability at least 1− δγ, we have ‖A− XXT A‖2
f ro ≤ γ ·

minX ‖A−XXTA‖2
f ro. In [33], the authors propose the first linear time γ−approximation algorithm

by sampling. More recently, the authors in [3] propose further speeding up the computation by
running such a γ−approximation algorithm on the projected subspace.

1Depending on the way we construct the rotation matrix, we might need to do a constant scaling on the elements of the
projected matrix Ã.

2The actual value of such non-zero elements is determined by the size of the clusters. If we have nj data points in the jth

cluster, we have X(i, j) = 1/√nj .
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FIGURE 11.5: The flowchart of clustering ensemble based on Random Projection and EM algo-
rithm.

11.3.2 Global Projection

In the locality-preserving projection, for any two data points, we want their pair-wise distance
approximately unchanged before and after the projection. In global projection, for each data point,
we want its projection to be as close as possible to the original data point. If we use the Euclidian
distance, it is equivalent to saying that we want to minimize the Frobenius norm of (Ã−A), where
Ã is the approximation of the original data matrix A.

We can represent a global projection using the notation of matrix low-rank approximation. For-
mally, a rank-c approximation of matrix A is a matrix Ã; Ã = L ·M ·R where L, M, and R are of
rank-c; and ‖Ã−A‖ is small. Such a low-rank approximation often provides a powerful tool for
clustering. For example, for the spatial data, the left matrix L often provides a good indicator for the
cluster-membership; and the row of the right matrix R provides the description of the corresponding
cluster. For the bipartite graph data, we can represent it by its adjacency matrix A; then the left and
right matrices are often good indicators for row and column cluster memberships; and the middle
matrix M indicates the interaction between the row and the column clusters. We refer the readers
to Chapter 7 for more details on the clustering algorithms based on matrix low-rank approximation.
Here, we introduce how to get such low-rank approximation efficiently so that the overall clustering
procedure is efficient and scalable.

Depending on the properties of those matrices (L, M, and R), many different approximations
have been proposed in the literature. For example, in singular value decomposition (SVD) [21], L
and R are orthogonal matrices whose columns/rows are singular vectors and M is a diagonal matrix
whose diagonal entries are singular values. Among all the possible rank-c approximations, SVD
gives the best approximation in terms of squared error. However, SVD is usually dense, even if the
original matrix is sparse. Furthermore, the singular vectors are abstract notions of best orthonormal
basis, which is not intuitive for the interpretation.

To address the computational challenges in SVD, sparsification was proposed in [1]. The basic
idea is to randomly set a significant portion of the entries in A as zeros and rescale the remaining
entries; and to run SVD on the resulting sparse matrix instead. For instance, with uniform sampling,
each entry A(i, j) is set as zero with the probability of 1− 1/s(s > 1) and is scaled as sA(i, j) with
the probability of 1/s.3 The resulting sparse matrix Ā can be viewed as a perturbated version of the

3The authors in [1] also proposed a non-uniform sampling procedure.
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(a) SVD (b) CX/CUR

(c) CMD (d) Colibri

FIGURE 11.6: An illustrative comparison of SVD, CX/CUR, CMD, and Colibri. Each dot is a
data point in 2-D space. SVD (a) uses all the available data points to generate optimal projection
directions. CX/CUR (b) uses actual sampled data points (dark dots) as projection directions and
there are a lot of duplicates. CMD (c) removes duplicate sampled data points. Colibri (d) further
removes all the linearly correlated data points from sampling.

original matrix A by adding a random matrix E to it. From the random matrix theory [20], it is well
known that the norm of a random matrix is well-bounded. As a result, the SVD on this sparse matrix
Ā provides a near-optimal low-rank approximation of the original data matrix A, at the benefit of
significantly speeding up the computation.

Notice that the sparse SVD provides computational gain compared with the original exact SVD,
but it does not address the issue of the space cost or the interpretability of the resulting low-rank
approximation. For example, as shown in [44], these methods often need a huge amount of space.
More recently, the so-called example-based low-rank approximations have started to appear, such as
CX/CUR [15], CMD [44] and Colibri [45], which use the actual columns and rows of the data matrix
A to form L and R. The benefit is that they provide an intuitive as well as a sparse representation,
since L and R are directly sampled from the original data matrix. However, the approximation is
often sub-optimal compared to SVD and the matrix M is no longer diagonal, which means a more
complicated interaction.

In CX decomposition, we first randomly sample a set of columns C from the original data matrix
A, and then project the A into the column space of C, i.e., Ã =CC†A, where C† is the Moore-Penrose
pseudo inverse of C. In CUR decomposition, we also do sampling on the row side to further reduce
the space cost. One drawback of the original CX/CUR is the repeated sampling, i.e., some sampled
columns/rows are duplicate. Based on this observation, CMD tries to remove such duplicate rows
and columns before performing the projection. In [45], the authors further propose removing all the
linearly correlated sampled columns. Since it does not affect the column/row space if we remove the
linearly correlated columns/rows, these methods (CMD and Colibri) lead to the same approximation
accuracy as CX/CUR, but require much less space and cost. Figure 11.6 provides an illustrative
comparison of these different projection methods.
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11.4 Parallel and Distributed Clustering Algorithms

In this section, we survey parallel and distributed clustering algorithms to handle big data. In
contrast to the typical single machine clustering, parallel and distributed algorithms use multiple
machines to speed up the computation and increase the scalability. The parallel and distributed
algorithms are divided into two groups: traditional memory-based algorithms [13, 19, 5, 6, 41] and
modern disk-based algorithms [11, 9, 29, 26].

The traditional memory-based algorithms assume that the data fit in the memory of multiple
machines. The data is distributed over multiple machines, and each machine loads the data into
memory.

Many of the modern disk-based algorithms use MapReduce [11], or its open-source counterpart
Hadoop, to process disk resident data. MapReduce is a programming framework for processing
huge amounts of data in a massively parallel way. MapReduce has two major advantages: (a) the
programmer is oblivious of the details of the data distribution, replication, load balancing, etc., and
(b) the programming concept is familiar, i.e., the concept of functional programming. Briefly, the
programmer needs to provide only two functions, a map and a reduce. The typical framework is as
follows [34]: (a) the map stage sequentially passes over the input file and outputs (key, value) pairs;
(b) the shuffling stage groups all values by key, and (c) the reduce stage processes the values with
the same key and outputs the final result. Optionally, combiners can be used to aggregate the outputs
from local mappers. MapReduce has been used widely for large scale data mining [29, 26].

We describe both the traditional and modern parallel and distributed clustering algorithms. We
first describe the general principle of parallel and distributed algorithms. Then we survey traditional
algorithms including DBDC and ParMETIS . Finally we survey modern, disk-based MapReduce
algorithms including PKMeans, DisCo, and BoW.

11.4.1 General Framework

Most parallel and distributed clustering algorithms follow the general framework depicted in
Figure 11.7.

1. Partition. Data are partitioned and distributed over machines.

2. Local Clustering. Each machine performs local clustering on its partition of the data.

3. Global Clustering. The cluster information from the previous step is aggregated globally to
produce global clusters.

4. Refinement of Local Clusters. Optionally, the global clusters are sent back to each machine
to refine the local clusters.

Some algorithms (e.g. PKMeans in Section 11.4.4 and DisCo in Section 11.4.5) iteratively per-
form steps 3 and 4 until the quality of clusters becomes reasonably good. One of the main challenges
of a parallel and distributed clustering algorithm is to minimize data traffic between the steps 2 and
3. Minimizing the traffic is important since the advantage of a parallel and distributed clustering al-
gorithms comes from the fact that the output from the local clustering step is much smaller than the
raw data. We will see how different algorithms use different strategies to minimize the data traffic.

Another issue in parallel and distributed clustering is the lower accuracy compared to the serial
counterpart. There are two main reasons for the lower accuracy. First, each machine performing the
local clustering might use a different clustering algorithm than the serial counterpart due to heavy
communication costs. Second, even though the same algorithm is used for the local clustering step
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FIGURE 11.7: The general framework of most parallel and distributed clustering algorithms. (1)
Data is partitioned. (2) Data is locally clustered. (3) Local clusters are merged to make global clus-
ters. (4) Optionally, local clusters are refined using the global clusters.

as well as the serial algorithm, the divided data might change the final aggregated clusters. We will
survey the clustering quality, too, in the following.

11.4.2 DBDC: Density-Based Clustering

DBDC [24] is a density-based distributed clustering algorithm. Density-based clustering aims
to discover clusters of arbitrary shape. Each cluster has a density of points which is considerably
higher than outside of the cluster. Also, the density within the areas of noise is lower than the density
in any of the clusters.

DBDC is an exemplary algorithm that follows the general framework given in Section 11.4.1.
Initially the data is partitioned over machines. At the local clustering step, each machine performs
a carefully designed clustering algorithm to output a set of a small number of representatives which
has an accurate description of local clusters. The representatives are merged in the global clustering
step using DBSCAN [17], a single-machine density-based clustering algorithm. Then the global
clusters are sent back to all clients sites which relabel all objects located on their site independently
of each other.

The experimental results clearly show the advantage of the distributed clustering. The running
time of DBDC is more than 30 times faster than the serial clustering counterpart. Moreover, DBDC
yields almost the same clustering quality as the serial algorithm.

11.4.3 ParMETIS: Graph Partitioning

ParMETIS [31] is a parallel graph partitioning algorithm. Given a vertex and edge weighted
graph, k-way graph partitioning algorithm partitions the vertices into k subsets so that the sum of
the weight of the vertices in each subset is roughly the same, and the weight of the edges whose
incident edges belong to different subsets is small. For example, Figure 11.8 shows an example of 3-
way graph partitioning of a graph with 14 vertices. The graph partitioning is essentially a clustering
problem where the goal is to find good clusters of vertices.
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FIGURE 11.8: The k-way graph partitioning problem partitions the vertices into k subsets so that
the sum of the weight of the vertices in each subset is roughly the same, and the weight of the edges
whose incident edges belong to different subsets is small. The figure shows 3-way partitioning of a
graph with 14 vertices. A dotted circle represents a partition.

There have been many works on the graph partitioning. One of the state-of-the-art graph par-
titioning algorithms is METIS [30]. ParMETIS is a parallel algorithm of METIS for distributed
memory system.

METIS is a multilevel partitioning algorithm. There are three main phases in the METIS. In the
first coarsening phase, maximal matching on the original graph is performed. Then, the matched
vertices are collapsed together to create a smaller graph. This process is repeated until the number
of vertices is small enough. In the second partitioning phase, k-way partitioning of the coarsened
graph is performed by a multilevel recursive bisection algorithm. In the third uncoarsening phase,
the partitioning from the second phase is projected back to the original graph by a greedy refinement
algorithm.

ParMETIS performs the three phases of METIS using memory-based distributed systems.
ParMETIS does not follow the general framework in Section 11.4.1, since the clustering is mainly
based on the coarsening and the uncoarsening operations which are graph operations different from
clustering operations. Initially each processor receives an equal number of vertices. At the coars-
ening phase, ParMETIS first computes a coloring of a graph and then computes a global graph
incrementally matching only vertices of the same color one at a time. At the partitioning phase, the
coarsened graph is broadcasted to all the machines. Each machine performs recursive bisection by
exploring only a single path of the recursive bisection tree. At the uncoarsening phase, vertices of
the same color are considered for a movement; subsets of the vertices that lead to a reduction in the
edge-cut are moved. When moving vertices, the vertices themselves do not move until the final step:
only the partition number associated with each vertex moves to minimize communication cost.

Experiments were performed on a 128-processor Cray T3D parallel computer with distributed
memories. In terms of partition quality, the edge-cut produced by the parallel algorithm is quite close
to that produced by the serial algorithm. The running time of the ParMETIS using 128 processors
was from 14 to 35 times faster than the serial algorithm.

11.4.4 PKMeans: K-Means with MapReduce

MapReduce has been used for many clustering algorithms. Here we describe PKMeans [48], a
k-means [37, 2, 23, 46] clustering algorithm on MapReduce. Given a set of n objects and the number
of cluster k, the k-means algorithm partitions the objects so that the objects within a cluster are more
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similar to each other than the objects in different clusters. Initially, k objects are randomly selected
as the center of clusters. Then the k-means algorithm performs the following two tasks iteratively:

• Step 1. Assign each object to the cluster whose center is the closest to the object.

• Step 2. For each cluster, update the center with the mean of the objects in the cluster.

PKMeans uses MapReduce to distribute the computation of k-means. PKMeans follows the
general framework shown in Section 11.4.1. The partitioning is implicitly performed when the data
is uploaded to the distributed file system (e.g., GFS or HDFS) of MapReduce. The local cluster-
ing, which corresponds to Step 1 above, is performed in the mapper. The global clustering, which
corresponds to Step 2 above, is performed in the combiner and the reducer.

Specifically, the objects data x1...xn, for which we assume d-dimensional points, are distributed
in the HDFS. The centers y1...yk, which are also d-dimensional points, of clusters are given to the
mapper in the format of {i,yi} by the parameter passing mechanism of Hadoop. The details of the
mapper, the combiner, and the reducer are as follows:

• Mapper: Read the object data xi, and find the center y j which is closest to xi. That is, j =
argminl ||xi− yl ||2. Emit < j,xi >.

• Combiner: Take < j,{xi} > and emit < j,∑xi,num > where num is the number of objects
that the combiner received with the key j.

• Reducer: Take < j,{(∑xi,num)} >, and compute the new center. Emit the new center <
j,y j > of the cluster.

The outputs of the reducer are the centers of clusters which are fed into the mapper of the next
iteration. We note that the combiner greatly decreases the amount of intermediate data by emitting
only the sum of the input data.

Experimental results show that PKMeans provides good speed up, scale up, and size up. The
speed up is evaluated by the ratio of running time while keeping the dataset constant and increasing
the number of machines in the system. PKMeans shows near-linear speed up. The scale up measures
whether x-times larger system can perform x-times larger job in the same run-time as the original
system. PKMeans shows a good scale up, better than 0.75 for 4 machines. In addition, PKMeans
has a linear size up: given the fixed number of machines, the running time grows linearly with the
data size. Finally, PKMeans is an exact algorithm, and thus the quality of the clustering is the same
as that of the serial k-means.

11.4.5 DisCo: Co-Clustering with MapReduce

DisCo [42] is a distributed co-clustering algorithm with MapReduce. Given a data matrix, co-
clustering groups the rows and columns so that the resulting permuted matrix has concentrated
nonzero elements. For example, co-clustering on a documents-to-words matrix finds document
groups as well as word groups. For an m×n input matrix, co-clustering outputs the row and column
labeling vector r ∈ {1,2, ...,k}m and c ∈ {1,2, ..., l}n, respectively, and k× l group matrix G where
k and l are the number of desired row and column partitions, respectively. Searching for an optimal
cluster is NP-hard [12], and thus co-clustering algorithms perform a local search. In the local search,
each row is iterated to be assigned to the best group that gives the minimum cost while the column
group assignments are fixed. Then in the same fashion each column is iterated while the row group
assignments are fixed. This process continues until the cost function stops decreasing.

There are two important observations that affect the design of the distributed co-clustering algo-
rithm on MapReduce:
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• The numbers k and l are typically small, and thus the k× l matrix G is small. Also, the row
and the column labeling vectors r and c can fit in the memory.

• For each row (or column), finding the best group assignment requires only r, c, and G. It does
not require other rows.

Exploiting the above two characteristics, G, r, and c are broadcast to mappers via parameter
passing mechanism of MapReduce. Then each row (or column) can be independently processed to
be assigned to the best group that minimizes the cost. Each row (or column) iteration requires a
map and a reduce stage, and it follows the general framework shown in Section 11.4.1. The mapper
reads each row and performs local clustering. The reducer performs global clustering by gathering
local cluster information and outputs the updated G matrix and the r row-label vector (c column-
label vector for the column iteration). DisCo minimizes network traffic by transferring only the label
vectors and the G matrix between the mapper and the reducer; the matrix data are not transferred.

Experiments were performed on a 39-node Hadoop cluster on matrix data up to 2.5 million by
1.3 million. The performance, measured by the aggregated throughput, increased linearly with the
number of machines. The quality of DisCo is the same as that of the serial algorithm since DisCo is
an exact algorithm.

11.4.6 BoW: Subspace Clustering with MapReduce

BoW [7] is a distributed subspace clustering algorithm on MapReduce. BoW provides two
subspace clustering algorithms on MapReduce: Parallel Clustering (ParC) and Sample-and-Ignore
(SnI). ParC has three steps as illustrated in Figure 11.9: (1) partition the input data using mappers
so that data with the same partition are aggregated to a reducer, (2) reducers find clusters in their
assigned partitions using any subspace clustering algorithm (e.g., [8]) as a plug-in), and (3) merge
the clusters from the previous step to get final clusters. Steps (1) and (2) are performed in a map and
a reduce stage, respectively, and step (3) is done serially in a machine.

SnI uses sampling to minimize network traffic. SnI comprises two phases as depicted in Fig-
ure 11.10. In the first phase, (1) mappers randomly sample data (e.g., 10% of the data) and send

FIGURE 11.9: The ParC algorithm for subspace clustering. (1) Mappers partition the data. (2) Each
reducer finds clusters. (3) A single machine collects and merges all the clusters from the output of
the reducers to make final clusters.
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FIGURE 11.10: The SnI algorithm for subspace clustering. (1) Mappers sample the data. (2) A
reducer finds initial clusters from the sampled data. (3) Mappers sends to reducers only the data
which do not belong to the initial clusters from the second step. (4) Reducers find clusters. (5) A
single machine combines the clusters from the second and the fourth steps to make final clusters.

results to a reducer. (2) The reducer runs a subspace clustering algorithm to find initial clusters. In
the second phase, (3) mappers send to reducers only the data points which do not belong to the initial
clusters found in the first phase, (4) the reducers find clusters, and (5) a single machine combines
the clusters from the reducer with the initial clusters from the first phase to make final clusters.

ParC and the second phase of SnI follow the general framework described in Section 11.4.1:
data is partitioned, data is locally clustered, local clusters are aggregated to make global clusters.
The first phase of SnI is a preprocessing step to minimize network traffic.

ParC and SnI have their own pros and cons. In terms of the number of disk I/Os, ParC is bet-
ter since it requires only one map-and-reduce step while SnI requires two map-and-reduce steps.
However, in terms of the network traffic SnI is better due to the sampling in the first phase and the
filtering in the second phase.

The main question is which algorithm runs faster? There are many parameters to consider to
answer the question: e.g., number of reducers used, data size, disk speed, network speed, start-up
cost, the plug-in algorithm cost, ratio of data transferred in the shuffling stage, and the sampling
rate. BoW derives the cost (running time) as a function of the parameters to determine the algorithm
that gives the minimum running time.

Experimental results show that BoW correctly chooses the best algorithm for different numbers
of reducers. BoW also shows linear scalability on the data size. Finally, we note that both ParC and
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SnI are not exact algorithms due to the clustering on the divided data. However, the quality of the
clustering from either ParC or SnI is comparable to the serial version of the algorithm.

11.5 Conclusion

Given that (1) data size keeps growing explosively and (2) the intrinsic complexity of a clustering
algorithm is often high (e.g., NP-hard), the scalability seems to be a “never-ending” challenge in
clustering. In this chapter, we have briefly reviewed three basic techniques to speed up/scale up
a data clustering algorithm, including (a) “one-pass” algorithms to reduce the iteration number in
clustering procedure, (b) randomized techniques to reduce the complexity of the input data size,
and (c) distributed and parallel algorithms to speed up/scale up the computation. A future trend is
to integrate all these available techniques to achieve even better scalability.
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12.1 Introduction

A growing number of clustering algorithms for categorical data have been proposed in recent
years, along with interesting applications, such as partitioning large software systems [8, 9] and
protein interaction data [13, 21, 38, 77].

A categorical dataset with m attributes is viewed as an m-dimensional “cube”, offering a spatial
density basis for clustering. A cell of the cube is mapped to the number of objects having values
equal to its coordinates. Clusters in such a cube are regarded as subspaces of high object density
and are separated by subspaces of low object density. Clustering the cube poses several challenges:

(i) Since there is no ordering of attribute values, the cube cells have no ordering either. The
search for dense subspaces might have to consider several orderings of each dimension of the cube
to identify the best clustering (unless all the attributes have binary values).

(ii) The density of a subspace is often defined relative to a user-specified value, such as a radius.
However, different radii are preferable for different subspaces of the cube [17]. In dense subspaces
where no information should be missed, the search is more accurately done “cell by cell” with a low
radius of 1. In sparse subspaces, a higher radius may be preferable to aggregate information. The
cube search could start from a low radius and gradually move to higher radii. Although the term
radius is derived from geometrical analogies that assume circular constructs, with categorical data
radius is not a Euclidean distance.

Figure 12.1 illustrates a 3-dimensional cube with subspaces that may be clusters. Figure 12.2
shows examples of creating and expanding clusters in a 3-D dataset. The radius is the maximum
number of dimensions by which neighbors can differ.

Categorical clustering algorithms have often been motivated by density-based clustering, such
as CLIQUE [4], CLICKS [75], CACTUS [32], COOLCAT [19], DBSCAN [29, 68], OPTICS [17],

FIGURE 12.1: Two “subspaces” in a 3-D
cube, for r=1. FIGURE 12.2: A cluster is a dense sub-

space with a “central” cell marked with a
dot. (a) radius=1, two new clusters. (b) ra-
dius=1, clusters expand. (c) radius=2, clus-
ters expand. (d) radius=2, one new cluster.
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CHAMELEON [53], ROCK [39], and DENCLUE [44], and others. Although most of these ap-
proaches are efficient and relatively accurate, many of these algorithms require the user to specify
input parameters (with wrong parameter values resulting in a bad clustering), may return too many
clusters or too many outliers, often have difficulty finding clusters within clusters or subspace clus-
ters, or are sensitive to the order of object input [21, 35, 38, 75].

Hierarchical algorithms for categorical clustering take the approach of building a hierarchy rep-
resenting a dataset’s entire underlying cluster structure. Hierarchical algorithms require few user-
specified parameters and are insensitive to object ordering. Such approaches offer the cluster struc-
ture of a dataset as a hierarchy, which is usually built independent of user-specified parameters or
object ordering. A user can cut its branches and study the cluster structure at different levels of
granularity and detect subclusters within clusters. Though some hierarchical algorithms are slow
achieving quadratic runtimes, they inspire faster simplifications that are useful for finding the rich
cluster structure of a dataset.

The objectives of this chapter are to survey important clustering applications for categorical (dis-
crete) datasets and to explain benefits and drawbacks of existing categorical clustering algorithms.
This chapter is organized as follows. Section 12.2 presents the goals of categorical clustering al-
gorithms in general. Section 12.3 gives an overview of similarity measures for categorical data.
Section 12.4 describes previous categorical clustering algorithms from the literature and discusses
the scalability of the algorithms. Finally we discuss open problems for future work in Section 12.5.

12.2 Goals of Categorical Clustering

Categorical clustering algorithms have various features, which make them suitable for applica-
tions with different requirements. To evaluate a categorical clustering algorithm’s suitability for a
problem, we use a general set of desirable features [15, 41, 42, 73]:

• Scalability: the runtime and memory requirements should not explode on large (high-
dimensional) datasets [28].

• Robustness: it should have ability to detect outliers that are distant from the rest of the objects.
Outliers may indicate objects that belong to a different population of the samples [39].

• Order insensitivity: a clustering algorithm should not be sensitive to the ordering of the in-
put objects. Reordering the objects in a dataset should not result in different clusters. Order
insensitivity is important for every application, as it is key to ensure reproducibility of results.

• Minimum user-specified input: parameters, such as the number of clusters, will affect the
result [21, 38].

• Mixed datatypes: objects may have numerical descriptive attributes, such as a set of genes
expressed at different levels over time, and discrete (categorical) descriptive attributes, such
as genes with Gene Ontology annotations [1].

• Point proportion admissibility: duplicating objects and re-clustering should not change the
result [37].

Evaluation of clustering quality is application-dependent, with choices for quality measures
including

• Precision/recall to a gold standard [33],
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• Entropy of the clusters [65],

• Reproducibility [59],

• Hubert-Arabie Indices, the number of pairs of objects that are correctly placed in the same or
different clusters divided by all pairs of objects [49].

12.2.1 Clustering Road Map

Categorical clustering partitions N objects into k clusters. Object o has m attributes, {o1, · · · ,om}
(usually N >> m). Attribute oi, i = 1 · · ·m, has a domain Di of a categorical or boolean datatype.
Figure 12.3 depicts inheritance relationships between categorical clustering algorithms. Root ap-
proaches are separated into algorithms with different features: partitioning, hierarchical, density-
based, model-based [41, 42, 73]. Refinement algorithms improve upon a root approach, inheriting
the approach’s features, while possibly introducing drawbacks. Table 12.1 compares categorical
clustering algorithms’ features and shows whether they are recommended for an application. The

FIGURE 12.3: Classification of categorical clustering algorithms.
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O(.) notation describes how the size of the dataset affects an algorithm’s runtimes; higher values
are slower. In the next sections, we discuss these algorithms.

12.3 Similarity Measures for Categorical Data

The notion of similarity or distance for categorical data is not as intuitive as it is for continuous
numerical data. One of the main characteristics of categorical data is that a categorical attribute
takes discrete values that do not have any inherent ordering, unlike numerical attributes. Although
two categorical attribute values may be identical or different, they are not directly comparable as in
numerical data (by the less than ≤ or greater than ≥ relationships).

12.3.1 The Hamming Distance in Categorical and Binary Data

The simplest categorical similarity measure is the Hamming distance, which measures the over-
lap between two categorical data objects by counting the number of matching attributes (in which
the objects have identical values). For a fixed length m, the Hamming distance (HD) is a metric on
the vector space of the words of that length. Figure 12.4 shows an example of HDs in the zoo dataset
[60]. The serpent tuatara is within a relatively small HD from the other serpents; the maximum dis-
tance is HD(tuatara↔ seasnake) = 5. On the other hand, HD(tuatara↔ gorilla) = 8, and gorilla
is unlikely to belong to the class of serpents. For binary strings a and b, the HD is equivalent to the
number of ones in a xor b. The metric space of length-m binary strings, with the HD, is known as
the Hamming cube.

One obvious drawback of the Hamming distance is that all matches and mismatches are treated
equally since HD does not distinguish between the different values taken by an attribute. The Ham-
ming distance is too simplistic as it gives equal weight to all matches and mismatches. Although
categorical data values do not have any inherent ordering, there is other information in categorical
data that can be used to define what is more or less similar. A combination of attribute values may
co-occur frequently or rarely in the dataset. This observation leads to similarity measures for cat-
egorical attributes, which take into account the frequency distribution of different attribute values
in a given dataset. These measures may use probability or information theory to define similar-
ity between categorical attribute values. Several such categorical similarity measures are described
next.

FIGURE 12.4 (See color insert): Example of Ham-
ming distances on the zoo categorical dataset.
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12.3.2 Probabilistic Measures

Probabilistic approaches take into account the probability of a match between attribute values
taking place. The following measures are probabilistic:

Goodall: This measure assigns a higher similarity to a match if the value is infrequent than if
the value is frequent. This similarity measure essentially considers the probability that the
similarity value would be observed in a random sample of two points from the dataset. The
maximum similarity is attained when the matching value Xk occurs twice and all other pos-
sible Ak values occur more than twice. The minimum similarity is attained when attribute Ak

has only one value. The Goodall similarity formula is

Sk(Xk,Yk) = 1− ∑
q∈Q

p2
k(q) i f Xk = Yk, 0 otherwise.

The original Goodall similarity measure combines similarities in multivariate categorical data,
by considering dependencies between attributes; however, this procedure is computationally
expensive to compute and Boriah et al. have proposed 4 simpler variants [36, 22].

Smirnov: The Smirnov measure is a probabilistic measure that considers both matches and mis-
matches. This measure considers both a value’s frequency as well as the distribution of the
other values taken by the same attribute. The similarity is higher for a match, if the matching
values are infrequent, but the other values for the attribute are frequently occurring; the max-
imum similarity is attained if the matching value Xk occurs only twice and there is just one
other value for Ak, which occurs N− 2 times. The minimum similarity for a matching value
is attained if Xk is the only value for Ak occurring N times. For a mismatch, the maximum
similarity is attained if Xk and Yk occur once each and Ak takes just one more value occurring
N−2 times. For a mismatch, the minimum similarity is attained when Xk,Yk are the only two
possible values for Ak [70].

Anderberg: This similarity measure also takes into account both matches and mismatches. Using
this approach, matches on rare values indicate a strong similarity, while mismatches on rare
values should be treated distinctly and should indicate lower similarity. It assigns higher sim-
ilarity for matches on rare values and lower similarity for matches on frequent values. As for
mismatches, it decreases the similarity for mismatches on rare values (decreasing it less for
mismatches on frequent value) [6].

12.3.3 Information-Theoretic Measures

Information-theoretic approaches incorporate the information content of a particular attribute
value with respect to the data set. Usually, these measures are inspired by information theory, where
attribute values that are rarely observed are considered more informative. The following measures
are information-theoretic:

Burnaby: This measure assigns higher similarity to mismatches on frequent values and lower
similarity to mismatches on rare values. For mismatching values, the range of Sk(Xk,Yk) is

[ Nlog(1− f rac1N)
Nlog(1− f rac1N)−log(N−1) ,1]. For matching values, this similarity measure returns Sk(Xk,Yk) =

1. This formula returns the minimum similarity when all the values for attribute Ak are in-
frequent (each occurring only once) and the maximum value when Xk,Yk are frequent (each
occurring N/2 times) [25].

Lin: This measure gives higher similarity to matches on frequent values and lower similarity to
mismatches on infrequent values. The basic Lin similarity formula is [58]:

Sk(Xk,Yk) = 2 log pk(Xk) i f Xk = Yk, 2log(pk(Xk)+ pk(Yk)) otherwise.
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12.3.4 Context-Based Similarity Measures

Context-based measures evaluate similarity between two objects by examining the contexts in
which they appear. For example, a context-based measure may evaluate the distance between two
soft drink customers, considering one is a Coke customer and the other a Pepsi customer. So, the
question becomes how to define the distance between two vectors of boolean or categorical attributes
in m-space, which correspond to Coke and Pepsi customers.

The context-based metric proposed by Das and Mannila follows an iterative approach [26].
Given distances between all pairs of m attributes in the dataset, this approach iteratively computes
distances between subrelations (e.g. Coke and Pepsi customers), and then it computes distances
between all attributes again. After several iterations, a stable set of distances between all pairs of
attributes is produced.

An overview of this similarity measure is given next. We are given a set R of m attributes. Let r
be a boolean 0/1 relation over R. Initially, all distances between attribute pairs A,B∈R are initialized
to random values. Then, subrelation centers are computed as follows. For each t ∈ r, all attributes
A1, · · · ,Ak to which t is similar (according to a criterion) are used to compute a vector f (t) consisting
of all the pairwise distances between t and Ai. Then, the subrelation center for each attribute A ∈ R
is the vector cA on R, defined by the average of all vectors f (t) from the previous step where t
and A are similar. Next, for each pair of attributes A,B ∈ R, the distance is defined by computing
distance between subrelation centers cA and cB. This iteration is repeated until the distance between
A,B ∈ R converges. Given attribute distances, it is easy to compute object distances and subrelation
distances.

12.4 Descriptions of Algorithms

In this section, a description of the key classes of categorical data clustering algorithms is pro-
vided.

12.4.1 Partition-Based Clustering

In the partitioning approach, objects are partitioned and may change clusters based on dissim-
ilarity. Partitioning methods are useful for bioinformatics applications where a fixed number of
clusters is desired, such as small gene expression datasets [24]. A drawback is that the user typically
specifies the number of clusters as an input parameter.

12.4.1.1 k-Modes

The k-Modes algorithm represents a cluster by a summary of the attribute-value frequencies of
objects classified under the node. Iteratively, objects are assigned to a cluster and the summaries are
reevaluated. Usually, the algorithm converges after a finite (small) number of iterations. The number
of clusters is user-specified.

The k-Modes algorithm is an adaptation of k-Means to categorical datasets. K-Modes removes
the numerical-only limitation of the k-Means algorithm but maintains its efficiency in clustering
large categorical datasets. K-Modes makes the following modifications: 1) it uses a dissimilar-
ity measure for categorical objects; 2) it replaces the means of clusters with the modes; and 3)
it uses a frequency-based method to find the modes. It has similar runtime, benefits, and draw-
backs as k-Means [47]. The Hamming Distance can be used for finding an object’s nearest cluster
mode.
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The mode of a cluster is used to assign an unassigned object to the closest cluster. Let X =
{X1,X2, · · · ,Xn} be a set of n categorical objects described by categorical attributes, A1,A2, · · · ,Am.
A mode of X is a vector Q = [q1,q2, · · · ,qm] that minimizes

D(X,Q) =
n

∑
i=1

d1(Xi,Q)

where d1 is a distance function, such as Hamming Distance. It was proven that the function D(X,Q)
is minimized if and only if every position j of the mode Q contains the most frequently occurring
value in attribute A j, such that f r(A j = q j|X) ≥ f r(A j = ci, j|X) for q j 
= ci, j for all j = 1, · · · ,m.
Note that the mode vector Q is not necessarily an element of X .

The mode of cluster c is a vector μc = {μc1 · · ·μcm}, where μc j is the most frequent value in c for
the jth attribute. The mode of c is determined by setting μc j to the most frequent value for the jth
category in c. To find a mode for a set, let nci, j be the number of objects having the ith value ci, j in
attribute A j and f r(A j = ci, j|X) = nci, j/n be the relative frequency of value ci, j in X .

The basic algorithm evaluates the total cost against the whole dataset, according to the cost func-

tion P(X
¯
,Q) =

k
∑

l=1

n
∑

i=1

m
∑
j=1

δ(xi, j,ql, j), each time a new mode is obtained over the k clusters, n objects,

and m categorical attributes. To make the computation more efficient, the following algorithm can
be used instead in practice:

1. Select k initial modes, one for each cluster.

2. Assign an object to the cluster with the nearest mode, according to a distance measure. Update
the mode of the cluster after each object allocation.

3. After all objects have been assigned to clusters, retest the dissimilarity of objects against the
current modes. If an object is found such that its nearest mode belongs to another cluster
rather than its current one, reassign the object to that cluster and update the modes of both
clusters.

4. Repeat until no object changes clusters.

In the original published implementation of the k-Modes algorithm two initial mode selection
methods were described. The first and simplest method selects the first k distinct records from the
dataset as the initial k modes. The second method evaluates the frequencies of all values for all
categorical attributes and stores them in an array in descending order of frequency; then it assigns
the most frequent values to the initial k modes.

The main disadvantage of k-Modes is that (like the k-Means algorithm) it produces locally opti-
mal solutions that are heavily dependent on the initial modes and the order of objects in the dataset.

12.4.1.2 k-Prototypes (Mixed Categorical and Numerical)

An extension of k-Modes called k-Prototypes handles mixed datatypes [46]. The k-Prototypes
algorithm that is used to cluster mixed-type objects integrates the k-Means and k-Modes algorithms.
The k-Prototypes algorithm is practically more useful because frequently encountered objects in real
world databases are mixed-type objects. k-Prototypes uses a distance metric that weighs the con-
tribution of the numerical versus categorical attributes. Like the k-Means and k-Modes algorithms,
k-Prototypes iterates until few objects change clusters.

The dissimilarity between two mixed-type objects X and Y , which are described by p numerical
and m− p categorical attributes Ar

1, · · · ,Ar
p,A

c
p+1...A

c
m, can be measured by

d2(X ,Y ) =
p

∑
j=1

(x j− y j)
2 + γ

m

∑
j=p+1

δ(x j,y j)
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where the first term is the squared Euclidean distance measure on the numerical attributes and the
second term is the simple matching dissimilarity measure on the categorical attributes. The weight
γ is used to avoid favoring either type of attribute.

12.4.1.3 Fuzzy k-Modes

Fuzzy k-Modes extends fuzzy k-Means to categorical data [48]. Fuzzy k-Modes is based on
the same ideas as k-Modes, involving iterative assignment of objects to the closest modes and re-
evaluation of modes, until convergence. However, objects’ assignments to clusters involve degrees
of membership between 0 and 1. The degree of membership of object 1 ≤ i ≤ n in cluster 1 ≤
l ≤ k is represented by the weight 0 ≤ wli ≤ 1. An object’s total membership across all clusters
must equal 1, represented as ∑k

l=1 wli = 1, for an object 1 ≤ i ≤ n. The fuzzy k-Modes algorithm
evaluates the total cost against the whole dataset X, according to the cost function F(W,X,Z) =

k
∑

l=1

n
∑

i=1
wα

lid(Xi,Zl), where α ≥ 1 is a weighting exponent and Zl = [zl,1, · · · ,zl,m] is the mode of the

lth cluster. The weights 0≤ wli ≤ 1 are set at each iteration, such that the ith object will tend to join
the lth cluster with the least dissimilar mode Zl . In turn, the mode Zl of cluster 1≤ l ≤ k, represented
by [zl,1, · · · ,zl,m], has each position zl, j set to the value for the attribute A j that will minimize the cost
function. The cost function is the sum of the weighted distances of all objects against the cluster
mode. It was proven that the fuzzy k-Means algorithm will converge in a finite number of iterations.
Its main disadvantage is that it often terminates at a local minimum.

12.4.1.4 Squeezer

Squeezer is a one-pass algorithm that is based on summarizing clusters like k-Modes. However,
Squeezer improves upon the iteration-bound speed of k-Modes [43]. Squeezer reads objects one-
by-one. The first tuple forms a cluster alone. Next objects are either put into an existing cluster or
rejected by all to form a new cluster.

The Squeezer algorithm accepts as input the dataset of objects and a value s for the similarity
threshold. The algorithm then fetches objects in an iterative fashion. Initially, the first object is
read in and a new Clustering Structure is established, which includes a summary and the cluster
itself. For each subsequent object, the similarity between any existing cluster C and the object is
computed. The maximal similarity value (denoted by sim-max) and the corresponding index of
a cluster (denoted by index) are evaluated from the above computing results. Then, if the sim-
max is larger than the input threshold s, the object is assigned to the selected cluster. Otherwise, a
new Clustering Structure is constructed, consisting of the cluster and summary. Finally, outliers are
handled and the clustering results are returned.

One of the disadvantages of Squeezer is that on some datasets, it may not produce accurate
clusters. Squeezer is considered efficient with a complexity of O(kN).

12.4.1.5 COOLCAT

COOLCAT is based on similar ideas as k-Modes, but instead of modes (summaries) of clusters
it uses objects as cluster centers. COOLCAT attempts to deal with k-Modes’ sensitivity to the initial
cluster modes problem. Clusters are created by reducing their entropy [19]. COOLCAT finds a set
of k maximally dissimilar objects to create initial clusters. All remaining objects are placed in one
of the clusters, such that the increase in entropy is minimized. The name of COOLCAT comes
from the notion of reducing the entropy of the clusters, thereby “cooling” them. Entropy is the
measure of information and uncertainty of a random variable. If X is a random variable, S(X) the
set of values that X can take, and p(x) the probability function of X , the entropy E(X) is defined
as E(X) = − ∑

x∈S(X)
p(x)log(p(x)). Entropy is sometimes referred to as a measure of the amount of
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TABLE 12.2: Three Different Clusterings of a Zoo Dataset

Cluster # Clustering 1 Clustering 2 Clustering 3
members E members E members E

Cluster 0 { tail, 4-legs },
{ tail, 2-legs }

1.0 { tail, 4-legs },
{ no-tail, 0-legs }

2.0 { tail, 4-legs } 0

Cluster 1 { no-tail, 0-legs } 0 { tail, 2-legs } 0 { tail, 2-legs },
{ no-tail, 0-legs }

2.0

Exp. E 0.66 1.33 1.33

Note: Table has three objects (shown in brackets) and two attributes: tail (yes/no) and legs
(zero/two/four). As shown, clustering 1 minimizes the expected entropy of the two clusters.

“disorder” in a system. The authors argue that as a measure of the similarity between two vectors,
the use of entropy is equivalent to that of other widely used similarity coefficients.

COOLCAT starts with a sample of points. The initial step selects the k most dissimilar objects
from the sample set, such that the pairwise entropy of the chosen objects is maximized. These serve
as initial representatives of the k clusters. All remaining objects of the dataset are placed in one of the
clusters such that, at each step, the increase in the entropy of the resulting clustering is minimized.
After the initialization, COOLCAT proceeds to process the remaining objects of the dataset (not
selected to seed the clusters initially) incrementally, finding a suitable cluster for each object. This
is done by computing the expected entropy that results after placing the object in each of the clusters
and selecting the cluster for which that expected entropy is the minimum. Table 12.2 compares three
clusterings and selects the one that minimizes the expected entropy.

Disadvantages of COOLCAT include its sensitivity to the order of object selection, as well as
its quadratic complexity of O(N2).

12.4.2 Hierarchical Clustering

Hierarchical clustering algorithms partition the objects into a tree of nodes, where each node
represents a potential cluster [56, 61]. Hierarchical clustering methods applied to categorical data
usually cluster the data in an agglomerative (bottom-up) fashion, where the most similar objects are
gradually placed in clusters at different levels of the resulting tree. For choosing a similarity metric,
there are many choices, such as Hamming distance. Alternatively, a classification tree can be created
in a divisive (top-down) fashion, where every node at a level consists of a statistical summary of the
resulting cluster and a new object is placed in the most suitable cluster.

Disadvantages of hierarchical methods for categorical data include their quadratic runtime and
often slower speed. The resulting clustering may be sensitive to the ordering by which objects are
presented. Errors in merging clusters cannot be undone and will affect the result. If large clusters
are merged then interesting local cluster structure may be lost. Next, we discuss several hierarchical
clustering algorithms for categorical data.

12.4.2.1 ROCK

ROCK is an agglomerative (bottom-up) hierarchical algorithm [39]. ROCK handles categorical
data clustering by building a tree; at each tree level clusters are merged in such a way that the re-
sulting intra-cluster similarity is maximized, where similarity is evaluated by the number of similar
object pairs within a resulting cluster. ROCK assumes a special similarity measure between objects
and defines a “link” between two objects the similarity of which exceeds a threshold.
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The motivation for ROCK was to develop a global clustering approach that considers the links
between objects. For this purpose, ROCK uses common neighbors to define links. If object A neigh-
bors object C and object B neighbors object C, then the objects A and B are linked (even if they are
not themselves neighbors). Two objects belonging to the same cluster should have many common
neighbors, while objects belonging to different clusters should have few common neighbors. Ini-
tially, each object is assigned to a separate cluster. Then, clusters are merged repeatedly according
to their “closeness,” defined by the sum of the number of links between all pairs of objects between
two clusters.

In order to decide which objects are “neighbors,” ROCK defines a similarity function, sim(A,C),
which encodes the level of similarity (“closeness”) between two objects. The similarity is normal-
ized, such that sim(A,C) is one when A equals C and zero when they are completely dissimilar.
Objects A and C are considered to be “neighbors” if sim(A,C) ≥ θ, where θ is a user-provided pa-
rameter. Then link(A,B) is defined to be the number of common neighbors between A and B. The
similarity function can be any metric, such as Euclidean distance or the Jaccard coefficient.

Then, a hierarchical clustering algorithm that uses links is applied to the samples. It iteratively
merges the clusters Ci,Cj that maximize the goodness function

g(Ci,Cj) =
total#crosslinks

expected#crosslinks
=

link[Ci,Cj ]

(ni + n j)1+2 f (θ)− n1+2 f (θ)
i − n1+2 f (θ)

j

.

It stops merging once there are no more links between clusters or the required number of clusters
has been reached.

The best set of clusters is characterized through the use of a criterion function, El , such that
the best set of clusters is the one maximizing El . The most common approach is to maximize the

number of links between pairs of points in each cluster: El =
k
∑

i=1
∑

pq,pr∈Ci

link(pq, pr). This criterion

keeps points that share many links in the same cluster, but it does not force points with few links to
split into different clusters. This criterion approach may end up with a large cluster, or it may result
in relatively weak clusters.

Disadvantages of ROCK include its cubic complexity in N, which makes it generally unsuitable
for large datasets [38, 76].

12.4.2.2 COBWEB

COBWEB creates a hierarchical clustering in the form of a classification tree. COBWEB in-
crementally organizes objects into a classification tree. A classification tree differs from decision
trees, which label branches rather than nodes and use logical rather than probabilistic descriptions.
Sibling nodes at a classification tree level form a partition [31].

Each node in a classification tree represents a class (concept) and is labeled by a probabilistic
concept that summarizes the attribute-value distributions of objects classified under the node. This
classification tree can be used to predict the class of a new object or missing attributes. COBWEB
integrates objects incrementally into an existing classification tree by classifying the object along a
path of best matching nodes.

There are four operations COBWEB employs in building the classification tree. Which operation
is selected for a step depends on the category utility of the classification tree achieved by applying it:

1. Insert a new node: a node is created corresponding to the object being inserted into the tree.

2. Merge two nodes: replace two nodes by a node whose children is the union of the origi-
nal nodes’ sets of children. The new node summarizes the attribute-value distributions of all
objects classified under it.

3. Split a node: a node is split by replacing it with its children.
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4. Pass an object down the hierarchy: the COBWEB algorithm is called on the object and the
subtree rooted in the node.

A benefit of COBWEB is that it can adjust the number of clusters in a partition, without the
user specifying this input parameter. A disadvantage of COBWEB is that it assumes categorical
attributes are independent and it may assume correlated attributes are independent.

12.4.2.3 LIMBO

LIMBO handles the categorical clustering problem by building a tree, where a node contains
statistics about the objects that are members of the corresponding cluster. New objects are added to
the tree in a top-down fashion by finding the best matching node and possibly breaking it into a new
node, thereby extending the tree. LIMBO employs Entropy and the Information Bottleneck (IB)
framework for quantifying the relevant information preserved when clustering [16]. LIMBO scales
to large datasets using a memory bound summary for the data, thereby improving on the scalability
of other hierarchical clustering algorithms. The approach most similar to LIMBO is the COOLCAT
algorithm, a nonhierarchical algorithm also based on entropy minimization, which was presented
previously.

LIMBO summarizes a cluster of objects using a Distributional Cluster Feature (DCF). For a
cluster c, DCF(c) = (p(c), p(A|c)), where p(c) is the probability of cluster c, and p(A|c) is the
conditional probability distribution of the attribute values given the cluster c. The information in
DCFs is used to compute the distance between two clusters or between a cluster and an object.
The LIMBO algorithm proceeds in three phases. In the first phase, the DCF tree is constructed to
summarize the data. In the second phase, the DCFs of the tree leaves are merged to produce a chosen
number of clusters. In the third phase, each object is associated with the DCF to which the object is
closest.

Phase 1 starts by reading and inserting objects into the DCF tree one by one. A tree is created,
where a node contains one or more DCF entries. Object o is converted into DCF(o). Then, starting
from the root, a path downward in the DCF tree is traced. When at a nonleaf node, the distance
between DCF(o) and each DCF entry of the node is computed, finding the closest DCF entry to
DCF(o). The child pointer of this entry to the next level of the tree is followed. When at a leaf node,
DCF(c) denotes the DCF entry in the leaf node that is closest to DCF(o). DCF(c) is the summary of
some cluster c. At this point, the decision is made whether o will be merged into the cluster c or not.
If there is an empty entry in the leaf node that contains DCF(c) (according to a space bound) then
DCF(o) is placed in that entry. If there is no empty leaf entry and there is sufficient free space, then
the leaf node is split into two leaves. The two DCFs in the leaf node that are farthest apart are used
as seeds for the new leaves. The remaining DCFs and DCF(o) are placed in the leaf that contains
the closest seed DCF.

Phase 2 clusters the leafs of the DCF tree. After the construction of the DCF tree, the leaf nodes
represent the DCFs of a clustering C of the objects. Each DCF(c) corresponds to a cluster c ∈ C
and contains statistics for computing probability p(c). The Agglomerative Information Bottleneck
(AIB) algorithm is employed to cluster the DCFs in the leaves and produce clusterings of the DCFs.
Any clustering algorithm is applicable at this phase of the algorithm.

Phase 3 associates the objects with clusters. For a chosen value of k, Phase 2 produced k DCFs
that are representatives of k clusters. In the final phase 3, a scan over the dataset assigns each object
to the cluster whose representative DCF is closest to the object.

12.4.3 Density-Based Clustering

Density-based approaches use a local density criterion for clustering categorical data; clusters
are subspaces in which the objects are dense and are separated by subspaces of low density. Density-
based methods are useful in bioinformatics for finding the densest subspaces in networks, typically
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involving cliques [13, 18]. Advantages of many density-based algorithms include time efficiency
and the ability to find clusters of arbitrary shapes. A challenge of applying density-based clus-
tering to categorical datasets is that the “cube” of attribute values has no ordering defined. Some
density-based algorithms take user-specified input parameters, though they usually do not require
the number of clusters k. Sometimes they cannot identify clusters of varying densities. With some
density-based algorithms the central subspace of a cluster cannot be distinguished from the rest of
the cluster based on a higher density [35, 38, 76]. Some density-based approaches are also grid-
based, since a histogram is constructed by partitioning the dataset into a number of nonoverlapping
regions.

12.4.3.1 Projected (Subspace) Clustering

Projected clustering is motivated by high-dimensional datasets, where clusters exist only in spe-
cific attribute subsets. Clusters are subspaces of high-dimensional datasets, determined by the subset
of attributes most relevant to each cluster. The object membership in a cluster is defined by a specific
range of values for the relevant attributes, while objects of other clusters are less likely to have such
values. The drawback of projected (subspace) methods is that clustering depends on user parameters
for determining the attributes relevant to each cluster; such parameters are the number of clusters or
the average number of dimensions for each cluster. Projected clustering may distinguish the center
of a cluster based on a higher frequency of values for the relevant attributes [4, 2, 3]. Next, we
present several subspace clustering algorithms.

12.4.3.2 CACTUS

CACTUS is a projected clustering method, which assumes that a cluster is identified by a unique
set of attribute values that seldom occur in other clusters [32]. It searches for the minimal set of
relevant attribute sets that are sufficient to define a cluster.

Assume all attributes A1, . . . ,Am are independent and all values in an attribute are equally likely.
Then, the measure σ(ai,a j) indicates the co-occurrence (and the similarity) of attribute values ai

and a j. The values ai and a j are strongly connected if their co-occurrence σ(ai,a j) is higher by a
user-specified factor α > 1 than the value expected under the attribute-independence assumption.

A set of attribute values C = {a1, . . . ,an} over the attributes {A1, . . . ,An} is a cluster if the set C
is a set of strongly connected attribute values. In other words, the condition should be satisfied that
all pairs of attribute values in C are strongly connected and their co-occurrence σ(ai,a j) > α for
i 
= j. Cluster C is also called a subspace cluster. C is a subcluster if there is another value for one
of attributes {A1, . . . ,An} that is not included in C, but is strongly connected to the other attribute
values in C = {a1, . . . ,an}.

The CACTUS algorithm collects inter-attribute summaries and intra-attribute summaries on cat-
egorical attributes. The inter-attribute summaries consist of all strongly connected attribute value
pairs where each pair has attribute values from different attributes. The intra-attribute summaries
consist of similarities between attribute values of the same attribute. Then, the CACTUS algorithm
consists of three phases: summarization, clustering, and validation. The summarization phase com-
putes the summary information from the dataset. The clustering phase uses the summary informa-
tion to discover a set of candidate clusters. The validation phase determines the actual set of clusters
from the set of candidate clusters.

A drawback of CACTUS is that the assumption of a cluster being identified by a unique set of
attribute values that seldom occur in other clusters may be unnatural for clustering some real world
datasets. CACTUS may also return too many clusters [76, 35, 38].
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12.4.3.3 CLICKS

CLICKS is another subspace clustering method, standing for “Subspace Clustering of Cate-
gorical data via maximal K-partite cliques.” CLICKS creates a graph representation of the dataset,
where nodes are categorical attribute values and an edge is a co-occurrence of values in an object.

CLICKS models a categorical dataset D as a graph where the nodes are attribute values that
form disjoint sets, one set per attribute. Edges between nodes in different partitions indicate dense
relationships. A k-partite clique is a subgraph C consisting of two disjoint sets of nodes, where every
pair of nodes from two sets is connected by an edge. The k-partite clique C is a maximal k-partite
clique if it has no k-partite superset. C is dense if the number of objects in the dataset that have the
values defined by C exceeds a user-specified threshold.

A k-subspace C = (C1× ·· ·×Ck) is a (subspace) cluster over attributes A1 · · ·Ak if and only if
it is a maximal, dense, and a strongly connected k-partite clique in D, such that all or most pairs of
nodes are connected by an edge.

CLICKS uses a three-step approach to mine all subspace clusters in D: In the preprocessing step
it creates the k-partite graph from the input database D. In the clique detection step, it enumerates
maximal k-partite cliques in the graph. The approach of this step is based on a backtracking search
that tries to expand the current clique to ensure maximality. In the postprocessing phase it verifies
the density property for the detected cliques, given a user-specified threshold. A maximal clique
may fail the density test, whereas one of its subcliques may be dense.

Disadvantages include that CLICKS may return too many clusters or too many outliers [76].

12.4.3.4 STIRR

STIRR stands for “Sieving Through Iterated Relational Reinforcement.” STIRR is an iterative
approach for assigning and propagating weights on the categorical values; this allows a similarity
measure for categorical data, which is based on the co-occurrence of values in the dataset. STIRR
looks for relationships between all attribute values to detect a potential cluster and converges to
clusters of highly correlated values between different categorical attribute fields [34].

Each possible value in a categorical attribute is represented by a node and the data is represented
as a set D of objects. Each object d ∈D is represented as a set of nodes, consisting of one node from
each attribute field. STIRR assigns a weight wv to each node v. The weight configuration is referred
to as w. A normalization function N(w) rescales the weights of the nodes associated with an attribute
such that their squares add to 1.

A function f is repeatedly applied to a set of nodes (values) until a fixed point u is reached for
which f (u) = u. The function f maps the node weights to a new configuration. So, the purpose is to
converge to a point that remains the same under repeated applications of f . The function f updates
a weight wv for a node v by applying an operator ⊕ to all objects that contain value v (as well as
m− 1 other values) and summing the results, as follows:

f or each ob ject o = {v,u1 · · · ,um−1} that contains value v

xr←⊕(u1 · · · ,um−1)

wv←∑
r

xr.

The operator ⊕ may be a simple multiplication or addition operator. The function f then nor-
malizes the set of weights using N(). After several iterations of yielding a new configuration f (w)
the system is expected to converge to a point where f (w) = w. Then, the nodes with large positive
weights and the nodes with extreme negative weights represent dense regions in the dataset that are
separated and have few interconnections, possibly defining clusters.
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Disadvantages of STIRR include its sensitivity to the initial object ordering. It also lacks a def-
inite convergence. The notion of weights is nonintuitive and several parameters are user-specified.
The final detected clusters are often incomplete [76].

12.4.3.5 CLOPE

CLOPE stands for “CLustering with SLOPE.” It is useful for clustering large transactional
databases with high dimensions, such as market-basket data and web server logs. CLOPE is consid-
ered to be fast and scalable on transactional databases and high-dimensional datasets. CLOPE uses
a heuristic of increasing the height-to-width ratio of the cluster histogram [74]. Given a cluster C,
CLOPE finds all the distinct items in the cluster, with their respective occurrences, i.e., the number
of transactions containing that item. D(C) is the set of distinct items, and Occ(i, C) the occurrence
of item i in cluster C. CLOPE then draws the histogram of a cluster C, with items on the X-axis
decreasingly ordered by their occurrences, and occurrence as the Y-axis.

Figure 12.5 shows an example of two clusterings with two clusters each. For each cluster, the
occurrence of every distinct item is counted and the results are plotted as histograms. Then the height
(H) and width (W) of the histogram for each cluster is obtained. Using the height-to-width ratio
of the cluster histograms, CLOPE defines a global criterion function for clustering. This example
shows that a larger height-to-width ratio of the histogram means better intra-cluster similarity.

The main disadvantage of CLOPE clustering is that the histogram used may produce suboptimal
clusters for some datasets.

12.4.3.6 HIERDENC: Hierarchical Density-Based Clustering

The HIERDENC algorithm for “hierarchical density-based clustering of categorical data” offers
a probabilistic basis for designing categorical clustering algorithms, as well as indexing methods
for categorical data. Benefits of HIERDENC are its insensitivity to order of object input, no re-
clustering needed when new objects are presented, no user-specified input parameters required, and
the ability to find clusters within clusters and outliers [12]. HIERDENC clusters the m-dimensional
cube representing the spatial density of a set of objects with m categorical attributes. To find its dense
subspaces, HIERDENC considers an object’s neighbors to be all objects that are within a radius
of maximum dissimilarity. Clusters start from the densest subspaces of the cube. Clusters expand
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FIGURE 12.5: Histograms of two clusterings (with two clusters each) for a small dataset: (1) {{ab,
abc, acd}, {de, def}} and (2) {{ab, abc}, {acd, de, def}}. The height-to-width of the clusters is
used to select the best clustering. While the two histograms for clusters {de, def} and {ab, abc} are
identical, the histograms for the other two clusters are of different quality. The first cluster {ab, abc,
acd} has the occurrences of a:3, b:2, c:2, and d:1. The histogram for cluster {ab, abc, acd} has 4
items for 8 blocks with H=2.0 and W=4 (H/W=0.5). The histogram for the second cluster {acd, de,
def} has 5 items for 8 blocks with H=1.6 and W=5 (H/W=0.32). The first clustering is preferable
since a larger height-to-width ratio means more overlap among transactions in the same cluster.
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outward from a dense subspace, by connecting nearby dense subspaces. Object neighborhoods are
insensitive to attribute or value ordering.

We are given a dataset of objects S (which might contain duplicates) with m categorical at-
tributes, X1, · · · ,Xm. Each attribute Xi has a domain Di with a finite number of di possible values.
The space Sm can be viewed as an m-dimensional “cube” with ∏m

i=1 di cells (positions). A cell
x = (x1, · · · ,xm) ∈ Sm represents a number of objects (given by function f req()) with all m attribute
values equal to (x1, · · · ,xm). We define the HIERDENC hyper-cube C(x0,r) ⊂ Sm, centered at cell
x0 with radius r, as follows:

C(x0,r) = {x : x ∈ Sm and dist(x,x0)≤ r and f req(x)> 0}.
The dist(·) is a distance function, which may be the Hamming distance.

Figure 12.1 illustrates two HIERDENC hyper-cubes in a 3-dimensional cube. Since r=1, the
hyper-cubes are visualized as “crosses” in 3D and are not shown as actually having a cubic shape. A
cube’s cells for which f req() is 0 do not represent any objects in the dataset. Normally, a hyper-cube
will equal a subspace of Sm.

The density of a subspace X ⊂ Sm, where X could equal a hyper-cube C(x0,r) ⊂ Sm, involves
the sum of f req() evaluated over all cells of X :

density(X) = ∑
c∈X

f req(c)
|S| .

This density can also be viewed as the likelihood that a hyper-cube contains a random object from
S, where |S| is the size of S. HIERDENC seeks the densest hyper-cube C(x0,r) ⊂ Sm. This is the
hyper-cube centered at x0 that has the maximum likelihood of containing a random object from S.

Figure 12.6 shows the HIERDENC clustering algorithm. Gk represents the kth cluster. The re-
mainder set, R = {x : x ∈ Sm and x /∈Gi, i = 1, · · · ,k}, is the collection of unclustered cells after the
formation of k clusters.

Step 1 retrieves the densest hyper-cube C⊂ Sm of radius r. Step 1 checks that the densest hyper-
cube represents more than one object (density(C(x0,r)) >

1
|S| ), since otherwise the cluster will not

expand, ending up with one object. If the hyper-cube represents zero or one object, then r is in-
cremented. Step 2 creates a new lea f cluster at level r ≥ 1. Starting from an existing leaf cluster,
step 3 tries to move to the densest hyper-cube of radius r nearby. If a dense hyper-cube is found
near the cluster, then in step 4 the cluster expands by collecting the hyper-cube’s cells. This is re-
peated for a cluster until no such connection can be made. New objects are clustered until r = m,
or density(R)≤ 1% and the unclustered cells are identified as outliers (step 5). For many datasets,
most objects are likely to be clustered long before r = m.

Initially r = 1 by default, since most datasets contain subsets of similar objects. Such subsets
are used to initially identify dense hyper-cubes. When r is incremented, a special process merges
clusters that are connected relative to r. Although the initial r = 1 value may result in many clusters,
similar clusters are merged gradually. A merge is represented as a link between two or more lea f
clusters or links, created at a level r ≥ 1. A link represents a group of merged clusters. This process
gradually constructs one or more cluster tree structures, resembling hierarchical clustering [50, 61].
The user specifies a cut-off level (e.g., r = 3) to cut tree branches; links at the cut-off level are
extracted as merged clusters. Step 5 checks if a newly formed cluster is connected to another cluster
relative to r and if so links them at level r. Step 6 continues linking existing clusters into a tree, until
r = m. By allowing r to reach m, an entire tree is built. At the top of the tree, there is a single cluster
containing all objects of the dataset.

12.4.3.7 MULIC: Multiple Layer Incremental Clustering

MULIC stands for “MUltiple Layer Incremental Clustering” of categorical data. MULIC is a
faster simplification of HIERDENC. MULIC balances clustering accuracy with time efficiency fo-
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Input: space Sm.
Output: a hierarchy of clusters.
Method:

r = 1. //radius of hyper-cubes
R = Sm. //set of unclustered cells
k = 0. //number of leaf clusters
kr = 0. //number of clusters at level r
Gk = null. //kth cluster
U = null. //set of hyper-cube centers

Step 1: Find x0 ∈ R such that max
x0

density(C(x0,r)).

If density(C(x0,r))≤ 1
|S| , then:

(1) r = r+ 1.
(2) If kr−1 > 1, then:
(3) Merge clusters that are connected relative to r.
(4) kr = #merged+ #unmerged clusters.
(5) Repeat Step 1.

Step 2: Set xc = x0, k = k+ 1, Gk =C(xc,r), R = R−C(xc,r) and U =U ∪{xc}.

Step 3: Find x∗ ∈C(xc,r) such that x∗ /∈U and max
x∗

density(C(x∗,r)).

Step 4: If density(C(x∗,r))> 1
|S| , then:

Update current cluster Gk: Gk = Gk∪C(x∗,r).
Update R: R = R−C(x∗,r).
Update U : U =U ∪{x∗}.
Reset the new center: xc = x∗.
Go to Step 3.

Otherwise, move to the next step.

Step 5: Set kr = kr + 1.
If kr > 1, then execute lines (3)− (4).
If r < m and density(R)> 1%, then go to Step 1.

Step 6: While r < m, execute lines (1)− (4).

FIGURE 12.6: The HIERDENC algorithm.

cusing on both the quality of the clusters as well as the speed of the method and scalability to large
datasets. MULIC is motivated by clustering of categorical datasets that have a multilayered struc-
ture. For instance, in networks a cluster (or module) may have a center of a few well-connected
objects (nodes) surrounded by peripheries of sparser connectivity [27, 13, 8, 9, 11]. On such data,
MULIC outperforms other algorithms that create a flat clustering. MULIC produces layered (or
nested) clusters, which is different in several ways from traditional hierarchical clustering. MULIC
requires no user-specified parameters and the resulting clusters have a clear separation. Layered
clusters are useful in bioinformatics for finding protein modules and complexes, and for visualiza-
tion purposes [7, 11, 13, 62, 68].
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Input: a set S of objects.
Parameters: (1) δφ : the increment for φ.

(2) threshold for φ : the maximum number of values that
can differ between an object and the mode of its cluster.

Default parameter values: (1) δφ = 1.
(2) threshold = the number of categorical attributes m.

Output: a set of clusters.
Method:

1. Order objects by decreasing aggregated frequency of their attribute values.
2. Insert the first object into a new cluster, use the

object as the mode of the cluster, and remove the object from S.
3. Initialize φ to 1.
4. Loop through the following until S is empty or φ > threshold

a. For each object o in S
i. Find o’s nearest cluster c by using the dissimilarity metric

to compare o with the modes of all existing cluster(s).
ii. If the number of different values between o and c’s mode

is larger than φ, insert o into a new cluster
iii. Otherwise, insert o into c and update c’s mode.
iv. Remove object o from S.

b. For each cluster c, if there is only one object
in c, remove c and put the object back in S.

c. If in this iteration no objects were inserted in
a cluster with size > 1, increment φ by δφ.

FIGURE 12.7: The MULIC clustering algorithm.

Figure 12.7 shows the main part of the MULIC clustering algorithm. MULIC does not store
the cube in memory and makes simplifications to decrease the runtime. A MULIC cluster starts
from a dense area and expands outwards via a radius represented by the φ variable. When MULIC
expands a cluster it does not search all member objects as HIERDENC does. Instead, it uses a
mode that summarizes the content of a cluster. The mode of cluster c is a vector μc = {μc1, · · · ,μcm}
where μci is the most frequent value for the ith attribute in the given cluster c [47]. The MULIC
clustering algorithm ensures that when an object o is clustered, it is inserted into the cluster c
with the least dissimilar mode μc. The default dissimilarity metric between o and μc is the Ham-
ming distance, although any metric could be used. A MULIC cluster consists of layers formed
gradually, by relaxing the maximum dissimilarity criterion φ for inserting objects into existing
clusters. MULIC does not require the user to specify the number of clusters and can identify
outliers.

MULIC has several differences from traditional hierarchical clustering, which stores all dis-
tances in an upper square matrix and updates the distances after each merge [50, 61]. MULIC
clusters have a clear separation. MULIC does not require a cut-off to extract the clusters, as
in hierarchical clustering; this is of benefit for some MULIC applications, such as the one on
protein interaction networks discussed in [7]. One of the drawbacks of hierarchical clustering is
that the sequence of cluster mergings will affect the result and “bad” mergings cannot be un-
done later on in the process. Moreover, if several large clusters are merged, then interesting local
cluster structure is likely to be lost. MULIC does not merge clusters during the object clustering
process.
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The best-case complexity of MULIC has a lower bound of Ω(mNk) and its worst-case com-
plexity has an upper bound of O(mN2 threshold

δφ ). The MULIC complexity is comparable to that of
k-Modes of O(mNkt), where t is the number of iterations [47].

12.4.4 Model-Based Clustering

Model-based clustering assumes that objects match a model, which is often a statistical distri-
bution. Then, the process aims to cluster objects such that they match the distribution. The model
may be user-specified as a parameter and the model may change during the process. In bioinfor-
matics, model-based clustering methods integrate background knowledge into gene expression, in-
teractomes, and sequences [23, 66, 45, 51, 52, 69]. Building models is an oversimplification; user
assumptions may be false and then results will be inaccurate. Another disadvantage of model-based
clustering (especially neural networks) is slow processing time on large datasets.

12.4.4.1 BILCOM Empirical Bayesian (Mixed Categorical and Numerical)

BILCOM “BI-Level Clustering Of Mixed categorical and numerical data types” is a model-
based method [10]. This algorithm uses categorical data clustering as an example to guide the clus-
tering of numerical data. This process adapts an empirical Bayesian approach, with categorical data
as the guide. In previous biological applications to genes, Gene Ontology (GO) annotations were the
categorical data and gene expression data was numerical. Model-based clustering can find arbitrary
shaped gene expression clusters by including background knowledge [1, 24, 45, 51, 52, 69, 20, 64].

The BILCOM algorithm performs clustering at two levels, where the first level clustering acts
as a foundation for the second level, thus simulating a pseudo-Bayesian process. BILCOM was
primarily applied to datasets from the biomedical domain. In these sets, categorical data represent
semantic information on the objects, while numerical data represent experimental results. Categor-
ical similarity is emphasized at the first level and numerical similarity at the second level. The first
level result is the basis given as input to the second level and the second level result is the output
of BILCOM. Figure 12.8 shows an example, where the first level and second level involve four
clusters. The second level clusters consist of subclusters. Object A is assigned to different first and
second level clusters, because the numerical similarity at the second level is stronger than the cat-
egorical similarity at the first level. On the other hand, object B is assigned to the same clusters
in both levels, because both categorical and numerical similarities support this classification. Thus,
BILCOM considers categorical and numerical similarities of an object to the clusters to which it
may be assigned.

Different types of data are used at the first and second levels. The numerical data represent
experimental results involving the objects. For example, the numerical data used at the second level
might look as follows: BILIRUBIN : 0.39; ALBUMIN : 2.1; PROTIME : 10. The categorical data
represent what was observed to be true about the objects before the experiment. For example, the
categorical data used at the first level might be existing information on objects looking as follows:
SEX : male; STEROID : yes; FATIGUE : no.

The main disadvantage of BILCOM is that the user has to specify the number of clusters.

12.4.4.2 AutoClass (Mixed Categorical and Numerical)

AutoClass is a clustering algorithm for mixed datatypes, which uses a Bayesian method for
determining the optimal classes based on prior distributions [71]. AutoClass finds the most likely
classifications of objects in clusters, given a prior distribution for each attribute, symbolizing prior
beliefs of the user. In the first step the user selects a probabilistic distribution for each of the m at-
tributes in the dataset. As an example, let the evidence on an object be X = {age= 28,blood-type=
A,weight = 73kg}; blood-type is a categorical attribute that is modeled with a Bernoulli distribu-
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FIGURE 12.8: Overview of the BILCOM clustering process.

tion, while age and weight are numerical attributes modeled with a normal (Gaussian) distribution.
At each loop, AutoClass changes the classifications of objects in clusters, such that each object is
assigned to the cluster with the attribute probability distributions (considering the current means and
variances) that give the highest probability of observing the object’s values. Additionally, AutoClass
iteratively investigates different numbers of clusters, which are not user-specified. Then, AutoClass
changes the means and variances of the probability distributions for the attributes in each cluster.
The iteration continues until the clusters and the attributes’ probability distributions stabilize. The
AutoClass output is a mixture of several likely clusterings, where a clustering classifies each object
into the most likely cluster on the basis of the attributes’ probability distributions.

Drawbacks of AutoClass include that users have to specify the model spaces to be searched
in and wrong models may produce wrong results. Also, AutoClass can be slow to converge to a
clustering result on some datasets.

12.4.4.3 SVM Clustering (Mixed Categorical and Numerical)

Support Vector Machines (SVMs) provide a method for supervised learning. SVMs construct a
separating hyperplane using a set of training data, as shown in Figure 12.9. Despite their supervised
nature, SVMs have been applied to categorical data to find clusters in an unsupervised manner. The
approach involves randomly assigning objects to a pair of clusters and recomputing the separating
hyperplane, until there is a convergence of object assignment and the hyperplane.

Previously, SVM-Internal Clustering (usually referred to as a one-class SVM) used internal as-
pects of Support Vector Machines to find a cluster as the smallest enclosing sphere in a dataset. The
internal approach to SVM clustering lacked robustness and is biased towards clusters with a spher-
ical shape in feature space. In the case of most real-world problems, the SVM-Internal Clustering
algorithm could only detect the relatively small cluster cores.

To remedy this, an external-SVM clustering algorithm was introduced that clusters data vectors
with no prior knowledge of each object’s classification. Initially, every object in the dataset is ran-
domly labeled and a binary SVM classifier is trained. After the initial convergence is achieved, the
sensitivity + specificity will be low, likely near 1. The algorithm then improves this result by itera-
tively relabeling only the worst misclassified vectors, which have confidence factor values beyond
some threshold, followed by rerunning the SVM on the newly relabeled dataset. The lowest confi-
dence classifications, those objects with confidence factor values beyond some threshold, repeatedly
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FIGURE 12.9: A Support Vector Machine tries to maximize the mar-
gin of separation between the hyperplane and the training data, which
typically consists of samples from two classes. SVMs have been previ-
ously adapted for clustering. After the SVM is trained, new objects are
predicted to belong in a class (as defined by the separating hyperplane)
according to a measure of the distance between the testing data and the
hyperplane.

have labels switched to the other class label. The SVM is retrained after each relabeling of the low-
est confidence objects. This continues until no more progress can be made. Progress is determined
by an increasing value of sensitivity+specificity, eventually nearly reaching 2. The repetition of the
above process limits local minima traps [72].

The SVM clustering approach provides a way to cluster datasets without prior knowledge of
the data’s clustering characteristics or the number of clusters. This method is not biased toward
the shape of the clusters, and unlike the SVM-Internal Clustering approach the formulation is not
fixed to a single kernel class. Nevertheless, there are robustness and consistency issues that arise in
realistic applications of SVM-External Clustering.

12.5 Conclusion

Desired features of categorical clustering algorithms for different applications include speed,
minimal parameters, robustness to noise and outliers, redundancy handling, and object order inde-
pendence. Desirable clustering features are used as evaluation criteria for clustering algorithms. Cat-
egorical clustering algorithms are separated into various approaches: partitioning (e.g., k-Modes),
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hierarchical (e.g., ROCK, Chameleon, LIMBO), density-based (e.g., MULIC, CACTUS, CLICKS,
CLOPE), model-based (e.g., COBWEB, Autoclass). Some algorithms can handle mixed categorical
and numerical data (k-Protoypes, BILCOM). Within an approach, inheritance relationships between
clustering algorithms specify common features and improvements they make upon one another. Ta-
ble 12.1 and Figure 12.3 summarize benefits and drawbacks of categorical clustering algorithms.
For improved analysis of categorical datasets, it is important to match clustering algorithms to the
requirements of an application.

The benefits and drawbacks of categorical clustering algorithms can be a basis for matching
them to an application. Speed and accuracy are two competing goals in the design of categorical
clustering algorithms. Making a fast algorithm usually involves trading off precision of the result.
On the other hand, producing the most accurate result is not necessarily fast. Ideally, a set of prob-
abilistically justified goals for categorical clustering would serve as a framework for approximation
algorithms [54, 63]. This would allow designing and comparing categorical clustering algorithms
on a more formal basis.
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13.1 Introduction

The proliferation of documents, on both the Web and in private systems, makes knowledge
discovery in document collections arduous. Clustering has been long recognized as a useful tool for
the task. It groups like-items together, maximizing intra-cluster similarity and inter-cluster distance.
Clustering can provide insight into the make-up of a document collection and is often used as the
initial step in data analysis.

While most document clustering research to date has focused on moderate length single topic
documents, real-life collections are often made up of very short or long documents. Short docu-
ments do not contain enough text to accurately compute similarities. Long documents often span
multiple topics that general document similarity measures do not take into account. In this chapter,
we will first give an overview of general purpose document clustering, and then focus on recent
advancements in the next frontier in document clustering: long and short documents.

13.2 Modeling a Document

Unlike the traditional clustering task, document clustering faces several additional challenges.
Corpora are high-dimensional with respect to words, yet documents are sparse, are of varying length,
and can contain correlated terms [2]. Finding a document model, a set of features that can be used to
discriminate between documents, is key to the clustering task. The clustering algorithm and the mea-
sure used to compute similarity between documents is highly dependent on the chosen document
model.

13.2.1 Preliminaries

For the problem of document clustering, we are given a collection of documents, or texts, D =
{d1, . . . ,dN}, called a corpus. The set of words V = {w1, . . . ,wM} represents the vocabulary of D .
Each document d ∈D is a sequence of nd words. We denote the term vector of a document by d. At
times, we may consider d as being made up of contiguous, nonoverlapping chunks of text, called
segments, which in turn are composed of sentences and words. A set of segments, S , is called a
segment-set. We denote with Sd the set of segment-sets from a document d and with S =

⋃
d∈D Sd

the set of segment-sets from all the documents in D. The result of a document clustering is a set
C = {C1, . . . ,CK} of clusters. Table 13.1 lists main notations used throughout this chapter.

Probabilistic generative algorithms (cf. Section 13.3.4) learn a lower dimension (latent) feature
space model that associates hidden topics (unobserved class variables) with word occurrences (ob-
served data). The following notation applies to this class of algorithms. Documents are represented
as sequences (rather than sets) of words, di = (w1, . . . ,wndi

). Words in a document are represented as
unit-basis vectors, where wl is a vector of size M with wu

l = 1 and wv
l = 0 for all indexes u 
= v. If the

document is segmented, its segments are also considered sequences of words. However, a document
can be either a sequence or a set of segments. Each zk topic in Z = {z1, . . . ,zK}, the set of latent
topics, is a distribution over the vocabulary. Topic proportions, e.g., α and θ, are distributions over
topics specifying the percentage of the document or segment that could be drawn from each topic.
Topic assignments z and y tell which topic was selected as source for choosing a term or document,
respectively.

We use plate notation, a standard representation for probabilistic generative models, to depict
graphically the intricacies of some models. Plate notation should help the reader compare and con-
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TABLE 13.1: Main Notations Used in This Chapter

Symbol Description Symbol Description

D collection of documents N number of documents
D document-term matrix S number of segments
d,d document, document vector M number of terms
s segment α,θ word-topic proportions
S segment-set μ document-topic proportions
S collection of segment-sets β word probabilities
Sd set of segment-sets in d δ, η distribution parameters
C document clustering solution z word-topic assignments
C document cluster y document-topic assignments
K number of clusters w observed words

wMw3w2w1

...

M
w

(a) (b)

FIGURE 13.1: Example notations for a graphical model. The plate notation in (b) provides a more
compact notation for the same model represented in (a).

trast the presented models. In this notation, rectangles (plates) represent repeated areas of the model.
The number in the lower right corner of the plate denotes the number of times the included variables
are repeated. Shaded and un-shaded variables indicate observed and unobserved (latent) variables
respectively. In Figure 13.1, (a) and (b) both represent the same model in which M words are sam-
pled from a distribution β. The depiction in (b) is more compact due to the use of plate notation.

13.2.2 The Vector Space Model

Most current document clustering methods choose to view text as a bag of words. Each docu-
ment is considered to be a vector in the term-space, represented in its simplest form by the term-
frequency (TF) vector

dtf = (tf 1, tf 2, . . . , tf M),

where tf i is the frequency of the ith term in the document. This gives the model its name, the vector
space model (VSM).

A widely used refinement to the vector space model is to weight each term based on its inverse
document frequency (IDF) in the document collection. The motivation behind this weighting is that
terms appearing frequently in many documents have limited discrimination power and thus need
to be de-emphasized. This is commonly done [91] by multiplying the frequency of the ith term
by log(N/df i), where df i is the number of documents that contain the ith term (i.e., document
frequency). This leads to the tf-idf representation of the document:

dtf-idf = (tf-idf1, tf-idf2, . . . , tf-idfM).
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Finally, to account for documents of different lengths, the length of each document vector is nor-
malized to unit length (‖dtf-idf‖= 1); that is, each document is a vector in the unit hypersphere.

To maximize term co-occurrence in text, words can be reduced to a base form, through either
stemming or lemmatization. Stemming [85] is a fast heuristic process that works on individual
words, removing derivational affixes and in general cutting off the word ending in hopes of match-
ing bases with other forms of the same word. Lemmatization uses dictionaries and morphological
analysis, aiming to return the root of the word [73]. It analyzes words in context and is more compu-
tationally demanding than stemming. Synonyms of a word can also be replaced by a common form
using lexical databases [50]. Some attempts have been made to capture word order and sentence
structure in the VSM by encoding text as word or character n-grams (sequences of two or more
items) [19, 75].

Similarity in vector space. The cosine similarity is the most used measure to compute similarity
between two documents in the vector space. Given vectors d1 and d2, it is defined as

cos(d1,d2) =
d1 ·d2

||d1||× ||d2|| ,

where “·” represents the vector dot product operation. This formula can be simplified to
cos(d1,d2) = d1 ·d2 for vectors of unit length.

Let D be the N×M document-term matrix, whose rows are the document-term frequency vec-
tors. The pairwise similarities of all documents in the collection can be computed directly from D
as

SIM = L−1/2XL−1/2,

where X = DDT and L is an N ×N diagonal matrix whose diagonal elements are the diagonal
elements of X. The left and right multiplication of X by L−1/2 scales the documents to unit length.
The formula reduces to SIM = DDT if the document vectors are already unit length.

Other popular measures for comparing documents include the Euclidean, Manhattan, and
Chebyshev distances, and the Jaccard coefficient similarity. The Euclidean distance, also known
as the �2 norm, is simply the geometric distance in the M-dimensional space of the vectors, defined
by

dist2(d1,d2) =

√
M

∑
i=1

(di
1− di

2)
2,

where di
1 is the ith element in the d1 document vector. The Manhattan (also known as the city-block

distance or the �1 norm) and the Chebyshev (also known as the chessboard distance or the �∞ norm)
distances are similarly defined as

dist1(d1,d2) =
M

∑
i=1

|di
1− di

2|

dist∞(d1,d2) =
M

max
i=1
|di

1− di
2|

The Jaccard coefficient is a set similarity metric. It can be applied to a feature vector by con-
sidering its nonzero elements as set members. Using this logic, the Jaccard coefficient measures
commonality, represented by the intersection of the two documents normalized by their union:

J(D1,D2) =
|D1∩D2|
|D1∪D2| ,

where D1 and D2 are set representations of d1 and d2, respectively.
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13.2.3 Alternate Document Models

Some document models have been proposed to overcome VSM limitations. Wang et al. [112]
represent documents as word dependency graphs and compare them using graph similarity mea-
sures. The Matrix Space Model (MSM) [112] considers each document to be a set of segments,
represented by a term-segment matrix. Concept-based models augment the original term vector by
adding or replacing terms with some term category information, such as WordNet concepts [50],
synsets [4], part-of-speech tags and hypernyms [94], or Wikipedia-based concepts [35].

Some models build corpus representations that allow computing semantic similarity between
documents. The Generalized Vector Space Model (GVSM) [114] addresses the pairwise orthogo-
nality assumption in the vector space model. It represents document vectors in terms of a suitably
chosen set of orthonormal basic term vectors, allowing computation of term correlations. Latent
Semantic Analysis (LSA) [24] finds a low-rank approximation of the document-term matrix, which
effectively merges, in the latent space, dimensions associated with terms that have similar meanings.

Topic models describe a simple probabilistic process by which items can be generated in a col-
lection. In this framework, documents are represented as mixtures of topics, in effect, probability
mass functions (PMFs) defined over a lower-dimensional feature space representing topics. Topic
models can describe words, segments, or documents, and are the basis for many generative algo-
rithms discussed later in the chapter.

13.2.4 Dimensionality Reduction for Text

The number of unique terms in text corpora is often very high. Dimensionality reduction tech-
niques aim to alleviate this problem by decreasing noise in the term space. This can be done by
feature selection, which aims to choose an optimal subset of features given some objective function,
or feature transformation, which seeks a lower-dimensional space mapping of the original feature
space. The simplest selection technique prunes features with low or high document frequency. Fre-
quently occurring terms are deemed uninformative, while rare terms constitute noise. Stop words,
which are lexicon-specific frequent terms, are also removed. These simple selection techniques have
been found in some cases to be as effective as more complicated supervised methods that select fea-
tures based on information gain (IG), mutual information (MI), or χ2 (Chi-Square) analysis [116].

Feature transformation algorithms project the data to some lower dimensional space. Principal
Component Analysis (PCA) [49, 56] is the dominant unsupervised approach. It diagonalizes the
covariance matrix CD = 1

N−1 DDT into 1
N−1 (PD)(PD)T and removes lesser principal components,

i.e., reduces P to size K×N, where K < N. Here, P is the matrix of principal components, whose
rows are the eigenvectors of DDT .

A related approach, Latent Semantic Analysis (LSA) [24], performs a singular-value decom-
position of the document-term matrix, D = U·VT and keeps latent space representations of the
document vectors associated with the first K singular values (largest eigenvalues). In the supervised
domain, Linear Discriminant Analysis [34, 74] aims to find a latent space in which documents from
different classes are well separated, by maximizing the Fisher criterion,

W = argmax
W

|WT SbW|
|WT SwW| ,

Sb = ∑
c∈C

nc(μc−μ)(μc−μ)T ,

Sw = ∑
c∈C

∑
j:Yj=c

(d j−μc)(d j−μc)
T ,

where Sb and Sw are the between-class and within-class scatter matrices. Here, C is the set of
class labels, μ is the collection mean, μc is the mean of documents in class c, nc is the number of
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documents in class c, and Yj is the label assigned to document j. The most discriminative projections
are the eigenvectors associated with the largest eigenvalues of S−1

w Sb.
A number of non-linear [9, 41, 101] and approximate [92, 68] extensions address the problems

of non-linearly separable data and high computational complexity in the previous algorithms. While
shown initially to be less effective than other methods [33], algorithms based on random projections
are actively being investigated due to their lower computational complexity [3].

Feature transformation techniques have also been used for feature selection. Lu at al. choose a
subset of features by analyzing principal components [71]. Hardin at al. compare SVM and Markov-
Blanket based feature selection [43]. In the supervised domain, Yan at al. use the Orthogonal Cen-
troid (OC) subspace learning algorithm to achieve optimal feature selection. As a way to bridge
the gap between the two dimensionality reduction techniques, Yan at al. proposed TOFA [115],
an optimization framework for both feature selection and feature transformation algorithms. Dy and
Brodley [31], Vinay et al. [107], Aldo and Verleysen [66], and Cunningham [23] survey different as-
pects of dimensionality reduction. Additionally, Chapter 2 of this book includes a deeper discussion
on feature selection.

13.2.5 Characterizing Extremes

As the two extremes of text data representations, long and short documents have additional char-
acteristics that can impact how they are processed in information retrieval and data management
tasks. For example, short texts often lack context, can have multiple interpretations, and use impre-
cise or incorrect language. Long documents are often domain specific and address multiple subjects.
Linguistic characteristics include the size of the text and the type of language used to express ideas.
Topical characteristics focus on the communicative function and targets of the documents. More
specifically, we identify the following characterizing attributes:

• Noise, which is related to the use of informal language. Noisy texts are usually rich in con-
tracted forms of words, colloquialisms, emotional punctuation and graphics, and frequently
occurring typos.

• Amount of context-shared information, which is related to the sparseness of the text repre-
sentation.

• Community-focus, which is regarded as the extent to which the contents of a document are of
interest to a specific group of users (e.g., neighbors in a social network or a research commu-
nity).

• Domain-specificity, which expresses the degree of alignment of the document vocabulary to
a lexicon that is specific to a certain subject domain.

Note that the amount of noise and context-shared information are regarded as linguistic character-
istics, whereas the remaining two fall into the topical category.

Figures 13.2 (a) and (b) graphically compare short and long documents under the above listed
attributes. We have taken two of the most representative examples for each type of document:
Web pages and scientific articles as long documents, and microblogs, such as tweets and search
result snippets, as short documents. Increasing positions along each of the axes correspond to an
increasing impact of a certain characteristic. As represented in the graphs, tweets generally feature
high noise, low amount of context-shared information, high degree of community focus, low/mid
domain-specificity; by contrast, scientific documents are usually less noisy and sparse, but more
domain-specific.
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Sci-docssnippets

web pages

tweets
Sci-docs

snippets

tweets

web pages

(a) (b)

FIGURE 13.2: Comparison of example short and long documents: (a) linguistic and (b) topical
characteristics. Thicker (as oppsed to thinner) ovals correspond to examples of long (as opposed to
short) documents.

13.3 General Purpose Document Clustering

Most documents have moderate length, often address a single topic, and use nondescript lan-
guage. Examples include Web pages, emails, encyclopedia articles, and newspaper articles. These
documents have been the focus of the data mining community for many years. As a result, most
document clustering algorithms to date pertain to clustering these standard document collections. In
the following, we will give an overview of the most prominent of these algorithms.

13.3.1 Similarity/Dissimilarity-Based Algorithms

Traditionally, documents are grouped based on how similar they are to other documents.
Similarity-based algorithms define a function for computing document similarity and use it as the
basis for assigning documents to clusters. Each group (cluster) should have documents that are
similar to each other and dissimilar to documents in other clusters.

Clustering algorithms fall into different categories based on the underlying methodology of the
algorithm (agglomerative or partitional), the structure of the final solution (flat or hierarchical),
or the multiplicity of cluster membership (hard or soft, overlapping, fuzzy). Agglomerative algo-
rithms find the clusters by initially assigning each object to its own cluster and then repeatedly
merging pairs of clusters until a certain stopping criterion is met. A number of different methods
have been proposed for determining the next pair of clusters to be merged, such as group average
(UPGMA) [53], single-link [97], complete link [62], CURE [39], ROCK [40], and Chameleon [59].
Hierarchical algorithms produce a clustering that forms a dendrogram, with a single all-inclusive
cluster at the top and single-point clusters at the leaves. On the other hand, partitional algorithms,
such as k-Means [72], k-Medoids [53, 60], graph partitioning based [117, 53, 100], and spectral
partitioning based [14, 27], find the clusters by partitioning the entire dataset into either a prede-
termined or an automatically derived number of clusters. Depending on the particular algorithm, a
k-way clustering solution can be obtained either directly or via a sequence of repeated bisections.

The Spherical k-Means algorithm (Sk-Means) [53] is used extensively for document clustering
due to its low computational and memory requirements and its ability to find high-quality solu-
tions. A spherical variant of the “fuzzy” version of k-Means, called Fuzzy Spherical k-Means (FSk-
Means) [123, 64], produces an overlapping clustering by using a matrix of degrees of membership
of objects with respect to clusters and a real value f > 1. The latter is usually called the “fuzzyfier,”
or fuzzyness coefficient, and controls the “softness” of the clustering solution. Higher f values lead
to harder clustering solutions.

In recent years, various researchers have recognized that partitional clustering algorithms are
well suited for clustering large document datasets due to their relatively low computational require-
ments [1, 99]. A key characteristic of many partitional clustering algorithms is that they use a global
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TABLE 13.2: The Mathematical Definition of Various Clustering Criterion Functions

Criterion Function Optimization Function

I∞ maximize
K

∑
i=1

1
ni

(

∑
v,u∈Si

sim(v,u)

)

(13.1)

I∈ maximize
K

∑
i=1

√
∑

v,u∈Si

sim(v,u) (13.2)

E∞ minimize
K

∑
i=1

ni
∑v∈Si,u∈S sim(v,u)
√

∑v,u∈Si
sim(v,u)

(13.3)

G∞ minimize
K

∑
i=1

∑v∈Si,u∈S sim(v,u)

∑v,u∈Si
sim(v,u)

(13.4)

G∈ minimize
K

∑
r=1

cut(V r,V −V r)

W (V r)
(13.5)

H∞ maximize
I∞

E∞
(13.6)

H∈ maximize
I∈
E∞

(13.7)

Note: The notations in these equations are as follows: K is the total number of clusters, S is the total
set of objects to be clustered, Si is the set of objects assigned to the ith cluster, ni is the number of
objects in the ith cluster, v and u represent two objects, and sim(v,u) is the similarity between two
objects.

criterion function whose optimization drives the entire clustering process.1 The criterion function
is implicit for some of these algorithms (e.g., PDDP [14]), whereas for others (e.g., k-Means) the
criterion function is explicit and can be easily stated. This later class of algorithms can be thought
of as consisting of two key components. The first is the criterion function that needs to be optimized
by the clustering solution, and the second is the actual algorithm that achieves this optimization.
These two components are largely independent of each other.

Table 13.2 lists some of the most widely used criterion functions for document clustering. Zhao
and Karypis analyze these criterion functions in both the hard and soft clustering scenarios and
provide insights into their relative performance [121, 122, 123]. Various clustering algorithms and
criterion functions described in this section are part of the CLUTO [58] clustering toolkit, which is
available online at http://www.cs.umn.edu/~cluto.

13.3.2 Density-Based Algorithms

In contrast to similarity-based algorithms that often optimize a global clustering criterion func-
tion, density-based clustering algorithms focus on the local picture. DBSCAN [32] and OPTICS [7],
typical density-based clustering algorithms, are designed to discover clusters of arbitrary shape in
the presence of noise and have been shown effective for some text datasets. Users do not need to
know the number of clusters in advance, but have to provide other parameters that are sometimes
hard to identify, e.g., a density threshold and the radius of a neighborhood in the case of DBSCAN.
Additionally, the indexing techniques the algorithms use for efficient neighborhood inquiry do not
scale well to high-dimensional feature spaces.

1Global clustering criterion functions are an inherent feature of partitional clustering algorithms, but they can also be
used in the context of agglomerative algorithms.
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13.3.3 Adjacency-Based Algorithms

The document-term matrix naturally represents the adjacency between documents and words
in a collection and can be interpreted as a graph. Spectral clustering finds cuts within the induced
document-term matrix graph that produce optimal clusters. Zha et al. [120] partition the graph by
minimizing a normalized sum of edge weights between unmatched vertex pairs in the graph. Their
Spectral Recursive Embedding (SRE) algorithm provides an approximate solution to the problem
by computing a partial singular value decomposition of a scaled document-term frequency matrix.
Spectral clustering is covered in more detail in Chapter 8 of this book.

The optimal solution to the graph partitioning problem is NP-complete. Relaxations of this
problem often lead to a generalized eigenvalue problem, which makes spectral clustering algorithms
suitable for only small datasets with limited feature vectors. Ding et al. [28] introduce the Mcut
algorithm, which solves a relaxed version of the optimization of the min-max cut objective function.
They show that it produces more balanced partitions than other cuts, including the normalized cut.

Similar documents are often defined by a shared vocabulary. It stands to reason that finding word
clusters in a collection can lead to identifying document clusters, and vice-versa. Co-clustering, also
known as biclustering, tries to find blocks of related words and documents in the text domain, i.e.
related rows and columns in the document-term matrix. Dhillon et al. [26] take an information-
theoretic approach to solving the problem. In their solution, the optimal co-clustering maximizes
the mutual information between document and term random variables, where the document-term
matrix represents an empirical joint probability distribution of the two random variables. Equiva-
lently, the optimal co-clustering minimizes the mutual information loss between the original random
variables and the clustered random variables. Dhillon et al. formulate the problem as optimizing this
loss function. At each iteration, the algorithm recomputes row cluster prototypes by using column
clustering information and column cluster prototypes by using row clustering information. They
show that the algorithm monotonically decreases the given objective function and is thus guaran-
teed to reach a local minimum in a finite number of steps.

Co-clustering can also be solved via graph-theoretic approaches. Rege et al. [89] propose the
Isoperimetric Co-clustering Algorithm (ICA) which partitions the bipartite graph formed by docu-
ments and terms. It does so by heuristically minimizing the ratio of the partition perimeter and area,
given an appropriate definition of graph-theoretic area. The advantage of ICA over classic spectral
clustering approaches is that SVD is replaced with a solution to a system of linear equations, which
is generally computationally less expensive. Gu and Zhou [38] propose a Dual Regularized Co-
Clustering (DRCC) method based on semi-nonnegative matrix tri-factorization. Considering both
documents and terms to be discrete samplings from separate manifolds, they construct two graphs
that allow them to explore the geometric structure of the two manifolds. They ensure that both
documents and terms are smooth with respect to their individual manifolds via regularizing the
two graphs, enabling DRCC to utilize the encoded geometric information. The partitioning is then
accomplished via semi-nonnegative matrix tri-factorization with two graph regularizers.

13.3.4 Generative Algorithms

While previous methods focus on the current picture of data, generative algorithms try to
find how the documents arrived at their current state. Documents are made up of words that
must be connected in certain patterns to form comprehensible language. If the generative mod-
els, the language factories, of documents could be identified, documents issued from the same
models would use similar language and thus be considered similar. Generative algorithms as-
sume documents can be represented as a mixture of probability distributions over the collec-
tion set of terms [47, 105, 15, 13, 124, 61]. For example, Probabilistic Latent Semantic Analy-
sis (PLSA) [47, 46], a probabilistic extension of the dimensionality reduction approach based on
LSA [24] (cf. Section 13.2.4), defines a statistical model in which the conditional probability be-
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FIGURE 13.3: Plate notation for the LDA generative model.

tween documents and terms is modeled as a latent variable. An unobserved class variable is assigned
to each observation (e.g., the occurrence of a term in a given document), since each document is
created by a mixture of distributions.

Latent Dirichlet Allocation (LDA) [13] considers mixture models that express the so-called
“exchangeability” of both terms and documents. In LDA, the generative process consists of three
levels that involve the whole corpus, the documents, and the terms of each document. The algorithm
first samples, for each document, a distribution over collection topics from a Dirichlet distribution.
It then selects a single topic for each of a document’s terms according to this distribution. Finally,
each term is then sampled from a multinomial distribution over terms specific to the sampled topic.
In this way, LDA defines a more sophisticated generative model for a document collection, whereas
PLSA generates a model for each individual document. The complete LDA generation process,
shown graphically through plate notation (cf. Section 13.2.1) in Figure 13.3, is detailed below.

1. For each topic, generate a multinomial distribution over terms, βk ∼DirM(η), k ∈ {1, . . . ,K}
2. For each document di, i ∈ {1, . . . ,N}

a. Generate a multinomial distribution over topics, θi ∼ DirK(α)
b. For each word wil in document di

i. Choose a topic zil from the distribution in step a., e.g., zil ∼Multi(θi)

ii. Choose word wil from topic zil , e.g., wil ∼Multi(βzil
)

Many extensions to the initial probabilistic clustering algorithms have been developed.
Chemudugunta et al. [20] propose a model that combines topic-level and word-level modeling of
documents. To address the uncorrelated words assumption made by LDA, Wallach [108] generates
a bigram topic model that incorporates a notion of word order. Bayesian nonparametric topic mod-
els [104, 12] find the number of topics exhibited in the collection as part of the inference, rather than
requiring the user to provide it. Rosen-Zvi et al. [90] use a two-stage stochastic process to model
the author–topic relationship. Blei [11] provides a general overview of and several future research
directions for probabilistic topic models. Chapter 3 in this book provides a more in-depth look at
probabilistic models for clustering.

Similarity in probabilistic space. Since generative models represent documents as probability
distributions, a number of information theoretic distance metrics have been proposed for com-
paring two such documents. Let X be a discrete random variable defined on a sample space
X = {x1, . . . ,xR},xr ∈R,∀r ∈ [1..R] and two PMFs p = {p1, . . . , pR},q = {q1, . . . ,qR} for that vari-
able. The Kullback-Leibler (KL) divergence quantifies in bits the proximity of p to q.

KL(p,q) =
R

∑
i=1

pi log2
pi

qi
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Its value is nonnegative, is not symmetric, and will equal zero if the distributions match exactly.
The Jensen-Shannon (JS) divergence is a symmetrized and smoothed version of the KL divergence,
defined as

JS(p,q) =
1
2

KL(p,
1
2
(p+ q))+

1
2

KL(q,
1
2
(p+ q)).

The Hellinger distance is a metric directly derived from the Bhattacharyya coefficient [57],
which offers an important geometric interpretation in that it represents the cosine between any two
vectors that are composed by the square root of the probabilities of their mixtures. Formally, the
Hellinger distance is defined as HL(p,q) =

√
1−BC(p,q), where BC(p,q) = ∑R

i=1

√
p(xi) q(xi) is

the Bhattacharyya coefficient for the two PMFs p and q.

13.4 Clustering Long Documents

Long documents often discuss multiple subjects. This presents added challenge to general pur-
pose document clustering algorithms that tend to associate a document with a single topic. The key
idea to solving this problem is to consider the document as being made up of smaller topically co-
hesive text blocks, named segments. Segments can be identified independent of or concurrent to the
clustering procedure.

13.4.1 Document Segmentation

Text segmentation is concerned with the fragmentation of input text into smaller units (e.g.,
paragraphs) each possibly discussing a single main topic. Regardless of the presence of logical
structure clues in the document, linguistic criteria and statistical similarity measures have been
mainly used to identify thematically coherent, contiguous text blocks in unstructured documents [44,
10, 21].

The TextTiling algorithm [44] is the exemplary similarity block-based method for text segmen-
tation. TextTiling is able to subdivide a text into multiparagraph, contiguous and disjoint blocks that
represent passages, or subtopics. More precisely, TextTiling detects subtopic boundaries by analyz-
ing patterns of lexical co-occurrence and distribution in the text. Terms that discuss a subtopic tend
to co-occur locally. A switch to a new subtopic is detected when the co-occurrence of a given set
of terms ends and the co-occurrence of another set of terms starts. All pairs of adjacent text blocks
are compared using the cosine similarity measure and the resulting sequence of similarity values is
examined in order to detect the boundaries between coherent segments.

Recent segmentation techniques have taken advantage of advances in generative topic modeling
algorithms, which were specifically designed to identify topics within text. Brants et al. [15] use
PLSA to compute word–topic distributions, fold in those distributions at the block level (in their
case blocks are sentences), and then select segmentation points based on the similarity values of
adjacent block pairs. Sun et al. [102] use LDA on a corpus of segments, compute intrasegment
similarities via a Fisher kernel, and optimize segmentation via dynamic programming. Misra et
al. [76] use a document-level LDA model, treat segments as new documents and predict their LDA
models, and then perform segmentation via dynamic programming with probabilistic scores.

Modeling segmentation. The Segmented Topic Model (STM) [29] assumes that each segmented
document has a certain mixture of latent topics and each segment within the document also has a
mixture over the same latent topics as the documents. The shared latent topic pool provides a way
to correlate documents and segments.

The basic idea of the LDA model is that documents can be represented as random mixtures
over topics, depicted by word–topic proportions θ, where topics are distributions over words. The
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FIGURE 13.4: Plate notation for the STM (a) and LDSeq (b) generative models.

dimensionality K of the topic space (and thus of the Dirichlet distribution from which topics are
drawn) is assumed known. The parameter β is treated as a K×M random matrix, where each row θk

is drawn from an exchangeable Dirichlet distribution and is associated with one mixture component.
This view of β is shared by STM and all other LDA-based models.

STM extends the LDA model by adding an additional layer in deriving word–topic proportions
θ, which effectively correlates document topics with segment topics, modeling the topic structure
within a segmented document. While LDA samples θ at the document level (θi ∼ DirK(α)), STM
extends document-level proportions (μi) to the segment level (θi j) with the aid of the two-parameter
Poisson-Dirichlet Process (PDP). Du et al. [29] posit the following approximations on distributions,
which enable this extension,

PDP(0,b,discrete(θ))≈ Dir(bθ),

PDP(a,0,discrete(θ))≈ Dir(aθ),

where a and b are PDP discount and strength parameters and a→ 0. They justify the first approxi-
mation because the means and the first two central moments of the LHS and RHS are equal, and the
second approximation based on an agreement up to O(a2) error in the means and first two central
moments of the two sides. Since PDP is a prior conjugate to multinomial likelihoods, replacing the
Dirichlet distribution with the PDP allows the authors to use collapsed Gibbs samplers in the STM
inference, greatly reducing computational complexity. Figure 13.4 (a) depicts the plate notation
representation of the STM model, whose generation process for each document is detailed below.

1. Generate document topic proportions, μi ∼ DirK(δ)
2. For each segment si j in document di

a. Generate segment topic proportions, θi j ∼ PDP(a,b,μi)

b. For each word wi jl in segment si j

i. Choose a topic zi jl ∼MultiK(θi j)

ii. Choose word wi jl ∼MultiM(βzi jl
)

STM is also similar to LDCC, a four-level probabilistic model that also considers documents and
segments as mixtures over latent topics. Unlike STM, LDCC considers documents and segments as
random mixtures over different kinds of topics and associates a segment with a single topic. By using
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a single topic pool for both documents and segments, STM better models the structure of a normal
document, in which document topics are a superset of the segment topics in the document. Similarly,
segments can at times exhibit multiple topics, e.g., a paragraph about Ludwig van Beethoven’s
Violin Concerto in D major can draw from topics related to violins, music, musical performance,
and the life of Beethoven. By assuming segments have a topic distribution, STM allows them to
share multiple topics. In contrast, LDCC assigns a specific topic to each segment. LDCC will be
presented in more detail in Section 13.4.3.

Consecutive segments. Du et al. also propose Sequential LDA (LDSeq) [30], an extension of STM
that addresses the bag of segments document assumption. Considering segment order in a document,
the topic distribution of a segment in LDSeq is dependent on that of the previous segment. The first
segment, which does not have an antecedent, has a topic distribution dependent on the document
topic distribution. Figure 13.4 (b) depicts the plate notation representation of the LDSeq model,
whose generation process for each document is detailed below.

1. Generate document topic proportions, θi,0 = μi ∼ DirK(δ)
2. For each segment si j in document di

a. Generate segment topic proportions, θi j ∼ PDP(a,b,θi, j−1)

b. For each word wi jl in segment si j

i. Choose a topic zi jl ∼MultiK(θi j)

ii. Choose word wi jl ∼MultiM(βzi jl
)

While documents are segment sets in STM, LDSeq sees them as sequences of segments. Du et al.
[30] take advantage of the fact that the PDP is self-conjugate, allowing them to model progressive
topical dependency via a nested PDP, i.e., the PDP of the current segment uses the PDP of the
previous segment as its base distribution (θi j ∼ PDP(a,b,θi, j−1)). This assumption may not be
appropriate for all text domains, but it showcases, once again, the modularity and extensibility of
the LDA model. LDSeq is also related to the LDSEG model, an extension of LDCC model that
assumes a Markovian relationship between distributions of consecutive segments. LDSEG will be
presented in more detail in Section 13.4.3.

13.4.2 Clustering Segmented Documents

Using techniques outlined above, a multi-topic document can be decomposed into segments that
correspond to thematically coherent contiguous text passages in the original document. Segmenta-
tion can be used as a base step in long document clustering.

Segment-based document clustering. Tagarelli and Karypis [103] propose a framework for clus-
tering of multi-topic documents that leverages the natural composition of documents into text seg-
ments in a “divide-et-impera” fashion. First, the documents are segmented using an existing docu-
ment segmentation technique (e.g., TextTiling). Then, the segments in each document are clustered
(potentially in an overlapping fashion) into groups, each referred to as a segment-set. Each segment-
set contains the thematically coherent segments that may exist at different parts of the document.
Thinking of them as mini-documents, the segment-sets across the different documents are clustered
together into nonoverlapping thematically coherent groups. Finally, the segment-set clustering is
used to derive a clustering solution of the original documents. The key assumption underlying this
segment-based document clustering framework is that multi-topic documents can be decomposed
into smaller single-topic text units (segment-sets) and that the clustering of these segment-sets can
lead to an overlapping clustering solution of the original documents that accurately reflects the mul-
tiplicity of the topics that they contain.

Although parametric with respect to the clustering algorithm, the framework is designed to work
with “hard” as well as “soft” clustering strategies; in particular, the authors test their framework
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using existing algorithms for clustering the segments within each document. For disjoint clustering
solutions they use Spherical k-Means (Sk-Means), whereas for overlapping clustering solutions they
use Fuzzy Spherical k-Means (FSk-Means) and LDA (cf. Section 13.3 for details). The authors also
show that overclustering the segments, producing a relatively high degree of overlapping clustering
of the segments, can circumvent the problem of identifying the correct number of segment clusters,
which is necessary input for most partitioning clustering algorithms.

Once the within-document clustering has been performed on all the documents in the collection,
the resulting set S of segment-sets becomes the input to the subsequent phase, which is designed to
identify the document topics in the collection. The authors use a bisecting version of the Spherical
k-Means algorithm to cluster the segments. The use of disjoint clustering is motivated by the fact
that each of the segment-sets will describe a single topic from the original document.

Tagarelli and Karypis [103] devise a model akin to the vector space model (cf. Section 13.2.2)
for representing a collection of segment-sets. Intuitively, they adapt the conventional tf-idf function
to be segment-set-oriented, segment-oriented, or document-oriented. Similar to tf-idf, their weight-
ing functions increase with the term frequency within the local text unit (segment), and with the
term rarity across the whole collection of text objects (i.e., segments, segment-sets, or documents).

Let w be an index term and S ∈ S be a segment-set. Let tf (w,S) be the number of occurrences
of w over all the segments in S . The segment-set-oriented relevance weight of w with respect to S
is computed by the Segment-set Term Frequency–Inverse Segment-set Frequency function:

stf-issf(w,S) = tf (w,S )× log

(
NS

NS(w)

)
,

where NS is the number of segment-sets in S, and NS(w) is the part of NS that contains w.
At a higher level (i.e., at document level), the relevance weight of w with respect to S is com-

puted by the Segment-set Term Frequency–Inverse Document Frequency function:

stf-idf(w,S ) = tf (w,S)× log

(
ND

ND(w)

)
,

where ND is the number of documents in D, and ND(w) is the part of ND that contains w.
Finally, at a lower level (i.e., at segment level), the relevance weight of w with respect to S is

computed by the Segment-set Term Frequency–Inverse Segment Frequency function:

stf-isf(w,S )= tf (w,S )× exp

(
NS (w)

NS

)
× log

(
nS

nS(w)

)
,

where NS is the number of segments in S , nS is the number of segments in S, and NS (w) and nS(w)
are the portions of NS and nS, respectively, that contain w. In the above formula, an exponential
factor is used to emphasize the segment-frequency of the terms within the local segment-set. The
rationale here is that terms occurring in many segments of a segment-set should be recognized as
characteristic (discriminatory) of that segment-set, thus they should be weighted more than terms
with low segment-frequency.

The final step in the framework is to use the disjoint clustering solution of the segment-sets in
order to derive an overlapping solution of the initial document collection that correctly reflects the
multiple topics that may exist in the collection’s documents. Although alternative methods could be
used to induce the final clustering, the authors take a simple assignment approach. Each cluster of
segment-sets is considered to be a single topic, and each document is assigned to all the topics that
contain at least one of its segment-sets.

The empirical evaluation that Tagarelli and Karypis [103] performed shows general improved
clustering accuracy over nonsegmented document clustering techniques in both the soft and hard
clustering strategies. The segment-based views over the documents allow for an effective identi-
fication of overlapping clustering solutions, and the authors’ proposed segment-level overcluster-
ing improves the quality of both disjoint and overlapping clustering solutions. They also find that
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segment-based document clustering leads to cluster descriptions that are more “useful” according
to a number of aspects, including higher coherence of terms within a description, higher presence
of discriminating terms, and wider coverage of topics.

Clustering long legal documents. Lu et al. [70] apply a similar clustering strategy in the legal
domain, where documents with multiple topics are very common. They develop a highly scalable
soft clustering system centered around a topic segmentation-based clustering framework that also
incorporates metadata information. The process of identifying highly refined issue-based clusters is
broken down into three logical steps: (1) build a universe of legal issues (topics) to search in, (2)
identify relevant documents for each issue in the topic universe, and (3) associate each document in
the collection with one or more issues.

The document segmentation step leverages available metadata for the document collection. In
particular, the algorithm represents a headnote, a brief summary of points of law within a document,
as a compound vector with four different feature types: a term frequency vector for the text in the
headnote, a frequency vector of noun phrases in the text, a vector of codes for applicable laws from
a legal taxonomy (known as key numbers), and a citation network for the headnote. The similar-
ity between two headnotes is then computed as the weighted sum of their respective feature type
similarities, with heuristically determined weights. The usual cosine similarity with tf-idf weighting
is used for comparing the first two feature types, and an analogous method is used for the third.
Citation features are compared in terms of co-citations,

cite sim(hi,h j) =
cite(hi∩h j)

cite(hi∪h j)
,

where cite(hi∪h j) is the number of documents citing at least one headnote, and cite(hi∩h j) is the
number of documents in which both headnotes hi and h j are cited. The use of noun phrases as part
of the feature set is motivated by an in-house study that found them to be closely related to legal
concepts, which form the basis for topics in this domain.

Headnotes in each document are clustered using an agglomerative clustering algorithm employ-
ing an automatic stopping criteria. The algorithm merges two clusters by maximizing the ratio of
intracluster and intercluster similarity, dubbed the intratopic similarity threshold, and thus does not
require the number of clusters as input. The intratopic similarity threshold is determined heuristi-
cally. The resulting headnote clusters are considered topics within the document.

Given the large size of the topic set, the authors use dimensionality reduction on topics to reduce
the computational complexity of the next step. To obtain a unique set of collection topics, document
topics are clustered using a “canopy”-based soft clustering technique. A document classification
engine and a ranker support vector machine (SVM) [22] are used to retrieve topics similar to some
seed topics, the top ranked of which are merged with the seeds. Topic similarity is extended for
this step in the framework to include classification engine scores and co-click similarity, a score
based on users viewing (clicking on) the documents that the headnotes represent. The algorithm is
executed recursively, using the output of each round after the first execution as the input of the next,
until the intercluster similarity between any two clusters is lower than a threshold. The resulting
clustering represents the set of most important topics within the collection.

The last step in the framework associates the collection documents with the discovered topics.
For this step, the main document text is segmented and documents are assigned to clusters based on
the similarity of their segments with the cluster. The quality of the resulting issue-based clustering
was validated by human legal experts in multiple test categories.

A statistical model. Clustering segmented documents is not limited to VSM techniques. Ponti et
al. [84] describe a statistical model for topically segmented documents and provide a clustering
strategy for documents modeled this way. The key idea of their work is that a generative model that
exploits the underlying composition of documents into segments is able to better capture depen-
dencies among terms, alleviating some of the problems related to the bag-of-words assumption in
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FIGURE 13.5: Plate notation for the SGM generative model.

large multi-topic documents. Term generation in such a model should be related not only to topics
but also to segments. As a consequence, the latent variable that models topics should be directly
associated to the within-document segments, rather than to the document as a whole. They propose
Segment-based Generative Model (SGM), a model that explicitly considers segments within each
document by introducing a segment model variable in the generative process.

SGM assumes that each document d ∈D is a sequence of nd words and, at the same time, a set
Sd of contiguous, nonoverlapping text blocks, or segments. The segmentation strategy is decoupled
from SGM, the authors using TextTiling in their implementation. SGM utilizes latent variable z to
model topic distributions and the model variable s to represent document segments. Figure 13.5
illustrates the graphical model representation of SGM. The generative process performed by SGM
on a corpus D of segmented documents can be summarized as follows.

1. Select a document d from D ⇒ Pr(d)
2. For each segment s ∈ Sd

a. Choose a topic z for the document, d⇒ Pr(z|d)
b. Associate topic-to-segment probability for segment s, z⇒ Pr(s|z)
c. For each word w in the segment s

i. Choose a word w from the current topic and segment, w⇒ Pr(w|z,s)
SGM provides a finer-grained document-to-topic modeling by taking into account text segments.

Choosing a topic (Pr(z|d)) in the generative process is based on the topic-to-segment association
probability (Pr(s|z)), intuitively providing a topical affinity for each segment given a selected topic.
Words are then generated not only by topics, but also by segments (Pr(w|z,s)). The above generative
process can be translated into a joint probability model for triadic data, in which each observation
is expressed by a triad defined on documents, segments, and words:

Pr(d,s,w) = Pr(d)∑
z∈z

Pr(z|d)Pr(s|z)Pr(w|z,s).

Ponti et al. use Expectation-Maximization (EM) [25] to estimate model parameters and a
centroid-based linkage agglomerative hierarchical method for clustering the resulting document
PMFs. The prototype PC of each cluster is represented as the mean of the PMFs of the documents
within that cluster. The cluster merging criterion, which decides the pair of clusters to be merged
at each step, utilizes the Hellinger distance (cf. Section 13.3.4) to compare the cluster prototypes.
The merging score criterion computes the average distance between the prototypes of each pair of
clusters (PCi and PC j ) and the prototype of the union cluster (PCi∪C j ). The pair of clusters with the
minimum score is chosen to be merged. Intuitively, this criterion aims to choose the merged clus-
tering that is closest to the original clustering. The algorithm stops when the cluster hierarchy is
completed or the desired number of clusters is reached.
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Extending the vector space. Wang et al. propose the Matrix Space Model (MSM) [110], in which
each presegmented document is represented as a tf-idf -weighted term-segment frequency matrix
instead of a term frequency vector. Segments are then cast as probabilistic distributions over a small
set of l latent topics, which are used to realize a document clustering. Latent topic extraction is
accomplished by approximating the document matrices Ai as LMiRT , where the nonnegative basis-
matrices L ∈ R

m×l1(L ≥ 0) and R ∈ R
s×l2(R ≥ 0) jointly define the lower dimensional space, and

matrices Mi are the low rank representation of the documents. l1 and l2 are user specified parameters
defining the size of the latent space, m is the size of the term vocabulary, and s is the number of
segments into which a document is split.

Given that matrices L and R are shared among the collection, the authors expect similar doc-
uments in the original space to also have a similar latent space representation. They formulate the
latent space extraction as the constrained optimization problem,

min
L ∈ R

m×l1 : L≥ 0
R ∈R

s×l2 : R≥ 0
Mi ∈ R

l1×l2 : Mi ≥ 0

n

∑
i=1

||Ai−LMiRT ||2F ,

where || · ||F is the standard Frobenius matrix norm and n is the number of collection documents. In
the reconstruction, LMi is associated with the posterior of each term belonging to the latent topics,
while MiRT is the posterior of each segment in the document belonging to the latent topics.

13.4.3 Simultaneous Segment Identification and Clustering

Assuming the previous definition of segments as topically coherent blocks of text in a document,
segment identification boils down to finding the document topics. The document segments can then
be extracted by considering the major topic shifts in the document word list. Considering cluster
assignment, the result of topic modeling can be written as a document–topic probability matrix P
where, Pik = Pr(zk|di). A hard (or soft) k-way clustering on documents could be induced from P by
assigning documents to the topic cluster(s) for which their respective probability values are highest
(or above a threshold).

Co-clustering in the latent space. The above assignment strategy assumes an order-dependent
word assignment in the topic model, which is not generally the case, as most models assume doc-
uments are orderless bags of words. One of the first models to address order placement within the
document, Latent Dirichlet Co-Clustering (LDCC) [95], is an extension of LDA that simultaneously
clusters words and documents. By focusing on meaningful segments of text, LDCC is more likely
to assign adjacent words to coherent topics.

LDCC extends LDA by assuming each document is a random mixture of topics, which in turn
are distributions over segments. Segments are then modeled as in LDA: for each segment, a distribu-
tion over collection topics is sampled from a Dirichlet distribution; a topic is then selected according
to this distribution for each segment term; each term is finally sampled from a multinomial distribu-
tion over terms specific to the selected topic. Figure 13.6 (a) depicts the plate notation representation
of the LDCC model, whose generation process for each document is detailed below.

1. Choose the number of segments for document di, Si ∼ Poisson(φ)
2. Generate document topic proportions, μi ∼ DirK(δ)
3. For each si j of the Si segments in document di

a. Choose a random topic for the segment, yi j ∼Multi(μi)

b. Choose number of words for the segment, Ni j ∼ Poisson(ε)
c. Generate segment topic proportions, θi j ∼ DirK(α,yi j)
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FIGURE 13.6: Plate notation for the LDCC (a) and LDSEG (b) generative models.

d. For each wi jl in segment si j

i. Choose a topic zi jl ∼MultiK(θi j)

ii. Choose word wnsm from Pr(wi jl |zi jl ,β)

Accounting for segment correlation. LDCC intuitively assumes that documents are composed
of single-topic segments. Yet consecutive segments often pertain to the same subject, in the same
way that paragraphs in a chapter may cover different aspects of the same topic discussed therein.
In their follow-up paper, Shafiei and Milios [96] extend LDCC to also identify topically coherent
segments in text. The proposed model, LDSEG, assumes a high likelihood that a segment has the
same distribution over words as the previous segment in the document and models this assumption
through a Markov structure on the segment-topic distribution. A switching binary variable for the
topic of each segment indicates whether its topic is the same as that of the previous segment. If it is
not, a new topic is sampled for the current segment. The list of states for this switching variable also
defines a segmentation in each document. Figure 13.6 (b) depicts the plate notation representation
of the LDSEG model, whose generation process for each document is detailed below.

1. Choose the number of segments for document di, Si ∼ Poisson(φ)
2. Generate document topic proportions, μi ∼ DirK(δ)
3. For each segment si j in document di

a. Choose yi j = yi j−1 with probability Pr(ci j = 1) = π
b. Otherwise, choose a random topic for the segment, yi j ∼Multi(μi)

c. Choose number of words for the segment, Ni j ∼ Poisson(ε)
d. Generate segment topic proportions, θi j ∼ DirK(α,yi j)

e. For each wi jl in segment si j

i. Choose a topic zi jl ∼MultiK(θi j)

ii. Choose word wnsm from Pr(wi jl |zi jl ,β)

A framework for generative clustering. Ponti and Tagarelli relax the segment topic coherence
assumption and provide a topic-based framework for clustering multi-topic documents using gen-
erative models [83]. Instead of assigning documents to topic clusters, Ponti and Tagarelli cluster
documents based on their topic distributions. The proposed framework executes three steps. First,
the documents are processed using standard preprocessing techniques to obtain the document term
matrix. Then, a generative model is applied to represent the documents in a topic latent space. The
output of this step is a probability matrix expressing the topic mixture underlying the documents.
In the final step, documents are clustered based on their topic mixtures, using an information theory
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PMF distance metric to compare documents. The clustering algorithm is a centroid-based linkage
agglomerative hierarchical algorithm, like the one used by Ponti et al. in [84], which was described
earlier.

13.5 Clustering Short Documents

Clustering short documents faces additional challenges above those of general purpose docu-
ment clustering. Short documents normally address a single topic, yet they may do so with com-
pletely orthogonal vocabulary. Noise, contracted forms of words, and slang are prevalent in short
texts. In this section, we will first discuss general methods for clustering short documents and then
focus on methods designed specifically for clustering Web documents and microblogs.

13.5.1 General Methods for Short Document Clustering

There has been a relatively large corpus of study on alternative approaches to the clustering of
short texts. Wang et al. [111] propose a frequent-term-based parallel clustering algorithm specif-
ically designed to handle large collections of short texts. The algorithm involves an information-
inference mechanism to build a semantic text feature graph which is used by a k-NN-like classifica-
tion method to control the degree of cluster overlapping. Pinto et al. [81] resort to the information-
theory field and define a symmetric KL divergence to compare short documents for clustering pur-
poses. Since the KL distance computation relies on the estimation of probabilities using term oc-
currence frequencies, a special type of back-off scheme is introduced to avoid the issue of zero
probability due to the sparsity of text. Carullo et al. [18] describe an incremental online clustering
algorithm that utilizes a generalized Dice coefficient as a document similarity measure. The algo-
rithm requires two thresholds as input, one to control the minimum accepted similarity that any
document must have to be assigned to a cluster, and the other to define the maximum similarity of a
document that can still contribute to the definition of a cluster.

Particle-swarm optimization techniques and bio-inspired clustering algorithms have also been
proposed for short text data. Ingaramo et al. [52] develop a partitional clustering algorithm to han-
dle short texts of arbitrary size. The key aspect of that study is the adaptation of the AntTree al-
gorithm [42], which integrates the “attraction of a cluster” and the Silhouette Coefficient concepts,
to detecting clusters. Each ant represents a single data object as it moves in the clustering structure
according to its similarity to other ants already connected to the tree under construction. Starting
from an artificial support, all the ants are incrementally connected, either to that support or to other
already connected ants. This process continues until all ants are connected to the structure, i.e., all
objects are clustered.

Finding core terms. In [78], Ni et al. regard the short document clustering task of grouping short
texts based on some selected “core” terms. The underlying idea is to recursively bisect one of the
clusters according to the core term identified within that cluster. The core term of a cluster is the term
that minimizes the value of the Ratio Min-Max Cut (RMcut) criterion over all possible bisections
of that cluster. Following a strategy dubbed TermCut, a bisection of a specific cluster is obtained
for each of the terms contained within the cluster. All documents containing the selected term are
assigned to one subcluster and the rest of the documents (not containing the term) are assigned to
the other.

To find its RMcut value, an input collection of short documents is modeled as a graph, where
vertices represent documents and edges are weighted by the similarity between the adjoined docu-
ments. As is generally done for short documents, term frequencies are smoothed to be one or zero,
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and thus the document representation is simplified to be a vector of idf values. The RMcut value
corresponding to a K-way clustering C of D is defined as

RMcut(C ) =
K

∑
k=1

cut(Ck,C −Ck)

|Ck|∑di,d j∈Ck
sim(di,d j)

.

The denominator part of the above formula takes into account both the intrasimilarity of each clus-
ter and its size, where the latter is used to avoid producing very unbalanced clusters. Moreover,
the edge-cut function cut(·, ·) acts as an intercluster similarity criterion; it is defined as the summa-
tion over the weights of all edges connecting vertices (documents) within a specified cluster to the
vertices within the rest of the clusters.

Taking into account cluster frequencies for terms, we can observe that the sum of all pair-wise
document similarities within a cluster is equal to the sum of the product of the squared inverse
document frequency and cluster frequency over all terms in the cluster. Thus, the RMCut criterion
can be efficiently computed as

RMcut(C ) =
K

∑
k=1

∑M
l=1(id fl)

2 c fl,k c fl,¬k

|Ck|∑M
l=1(id fl c fl,k)2

,

where c fl,k and c fl,¬k denote the cluster frequency of the lth term within the kth cluster and within
the rest of the clusters, respectively. Note that the overall complexity of the RMcut criterion is
O(N +M), since the inverse document frequency and the cluster frequency of the terms can be
computed by a single scan of the documents in the collection, and the computation of the numerator
and the denominator in the above formula is O(M).

Following the TermCut strategy, Ni et al. [78] propose two algorithms. The first tries to bisect
clusters until the desired number of clusters is reached. The second takes a minimal RMcut decrease
threshold as input and, as the name suggests, continues the bisecting process until the decrease in
the RMcut value falls below the given threshold. While the idea behind the RMcut criterion is very
similar to that underlying the CLUTO criterion functions detailed in Equations 13.5 and 13.6 of
Table 13.2, Ni et al. show that their bisecting strategy outperforms CLUTO for a number of short
text datasets.

13.5.2 Clustering with Knowledge Infusion

Motivated by the lack of common vocabulary in short documents, many short document clus-
tering algorithms first enrich or complement the statistical vector representation of short texts with
external knowledge bases, such as WordNet or Wikipedia. Banerjee et al. [8] propose to enrich
the original term-feature space of search results with the titles of the Wikipedia articles that are
retrieved as relevant to two queries created for each result. The first query is based on the result title,
while the other is based on the result description, or snippet. Scaiella et al. [93] propose a “graph-
of-topics” model to represent each snippet, in which vertices correspond to Wikipedia pages that
are identified by existing topic annotators, and the edges are weighted to determine the semantic
relatedness between the linked topics. An online spectral clustering algorithm is used on an induced
graph consisting of two types of vertices, topics and snippets, where the weighted edges express
either topic similarities or topic-to-snippet memberships.

User actions have also been useful in identifying short document clusters. Wang and Zhai [109]
exploit information contained in log data produced by a real search engine to cluster search result
snippets. Carpineto and Romano [17] introduce a meta-clustering strategy that clusters snippets by
integrating partitions separately obtained as a result of analyzing the tf-idf document–term matrix
with SVD, NMF, and generalized suffix trees. They also define an evaluation measure that takes into
account the behavior of Web users in terms of the time spent to satisfy their search needs.
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Hu et al. [51] combine original text features with semantic features derived from external knowl-
edge bases to support the clustering task. Applying standard NLP techniques, they model the short
input text into a parsing-tree-like structure to support the extraction of nonredundant seed phrases,
which they use in turn to generate external semantic features. More specifically, a naive punctuation-
based segmentation of the text facilitates a subsequent shallow parsing step which identifies seed
phrases. To avoid redundancy, each phrase is compared with all the other ones in the segment, and
the phrase with the highest Wikipedia-based similarity is removed. The remaining seed phrases
are used to retrieve external feature content, from either Wikipedia or WordNet, depending on the
presence of stop words in the phrase. External features are extracted from titles and link text in the
Wikipedia pages or similar term concepts in WordNet. Document features are finally selected based
on tf-idf weights of original and external features. An additional parameter is introduced to control
the influence of external features in the feature space. Hu et al. demonstrate the concurrent use of
multiple types of external knowledge bases, along with internal semantics, to improve clustering of
short texts.

13.5.3 Clustering Web Snippets

Document clustering research has traditionally focused on Web documents as a way to facil-
itate users’ ability to quickly browse search results. Web documents could be clustered off-line,
with a general purpose document clustering algorithm. However, this approach was shown ineffec-
tive [37, 16], because it is based on features that are frequent in the entire collection but irrelevant to
the particular query. Instead, query-specific, online, postretrieval clustering, i.e., clustering search
results, was shown to produce superior results [45]. A search result is generally composed of a title
and a snippet, a short summary, often containing phrases from the document related to the search
query. As such, clustering search results uses a subset of the collection vocabulary concentrated
around the query terms.

Unlike the traditional clustering task, the primary focus of search result clustering is not to
produce optimal clusters [109, 16, 5]. Rather, search result clustering is a highly user-centric task
with several unique additional requirements. The algorithm must be fast, as users are unwilling to
wait longer than a few seconds for search results. Clusters must exhibit interesting query subtopics
or facets from the user’s perspective. Finally, clusters must be assigned informative, expressive,
meaningful and concise labels.

Scatter/Gather [82, 45] was an early cluster-based document browsing method that addressed
the speed requirement by performing postretrieval clustering on top-ranked documents returned
from a traditional information retrieval system. Zamir and Etzioni introduced the well-known Suffix
Tree Clustering (STC) [118] algorithm, which creates interesting subtopic clusters based on phrases
shared between documents. It follows the assumption that repeated phrases imply topics of interest
within the result collection. STC treats a snippet as a string of words, builds a suffix tree over the
collection of snippets, and traverses the suffix tree to extract base clusters. The algorithm then uses
a binary similarity measure based on overlap of documents to create a base cluster graph. In this
graph, each node corresponds to a group of snippets sharing a phrase. The final clustering solution
is obtained by finding the connected components in the graph. Zamir and Etzioni also showed that
using snippets for clustering is as effective as using whole documents.

Addressing the meaningful and concise label requirement of search result clustering, Anastasiu
et al. [5] employ a strategy that generates labels before clusters. They first identify frequent phrases
within a set of search results using a suffix tree built in linear time by Ukkonen’s algorithm [106].
Then they select labels from the frequent phrases using a greedy set cover heuristic, where at each
step a frequent phrase covering the most uncovered search results is selected until the whole cluster
is covered or no frequent phrases remain. Results are then assigned to a label if they contain the
terms in the label, uncovered results being placed in a special cluster named Other. Osiński et
al. [79] also follow a label-before-cluster approach. They use dimensionality reduction techniques
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to induce cluster labels. Then, treating each label as a query over the snippet-set in the information
retrieval sense, they populate the clusters with the retrieved results for the queries.

Common phrases can naturally describe clusters. This has inspired many other phrase-based
hierarchical methods for clustering Web snippets. Kummamuru et al. [65] develop a monothetic
clustering algorithm with the ultimate goal of automatically generating a concept hierarchy, where
concepts are terms or phrases. At each level of the hierarchy being constructed, the algorithm pro-
gressively identifies topics such that the distinctiveness of the monothetic features describing the
clusters is maximized, and at the same time document coverage in clusters is maximized. Li and
Wu [67] first build a phrase-based document index by extracting salient phrases from snippets. The
clustering method starts with all extracted phrases belonging to their individual clusters and com-
bines the most similar clusters according to the constructed index. Each cluster is finally identified
by a distinct phrase. The snippets whose indexing phrases belong to the same cluster are grouped
together, while the remaining snippets are clustered based on their k-nearest neighbors. Zeng et
al. [119] map the clustering problem to a phrase ranking problem, in which a regression model is
first trained to rank the n-grams for a specified keyword. The model is then used to extract relevant
phrases according to which the snippets are finally clustered.

13.5.4 Clustering Microblogs

The recent popularity of social networks has led to increasing demand for robust clustering
algorithms for microblog data, or tweets. General purpose document clustering algorithms do not
work well with these data due to the lack of co-occurring terms and context information in the
short “documents.” Researchers have tried to solve this problem by altering existing techniques or
creating specialized document models. The most promising research direction relies on aligning or
augmenting the short texts with external information.

Liu et al. [69] rely on an incremental similarity-threshold based clustering step to identify groups
of similar tweets for the task of semantic role labeling. In a related problem of classifying tweets to
a predefined set of generic classes, Sriram et al. [98] compare the bag of words model with other
models based on short-text specific features such as use of shortened words or slang, time–event
phrases, opinion phrases, or username mentions. In their evaluation, they find that non-bag of words
models outperform the bag of words one. Park et al. [80] propose a hybrid approach that exploits
external information from search result clustering to deal with the extraction of topics from blogs. A
set of candidate terms with relatively high tf-idf values is initially extracted from all posts of a blog,
and then used to feed a Web search engine. The resulting snippets for a specified candidate term are
grouped into a hierarchy of clusters, and each of these clusters is compared and matched to the blog
posts covering that term to finally determine how many subtopics are covered by the blog.

Topic modeling has recently also been shown effective in the microblog domain. Ramage et
al. propose Labeled LDA [88], a version of LDA that incorporates available supervision, and use it
on Twitter data [87] to characterize content, rank tweets, and recommend users to follow. Weng et
al. [113] propose a PageRank-type algorithm for measuring topic-sensitive influence of microblog
authors. They use LDA to discover latent topics and compute transition probabilities contingent on
the topical similarity of users. Hong and Davison [48] study how to train topic models on microblog
data to be used in standard text mining applications. They find that model based features can be very
useful, but the length of the documents can greatly affect the effectiveness of trained topic models.
Specifically, aggregating short messages leads to better models.

Aligning topics in short and long texts. Inspired by the idea of using external data sources, Jin
et al. [55] train topic models on the short texts alongside a collection of auxiliary long texts. They
realize that long texts cannot be perfectly aligned to the short. Thus, their Dual LDA (DLDA)
algorithms distinguish between inconsistent topical structures across domains by correlating the
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FIGURE 13.7: Plate notation for the α-DLDA (a) and γ-DLDA (b) generative models.

simultaneous training of two LDA models, the target model on the short texts and the auxiliary
model on the long ones.

Depending on how the two models are related to each other, Jin et al. [55] propose two algo-
rithms. α-DLDA models two separate sets of topics for auxiliary and target data and uses asymmet-
ric Dirichlet priors to control the relative importance of the two when generating a document. αt , the
Dirichlet prior for generating topic mixing proportions for target documents, is given higher values
for entries associated with target topics. Similarly, αa is given higher values for entries associated
with auxiliary topics. Figure 13.7 (a) illustrates the graphical model representation of α-DLDA.

γ-DLDA introduces a document-dependent binary switch that constrains each document to be
generated either from the target model or from the auxiliary one. In addition to the multinomial
distributions over topics, each document is also associated with a binomial distribution over target or
auxiliary topics with a Beta prior γ. Similar to the α parameter in α-DLDA, γt is given higher values
for entries associated with target topics. Figure 13.7 (b) depicts the plate notation representation of
the γ-DLDA model, whose generation process for each document is detailed below.

1. For each target topic, generate a multinomial distribution over terms, βt
k ∼ DirM(ηt), k ∈

{1, . . . ,Kt}
2. For each auxiliary topic, generate a multinomial distribution over terms, βa

k ∼ DirM(ηa), k ∈
{1, . . . ,Ka}

3. For each corpus (auxiliary and target data), c ∈ {a, t}
a. For each corpus document di, i ∈ {1, . . . ,Nc}

i. Generate a multinomial distribution over target topics, θt
i ∼ DirK(αt)

ii. Generate a multinomial distribution over auxiliary topics, θa
i ∼ DirK(αa)

iii. Generate a binomial distribution over target vs. auxiliary topics, πi ∼ Beta(γc)

iv. For each word wil in document di

1) Choose a value for xil ∼ Binomial(πi)

2) If xil = t, choose a target topic zil ∼Multi(θt
i)

3) If xil = a, choose an auxiliary topic zil ∼Multi(θa
i )

4) Choose word wil from topic zil , i.e. wil ∼Multi(βxil
zil
)

Jin et al. [55] compare their DLDA algorithms against direct clustering with CLUTO, topic
model-based clustering on the individual collections and against several algorithms that transfer
knowledge from the long texts when clustering the short. While α-DLDA and γ-DLDA outper-
formed the competition, the authors also note that methods utilizing long texts performed signifi-
cantly better than the others, demonstrating the value of external information when clustering noisy
short documents.
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13.6 Conclusion

This chapter primarily focused on reviewing some recently developed text clustering methods
that are specifically suited for long and for short document collections. These types of document
collections introduce new sets of challenges. Long documents are by their nature multi-topic and as
such the underlying document clustering methods must explicitly focus on modeling and/or account-
ing for these topics. On the other hand, short documents often contain domain-specific vocabulary,
are very noisy, and proper modeling/understanding often requires the incorporation of external in-
formation. We strongly believe research in clustering long and short documents is in its early stages
and many new methods will be developed in the years to come. Moreover, many real datasets are
composed of not only standard, long, or short documents, but rather documents of mixed length.
Current scholarship lacks studies on these types of data. Since different methods are often used for
clustering standard, long, or short documents, new methods or frameworks should be investigated
that address mixed collections.

Traditional document clustering is also faced with new challenges. Today’s very large,
high-dimensional document collections often lead to multiple valid clustering solutions. Sub-
space/projective clustering approaches [63, 77] have been used to cope with high dimensionality
when performing the clustering task. Ensemble clustering [36] and multiview/alternative clustering
approaches [54, 86], which aim to summarize or detect different clustering solutions, have been
used to manage the availability of multiple, possibly alternative clusterings for a given dataset. Rel-
atively little work has been done so far in document clustering research to take advantage of lessons
learned from these methods. Integrating subspace/ensemble/multiview clustering with topic models
or segmentation may lead to developing the next-generation clustering methods specialized for the
document domain.

Some topics that we have only briefly touched on in this article are further detailed in other chap-
ters of this book. Other topics related to clustering documents, such as semisupervised clustering,
stream document clustering, parallel clustering algorithms, and kernel methods for dimensionality
reduction or clustering, were left for further study. Interested readers may consult document clus-
tering surveys by Aggarwal and Zhai [2], Andrews and Fox [6], and Steinbach et al. [99].
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14.1 Introduction

Clustering multimedia is a broad and interesting area of research that typically deals with clus-
ters of different spaces (such as feature space and semantic space) and with different levels of gran-
ularity. As opposed to the conventional clustering approaches which deal with simple generation
and assignment of documents to clusters, clustering multimedia goes far beyond these approaches.
In the multimedia domain, clusterings of different levels and different spaces can be meaningful and
can complement each other to form a more consistent and robust interpretation and understanding
of multimedia documents.

Hence, clustering multimedia data is one of the most widely used techniques in multimedia ap-
plications. These applications range from the construction of visual vocabulary as a preprocessing
procedure of multimedia data, to automatic video structuring and image content summarization.
Because of their vital role in many applications, the clustering methods have been widely stud-
ied across different levels of granularity—from low level features to high level concepts. It is a
challenging problem since we often encounter large-scale, high-dimensional, multimodal, and even
noisy data in many real-world multimedia applications. The solutions to the above challenges often
highly depend on the modalities we process in real applications.

In this chapter, we organize the sections by the type of the modalities involved in the multime-
dia applications. We will provide several concrete examples, each of which shows the ideas and
principles of developing effective clustering algorithms with multimedia data, including audio, text,
image, video, and combinations of several types. We will review some of the popular clustering
techniques in the multimedia domain, with the goal of covering as many multimedia applications
as possible. For each application, we give a concise overview, summary of their motivation, and
the methods that have been developed for that application. We believe that this chapter provides an
introductory yet practical guide to help interested readers understand the nature of the multimedia
clustering problems and their solutions in real world.

This chapter is organized as follows. In Section 14.2, we discuss the clustering techniques that
have been applied to wide variety of image data, including the application to visual words learn-
ing (14.2.1), face clustering and annotation (14.2.2), photo album event recognition (14.2.3), image
segmentation (14.2.4) as well as large-scale image classification (14.2.5). In Section 14.3, we ex-
plain different clustering algorithms used in the context of video and audio data, including video
summarization (14.3.1), video event detection (14.3.2), video story clustering (14.3.3), and music
summarization (14.3.4). Finally, in Section 14.4, we discuss the clustering with multimodal data
primarily with respect to image and text data.

14.2 Clustering with Image Data

Clustering algorithms have been adapted to image data for various purposes. These algorithms
are applied across different levels of the image data, from visual feature level to the image level and
even to the image collection level. In this section, we discuss each of these three levels along with
an application and describe how the clustering algorithms have been successfully applied to these
applications. The applications include quantization of visual features for representation, facial image
clustering for face annotation, and collection level clustering on photo album for event recognition.
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14.2.1 Visual Words Learning

Visual words learning, which involves vector quantization, is among one of the earliest adaptions
of clustering algorithms in multimedia applications. Inspired by the success of the bag-of-words
(BoW) model used in text domain, bag-of-visual-words (BoVW) or bag-of-features (BoF) model is
proposed to represent an image with a visual word histogram. Similar to the BoW model in the text
domain, the BoVW model uses a number of visual vocabulary to map the low level image patches or
visual features to obtain a higher level visual word representation. However, unlike the text domain
where the text can be naturally tokenized by the punctuation and white spaces (for certain languages)
to obtain the vocabulary, BoVW models involve an additional step, usually referred to as visual
words learning or vocabulary learning. Visual words learning employs vector quantization (VQ)
or more sophisticated methods (such as sparse coding) to learn a set of visual words as the basis
functions or the vocabulary, which is then used in the second stage of the BoVW model to encode
the low-level visual-feature vectors into a new feature space. There are a number of advantages for
the bag-of-visual-words model such as the ability to handle partial occlusion.

As vector quantization is one of the key ingredients in the visual word learning step, clustering
algorithms play an important role in the BoVW model. Among many existing clustering algorithms,
the k-means clustering is the most widely used method due to its simplicity and efficiency. How-
ever, there are two issues with the k-means clustering method: the convergence of the algorithm
and the determination of the parameter k. More specifically, the k-means clustering algorithm only
converges to the local optimum and thus it is sensitive to the initialization of the cluster centroids.
In addition, the parameter k of the algorithm has to be determined beforehand. Although there have
been a few remedies proposed in the literature such as the gap statistics [30], X-means [23], G-means
[35], and data spectroscopic clustering [26], the most popular way of choosing k is to empirically
pick the parameter k with multiple random initializations of the centroids. This is due to the lack of
prior knowledge on the density and the compactness of the data.

It is worth noting that the BoVW model is not the first approach to apply the idea of clustering
image patches along with their visual features. For instance, in the texture classification problem,
Leung and Malik [19] proposed to use the k-means clustering to quantize the densely sampled
outputs of filter banks and form a dictionary of tiny surface patches called prototype textons. These
textons are then used as the bases for describing the images of different materials in relatively
low-dimensional histograms. Sivic and Zisserman [27] were among the first to adapt the BoVW
model in the video frame retrieval problem. They constructed a visual vocabulary by applying k-
means clustering with Mahalanobis distance function, which downweights the noisy dimensions and
decorrelates the dimensions. With the built vocabulary they can first encode the local descriptors of
the key frames as visual words. As a visual analogy of text retrieval, these visual words can then
be used to build inverted index and term frequency–inverse document frequency (tf-idf) weighting
scheme which will be used for the task of retrieval. Similarly, Csurka et al. [11] proposed a bag
of keypoints method based on the low-level affine-invariant descriptors of image patches in the
image categorization problem. They chose to use the k-means clustering algorithm as the vector
quantization method for constructing the visual vocabulary and empirically decided the number of
desired representative vectors (k) with multiple initialization.

Other than the k-means clustering algorithm, some other clustering algorithms were also used
in the VQ stage for the construction of the vocabulary. For example, Raginsky and Lazebnik [25]
used the agglomerative clustering algorithm that takes a matrix of pairwise distances between visual
descriptors of an image to successively merge clusters to thus discover a small set of basic primitives
for each image individually. With these basic primitives, the distribution of the descriptors of the
image is then summarized in the form of the medoids (the most centrally located descriptor for each
cluster) and the weights (proportional to the cluster size) of the clusters.

Although VQ methods with clustering algorithm have demonstrated their simplicity and effi-
ciency, more sophisticated and powerful methods are proposed to learn better image representation.
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One of these alternative methods is the sparse coding that enforces the sparsity constraint when
learning the vocabulary or the codebook [34]. With the ability to nonlinearly encode the visual fea-
tures and achieve less quantization error, these methods have achieved better performance compared
to the VQ methods on several image recognition benchmarks. However, the sparsity constraint that
involves solving L1-norm optimization problems make these methods computationally expensive.
Therefore, Wang et al. [32] proposed to exploit the k-means clustering in their locality-constraint
linear coding to initialize the codebook and learn an approximate codebook. The strategy to use the
VQ clustering method in their nonlinear coding process speeds up the algorithm while maintaining
a good performance.

While the clustering algorithms have been widely used for the vector quantization step in the
BoVW or BoF model in various multimedia applications, they are often unsupervised methods and
thus the vocabulary learned will capture only the low-level similarity of the appearance. It is still an
open research problem to study the ways in which one can allow the clustering algorithms to learn
a vocabulary that is semantically meaningful.

14.2.2 Face Clustering and Annotation

Clustering algorithms have also been used as an effective tool for the problems of face recogni-
tion and identification. For example, Berg et al. [4] employed a clustering algorithm in the two-stage
procedure for face recognition to break ambiguities in labeling and to identify incorrectly labeled
faces. Specifically, they first extracted a list of candidate names for each image by analyzing the
caption. With these candidate names they then used a modified k-means clustering algorithm to pro-
gressively refine the name selection from the candidates for each image and computed the mean of
the visual features of the images associated with each name. They showed that this iterative proce-
dure along with cluster pruning and merging would result in a reliable set of clusters with more face
images of the same individual. Also, it was observed that the resulting set of images contained less
noise.

Guillaumin et al. [15] approached the face image clustering problem with agglomerative hier-
archical clustering. Specifically, they adopt complete-linkage clustering along with a logistic dis-
criminant metric learning from labeled image pairs. In particular, the complete-linkage function,
or the distance between a pair of clusters, is computed using Mahalanobis metric learned from a
standard linear logistic discriminant model. The clustering process then yields a hierarchy of clus-
ters by varying the maximum distance in terms of the learned Mahalanobis metric to merge the
clusters.

To reduce the users’ burden on large scale face annotation, Suh and Bederson [28] introduced a
bulk annotation framework that incorporates hierarchical clustering techniques to cluster faces ac-
cording to timestamps and torso information. With the clustered faces, the users can do annotation
at the cluster level instead of single-image annotation. However, the clustering based on event and
torso information has certain limitations and may produce inconsistent results, which would thus
increase the workload of labeling the face images. To solve this problem, Tian et al. [29] proposed
a partial clustering algorithm with the goal of providing small sized and high accuracy (evident)
clusters to reduce the labeling effort instead of improving the overall clustering performance. They
substitute the classic k-means clustering with their novel partial clustering algorithm after the spec-
tral embedding onto the unit hypersphere. Their partial clustering algorithm focuses only on finding
evident clusters and excludes all noisy samples into a litter-bin cluster by adding a uniform back-
ground noise distribution in their Gaussian Mixture Model (GMM) based clustering.

More recently, Zhu et al. [36] presented a novel iterative clustering algorithm with a rank-order
dissimilarity distance for face annotation. A rank-order distance is proposed as a dissimilarity mea-
sure based on the observation that the top neighbors of two faces would highly overlap if the faces
were from the same person, otherwise they would differ greatly. Using the neighborhood structure
as the distance measure, the rank-order distance can handle nonuniformly distributed data as well
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as noise and outliers better than using the absolute distances such as L1 or L2 distance. Based on
this rank-order distance, the authors used a clustering algorithm to group faces into a small number
of clusters for face annotation. However, as observed by the authors, the faces of the same person
usually form several “subclusters” due to the variations in illumination, pose, and expression. To im-
prove the clustering performance, the authors further introduced a cluster-level rank-order distance
in conjunction with a cluster-level normalized distance to merge these subclusters. Their algorithm
shows superior performance on four face databases over several classical clustering methods such
as affinity propagation, spectral clustering, and shared nearest neighbors in terms of both effective-
ness (based on four evaluation measures—precision, recall, compression ratio, normalized mutual
information) and efficiency (time taken for clustering).

14.2.3 Photo Album Event Recognition

Collection-level analysis of consumer photos has not drawn too much attention in the past. In
[7] and [8], the authors explored the relationship between collection-level annotation and image-
level annotation with the help of GPS and time information associated with the photos. Without
using any metadata, the authors of [18] proposed to describe images and video frames using a
set of scores of 21 visual concepts. Then, in order to account for typical and nontypical photos
within each album, they (partially) matched up the photos from two albums when computing the
Earth Mover’s Distance (EMD) between them. The EMD is a more robust distance metric which
computes the minimum weighted distance among all pairwise distances between two image sets
subject to weight-normalization constraints. It allows partial match between data points (album)
and can alleviate the influence of outlier images. Assume there are n1 and n2 images in albums x1

and x2, respectively. The EMD between them is a linear combination of ground distance d(I1
p, I

2
p)

weighted by flow f (I1
p, I

2
p) between any two images I1

p ∈ x1, I2
p ∈ x2:

D(x1,x2) =
∑n1

p=1 ∑n2
q=1 f (I1

p, I
2
q )d(I

1
p, I

2
q )

∑n1
p=1 ∑n2

q=1 f (I1
p, I2

q )
(14.1)
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where w1
p and w2

q are the weights of images I1
p and I2

q in albums x1 and x2, respectively. They are set
w1

p = 1/n1,w2
q = 1/n2, and d(I1

p, I
2
q ) takes the value of the Euclidean distance over concept scores.

The interpretation of EMD is that a matching between images of two albums can be mapped to a
unique flow described in Equation (14.2), and hence, even sets of {w2

p}p and {w1
q}q imply that all the

images within the same album are “equally matched.” The last set of constraints in Equation (14.2)
deals with the imbalanced number of photos in two albums. The final similarity matrix at the album
level is then S(x1,x2) = exp(−D(x1,x2)/r), where r is the mean of all pairwise distances between all



344 Data Clustering: Algorithms and Applications

training data points. The next step is the spectral clustering performed using similarity matrix S. Let
the resulting clusters be {Wj} j. The similarity between an album x to a cluster Wj is the maximum
similarity between x and the members in Wj:

S(x,Wj) = max
xk∈Wj

S(xk,x) (14.3)

The final album representation is a Bag of Features consisting of similarities to each cluster
(S(x,W1), . . . ,S(x,Wn))

T . The authors of [16] take a different approach. Instead of using mid level
detections, they discovered frequent visual words within an event and then ranked them using the
PageRank algorithm. A visual word is the concatenation of a 12-dimensional RGB color descriptor
and a 32-dimensional SIFT descriptor. The ranking of the visual word is proportional to the number
of times it appears and the number of times it matches with another visual word in another photo.
Eventually, an album is represented by the mean of all visual word histograms within it.

There are a few issues in the approaches described above. Low-level visual words can be com-
plemented by mid-level detection because the latter is semantically closer to higher-level events.
When using mid-level detection, it is clear that not all detections are relevant to the target event
class, and incorporating all of them can overfit and degrade the performance because the detection
usually becomes noisy. Moreover, averaging all photos within an album mixes up typical and non-
typical images. In [31], the authors address these issues with frequent object patterns in semantic
events. Short object patterns are more robust to noise, compared to directly using all object detec-
tions as described in [18]. Ideally, an object pattern can be (“car,” “street light,” “person”), which
means that the three objects “car,” “street light,” and “person” co-occur a lot in a certain event. In
practice, object detection is a relative score and is not binary value. Hence, the actual proposed
object pattern looks like (“car(6/7),” “street light(5/7),” “desk(2/7)”), which means that in a certain
scene or event “car” has detection score at least 6 out of 7, “street light” has at least 5 out of 7, and
“desk” has at most 2 out of 7. This discrete levels is due to the detection quantization, and such an
object pattern approximates image-level decision tree classifier F(m(I)) = 1 if and only if

mi1(I)s1 ≥ t1 ∧ mi2(I)s2 ≥ t2 ∧ mi3(I)s3 ≥ t3 . . .

s1,s2, . . . ∈ {1,−1} (14.4)

where mk(I) is the raw detection output of object k for image I. i j is the object index, s j controls the
interval region (greater or less than), and t j is the threshold of the jth object in the pattern. Finally,
the album level feature is formed by aggregating the output of a large number of Fk(m(I)) for all
photos in the albums.

14.2.4 Image Segmentation

In this section, we review a semiautomatic image segmentation algorithm via graph cuts to
minimize the energy function [5]. Users can manually label the pixels of some object in an image,
and then graph cuts automatically segment the image into different objects corresponding to these
labels. The graph cuts simultaneously measure the smoothness of the labeling and the agreement
between the labeled pixels and the labeling function. More precisely, we are given a graph G =
(P ,N ), where P is the set of nodes corresponding to the pixels in an image, and N is the set
of edges measuring the similarity between the pixels based on their colors and locations. Then a
labeling function f assigns each pixel p ∈ P with a label fp in a finite set L of object labels. The
goal here is to obtain the labeling function f that minimizes the energy

E ( f ) = Esmooth ( f )+Edata ( f )

where, Esmooth ( f ) measures the extent to which f is not piecewise smooth, while Edata ( f ) measures
the disagreement between f and the pixel labels.
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In many general cases, minimizing the energy function is NP-hard, and it is impossible to
rapidly compute the global minimum unless P = NP. Therefore, the two algorithms, α-expansion
and α−β-swap, focus on effectively minimizing it based on graph cuts to find a local minimum. Let
P = {Pl |l ∈ L} be a partition of nodes given by a labeling function f , where Pl = {p ∈ P | fp = l}
is a subset of nodes assigned with label l. Then, we can define α-expansion α−β-swap as follows:

α-expansion: Given a label α, a move from a partition P w.r.t. f to a new partition P′ w.r.t. f ′ is
called an α-expansion, if Pα ⊂ Pα

′ and Pl
′ ⊂ Pl , for any label l 
= α.

α−β-swap: Given a pair of labels α and β, a move from a partition P w.r.t. f to a new partition P′
w.r.t. f ′ is called an α−β-swap, if Pl = Pl

′, for any label l 
= α,β.

Given a labeling f , [5] finds an optimal α−β-swap or α-expansion to reduce the energy defined
above. Then the energy can be minimized by a variant of the “fastest descent” techniques. Thus, the
key is to develop an efficient algorithm to find the optimal swap and expansion given the current
labeling f . Compared to other standard algorithms where there is only one label change at a time,
this approach can change arbitrarily large sets of labels simultaneously. Moreover, this algorithm
can guarantee that the obtained local minimum is within a known factor of the global one.

14.2.5 Large-Scale Image Classification

Before the recent 2000s, most research efforts on image classification and clustering were fo-
cused on medium-scale databases, where the image features could fit into a desktop’s memory
(typically 4GB–32GB). Two main reasons for such a limitation on large-scale computer vision task
are first, during earlier days, large-scale image classification databases were not available primarily
due to the expensive cost associated with class labeling, and second, effective and efficient learning
algorithms are critical for large-scale classification problems. In the year 2009, a new ontological
dataset ImageNet was introduced by Deng et al. [12], which can be used for many applications
based on image clustering, including object recognition, image classification, and automatic object
clustering.

After this database was made publicly available, a significant amount of research work has been
conducted in these areas which has led to efficient and robust learning algorithms. Unlike the tradi-
tional multiclass classification problem, a few hundreds of categories were involved in large-scale
tasks that require a high testing efficiency while producing good classification performance. In other
words, traditional strategies—including one-vs-all (O(k)), one-vs-one (O(k(k− 1)/2)), label rank-
ing [10] (O(k(k−1)/2)) and Decision Directed Acyclic Graph [24] (O(k(k−1)/2) in training, and
O(k) in testing—will not be suitable for large-scale problems. [3] and [13] proposed to explore struc-
tural relations between object classes to construct classification trees that could possibly achieve a
sub-linear testing cost for multiclass classification problems at web-scale. [3] considers a two-step
approach: learning a tree structure and classifier weights using a Label Embedding Tree. The basic
idea behind this work is to construct a tree structure where each node of the tree is associated with
a label set and an SVM-type classifier.

Using such a learned tree structure, the classification complexity could become sublinear. Split-
ting labels into respective label sets is similar to a clustering problem. However, unlike the standard
clustering techniques such as k-means (and its variants), label clustering is performed on the label
space. We will now briefly introduce the definitions and notations of the Label Tree and then explain
the details of the label clustering process.

A Label Tree is a tree T = (N,E,F,L) with n+ 1 indexed nodes N = {0, . . . ,n}, a set of edges
E = {(p1,c1),(p|E|,c|E|)} that are ordered pairs of parent and child node indices, label predictors
F = { f1, . . . , fn}, and label sets L = {l0, . . . , ln} associated with each node. Each node is associated
with a subset of class labels and a linear classifier that determines which branch to follow. The root
of such a tree contains all possible labels, which are indexed to 0. Except for the root node, all other
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nodes only belong to one parent node, with a fixed number of children. The label sets L indicate the
set of labels to which the given vertex of the tree belongs. [3] considers a disjoint classification path
to construct its tree, which implies only K unique leaf nodes will be observed, and two nodes i and
j at the same depth do not have any common labels (li∩ l j = /0).

To learn the structure of the tree, k one-vs-all classifiers are trained to obtain a “confusion ma-
trix” which will then be used as the affinity matrix for spectral clustering. k one-vs-rest classifiers
are denoted by { f1, . . . , fk} independently (no tree structure is used). And the confusion matrix can
be formulated as Ci j = |{(x,yi)∈ ν : argminr fr(x) = j}| on validation set ν. For each internal node l
of the tree, from root to leaf, partition its label set ll between its children’s label set Ll = {lc : c∈Nl},
where Nl = {c ∈ N : (l,c) ∈ E} and

⋃
c∈Nl

lc = ll , by maximizing

Rl(Ll) = ∑
c∈Nl

∑
yp,yq∈lc

Apq (14.5)

where A= 1
2 (C+CT ) is a symmetrized confusion matrix and subject to constraints preventing trivial

solutions (all labels belongs to one set). To optimize this function, which is a graph cut problem,
the standard spectral clustering is applied [21]. Furthermore, we define D to be the diagonal matrix
whose (i, i)th element is the sum of A’s ith row and construct

L = D−
1
2 AD

1
2 (14.6)

Then b largest eigenvectors of L are computed to form the matrix X = [x1,x2, . . . ,xb] by stacking the
eigenvectors column-wise. After that, the matrix Y is constructed from X by renormalizing each of
X’s rows to a unit length and trading each row of Y as a point in R b. Then, they are clustered into b
clusters using K-means. Finally, samples in the original space are assigned to cluster j if and only if
row i of the matrix Y was assigned to cluster j to obtain such a label spaced clustering at a specific
node. Using such a top-to-down label clustering scheme, an overall Label Tree structure is learned.
Moreover, once the tree structure is obtained, label embedded hierarchical SVM can be learned for
each node on the tree by minimizing the empirical tree loss defined as follows.

Remp(x,y|T,w) =
1
m

m

∑
i=1

I( fT (x) 
= yi) (14.7)

=
1
m

m

∑
i=1

max
p∈B(x)

I(yi /∈ lp) (14.8)

where

B(x) = {b1(x),b2(x), . . . ,bD(x)(x)} (14.9)

b j(x) = argmax{c:(b j−1(x),c)∈E} fc(x) (14.10)

Though such a label spaced clustering incorporated with hierarchical SVM learning can per-
form testing in sublinear time for multiclass classification with a large number of classes, the major
drawback of this approach is that the spectral clustering produces only disjoint subsets. It is difficult
to learn a classifier for disjoint subsets when a class cannot be clustered into a label set reliably. The
clustering technique proposed in [3] requires k one-vs-all classifiers as a prior for the spectral clus-
tering, which is expensive when the number of classes is large. Recently, Deng et al. [13] presented
a novel approach that can simultaneously determine the structure of the tree (label cluster of each
label set) and learn the classifiers for each node in the tree, which not only avoids initial k one-vs-all
training problem, but also gains control over the efficiency vs. accuracy trade-off in designing such
a classification tree.

In [13], a local greedy method is formulated, for any given node r, c(r) = {1, . . . ,K}, and Q
represents a prespecified number of children. At each node, a partition matrix P ∈ {0,1}Q×K and
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classifier weights w ∈ R D×Q need to be determined. Pqk = 1 if class label k appears in child q and
Pqk = 0 otherwise. To measure the accuracy, the loss function is defined as follows:

L(w,x,y,P) = 1−P(q̂,y) (14.11)

which implies that label clustering should keep a higher classification accuracy. In the meantime,
the partition for each label set within the cluster will also contribute to the overall efficiency measure
which is formulated as follows:

A(w,x,P) =
1
K

K

∑
k=1

P(q̂,k) (14.12)

Therefore, the joint balance of efficiency and accuracy trade-off for clustering label sets and en-
hancing the classification performance leads to the following optimization problem:

min
w,P

1
m

m

∑
i=1

A(w,xi,P) (14.13)

s.t.
1
m

m

∑
i=1

L(w,xi,yi,P)≤ ε (14.14)

ε≥ 0 (14.15)

P ∈ {0,1}Q×K (14.16)

However, directly optimizing the above optimization problem is intractable. With proper relaxation,
alternatively optimizing over w and P can be formulated as a convex programmming problem:

L̂(w,x,y,P) = max{0,1+ max
q∈Ai,r∈Bi

wT
r xi−wT

q xi} (14.17)

Here, Ai is the set of children that contains class yi, and Bi is the rest of the children. Therefore,
optimizing w with a fixed P can be done as follows:

min
w

λ
Q

∑
q=1

||wq||22 +
1
m

m

∑
i=1

L̂(w,x,y,P) (14.18)

Furthermore, if we fix w and optimize over P, the terms can be rearranged as follows:

min
P

A(P) =∑
q,k

Pqk
1

mK

m

∑
i=1

I(q̂i = q) (14.19)

s.t. 1−∑
q,k

Pqk
1

mK

m

∑
i=1

I(q̂i = q∧ yi = k)≤ ε (14.20)

ε≥ 0 (14.21)

Pqk ∈ {0,1} ∀q,k (14.22)

In such a way, clustering for each label set and the associated classifier are iteratively learned, thus
yielding a local optimal solution.

14.3 Clustering with Video and Audio Data

In the previous section, we showed several examples of clustering algorithms with image data.
It is known that videos consist of image sequences. However, clustering algorithms with video data
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are far more sophisticated than simply applying image clustering algorithm to the image sequences.
Videos have their own structure, from the key images to the snapshots with natural transitions be-
tween each other. Within these shots are the scenes with more definitive story lines, such as stories
and events, which contain the relatively complete information the video makers would like to tell us.
Therefore, in this section, we first present how the clustering algorithms can be applied to structure
the videos and summarize their content in order to enable users to effectively browse the large video
corpus. We also show two automatic detectors which automatically extract video events and stories
with the help of cross-media clustering algorithms with the associated visual and textual contents.
These approaches demonstrate the challenges of developing clustering algorithms with heteroge-
neous content in videos. In addition to the video content, we often encounter the users demand to
automatically structure the audio contents. Therefore, in this section, we also present a clustering
algorithm with music data which shows how the audio content can be summarized effectively.

14.3.1 Video Summarization

It is an intensive task to find the informative or desired video sequences from a large volume
of video corpus. To efficiently organize the unstructured video content in more compact form, sev-
eral video summarization methods [14, 22] have been developed to aid users to browse through
voluminous videos efficiently and capture the video content of their interest.

One of the most straightforward ways for video summarization is to use a set of keyframes to
summarize the video content, each of which can be extracted from a video shot or subshot. Several
optimization criteria are proposed to construct the set of keyframes which maximize the video con-
tent information that is covered by the selected frames. Most of the video summarization methods
rely on user interactions to generate the keyframes, or some heuristic criteria such as minimizing
the keyframe similarity or maximizing the time intervals between keyframes. However, these simple
methods usually suffer from poor summarization results due to the suboptimal or heuristic criteria
that are adopted.

As opposed to these naive approaches, [14] provides a more sophisticated way to summarize the
video sequences in a more principled manner. They perform Singular Value Decomposition (SVD)
on the visual feature representations of video frames, where each frame is represented by a feature
vector in a lower dimensional space. SVD maps these input feature vectors onto a refined space with
reduced dimensions, where the video content value is quantified by the visual changes in a frame
cluster S :

CON(S) = ∑
ψi∈S
‖ψi‖2 (14.23)

where ψi is the mapped point in the refined space. It is observed that, in the refined space, there is
a strong correlation between the degree of visual changes in a frame cluster and the distance of the
constituent frames in the cluster to the origin. In other words, it was shown that the frames in a video
segment with more visual changes are usually projected into the points farther from the origin in
the refined space by SVD. Based on this observation, a video summarization system was developed
by extracting the continuous video clusters containing the frames whose mapped points are farther
from the origin.

In another approach, [22] advances the video summarization by an analysis of global video
structures and video highlights. Specifically, a video is represented as a weighted undirected graph
with a set of shots, where the vertices are the feature points of the shot and edges connecting each
pair of vertices measure the similarity between the shots. A normalized cut algorithm is used to re-
cursively bipartition into clusters of shots. A temporal graph is then constructed using the obtained
temporally adjacent clusters as nodes and the transition probabilities among the clusters as edges. A
directed edge is added to the temporal graph if a shot in one cluster node has a temporally succes-
sive shot in another cluster node. The temporal graph is a state transition diagram that models the
evolution of a video between the states, where a state is equivalent to a cluster. Dijkstra’s algorithm
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is applied to the temporal graph to find the shortest path from the cluster containing the first shot in
the video to the cluster containing the last shot. Then, the two adjacent clusters in the obtained path
are disconnected if there is no path between them. The videos are then partitioned into two different
scenes and the clusters along the obtained shortest path can be used to summarize the video. The
algorithm shows effective and efficient for video skimming and summarization [22].

14.3.2 Video Event Detection

Video clustering algorithms have also been applied in the analysis and detection of abnormal or
suspicious events in many surveillance applications. This allows for automatically providing early
warning alerts to the human operators about any potentialy harmful human actions or social events.
The basic assumption here is that the normal events are usually similar to each other. These events
typically form some dominant clusters with the common patterns. On the contrary, the abnormal
events are usually distinctive compared to the normal events, and thus, they will not be part of
a cluster. This suggests that by clustering the video segments, the events clustered into dominant
clusters are more likely to be the normal ones, while the other events far away from the dominant
clustered patterns are probably the abnormal ones.

[17] proposes an abnormal event detection system of such a paradigm. This system contains
two components in its abnormal event detection pipeline. In the first step, all video segments in the
training set are clustered by the Dynamic Hierarchical Clustering (DHC) algorithm. To cluster these
video sequences, a set of Hidden Markov Models (HMMs) is constructed to represent the video
sequences, and the video sequences with similar HMMs are hierarchically merged. To compare the
similarity between HMMs in DHC, the authors proposed to use the difference of BIC (Bayesian
Information Criterion) between the models before and after the merge of video sequences:

d(i, j, · · · ) = BIC(i j, · · · )−BIC(i, j, · · · ) (14.24)

where BIC(i j, · · · ) is the BIC value after two video sequences i and j are merged to fit into HMM,
and BIC(i, j, · · · ) is the BIC value before these two video sequences are merged.

A large negative value of BIC difference d(i, j, · · · ) means the HMMs are more similar to each
other. This similarity can be used to compare the similarity between any number of models, rather
than only pairwise similarity. To reduce the overfitting problem of model fitting with few samples,
the clustering results are updated at each merging step, and a new HMM is trained after all the video
sequences are merged and reclassified to their corresponding clusters. This will alleviate the overfit-
ting problem and will correctly assign the possibly wrongly clustered videos. In addition, a 2-depth
search strategy is also proposed within DHC where 3 clusters can be merged to form a new cluster
rather than only merging a pair of clusters each time as done in a typical 1-depth search strategy.
This will accelerate the hierarchical clustering process with fewer levels of clustering trees. To avoid
the unaffordable search effort due to the increased search space in a 2-depth strategy, the authors
[17] also developed a set of exclusion rules to stop the merging of cluster triplets. These exclusion
rules can be efficiently tested as they involve computing only of pair-wise model similarity.

With the obtained clustering results and corresponding models for each cluster, a mixture model
of the cluster HMMs is developed to explain each video sequence in the corpus as follows:

P(i) =
C

∑
c=1

πcLi
c (14.25)

where P(i) is the probability that a video sequence i is generated by this mixture model, πc is the
mixing coefficient, and Li

c is the likelihood of the ith video sequence being generated by the HMM
for the cth cluster.

It is also asserted that the mixing coefficient πc for each component in the above mixture model
can be used to represent the dominance of each cluster. The videos generated from the dominant
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clusters are considered to be normal ones, while a video in a cluster with mixing coefficient less
than a certain threshold is considered to be an abnormal one.

14.3.3 Video Story Clustering

Story-level clustering of videos has been an indispensable ingredient to discover the evolving
stories based on different event themes. [14] develops a video clustering algorithm to merge the
stories with the same theme based on the occurrences of concepts in the stories which are extracted
from both video frames and the keywords from speech transcripts. All the video stories are repre-
sented by a bipartite graph, where each story is linked to the keyframe clusters and textual keywords
associated with them. The association between a story and the associated keyframe clusters and key-
words is computed based on two factors: (i) their occurrence frequency and (ii) the story frequency.
A co-clustering algorithm based on the spectral clustering [33] was then applied to simultaneously
group the stories into clusters with the same event theme as well as the keyframe and keyword
clusters which describe the same story theme.

Let us denote the keyword-story matrix by A1 and keyframe cluster–story matrix by A2. These
two matrices are then concatenated to obtain the affinity matrix A = [AT

1 AT
2 ]

T for the bipartite graph.

The normalized affinity matrix is then constructed: An = D−1/2
1 AD−1/2

2 , where D1 and D2 are two
diagonal matrices whose elements are the summation of each row vector of A1 and A2, respectively.
To obtain k clusters from the bipartite graph, l = �log2 k� singular vectors of An are computed
corresponding to the second smallest singular value until the l + 1th singular value. The k-means
algorithm is then run on the obtained l-dimensional space using these singular values to yield the
desired k-way partition of the bipartite graph.

The authors of [37] proposed a video clustering algorithm across multiple sources. It was noticed
that one news event with the same topic is usually reported by multiple news channels, and it is
interesting to cluster these news videos with the same theme together. To achieve this goal, a K-
partite graph which constitutes a number of node sets is constructed. Each of the node sets contains
the video segments within one news source, and a pair of nodes in different sets is connected by an
edge whose weight is the similarity between the video segments associated with these two nodes.
Also, the nodes in the same set cannot be connected to each other. Similar to the clustering algorithm
in [14], a spectral clustering algorithm is developed to cluster the videos from different sources into
the stories with the same topics. As the K-partite graph is constructed across the multiple sources,
the obtained stories will cover the videos from different sources instead of the single news channel.

14.3.4 Music Summarization

In [9], the authors investigate segmentation and clustering for the task of music summarization.
Both are achieved based on similarity matrix of windows and segments, respectively. In this ap-
proach, a similarity matrix for predefined windows based on spectrogram distance is constructed.
Then, kernel matching on this matrix to find specific patterns associated with segment boundary is
applied. Let us denote the spectral data computed for N windows of a digital audio file by vectors
{vi : i = 1, · · · ,N}. The similarity matrix S is computed as follows:

S(i, j) = dcos(vi,v j) =
vT

i v j

|vi||v j| (14.26)

When analyzing the structure of S, it can be noticed that the boundary between two coherent
audio segments produces a checkerboard pattern, because the two segments will exhibit high within-
segment (self-) similarity thus producing adjacent square regions of high similarity along the main
diagonal of S. The two segments will also produce rectangular regions of low between-segment
(cross-) similarity off the main diagonal. The boundary is the crux of this checkerboard pattern. After
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segments are found, a similarity matrix for the segments is computed according to the Kullback-
Leibler (KL) divergence, followed by clustering via SVD. Let us assume that, in segments pi and
p j, the spectral feature has normal densities G(μi,Σi) and G(μj,Σ j), respectively. The similarity
between the two segments is calculated as follows:

dseg(pi, p j) = exp(−dKL(G(μi,Σi)‖G(μj,Σ j))− dKL(G(μj,Σ j)‖G(μi,Σi))) (14.27)

And the segment-indexed similarity matrix SS is

SS(i, j) = dseg(pi, p j) ∀ i, j = 1, · · · ,P (14.28)

The SVD of SS = UΛV T is computed to decompose SS:

SS(i, j) =
K

∑
k=1

λkU(i,k)V( j,k) =
K

∑
k=1

Bk(i, j) (14.29)

Then,

bk( j) =
P

∑
i=1

Bk(i, j) (14.30)

is evaluated and measures the similarity of segment p j to the segments in the kth segment cluster.
Accordingly, segment pi is assigned to cluster

k∗ = arg max
k=1,··· ,K

bk(i) (14.31)

The authors go further to designate segments with large singular values as summarization, because
they are usually repeated and, therefore, serve as summaries of popular music.

[20] identifies key phrases in pop or rock songs according to the clustering result. First, for
each overlapping frame, a Mel-cepstral feature is calculated. Each initial segment consists of a
fixed number of frames, within which the Mel-cepstral features are assumed to follow a Gaussian
distribution. A bottom-up clustering is then applied; i.e., the clustering algorithm iteratively finds
the two clusters with lowest distortion between them (if it is less than a threshold, then they are
combined). The authors use a modified KL distance and call it KL2. They use

KL2(A;B) = KL(A;B)+KL(B;A) (14.32)

where A and B are Gaussian distributions:

KL(A;B) = EA{log(pd f (A))− log(pd f (B))} (14.33)

Assuming A and B are Gaussian distributions:

KL2(A;B) =
ΣA

ΣB
+

ΣB

ΣA
+(μA−μB)

2× (
1
ΣA

+
1

ΣB
) (14.34)

After applying hierarchical clustering or HMM-based clustering, the most frequent cluster (la-
bel) is considered and the longest section containing this label in the first half of the song is chosen
as the key phrase.

14.4 Clustering with Multimodal Data

Multimodal data refers to data with multiple modalities. More specifically, data with different
modalities are linked within the structure of multimodal data, and the goal is to cluster the portion
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of the data with specified modality(ies). For example, images and the surrounding text on the web
pages are linked together, and the goal is to cluster images, text, or both. The first naive method
would be to cluster based only on the data from the target modality and ignore the rest, and the
second would be to concatenate all modalities to form the feature vector for each entity. The for-
mer apparently does not make use of all the data available, while the latter does not consider the
particular linkage structure of multimodal data. As we shall see, there are better ways to model
the multimodal data that lead to better clusterings. We will specifically focus on the multimodal
scenario of combining images with text since it was heavily investigated in the literature.

In [1], Barnard et al. propose a generative model to model the joint distribution of image segment
and words given a hierarchy of image clustering. Each image cluster corresponds to a leaf node in
the hierarchy, and the probability of generating a segment or word is summed up along the path
from root to the leaf, implying the high level nodes are associated with abstract concepts and the
lower nodes are associated with more concrete concepts. Mathematically, let D denote image and
word observation associated with a document d, c denote the cluster index, i denote the words or
image segment, and l denote the level. Then, the generative model described above can be written
as follows:

P(D|d) =∑
c

P(c)∏
i∈D

(

∑
l

P(i|l,c)P(l|c,d)
)

(14.35)

The probability of generating an observation D given cluster c is summed up across all clusters,
where on each path from the root to a cluster c, the probability of observing D is the product of
the probabilities of observing all segments of D (which is the summation along the path because
each concept along the path may generate the segment). The authors also propose a simpler variant
which is document-independent:

P(D) =∑
c

P(c)∏
i∈D

(

∑
l

P(i|l,c)P(l|c)
)

(14.36)

It was shown through experiments that this model improves the quality of image clusters ob-
tained and the annotation performance. The resulting art photo clusters also show that visual and
textual features are complementary to each other and when effectively used can improve the clus-
tering of these complex and abstract images.

Cai et al. [6] use spectral clustering based on visual, textual, and link information to cluster web
image search results. Link structure among webpage, block, and image are exploited and combined
with text similarity for spectral clustering. An image graph WI can be constructed from a block
graph WB as follows:

WI(i, j) = ∑
i∈α, j∈β

WB(α,β) (14.37)

where i, j represent index images, α,β represent index blocks, and i ∈ α indicates image i is con-
tained in block α. Equation (14.37) sums up similarities between blocks that contain a particular pair
of images and obtain the similarity between the images. As for block similarity WB(α,β), they are
derived from page-to-block and block-to-page relations. Page-to-block function X(p,α) dictates
the importance of a block α in a webpage p. It is proportional to the size of the block divided by the
distance between the center of the block and the page. Block-to-page function Z(α, p) is nonzeros if
and only if block α links to page p. Thus, to evaluate WB(α,β) conditional probability interpretation
is used as follows:

WB(α,β) = Prob(β|α)
= ∑

p∈P
Prob(p|α)Prob(β|p)

= ∑
p∈P

Z(α, p)X(p,β)
(14.38)
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Spectral clustering is used to cluster on textual feature. To combine the two, the authors use

Scombine(i, j) =

{
Stextual(i, j) ≤ 1 if Slink(i, j) = 0

1 if Slink(i, j) > 0
(14.39)

Then, the images within clusters are further arranged by their visual features. The resulting organi-
zation is much more user-friendly for browsing, and the clusters obtained are more reasonable than
those produced using only the visual content of the images.

Bekkerman and Jeon [2] proposes applying combinatorial Markov random field (Comraf) to
multimodal clustering. A combinatorial Markov random field is an MRF in which at least one
node is a combinatorial random variable, which can be partitionings, partial orderings, etc., of a
given finite set. Thus, the result of inference on a Comraf can be directly converted to a clustering.
Given a Comraf model over m combinatorial random variables Xc = {Xc

0 , . . . ,X
c
m−1}, where Xc

0
corresponds to the target modality, the task is to find the most probable instantiation of Xc : xc

MPE =
argmaxxc P(xc). Because Xc

0 is the only target modality, for all i > 0, Xc
i is considered known and

will correspond to a clustering of all singleton clusters. Moreover, the structure of the Comraf is an
asterisk with target modality in the center. The authors chose weighted mutual information to be the
pairwise potential function between two modalities, i.e.,

(xc
0)MPE = argmax

xc
0

m−1

∑
j=1

f j(x
c
0,x

c
j) = argmax

xc
0

m−1

∑
j=1

wjI(X̂0;Xj) (14.40)

where I(X̂0;Xj) evaluates the mutual information between two clusterings and wj is the weight. In
practice, the observed modalities are words, rectangular blobs, color, and texture. Through experi-
ments, this framework is shown to obtain 2.5–3 times higher accuracy compared with a unimodal
k-means algorithm.

14.5 Summary and Future Directions

This chapter concisely reviews, using some concrete examples, different categories of classical
multimedia applications which directly or indirectly involve clustering techniques. For each exam-
ple, we discussed the application-specific technical challenges for developing effective and efficient
clustering algorithms, for example, multimodality and high-dimensionality. One of the prominent
emerging multimedia applications involves the interaction between multimedia data with the fast
developed social networks. For example, the users or groups who own or favor the multimedia doc-
uments have attracted many research efforts. On one hand, this additional dimensionality of social
relations might provide useful information and insights from user affinities and behavior. On the
other hand, these relationships are often dynamic and incomplete, thus making the problem more
complicated and challenging.
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15.1 Introduction

Time-series data is one of the most common forms of data encountered in a wide variety of
scenarios such as the stock markets, sensor data, fault monitoring, machine state monitoring, envi-
ronmental applications, or medical data. The problem of clustering finds numerous applications in
the time-series domain, such as the determination of groups of entities with similar trends. Time-
series clustering has numerous applications in diverse problem domains:

• Financial Markets: In financial markets, the values of the stocks represent time series which
continually vary with time. The clustering of such time series can provide numerous insights
into the trends in the underlying data.

• Medical Data: Different kinds of medical data such as EEG readings are in the form of time
series. The clustering of such time-series can provide an understanding of the common shapes
in the data. These common shapes can be related to different kinds of diseases.

• Earth Science Applications: Numerous applications in earth science, such as temperature or
pressure, correspond to series, which can be mined in order to determine the frequent trends
in the data. These can provide an idea of the common climactic trends in the data.

• Machine State Monitoring: Numerous forms of machines create sensor data, which provides
a continuous idea of the states of these objects. These can be used in order to provide an idea
of the underlying trends.

• Spatio-temporal Data: Trajectory data can be considered a form of multivariate time-series
data, in which the X-coordinates and Y -coordinates of objects correspond to continuously
varying series. The trends in these series can be used in order to determine the important
trajectory clusters in the data.

Time-series data falls within the class of contextual data representations. Many kinds of data
such as time-series data, discrete sequences, and spatial data fall in this class. Contextual data con-
tains two kinds of attributes:

• Contextual Attribute: For the case of time-series data, this corresponds to the time dimension.
These attributes provide the reference points at which the behavioral values are measured. The
time-stamps could correspond to actual time values at which the data points are measured, or
they could correspond to indices at which these values are measured.

• Behavioral Attribute: This could correspond to any kind of behavior which is measured at
the reference point. Some examples include stock ticker values, sensor measurements such as
temperature, and other medical time series.

The determination of clusters of time series is extremely challenging because of the difficulty
in defining similarity across different time series which may be scaled and translated differently
on both the temporal and behavioral dimensions. Therefore, the concept of similarity is a very
important one for time-series data clustering, and this chapter will devote a section to the problem
of time-series similarity measures. Note that once a similarity measure has been defined for time-
series data, it can be treated as an abstract object on which a variety of similarity-based methods
such as spectral methods or partitioning methods can be used.

Time-series data allow diverse formulations for the clustering process, depending upon whether
the series are clustered on the basis of their online correlations, or whether they are clustered on the
basis of their shapes. The former is usually performed with an online approach based on a small
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past window of history, whereas the latter is typically performed with an off-line approach on the
entire series. Therefore, this chapter will also carefully study the diverse formulations which arise
in the context of time-series data clustering, map them to different application-specific scenarios,
and also discuss the techniques for the different formulations.

Clustering of time-series data, like clustering for all types of data, has the goal of producing clus-
ters with high intracluster similarity and low intercluster similarity. Specifically, objects belonging
to the same cluster must exhibit high similarity to each other, while objects belonging to different
clusters must exhibit low similarity, thus high distance from each other. However, some specific
properties that are part of the nature of the time-series data—such as the high dimensionality, the
presence of noise, and the high feature correlation [53, 25]— pose unique challenges for designing
effective and efficient clustering algorithms. In time-series clustering it is crucial to decide what
kind of similarity is important for the clustering application. Accordingly, an appropriate clustering
algorithm and an appropriate distance measure should be chosen. For example, Euclidean distance
reflects similarity in time, while dynamic time warping (DTW) reflects similarity in shape. Other ap-
proaches, like model-based clustering methods such as Hidden Markov Models (HMM) or ARMA
processes [56] are followed when similarity in change matters.

A significant difference between time-series data clustering and clustering of objects in Eu-
clidean space is that the time series to be clustered may not be of equal length. When this is not the
case, so all time series are of equal length, standard clustering techniques can be applied by rep-
resenting each time series as a vector and using a traditional Lp-norm distance [18]. With such an
approach, only similarity in time can be exploited, while similarity in shape and similarity in change
are disregarded. In this study we split the clustering process into two basic steps. The first one is the
choice of the similarity measure that will be employed, while the second one concerns the grouping
algorithm that will be followed. In the section discussing the first step, we classify the proposed
approaches into two categories: one for one-dimensional time series and one for multidimensional
time series. In the section discussing the clustering algorithms, we present them following the tradi-
tional classification scheme that defines three main classes of clustering algorithms: (a) k-means and
its variants, (b) hierarchical approaches, and (c) density-based clustering. In addition to these three
main classes, in Subsection 15.5.4 we discuss methods for trajectory clustering, as we consider this
field to be of individual interest.

15.2 The Diverse Formulations for Time-Series Clustering

Time-series clustering lends itself to diverse formulations, which are highly application-specific
in nature. For example, do we wish to determine sets of time series with similar online trends, or do
we wish to determine time series with similar shapes? The objective function criteria in these cases
are clearly very different. Furthermore, the application-specific goals in these cases are also quite
different, and the corresponding similarity functions used in the analytical process are therefore also
quite different.

Broadly speaking, two main formulations exist for time series data clustering:

• Correlation-based Online Clustering: In this case, a bunch of time series are clustered in real
time on the basis of the correlations among the different time series. Such applications are
common in scenarios such as financial markets, where it is desirable to determine groups of
stocks which move together over time. Such methods can also be used in order to find time
series which have similar trends, or at least correlated trends, over time. In these cases, a
short window of history is used for the clustering process, and the similarity functions across
the different series are based on interattribute correlations. These methods are also intimately
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related to the problems of time-series forecasting and regression. In fact, a few such cluster-
ing methods such as Selective Muscles [58] use clustering methods for stream selection and
efficient forecasting. Other methods in the literature use such techniques for sensor selec-
tion [1, 2]. An important aspect of such methods is that they often need to be performed in
real time, as the streams are evolving over time. In many cases, it is also desirable to detect
the significant changes in the clustering behavior. This provides insights into how the stream
correlation trends have changed significantly.

• Shape-based Off-line Clustering: In these cases, time series of similar shapes are determined
from the data. The main challenge here is to define an appropriate shape-based similarity
function. This can be extremely challenging because it requires the definition of similarity
functions which can capture the similarities in the shapes of the time series. Depending upon
the domain, the time series may be translated, scaled, and time warped. Therefore, numer-
ous similarity functions such as the Euclidean function or dynamic time warping are used for
time-series clustering. Clearly, the appropriateness of a similarity function depends upon the
underlying data domain. Furthermore, some of the similarity functions are computationally
quite expensive, since they require the use of dynamic programming methods for computa-
tion. Depending upon the application, the exact values on the timestamps may sometimes
not be important, as long as the shapes of the time series are similar. For example, consider
the case, where the EEG readings of different patients are used to create a database of mul-
tiple time series. In such cases, the exact value of the timestamp at which the EEG reading
was measured is not quite as important. This is very different from online correlation-based
clustering, where all the series are evaluated over approximately the same timestamps. Some
versions of shape-based clustering are also used for online-clustering, such as the methods
which perform subsequence clustering.

Clearly, the precise choice of model and similarity function depends upon the specific problem
domain. Therefore, this chapter will examine the different formulations in the context of different
application domains.

The problem becomes more complex as one moves to the multivariate scenario. The simplest
multivariate scenario is that of trajectory clustering, which can be considered a form of bivariate or
trivariate time-series data, depending upon whether 2- or 3-dimensional trajectories are considered.
The aforementioned cases also apply to the case of trajectories, where it may be desirable to ei-
ther determine objects which move together (online correlation methods) or determine trajectories
which have similar shape (off-line shape methods). In the latter case, the exact time at which the
trajectories were created may be of less importance. This chapter will carefully address the case of
multivariate time-series clustering and will use spatiotemporal data as specific application domain
of interest. While spatiotemporal data is used as a specific case in this chapter, because it provides
the only known set of multivariate clustering methods, the techniques for spatiotemporal data clus-
tering can be generalized to any bivariate and possibly nonspatial time-series data, by “pretending”
that the two series correspond to a trajectory in 2-dimensional space. Furthermore, the core tech-
niques for trajectory-based methods can also be generalized to higher dimensional multivariate time
series, by treating them as n-dimensional trajectories. Therefore, the existing research on trajectory
clustering provides some of the most powerful results on how multivariate time-series clustering
can be properly addressed.

15.3 Online Correlation-Based Clustering

Online correlation-based clustering methods are closely related to the problem of forecasting.
Such methods are typically based on clustering the streams on the basis of their correlations with
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one another in their past window of history. Thus, the similarity function between the different series
uses an intrastream regression function in order to capture the correlations across different streams.

These methods are typically based on windows of the immediate history. Specifically, a window
of length p is used for regression analysis, and the different series are clustered on the basis of these
trends. Some of the most common methods for segmenting such streams define regression-based
similarity functions on the previous window of history. Note that two streams in the same cluster
need not be positively correlated. In fact, two streams with perfect negative correlation may also be
assumed to belong to the same cluster, as long as the predictability between the different streams
is high. This is quite often the case in many real scenarios in which some streams can be predicted
almost perfectly from others.

15.3.1 Selective Muscles and Related Methods

The Selective Muscles method [58] is designed to determine the k best representatives from the
current time series which can be used in order to predict the other series. This approach can be
considered a version of the k-medoid clustering for online predictability-based clustering of time
series. One important aspect of the original Selective Muscles approach is that it was designed for
finding the k best representatives which predict one particular stream in the data. On the other hand,
in unsupervised correlation clustering, it is desirable to determine the best set of representatives
which can predict all the streams in the data. However, the two problems are almost exactly the
same in principle, since the same approach in Selective Muscles can be used with an aggregated
function over the different time series. The problem can be posed as follows:

Problem 15.3.1 Given a dependent variable Xi and d− 1 independent variables {Xj : j 
= i}, de-
termine the top b < d streams to pick so as to minimize the expected estimation error.

Note that the estimation is performed with a standard model such as the Autoregressive (AR) or the
Autoregressive Integrated Moving Average (ARIMA) models. A more general version of the problem
does not treat any particular variable as special and may be defined as follows:

Problem 15.3.2 Given d variables X1 . . .Xd, determine the top b < d streams to pick so as to mini-
mize the average estimation error over all d streams.

Note that while the second problem is slightly different from the first, and more relevant to online
clustering, it is no different in principle.

The approach in [58] uses a greedy method in order to select the k representatives for optimizing
the predictability of the other streams. The approach for selecting the representatives is as follows.
In each iteration, a stream is included in the representative set, which optimizes the estimation error.
Subsequently, the next stream which is picked is based on maximizing the aggregate impact on
the estimation error, considering the streams which have already been picked. In each iteration, the
stream is added to the set of representatives, for which the incremental impact on the estimation
error is as large as possible.

However, the technique in [58] is optimized in order to pick the k streams which optimize a
specific dependent variable. A method in [2] uses the greedy approach in order to pick the streams
with the use of the formulation discussed in Problem 15.3.2. A graph-based representation is used to
model the dependencies among the streams with the use of a linkage structure. A greedy algorithm
is used in order to pick the optimal set of representatives. It has been shown in [2] that the approach
has an approximation bound of (e− 1)/e over the optimal choice of representatives.

A method in [1] performs the clustering directly on the streams by defining a regression-based
similarity function. In other words, two streams are deemed to be similar, if it is possible to predict
one stream from the other. Otherwise the immediate window of history is used in order to cluster the
streams. The work in [1] is a general method, which also associates a cost of selecting a particular
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Algorithm CorrelationCluster(Time Series Streams: [1 . . .n]
NumberOfStreams: k;

begin
J = Randomly sampled set of k time series streams;

At the next time stamp do
repeat
Add a stream to J, which leads to

maximum decrease in regression error;

Drop the stream from J which leads to

least increase of regression error;

until(J did not change in last iteration)

end

FIGURE 15.1: Dynamically maintaining cluster representatives.

representative. In general, for the clustering problem, it is not necessary to model costs. A simplified
version of the algorithm, in which all costs are set to the same value is provided in Figure 15.1. The
similarity between two streams i and j is equal to the regression error in predicting stream j from
stream i with the use of any linear model. A particular form of this model has been discussed in
[1]. Note that the similarity function between streams i and j is not symmetric, since the error of
predicting stream i from stream j is different from the error of predicting stream j from stream i.

These methods for online correlation based stream clustering are very useful in many applica-
tions, since it is possible to select small subsets of streams, from which all the other streams can
be effectively predicted. A number of other methods, which are not necessarily directly related to
muscles select representatives from the original data streams. Such methods are typically used for
sensor selection.

15.3.2 Sensor Selection Algorithms for Correlation Clustering

Sensor selection algorithms are naturally related to correlation clustering. This is because such
methods typically pick a representative set of streams which can be used in order to predict the other
streams in the data. The representative streams are used as a proxy for collecting streams from all the
different streams. Such an approach is used in order to save energy. This naturally creates clusters
in which each stream belongs to the cluster containing a particular representative. A number of
techniques have been designed in recent years in order to determine correlations between multiple
streams in real time [43, 48, 58, 61]. The techniques in [43, 48] use statistical measures in order to
find lag-correlations and forecast the behavior of the underlying data stream. The works in [2, 16]
propose methods for sensor selection with the use of domain-specific linkage knowledge and utility-
feedback, respectively. Methods for observation selection are proposed in [27], when the importance
of a sensor-set can be premodeled as a submodular function. Methods for using adaptive models for
time-series prediction were proposed in [57]. The method in [58] uses linear regression in order to
determine the correlations in the underlying data and use them for forecasting. The technique in
[61] proposes general monitoring techniques to determine statistical correlations in the data in real
time.

Correlation clustering algorithms in time series can also be used in order to monitor key changes
in the correlation trends in the underlying stream. This is because when the correlations between
the different streams change over time, this leads to changing membership of streams in different
clusters in the data. Such changes are relevant to determining key temporal anomalies in the data
and are discussed in [4].
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15.4 Similarity and Distance Measures

For more conventional shape-based clustering algorithms, the use of similarity and distance
measures is crucial. In [34] Liao classifies time-series distance measures into three classes:

(a) feature-based

(b) model-based

(c) shape-based

While this classification makes sense and analyzes in-depth the proposed time-series distance mea-
sures and their differences, it lacks information about whether each distance measure is appropriate
for comparing multivariate time series as well. Over the last few years, multivariate time-series clus-
tering has attracted the interest of the time-series research community as it has a variety of interest-
ing applications. In this sense, our study of similarity/distance measures that are used in time-series
clustering is supplementary to that of Liao [34] and provides another interesting insight. One of the
most important decisions when performing time-series clustering is the similarity/distance measure
that will be chosen in order to compare the time series. Given a time-series similarity measure,
time-series clustering can be performed with one of the several proposed techniques that will be
reviewed in the next section. Time -series similarity has been a long and deeply studied problem for
the past two decades. In the literature one can find many proposed distance measures, with each of
them being appropriate for different applications and having specific advantages and disadvantages.
Many classification schemes have been proposed regarding time-series similarity measures. A pop-
ular classification criterion is the time-series representation scheme that is assumed by the various
measures, as the time series can be represented either by the raw data or by transformations of the
original data such as the frequency transformation representations (Discrete Fourier Transformation
(DFT) and Discrete Wavelet Transformation (DWT)) or other representation models (Landmark
and Important Points Representation, ARIMA Model and LPC Cepstral Coefficient Representation,
Symbolic Representation, Signature Representation [10]). In this section we employ the raw data
representation, where a time series T of length n is represented as an ordered sequence of values
T = [t1, t2, . . . , tn]. T is called raw representation of the time-series data. Another important feature
and classification criterion when classifying similarity/distance measures for time series is whether
a measure is appropriate for univariate or multivariate time series. In this section we review the most
commonly used similarity/distance measures when it comes to time-series clustering and distinguish
them to univariate and multivariate measures.

15.4.1 Univariate Distance Measures

In this subsection, we briefly present some similarity/distance measures that are widely used
by the majority of time-series clustering methods proposed in the literature and reviewed in this
chapter. The distance/similarity measures presented here handle one-dimensional time series and
most of them are extended by many multidimensional time series similarity/distance approaches
that will be described in the next subsection.

15.4.1.1 Lp Distance

The Lp-norm is a distance metric, since it satisfies all of the nonnegativity, identity, symmetry,
and triangle inequality conditions. An advantage of the Lp-norm is that it can be computed in linear
time to the length of the trajectories under comparison; thus, its time complexity is O(n), n being the
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length of the time series. In order to use the Lp-norm, the two time series under comparison must
be of the same length.

The Minkowski of order p or the Lp-norm distance, being the generalization of Euclidean dis-
tance, is defined as follows:

Lp− norm(T1,T2) = DM,p(T1,T2) = p

√
n

∑
i=1

(T1i−T2i)p (15.1)

The Euclidean distance between two one-dimensional time series T1 and T2 of length n is a special
case of the Lp-norm for p = 2 and is defined as

DE(T1,T2) = L2− norm(T1,T2) =

√
n

∑
i=1

(T1i−T2i)2 (15.2)

L1-norm (p = 1) is named the Manhattan distance or city block distance.

15.4.1.2 Dynamic Time Warping Distance

Dynamic Time Warping (DTW) is a well-known and widely used shape-based distance measure.
DTW computes the warping path W = w1,w2, ...,wK with max(m,n)≤ K ≤m+n−1 of minimum
distance for two time series of lengths m and n.

DTW stems from the speech processing community [45] and has been very popular in the liter-
ature of time-series distance measures [6]. Moreover, it has been extended by many approaches to
handle the multidimensional case of trajectory matching. With use of dynamic programming DTW
between two one-dimensional time series T1 and T2 of length m and n, respectively, can be computed
as follows:

(a) DDTW(T1,T2) = 0, if m = n = 0

(b) DDTW(T1,T2) = ∞, if m = n = 0

(c) DDTW(T1,T2) = dist(T11,T21)+minFactor, otherwise

where minFactor is computed as

minFactor = min

⎧
⎪⎨

⎪⎩

DDTW(Rest(T1),Rest(T2))

DDTW(Rest(T1),T2)

DDTW(T1,Rest(T2))

where dist(T1,1,T2,1) is typically the L2-norm. The Euclidean distance, as long as all Lp-norms,
described in 15.4.1.1, performs a one-to-one mapping between the data points of the time series
under comparison. Thus, it can be seen as a special case of the DTW distance, which performs a
one-to-many mapping. DTW is a more robust distance measure than Lp-norm because it allows time
shifting and thus matches similar shapes even if they have a time-phase difference. An important
point is that DTW does not satisfy the triangular inequality which could be a problem while indexing
time series. However, in the literature there are several lower bounds that serve as solutions for
indexing DTW offering faster performance [51]. Another advantage of DTW over Lp-norm is that
DTW can handle different sampling intervals in the time series. This is a very important feature
especially for long time series that span many years as the data sampling strategy may change over
a long time.
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15.4.1.3 EDIT Distance

EDIT distance (ED) comes from the field of string comparison and measures the number of
insert, delete, and replace operations that are needed to make two strings of possibly different lengths
identical to each other. More specifically, the EDIT distance between two strings S1 and S2 of length
m and n, respectively, is computed as follows:

(a) DED(S1,S2) = m, if n = 0

(b) DED(S1,S2) = n, if m = 0

(c) DED(S1,S2) = DED(Rest(S1),Rest(S2)), if S11 = S21

(d) DED(S1,S2) = min

⎧
⎪⎨

⎪⎩

DED(Rest(S1),Rest(S2))+ 1

DED(Rest(S1),S2)+ 1

DED(S1,Rest(S2))+ 1

, otherwise

Although ED for strings is proven to be a metric distance, the two ED-related time-series distance
measures DTW and Longest Common Subsequence (LCSS) that will be described in the next sub-
section are proven not to follow the triangle inequality. Lei Chen [11] proposed two extensions to
EDIT distance, namely Edit distance with Real Penalty (ERP) to support local time shifting and
Edit Distance on Real sequence (EDR) to handle both local time shifting and noise in time series
and trajectories. Both extensions have a high computational cost, so Chen proposes various lower
bounds, indexing and pruning techniques to retrieve similar time series more efficiently. Both ERP
and DTW can handle local time shifting and measure the distance between two out-of-phase time
series effectively. An advantage that ERP has over DTW is that the former is a metric distance
function, whereas the latter is not. DTW does not obey triangle inequality, and therefore, traditional
index methods cannot be used to improve efficiency in DTW-based applications. On the other hand,
ERP is proved to be a metric distance function [11], and therefore, traditional access methods can
be used. EDR, as a distance function, proves to be more robust than Euclidean distance; DTW and
ERP are more accurate than LCSS, which will be described in the next subsection. EDR is not a
metric, thus the author proposes three nonconstraining pruning techniques (mean value Q-grams,
near triangle inequality, and histograms) to improve retrieval efficiency.

15.4.1.4 Longest Common Subsequence

The Longest Common Subsequence (LCSS) distance is a variation of EDIT distance described
in 15.4.1.3 [52]. LCSS allows time series to stretch in the time axis and does not match all elements,
thus being less sensitive to outliers than Lp-norms and DTW. Specifically, the LCSS distance be-
tween two real-valued sequences S1 and S2 of length m and n, respectively, is computed as follows:

(a) DLCSS,δ,ε(S1,S2) = 0, if n = 0 or m = 0

(c) DLCSS,δ,ε(S1,S2) = 1+DLCSS,δ,ε(HEAD(S1),HEAD(S2))
if |S1,m− S2,m|< ε and |m− n| ≤ δ

(d) max

{
DLCSS,δ,ε(HEAD(S1),S2)

DLCSS,δ,ε(S1,HEAD(S2))
, otherwise

where HEAD(S1) is the subsequence [S1,1,S1,2, ...,S1,m−1], δ is an integer that controls the maximum
distance in the time axis between two matched elements, and ε is a real number 0 < ε < 1 that
controls the maximum distance that two elements are allowed to have to be considered matched, as
depicted in Figure 15.2.
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FIGURE 15.2 (See color insert): LCSS distance, thresholds δ and ε.

Apart from being used in time-series clustering, LCSS distance is often used in domains like
speech recognition and text pattern mining. Its main drawback is that often it is needed to scale or
transform one sequence to the other. A detailed study of LCSS variations and algorithms is presented
in [5].

15.4.2 Multivariate Distance Measures

A metric distance function, ERP, is proposed that can support local time shifting in time series
and trajectory data. A second distance function, EDR, is proposed to measure the similarity between
time series or trajectories with local time shifting and noise [10].

15.4.2.1 Multidimensional Lp Distance

The Lp-norm between two d-dimensional time series T1 and T2 of length n extends the Lp-norm
for the one-dimensional case and is defined as

Lp−norm(T1,T2) = DM,p(T1,T2) =
p

√
n

∑
i=1

(T1i−T2i)p = p

√√
√
√

n

∑
i=1

d

∑
j=1

(T1i j−T2i j)p (15.3)

As in the one-dimensional case, multidimensional Lp-norm has been proven to be very sensitive
to noise and to local time shifting [31]. A wide variety of methods described in this section, ei-
ther use the Euclidean distance or expand it, in order to define new distance measures. Lee et al.
use the multidimensional Euclidean distance, namely, the L2-norm, to compare multidimensional
time series [19]. They define the distance between two multivariate sequences of equal length as
the mean Euclidean distance among all corresponding points in the sequences. For the case where
the two compared sequences are not of same length, their approach slides the shorter one over the
longer one, and the overall distance is defined as the minimum of all mean distances, computed as
described above. Lin and Su [35] use the Euclidean distance in order to define the distance from a
point p to a trajectory T as follows: Dpoint(p,T ) = minq∈T ED(p,q) where ED(p,q) represents the
Euclidean distance between points p and q. Dpoint is used to define the one-way distance (OWD)
from one trajectory T1 to another trajectory T2 as the integral of the distance from points of T1 to tra-
jectory T2, divided by the length of T1. OWD is not symmetric, so the distance between trajectories
T1 and T2 is the average of their one-way distances: D(T1,T2) =

1
2 · (DOWD(T1,T2)+DOWD(T2,T1)).

Similarly, using an alternate grid representation for trajectories, Lin and Su define the distance be-
tween two grid cells as their Euclidean distance, and through it they define the distance between
two trajectories [35]. Moreover, they provide a semiquadratic algorithm with complexity O(mn) for
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grid trajectory distance computation, where n is the length of trajectories and m is the number of
local min points. The grid OWD computation algorithm turns out to be faster than the quadratic
complexity needed to compute the DTW between two trajectories. The experimental evaluation
proves that OWD outperforms DTW in accuracy and performance. However, OWD does not take
into account the time information in trajectories, so no discussion about trajectories with different
sampling rates can be made. Frentzos et al. [14] focus on the problem of identifying spatiotempo-
rally similar trajectories, by taking into account the time information in trajectories, except for their
spatial shapes. They introduce a dissimilarity metric, DISSIM, between two trajectories Q and R by
integrating their Euclidean distance over a definite time interval when both Q and R are valid. This
way, DISSIM takes into account the time dimension in both trajectories. Moreover, DISSIM can be
used for trajectories with different sampling rates, if the nonrecorded data points are approximated
by linear interpolation, assuming that the objects follow linear movements. The linear-interpolation
technique for missing values can be applied to LCSS and EDR measures too, as pointed out in [14].
Lee et al. solve the problem of searching for similar multidimensional sequences in a database by
computing the distance between two sequences through their MBRs [31]. The database sequences
as well as the query sequence are partitioned into optimal subsequences that are represented by
their MBR. The query processing is based on these MBRs, so scanning and comparing the entire
data sequences are avoided. The distance between two MBRs is defined as the minimum Euclidean
distance between the two corresponding hyper-rectangles. Based on this distance, the authors intro-
duce two lower-bounding distance metrics and propose a pruning algorithm to efficiently process
similarity queries.

15.4.2.2 Multidimensional DTW

DTW (Dynamic Time Warping) between two d-dimensional time series T1 and T2 of length m
and n, respectively, is defined as the one-dimensional case as described in 15.4.1.2.

Just like in the one-dimensional case, multidimensional DTW allows stretching in time axis,
matches all elements, and is extensively used in the speech recognition domain. DTW, in contrast
to Euclidean distance, does not require the two time series under comparison to be of the same
length and is not sensitive to local time shifting. However, DTW is not a metric, since it doesn’t
follow triangle inequality and its time complexity is O(mn), which means that it is computationally
expensive for long time series and is useful for only short ones, comprising a few thousand points.
Moreover, DTW, like Euclidean distance, has been proven to be sensitive to noise. [49] contains
a very detailed description of the computation and the semantics of DTW. Vlachos et al. apply
DTW on handwriting data [51]. Before comparing two trajectories, they are transformed into a
rotation invariant Angle/Arc-Length space in order to remove the translation, rotation, and scaling
components. In the new space, the technique of warped matching is used, in order to compensate for
shape variations. Salvador and Chan propose FastDTW, an approximation of DTW in linear time
and space [49]. Their approach creates multiple resolutions of the compared time series, coarsening
them and representing them with fewer points. Then the standard DTW is run over the lowest
resolution and the produced wrap path is passed over to the next higher resolution. Finally the
path is refined and this process continues until the original resolution of the time series is reached.
FastDTW, being a suboptimal approximation of DTW and producing errors up to 19.2%, is faster
because the number of cells it evaluates scales linearly with the length of the time series. Through
experimental evaluation, the authors prove the accuracy and efficiency improvements over Sakoe-
Chiba bands and data abstraction, which are two other popular DTW approximations [46]. However,
the authors do not report results on multidimensional time series, so the performance of FastDTW
when applied on this type of data has to be examined.
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15.4.2.3 Multidimensional LCSS

Vlachos et al. proposed two nonmetric distance functions as an extension of LCSS for multi-
dimensional time series. The method proved to be robust to noise, especially when compared to
DTW and ERP [52]. LCSS does not depend on continuous mapping of the time series; thus, the ap-
proaches using or extending it tend to focus on the similar parts between the examined sequences.
LCSS, in contrast to the Euclidean distance, does not take into account unmatched elements and
matches only the similar parts. It therefore allows trajectories to stretch in the time axis. DTW and
Euclidean distance try to match every element, so they are more sensitive to outliers. However,
when using LCSS the time series under comparison must have the same sampling rates. In [52]
the two-dimensional LCSS between two two-dimensional trajectories T1 and T2 of length m and n,
respectively, is computed as follows:

(a) DLCSS,δ,ε(T1,T2) = 0, if n = 0 or m = 0

(c) DLCSS,δ,ε(T1,T2) = 1+DLCSS,δ,ε(HEAD(T1),HEAD(T2))
if |T1,m,x−T2,n,x|< ε and |T1,m,y−T2,n,y|< ε and |i− j| ≤ δ

(d) max

{
DLCSS,δ,ε(HEAD(T1),T2)

DLCSS,δ,ε(T1,HEAD(T2))
, otherwise

where HEAD(T1), δ, and ε are defined as in 15.4.1.4. Two-dimensional LCSS can easily be extended
to d dimensions.

15.4.2.4 Multidimensional Edit Distance

In 2005, Chen et al. proposed EDR, Edit Distance on Real sequence, in order to address the
problem of comparing real noisy trajectories with accuracy and robustness, claiming that EDR is
more robust and accurate than DTW, LCSS, ERP, and Euclidean distance [11]. EDR is defined
as the number of insert, delete, or replace operations to convert a trajectory T1 into another T2.
Specifically, applying the Edit Distance on sequences of real numbers, rather than strings as it was
originally proposed in [10] by Levenshtein, the authors define EDR as follows:

(a) EDR(T1,T2) = m, if n = 0

(b) EDR(T1,T2) = n, if m = 0

(d) EDR(T1,T2) = min

⎧
⎪⎨

⎪⎩

EDR(Rest(T1),Rest(T2))+ sc

EDR(Rest(T1),T2)+ sc

EDR(T1,Rest(T2))+ sc

, otherwise

where sc = 0 if T11 and T21 match, and sc = 1 otherwise. Elements T1i and T2i are supposed to match
if the distance between them in all dimensions is below a threshold ε, similarly to the way LCSS
distance described in 15.4.1.4 and 15.4.2.3 defines matching. This way, EDR manages to cope with
noisy multivariate time series by not being affected by outliers and to handle shifting in the time
axis like ERP distance. In their experimental evaluation, Chen et al. prove their claims about the
improvements of EDR over DTW, ERP, and LCSS when applied on noisy sequences.

15.4.2.5 Multidimensional Subsequence Matching

There are a variety of methods proposed for multidimensional subsequence matching that can be
used for data mining tasks such as clustering and classification. SPRING is a dynamic-programming
based method that identifies the subsequences of evolving numerical streams that are closest to a
query in constant space and linear time in the dataset size [47].
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Kotsifakos et al. have introduced SMBGT, a subsequence matching method, that allows for gaps
in both the query and the target sequences and constrains the maximum match length between the
two [26]. In their study, they apply SMBGT to build a Query-by-Humming system that given a
hummed query song, retrieves the top K most similar songs in a database. The proposed similarity
measure, SMBGT, given a query Q and a target sequence X , finds the subsequence of X that best
matches Q. The experimental evaluation of the proposed similarity measure was performed on 2-
dimensional time series of notes of arbitrary length. Given sequences Q and X and their respective
subesequences Q[qs,qe] and X [xs,xe] of equal length, SMBGT(Q,X) is defined as follows. Let GQ
and GX be the indices of Q[qs,qe] and X [xs,xe] in Q and X . If qπi ≈ε xγi ,∀πi ∈ GQ ,∀γi ∈ GX , i =
1, ..., |GQ|, and

πi+1−πi− 1≤ β,γi+1− γi− 1≤ α (15.4)

then, the pair {Q[qs,qe],X [xs,xe]} is a common bounded-gapped subsequence of Q and X . The
longest such subsequence with xs− xe ≤ r is called SMBGT(Q,X). ε controls tolerance, α and β
control allowed gaps in sequences X and Q, respectively, and r controls the maximum alignment
length. A graphical example of SMBGT distance in two dimensions is illustrated in Figure 15.3.

In the experimental evaluation is shown that the main advantage of SMBGT over compared
subsequence matching methods (SPRING, Edit distance, and DTW) is that it can handle high noise
levels better. In some applications, such as the studied Query-by-Humming problem, this is ex-
tremely important. Other approaches that perform subsequence matching are described in [20, 5, 7].

15.5 Shape-Based Time-Series Clustering Techniques

In this section we review the major and most widely used techniques for shape-based time-series
clustering. The two most popular approaches are k-means clustering and hierarchical clustering.
Most techniques either extend or use one of these two clustering methods; thus, we classify the
reviewed approaches accordingly.

FIGURE 15.3 (See color insert): SMBGT distance between a query sequence Q and a database
sequence X .
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15.5.1 k-Means Clustering

One of the most widely used clustering techniques is k-means clustering, and this fact holds
for time-series data clustering as well. k-means is a simple partitioning clustering algorithm, as it
groups similar objects in the same cluster, and using an iterative refinement technique, it minimizes
an objective error function. A general description of the algorithm is the following:

1. Find k initial cluster centers by selecting k random objects.

2. Assign each object to the most similar cluster. The most similar cluster is the cluster with the
closest center, according to some distance function, e.g., Euclidean or DTW.

3. Recalculate the k cluster centers by averaging all the assigned objects for each cluster.

4. Repeat steps 2 and 3 until cluster centers no longer move. The objective error function, which
is the sum of squared errors among each cluster center and its assigned objects has been
minimized.

The complexity of k-means algorithm is O(k ·N ·r ·D), where k is the number of desired clusters,
N is the number of objects to be clustered (which equals the size of the dataset), r is the number
of iterations until convergence is reached and D is the dimensionality of the object space [38]. In
a slight modification of k-means algorithm, called k-medoids clustering, in Step 3, each cluster
center is represented by the cluster object that is located nearest to the cluster center. For clustering
large datasets of time series, k-means and k-medoids are preferred over other clustering methods,
due to their computational complexity. However, both k-means and k-medoids require an initial
cluster center selection which affects the clustering results, as both are hill-climbing algorithms,
converging on a local and not a global optimum. The main disadvantage of k-means is that the
number k of clusters must be specified a priori. This imposes the possibility that the optimal number
of clusters for a specific dataset is not known before the clustering process, so k-means will produce
a suboptimal clustering result.

Many k-means time-series clustering approaches use Euclidean distance as a distance metric and
a corresponding averaging technique to compute new cluster centers at each step. However, DTW
distance is considered a better distance for most time-series data mining applications. Until very
recently and the work of Meesrikamolkul et al. [39] there was no DTW-based k-means clustering
approach with satisfying performance. In Step 3 of the algorithm an averaging approach is needed
in order to calculate the k new cluster centers. Unfortunately, DTW averaging produces sequences
of equal or greater length than the original ones, thus decreasing a clustering system’s accuracy,
because the new cluster centers do not preserve the characteristics of the cluster objects. In [39], the
authors propose a shape-based k-means clustering technique that uses DTW as distance measure and
improves the time complexity of DTW averaging. In their approach, called Shape-based Clustering
for Time Series (SCTS), they propose a DTW averaging method they call Ranking Shape-based
Template Matching Framework (RSTMF), where a cluster center is calculated by averaging a pair
of time series with Cubic-Spline Dynamic Time Warping (CSDTW) averaging. RSTMF computes
an approximate ordering of the sequences before averaging, instead of calculating the DTW distance
between all pairs of sequences within each cluster before selecting the most similar pair. DTW is
a computationally expensive distance and therefore DTW-based k-means clustering using DTW
averaging can become also computationally expensive.

Vlachos et al. proposed an anytime variation of the k-means algorithm that is based on an initial
approximation of the raw data by wavelets [53]. As the process is repeated, the approximation be-
comes finer and the process stops when the approximation resembles the original data or the cluster-
ing results do not change. Their approach reduces the running time of original k-means and improves
the quality of clustering results. Moreover, they demonstrate that time series can be effectively ap-
proximated by higher level representations while still preserving their shape characteristics useful
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to classification or clustering tasks. According to the Liao algorithm classification, the algorithm
of Vlachos et al. is placed in the feature-based category, as it operates on a reduced-dimensionality
approximation of the original time series using the Haar wavelet basis. In [36] the same researchers
describe an extension to the work presented in [53], where the same approach is followed, in this
work with an Expectation Maximization (EM) method serving the clustering process. EM is more a
soft version of k-means than a fundamentally different approach, in the sense that each data object
has a degree of membership in each cluster, whereas in k-means each object must belong to exactly
one cluster. The major difference between EM and k-means is that EM produces a richer variety of
cluster shapes than k-means, which favors spherical clusters.

15.5.2 Hierarchical Clustering

There are two types of hierarchical clustering, agglomerative and divisive. Agglomerative hi-
erarchical clustering starts by regarding each data object as a different cluster and continues by
searching the most similar pair of clusters. Then the most similar pair is merged into one cluster and
the process continues until the desired number of clusters is reached.

Agglomerative hierarchical clustering has a variety of options for choosing which two clusters
are the closest to each other and thus should be merged in the current step. Some of them are listed
below:

• Single linkage: In single linkage selection, the distance between two clusters is defined as
the shortest distance among all their member objects. Specifically, the single-link distance
between clusters Ci and Cj is the following:

DSL(Ci,Cj) = minx ∈Ci,y ∈Cj(dist(x,y)) (15.5)

where dist is the chosen distance measure.

• Complete linkage: In complete linkage selection, the distance between two clusters is de-
fined as the longest distance among all their member objects. Specifically, the complete-link
distance between clusters Ci and Cj is the following:

DCL(Ci,Cj) = max
x∈Ci ,y∈Cj

(dist(x,y)) (15.6)

where dist is the chosen distance measure.

• Average linkage: In average linkage selection, the distance between two clusters is defined as
the average distance among all their member objects. Specifically, the average-link distance
between clusters Ci and Cj is the following:

DAV (Ci,Cj) = avg x ∈Ci,y ∈Cj(dist(x,y)) (15.7)

where dist is the chosen distance measure.

Divisive hierarchical clustering is the inverse process of agglomerative hierarchical clustering in
that it starts by regarding the whole dataset as a single cluster and continues by recursively dividing
it into smaller ones.

Hierarchical clustering has better visualization capabilities than k-means, as the clustering pro-
cess forms a dendrogram. In contrast to k-means, it takes no parameters and can be stopped and
traced back at any point to the desired clustering level. Its major drawback is its quadratic computa-
tional complexity which makes hierarchical clustering practically useful only for small datasets. As
opposed to k-means clustering, the hierarchical algorithm is a deterministic algorithm, which means
that when applied on the same dataset it provides the same clustering results in every run.
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In [19] the authors perform an evaluation of clustering methods applied on a long time series
of medical data and implement agglomerative hierarchical clustering. Their experimental results
show that complete-linkage cluster selection produces more reasonable clusters and better formed
dendrograms, in that the input data sequences are more uniformly distributed in the output clus-
ters. However, the superiority of complete-linkage selection over other methods is not proven nor
believed to hold on all datasets and clustering applications.

In [18] the authors propose a hierarchical clustering method followed by a k-means fine-tuning
process using DTW distance, where the objective function that is minimized is a sum of DTW
distances from each object to a prototype of the cluster to which it belongs. The cluster prototype
can be the DTW average of the objects belonging to the cluster, which has been proven to be
inaccurate [42], the cluster medoid, or a locally optimal prototype that has been computed with a
warping path based local search.

15.5.3 Density-Based Clustering

In [13] Ester et al. propose DBSCAN as a way to identify clusters of points utilizing the fact that
intercluster density is higher than that among points that belong to different clusters. The intuition
behind their approach is that objects belonging to a cluster must be surrounded by a minimum
number of objects at a small distance, thus defining the notion of neighborhood density. In the
DBSCAN algorithm, points that are located in a neighborhood of high density are defined as core
points, whereas points that do not have a core point in their neighborhood are defined as noise
points, and are discarded. Clusters are formed around core points, and clusters that are in the same
neighborhood are merged.

Ertöz et al. argue that traditional DBSCAN cannot be used effectively in high-dimensional data
such as time series, because the notion of Euclidean density is meaningless as the number of dimen-
sions increases [12]. Instead, they propose the use of the k-nearest neighbor approach to multivariate
density estimation, where a point is considered to be in a region with high probability density if it has
a lot of highly similar neighbors. Using this notion, they eliminate noise and outliers, by identifying
dense clusters in the data.

15.5.4 Trajectory Clustering

While multidimensional time series can be used to represent trajectories,1 another commonly
accepted interpretation is that a trajectory is a data type representing the movement of an object.
In the past couple of decades, Moving Objects Databases have become a research trend of their
own, and various representation methods, storage, and indexing techniques, along with spatiotem-
poral queries processing methodologies, have been introduced [17, 60]. Clustering and mining of
spatiotemporal trajectories is of interest in various application domains such as traffic management,
transportation optimizations, and ecological studies of animals motions/migrations.

Vlachos et al. define a trajectory as the set of positional information of a moving object ordered
by time [51]. Lin and Su [35] disregard the time information in trajectories and focus on the shape
information only. They point out that continuous representation of trajectories is usually costly and
difficult to compute, so they represent trajectories in terms of line segment sequences. Specifically,
each trajectory is defined as an ordered sequence of points T = [p1, p2, ..., pn] that are connected with
straight line segments. Alternatively, Chen et al. propose to explicitly incorporate the time values
in the representation; hence, a trajectory S in the two-dimensional plane is defined as a sequence of
triples S = [(t1;s1x ;s1y), ...,(tn;snx ;sny)] [11].

A fair amount of work has been devoted to trajectory clustering, where not only shape but also
speed and direction are important. Some methods [44] also discuss the online correlation aspect

1For that matter, a trajectory can be perceived as a special case of multidimensional time series.
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of trajectory clustering, though these methods are not discussed in detail in this chapter. Globally,
the efforts can be grouped in several categories: relative motion patterns, flocks, convoys, moving
clusters, and swarms (cf. [21]). Going into great details about the peculiarities of each category of
works is beyond the scope of this chapter, therefore, in the sequel we provide an overview of a
few techniques in order to illustrate some specific issues (and solutions) arising in the domain of
trajectories clustering.

Lee et al. [30] describe a trajectory clustering approach that belongs to the category of density-
based clustering approaches. For a given collection of trajectories, the proposed method can operate
on trajectories of different lengths and produce a set of clusters and a representative trajectory for
each cluster. The authors argue on the meaningfulness of subtrajectory clustering; therefore, the
clusters they generate are sets of trajectory partitions. A trajectory partition is a line segment pi p j,
where pi and p j (i < j) are points from the trajectory. The representative trajectory for each cluster
is a trajectory partition that is common to all the trajectories that belong to that cluster. Trajectory
partitions that belong to the same cluster have a relatively small distance to each other, according to
the respective distance function which operates on line segments and corresponds to the weighted
sum of the perpendicular distance, parallel distance, and angle distance (cf. [30]). After partition-
ing the trajectories, the method proceeds to the line segment clustering process based on DBSCAN
(discussed in [13]). The main difference with DBSCAN is that in line segment clustering which is
applied here, not all density connected groups of line segments can become clusters, because many
line segments can belong to the same trajectory. Thus, each cluster that contains line segments from
less than a desired number of trajectories is discarded. For the computation of the representative
trajectory for each cluster, the authors use an average direction vector and sweep a vertical line
across the line segments in its direction. The complexity of the proposed algorithm is O(n2) if no
spatial index is used, and O(n logn) otherwise, with n being the total number of line segments that
are produced by the partitioning process. In the subsequent work [29], trajectory-based and region-
based clustering were combined to build a feature generation framework for trajectory classification.
Region-based clustering disregards movement information and clusters regions of trajectories that
are mostly of one class. The trajectory-based clustering extends the previous work [30] by using
class label information in the clustering process. After trajectory partitioning, region-based clus-
tering is performed and the partitions that cannot be represented by homogeneous regions are the
input of the trajectory-based clustering module. The proposed framework generates a hierarchy of
features in a top-down approach, namely features produced by region-based clustering do not in-
clude movement patterns and are thus of higher level whereas trajectory-clustering features are less
general.

One observation regarding the above approaches is that they do not properly incorporate the tem-
poral dimension of the trajectories (i.e., they work with routes). One of the first works that brought
the temporal awareness in the realm of clustering spatiotemporal trajectories clustering was [24],
which introduced the concept of a moving cluster—a set of objects that move close to each other
for a given time duration. One can think of it as a temporal sequence of spatial clusters, preserving
the property that the number of common objects among consecutive clusters is maintained above
a certain threshold Θ. An example of a moving cluster with Θ ≥ 75% (i.e., 3/4 of the objects are
within a cluster at any given moments) is shown in the left portion of Figure 15.4. A concept that
uses different criteria for grouping the trajectories is the one of convoys [22] that corresponds to a
group that has at least m objects which are density-connected with respect to distance e and cardi-
nality m during k consecutive time-instants. For comparison, the right portion of Figure 15.4 shows
the formation of a convoy of three trajectories over three consecutive time-instants, illustrating the
difference with the moving clusters.

Many other criteria for grouping trajectories have been proposed, generating different corre-
sponding models, for example, dynamic/evolving convoys, flocks, swarms, and we refer the reader
to [21] for a recent survey. We close this section with data-driven observations regarding trajec-
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FIGURE 15.4: Trajectories grouping: Moving clusters and convoys.

tories clustering, given that in the recent years, the GPS traces and sensor-based location data are
becoming widely available:

• The sheer volume of the (location,time) data may become large enough to incur high compu-
tation cost for clustering trajectories. Hence, oftentimes, some simplification techniques may
be employed to reduce the size of the data [8], before proceeding with the clustering.

• The data streams are often subject to imprecision in the measurements as well as noise during
communication/transmission. Hence, in order to improve the efficiency and effectiveness of
the clustering techniques, it may be desirable to apply trajectory smoothing techniques as a
preprocessing step to their clustering [9].

15.6 Time-Series Clustering Applications

Time-series clustering is a very interesting domain and has increasingly many applications.
Widespread smartphone networks and mobile computing environments as long as the correspond-
ing active communities present a field where multidimensional spatiotemporal trajectory clustering
is important and necessary. Location-oriented applications and services can use trajectory cluster-
ing techniques to improve query evaluation performance. One example is route recommendations,
as tourist guides can benefit from identifying similar user routes to recommend places or tours to
users. Figure 15.5 illustrates how a route recommendation tourist application would utilize trajec-
tory clustering information to classify a new user and recommend paths to follow.

The online scenario is particularly common in financial markets, machine monitoring, and
anomaly detection. In fact, since outliers and clusters are connected by a complementary relation-
ship, multivariate regression models are often used in order to identify broad trends in the data. Data
points which do not match this broad trend are declared outliers [4].

In another example, mobile social networking applications can avoid controversial privacy con-
cerns by using distributed techniques to identify and use similar trajectories in their network without
disclosing the traces, as does the SmartTrace system [28]. Such systems provide the functionality
of nearest neighbor search, where a user can determine other users that have exposed similar spatio-
temporal behavior, such as visiting the same places, without knowing the exact trajectories or re-
vealing their trajectory either. Both centralized and distributed approaches have been proposed to
evaluate trajectory similarity queries, while the former serve applications where the transfer of data
to the central site is inexpensive and the latter are appropriate for environments with expensive or
not-always-connected mediums, such as wireless sensor networks [59] or smartphone networks.
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FIGURE 15.5: Query trajectory Q represents the route of a user of a mobile route-recommendation
application. The application performs trajectory clustering and classifies the user to Cluster 1 (con-
taining trajectories R1, R2, and R3); thus, it recommends paths similar to those users of Cluster 1
followed.

It becomes apparent that trajectory clustering is suitable for applications where privacy and
anonymity are needed. A classic example of such cases is social sensing applications [44].

In another example, video surveillance and tracking systems can largely benefit from trajectory
and time-series clustering, due both to the insight in scene monitoring that movement clustering
provides and to privacy and security issues that have arisen. Abnormal events such as pedestrians
crossing the street or dangerous vehicle movements can be represented as outliers to clusters of
normal movement patterns [23]. In [23] the authors use a hierachical clustering method to overcome
the overfitting in HMM trajectory similarity that is often used in surveillance video analysis, where
video events are represented as object trajectories.

Automatic counting of pedestrians in detection and tracking systems is another application ex-
ample. In [3] the authors propose a method to reduce the difference between the number of tracked
pedestrians and the real number of individuals, as most detection and tracking systems overestimate
the number of targets. The authors apply agglomerative hierarchical trajectory clustering, assuming
that trajectories belonging to the same human body are more similar to each other than trajectories
produced by the movement of different individuals. In this process they employ different trajectory
representation schemes, including time series and independent component analysis representation,
and different distance/similarity measures, including Hausdorff Distance and LCSS.

Time-series clustering is necessary in a variety of other domains, including music retrieval [26,
32, 40], speech recognition [55, 50], and financial and socioeconomic time-series applications [25,
15].

15.7 Conclusions

Time-series data have diverse formulations because of the variety of applications in which they
can be used. The two primary formulations for time-series clustering use online and off-line anal-
ysis. The application domains for these cases are quite different. The online formulation is often
used for real-time analysis and applications such as financial markets or sensor selection. The on-
line scenario is also relevant to social sensing applications. The off-line scenario is more useful for
applications in which the key shapes in the data need to be discovered for diagnostic purposes.
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16.1 Introduction

With the advancement of recent technologies, a vast amount of biological data is being gener-
ated. As data banks increase their size, one of the current challenges in biology is to be able to infer
some of the critical functions from such complex data. To analyze complex biological systems,
researchers usually aim to identify some patterns that co-occur in the form of groups. Clustering
analysis is an exploratory technique that discovers rich patterns from vast data, and hence, it has
become an indispensable tool for various knowledge discovery tasks in the field of computational
biology. Clustering is a powerful and widely used technique that organizes and elucidates the struc-
ture of biological data. Clustering data from a wide variety of biological experiments has proven to
be immensely useful at deriving a variety of insights, such as the shared regulation or function of
genes.

In analyzing this complex biological data, one can observe that the activities of genes are not
independent of each other. It has been shown that genes with the same function (or genes involved
in the same biological process) are likely to be co-expressed [56]. Hence, it is important to study
groups of genes rather than to perform a single gene analysis. In other words, it is crucial to identify
subsets of genes that are relevant to the biological problem under study. Analyzing such subsets
of data yields crucial information about the biological processes and the cellular functions. Thus,
clustering the gene expression profiles can provide insights into gene function, gene regulation, and
cellular processes.

It has also been shown that proteins of known functions tend to cluster together [92]. The net-
work distance is correlated with functional distance, and the proteins that are closer to one another
tend to have similar biological functions [96]. Hence, clustering the protein–protein interaction net-
works is crucial in discovering the functions of proteins and thus understanding the inner workings
of cells [84]. The most important building blocks of living organisms, such as DNA, RNA, mRNA,
polypeptides, and proteins have linear structure and can be represented as sequences. Clustering
biological sequence data aims to group together the biological sequences that are related. The iden-
tified clusters can help in providing a better understanding of the genome.

This chapter comprehensively reviews different kinds of biological data where clustering has
provided promising and biologically meaningful results. More specifically, we will discuss the role
of clustering for gene expression data, biological networks, and sequence data. For each type of
data, the challenges and the most prominent clustering algorithms that have been successfully stud-
ied will be described. The rest of this chapter is organized as follows. Section 16.2 describes various
types of clustering and the corresponding state-of-the-art clustering techniques for each category in
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the context of microarray data analysis. Section 16.3 provides details about several protein interac-
tion network clustering algorithms. Section 16.4 describes the state-of-the-art biological sequence
clustering algorithms. Software packages that implement most of the popular biological clustering
algorithms are discussed in Section 16.5. Finally, Section 16.6 concludes our discussion.

16.2 Clustering Microarray Data

The recent advances in DNA microarray technology allow genome-wide expression profiling.
It has revolutionized the analysis of genes and proteins and has made it possible to simultaneously
measure the expression levels of tens of thousands of genes. The expression level of a gene is a
measurement for the frequency with which the gene is expressed, and it can be used to estimate
the current amount of the protein in a cell for which the gene codes [58]. The availability of such
massive data has transformed the field of gene expression analysis [18].

Gene expression data clustering provides a powerful tool for studying functional relationships
of genes in a biological process. Identifying correlated expression patterns of genes represents the
basic challenge in this clustering problem. The underlying hypothesis here is based on a popular
phenomenon known as guilt-by-association principle which states that genes with similar functions
exhibit similar expression patterns (they are co-expressed together) [109, 25]. Hence, it becomes
critical to study the relationships between the genes among various biological conditions. Clus-
tering methods allow the biologists to capture the relationships between genes and identify the
co-expressed genes in a given microarray study. Clustering also plays a critical role in other related
biological applications. In addition to clustering the genes, there is also some research work on
clustering the conditions to identify phenotype subtypes [44]. Clustering can also be used to extract
regulatory motifs from the gene expression data [28].

More formally, the gene expression data is typically organized in a two-dimensional matrix
format where the rows correspond to genes and the columns correspond to some biological con-
ditions (or samples). The columns usually represent various possible phenotypes such as normal
cells, cancerous cells, drug treated cells, or time-series points. Also, the number of genes is signif-
icantly larger than the number of conditions. Clustering has been successfully employed as one of
the key steps in high-throughput expression data analysis [24]. Several clustering techniques have
been successfully applied to cluster the genes, conditions, and/or samples [56].

In this section, we will first describe some of the popular proximity measures used and then
categorize the clustering methods proposed in the literature in the context of gene expression data
analysis. We will then briefly describe the most representative methods that are widely used for an-
alyzing gene expression datasets. Finally, we will provide a discussion about biologically validating
the results of the clustering methods.

16.2.1 Proximity Measures

Before explaining more details on the clustering methods, we will define the proximity measures
that are used to quantify the similarity (or distance) between two genes across all the conditions.
The most popular measures used in the context of gene expression clustering are the following.

• Euclidean distance: Given two genes gi and g j, the distance between the two genes can be
measured as

Euclidean(gi,g j) =

√
N

∑
k=1

(gik− g jk)2
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where N is the total number of samples (columns or features). gik represents the kth column
of vector gi. One of the problems with Euclidean distance measure is its inability to capture
shifting and scaling patterns that commonly occur in gene expression data [2]. To avoid this
problem, typically, these gene vector representations are Z-score normalized by subtracting
the mean of the gene vector from individual column values and then dividing them by the
variance of the original gene vector [20]. This will make the mean value of the resultant
vector zero and the variance value one for each gene vector.

• Pearson’s correlation coefficient: It measures the similarity between the shapes of the expres-
sion profiles of two genes as follows:

Pearson(gi,g j) =
∑N

k=1 (gik−μgi)(g jk−μg j)√
∑N

k=1 (gik−μgi)
2
√

∑N
k=1 (g jk−μg j)

2

where μgi and μg j represent the mean of the expression values for the genes gi and g j, respec-
tively. This measure has been widely used in the analysis of gene expression data but it is not
robust to outliers in the data.

• Spearman correlation coefficient: To make the similarity measure robust to the underlying
distributions and outliers, Spearman correlation coefficient considers the rank ordering of
the expression values. Rather than using the original expression values for each gene, the
Spearman correlation coefficient uses the rank of each sample value for that particular gene
[56]. It is defined to be the Pearson correlation coefficient between the ranked expression
values. Since the original expression values are completely discarded, the results from this
measure are almost always inferior to those obtained using Pearson’s correlation coefficient
in the context of standard gene expression clustering.

• Mutual Information: Mutual Information (MI) is an information-theoretic approach which
uses a generalization of pairwise correlation coefficient to compare two gene expression pro-
files. MI can be used to measure the degree of independence between two genes [19]. The MI
between a pair of genes gi and g j is computed as follows:

MIi j = Hi +Hj−Hi j

where H denotes the entropy which is given as follows:

Hi =−
N

∑
k=1

p(gik)log(p(gik))

It can be seen that the higher the entropy, the more randomly distributed are gene expression
levels across the conditions. Also, MI becomes zero if the expression levels of genes i and
j are statistically independent since their joint entropy Hi j = Hi +Hj. A higher value of MI
indicates that the two genes are nonrandomly associated to each other. Even though MI has
shown some promising results in the context of clustering [83], it is more widely used in the
context of constructing gene co-expression networks.

16.2.2 Categorization of Algorithms

The existing clustering methods can be categorized into the following groups as shown below.
Each of these categories will be explained more elaborately in this section.
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1. Standard (single-dimensional) clustering: In this category, a standard clustering technique
can be applied on the gene expression data to cluster the genes or to cluster the samples
(or conditions). Such clustering methods can be used to capture the relationships between
genes and identify the co-expressed genes based on the microarray data collected. It should
be noted that these standard clustering techniques can be applied not only on the genes but
also on biological conditions.

2. Biclustering: This is also referred to as co-clustering [71]. Methods in this category aim to
discover local patterns in complex noisy gene expression data by simultaneously clustering
both genes (rows) and conditions (columns). These methods are effective in identifying clus-
ters of genes that are correlated only under a subset of conditions. [71].

3. Triclustering: The goal of triclustering is to find coherent clusters that are similar across
three dimensions (genes× conditions× time) [123]. In the triclustering approach, the genes
are clustered across a subset of conditions under a subset of time points.

4. Time-Series clustering: In some microarray studies, the gene expression values are collected
over different time points that correspond to various experimental conditions [11]. One of the
key characteristics of such time-series data is that it typically exhibits a strong autocorre-
lation between successive time points. In such scenarios, it is critical to capture the inher-
ent relationships between genes over time in order to accurately perform clustering of the
genes [6].

16.2.3 Standard Clustering Algorithms

In this section, we will briefly explain the most widely studied clustering methods for analyzing
gene expression data.

16.2.3.1 Hierarchical Clustering

Hierarchical clustering algorithms (discussed in detail in Chapter 4) first create a dendrogram for
the genes, where each node represents a gene cluster and is merged/split using a similarity measure.
There are two categories of hierarchical clustering that are studied in the context of gene expression
analysis.

• Agglomerative clustering (bottom-up approach): This approach starts with each gene as an
individual cluster, and at each step of the algorithm, the closest pair of clusters are merged
until all the of the genes are grouped into one cluster. Eisen et al. [33] applied an agglomer-
ative clustering algorithm called UPGMA (Unweighed Pair Group Method with Arithmetic
Mean). Using this approach, each cell of the gene expression matrix is colored and the rows
of the matrix are reordered based on the hierarchical dendrogram structure and a consistent
node-ordering rule. An illustration of a simple dendrogram for gene expression data is shown
in Figure 16.1.

• Divisive clustering (top-down approach): This approach starts with a single cluster that con-
tains all the genes; then repeatedly the clusters are split until each cluster contains one gene.
Based on a popular deterministic annealing algorithm, authors in [3] proposed a divisive ap-
proach to obtain gene clusters. The algorithm first chooses two random initial centroids. An
iterative Expectation-Maximization algorithm is then applied to probabilistically assign each
gene to one of the clusters. The entire dataset is recursively split until each cluster contains
only one gene.
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FIGURE 16.1 (See color insert): A simple dendrogram based on hierarchical clustering of rows
and columns for gene expression data. The figure has been adapted from [39]. Here, rows correspond
to the genes and columns correspond to the conditions. The color scale ranges from saturated green
for log ratios -3.0 and below to saturated red for log ratios 3.0 and above.

16.2.3.2 Probabilistic Clustering

Since some of the genes are regulated by several biological pathways, it is important to ob-
tain overlapping clusters; i.e., some genes might appear in multiple clusters. Probabilistic cluster-
ing provides an intuitive solution to this problem by implicitly modeling this overlapping nature
through assigning probabilistic memberships. The most popular choice of probabilistic clustering
of the data is by developing a model-based approach. Model-based clustering algorithms assume
that the gene expression data is generated by a finite mixture of probability distributions [118].
The primary challenge here is to estimate the best probabilistic model that represents the patterns
in the complex data. A popular Model-based CLUSTering algorithm, MCLUST, uses multivariate
Gaussian distributions for clustering microarray data [118]. The basic idea here is that each cluster
of genes is generated by an underlying Gaussian distribution. More details about clustering using
Gaussian mixture models are given in Chapter 3. It should be noted that before applying any model-
based approach, the raw gene expression data is first transformed or normalized. Several feature
transformation methods have been shown to achieve good results when applying the model-based
clustering. The other choice for probabilistic clustering is to apply a Fuzzy C-means (FCM) algo-
rithm to cluster the gene expression data [26]. More details about this algorithm are available in
Chapter 4.

16.2.3.3 Graph-Theoretic Clustering

In the graph-theoretical approach, a proximity graph is constructed where the nodes are the
genes and the edges are the similarities between the nodes. After constructing the graph, the prob-
lem of clustering is transformed into finding minimum cut or maximal cliques in the proximity
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graph. CLuster Identification via Connectivity Kernels (CLICK) is a graph-theoretical algorithm
that defines clusters as highly connected components in the proximity graph [95]. This algorithm
does not make any prior assumptions on the number or the structure of the clusters.

Cluster Affinity Search Technique (CAST) is another graph-based clustering algorithm [14].
This algorithm alternates between adding high affinity elements to the current cluster and removing
low affinity elements from this cluster. The affinity between gene i and cluster C is defined as the
sum of the similarities between gene i and all genes in cluster C. The CAST algorithm then aims
to find cluster assignments so that the affinity between genes and their clusters is maximized. It
adds a gene to a cluster if the affinity is higher than some prespecified threshold. CAST repeats this
operation over all genes and clusters, until all genes are assigned to at least one of the clusters. One
of the advantages of this algorithm is that it does not require a predefined number of clusters and
can efficiently handle outliers.

Another graph-theoretic algorithm that uses Minimum Spanning Tree (MST) for clustering gene
expression data has been proposed in [114]. One of the key properties of using the MST represen-
tation is that each cluster of the expression data corresponds to one subtree of the MST, which will
then transform a multidimensional clustering problem to a tree partitioning problem. The simple
structure of an MST facilitates efficient implementations of rigorous clustering algorithms, and it
does not depend on detailed geometric shape of a cluster. The implementation of this algorithm
is available in a software package called EXpression data Clustering Analysis and VisualizATiOn
Resource (EXCAVATOR).

16.2.3.4 Self-Organizing Maps

Self-Organizing Maps (SOMs) [64] is a clustering algorithm that is based on neural networks
with a single layer. The clusters are identified by mapping all data points to the output neurons [103].
SOMs require the number of clusters and the grid layout of the neuron map as the user input. An
unsupervised neural network algorithm called the Self-Organizing Tree Algorithm, (SOTA), was
studied in [49]. SOTA is a top-to-bottom divisive hierarchical clustering method that is built using
SOMs.

16.2.3.5 Other Clustering Methods

k-means clustering has been applied to the problem of clustering gene expression data [50]. In
spite of its simplicity and efficiency, it is not well suited to the problem of gene expression clustering
due to the following reasons:

• Gene expression data typically contains a lot of noise. The standard k-means algorithm is
known to be sensitive to noise due to the objective function (root mean square) it optimizes.

• Since the number of gene clusters is unknown beforehand for gene expression data, there is
a need to run this algorithm several times with different inputs. For large datasets, such an
approach becomes impractical.

However, other variations of the k-means algorithm have been proposed to overcome some its draw-
backs [104].

To improve the accuracy of clustering the tumor samples, resampling methods such as bagging,
were proposed in [32]. In these ensemble methods, clustering is applied to bootstrap learning sets,
and the resulting multiple partitions are combined. The main intuition of using bagging is to re-
duce variability in the partitioning results through averaging. Clustering gene expression data using
Principal Components Analysis (PCA) was studied in [120]. However, it was shown that clustering
with the principle components instead of the original variables often degrades the cluster quality.
Therefore, PCA was not recommend before clustering except in specific cases [120].
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16.2.4 Biclustering

Standard clustering techniques discussed in the previous section typically assume that closely
related genes must have similar expression profiles across all the conditions [69]. However, this
assumption does not hold in all of the biological experiments. From a practical point of view, not all
the genes are involved in each biological pathway, and some of these pathways may be active under
only a subset of the samples [75]. Hence, biclustering was proposed to overcome the limitations of
the traditional clustering algorithms [71].

The objective of biclustering is to simultaneously cluster both rows and columns in a given ma-
trix. Biclustering algorithms aim to discover local patterns that cannot be identified by the traditional
one-way clustering algorithms. A bicluster can be defined as a subset of genes that are correlated
under a subset of biological conditions (or samples). Biclustering has been used in several applica-
tions such as clustering microarray data [71], identifying protein interactions [68], and other data
mining applications such as collaborative filtering [40] and text mining [18].

The concept of biclustering is illustrated using a simple example in Figure 16.2. In this exam-
ple, the expression levels of three genes over 10 conditions are shown. Considering all of the ten
samples, it is evident that there is no strong correlation between the three genes (Figure 16.2(a)).
However, it can seen that there is a strong correlation between the three genes in a subset of the con-
ditions, namely {2,3,5,8} (Figure 16.2(b)). Hence, we will consider these three genes to be highly
correlated though traditional proximity measures that consider all of the conditions will determine
that these three genes are not correlated. Biclustering has emerged as a powerful tool to simultane-
ously cluster both dimensions of a data matrix by utilizing the relationship between the genes and
the samples. It has been proven that the task of finding all the significant biclusters is an NP-hard
problem [21].

There are several challenges that arise while searching for biclusters in gene expression data.
A subset of genes can be correlated only in a small subset of conditions due to the heterogeneity
of the samples. Such heterogeneity arises due to the complexities involved with different diseases,
different patients, different timepoints, or different stages within a disease. In addition, since genes
can be positively or negatively correlated [54], it is important to allow both types of correlations
in the same bicluster. Moreover, there are several types of biclusters that can be biologically rele-
vant [71]. A gene can be involved in more than one biological pathway; therefore, there is a need for
a biclustering algorithm that allows overlapping between the biclusters [27, 75], i.e., the same gene

(a)
(b)

FIGURE 16.2: An illustration of biclustering. The expression levels of three genes over 10 different
biological conditions are shown. (a) The genes are uncorrelated when all of the 10 conditions are
considered. (b) The genes are strongly correlated in a subset of the conditions {2, 3, 5, 8}.
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can be a member of more than one bicluster. Finally, a bicluster will have to capture the positively
and/or negatively co-expressed set of genes since the genes in the same biological pathway can be
positively and/or negatively correlated [54, 117, 76].

16.2.4.1 Types and Structures of Biclusters

We will now discuss the different types of biclusters that might appear in gene expression data
[71]. Let μ be a typical value in the bicluster. αi is the adjustment for row i and β j is the adjustment
for column j.

• Biclusters with constant values. All the elements in this type have the same value. ai j = μ
(Figure 16.3a).

• Biclusters with constant values on rows. ai j = μ+αi (Figure 16.3b).

• Biclusters with constant values on columns. ai j = μ+β j (Figure 16.3c).

• Biclusters with (additive) coherent values. Each row and column is obtained by addition of
the previous row and column by a constant value. ai j = μ+αi+β j (Figure 16.3d).

• Biclusters with (multiplicative) coherent values. Each row and column is obtained by mul-
tiplication of the previous row and column by a constant value. ai j = μ×αi× β j (Figure
16.3e).

• Biclusters with coherent evolutions. In this type, the coherence of the values is not considered.
Only the direction of change of values is important (Figure 16.3(f)).

(a) Constant values. (b) Constant rows. (c) Constant columns.

(d) Coherent values (ad-
ditive).

(e) Coherent values (multi-
plicative).

(f) Coherent evolutions.

FIGURE 16.3: Examples of different types of biclusters.
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(a) (b) (c)

(d) (e) (f)

FIGURE 16.4 (See color insert): Examples of bicluster structures. (a) Single bicluster. (b) Exclu-
sive row and column biclusters. (c) Checkerboard pattern biclusters. (d) Exclusive row biclusters.
(e) Exclusive column biclusters. (f) Arbitrarily positioned overlapping biclusters.

In addition to the variations in the types of the biclusters, there are other important sources of
variations, such as the variations in the size and the position of the biclusters in the gene expression
data. Though the earlier biclustering algorithms used to find only a single bicluster at a time (Figure
16.4(a)), most of the recent approaches attempt to find several biclusters simultaneously. When there
are several biclusters in the data, some of the standard bicluster structures are as follows.

• Exclusive row and column biclusters which form rectangular diagonal blocks after reordering
rows and columns (Figure 16.4(b)).

• Checkerboard pattern biclusters that are completely nonoverlapping (Figure 16.4(c)).

• Exclusive row biclusters that might have overlapping columns (Figure 16.4(d)).

• Exclusive column biclusters that might have overlapping rows (Figure 16.4(e)).

• Arbitrarily positioned overlapping biclusters (Figure 16.4(f)).

16.2.4.2 Biclustering Algorithms

In the first biclustering algorithm proposed by Cheng and Church [21], the mean-squared residue
(MSR) score was used as a measurement of the coherence between two genes. Given a gene expres-
sion submatrix X that has I genes and J conditions, the residue is computed as follows:

H(I,J) =
1
|I||J| ∑

i∈I, j∈J

(xi j− xI j− xiJ + xIJ)
2 (16.1)
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where xiJ =
∑ j∈J xi j

|J| is the row mean, xI j =
∑i∈I xi j
|I| is the column mean and xIJ =

∑i∈I, j∈J xi j

|I|∗|J| is the
overall mean of the matrix X . xi j is a particular element (ith row and jth column) of the original ma-
trix. A perfect bicluster will have MSR= 0. The MSR function has been used in many biclustering
algorithms [21, 115, 27, 75].

This algorithm starts with the original data matrix; then, a set of row/column deletions and ad-
ditions are applied to produce one bicluster, which will be replaced with random numbers. This
procedure is repeated until a certain number of biclusters is obtained. The algorithm has two main
limitations: (i) It finds only one bicluster at a time, and (ii) random interference (masking the dis-
covered biclusters with random numbers) reduces the quality of the biclusters and obstructs the
discovery of other biclusters. After this algorithm was proposed, a plethora of new heuristic algo-
rithms that aim to extract biclusters from noisy gene expression data have been developed. We will
mention only a few here; for a detailed discussion on several existing biclustering algorithms, we
refer the readers to an excellent survey on this topic [71].

Coupled two-way clustering (CTWC) technique was proposed in [41]. In this technique, a subset
of genes (conditions) are used to cluster the conditions (genes), while the Order-Preserving Subma-
trices (OPSMs) [13] algorithm finds local patterns in which the expression levels of all genes induce
the same linear ordering of the experiments. However, the OPSM algorithm finds only one bicluster
at a time and captures only positively correlated genes. Iterative Signature Algorithm (ISA) [51]
is a statistical biclustering algorithm which defines a transcription module (bicluster) as a coregu-
lated set of genes under a set of experimental conditions. ISA starts from a set of randomly selected
genes (or conditions) that are iteratively refined until they are mutually consistent. At each iter-
ation, a threshold is used to remove noise and to maintain coregulated genes and the associated
coregulating conditions.

16.2.4.3 Recent Developments

Recently, there have been many emerging trends in the field of biclustering: (i) Identifying over-
lapping biclusters and handling both positive and negative correlations within a bicluster has gained
some attention due to their biological importance [117]. Some of the recent algorithms [27, 75]
allow for overlapping biclusters and find k row clusters and l column clusters simultaneously. (ii)
Differential biclustering [76, 77, 37] aims to find gene sets that are correlated under a subset of con-
ditions in one class of conditions but not in the other class. Identifying such class-specific biclusters
can provide valuable knowledge for understanding the roles of genes in several diseases [76]. The
classes could represent different tissue types (normal vs cancerous), different subject types (e.g.,
male vs female), different group types (African-American vs Caucasian American) [61], different
stages of cancer (early stage vs developed stage) [76], or different time points [42]. (iii) Query-
based biclustering algorithms [30, 122, 4] allow for identifying biclusters that are centered around a
set of seed genes of interest. In these algorithms, new search strategies are developed to exploit the
expression profiles of certain genes of interest that are used to guide the bicluster searching mech-
anism. These approaches are extremely handy when one wants to compare the expression profiles
of a certain set of genes with that of the existing knowledge which can be obtained by querying for
similar profile genes from a large-scale expression compendia.

16.2.5 Triclustering

The goal of triclustering is to find coherent subspace clusters that are similar across three dimen-
sions. The motivation of this task comes from the biological domain where finding coherent clusters
along the gene-sample-time (temporal) or gene-sample-region (spatial) dimensions is of great value.
Although the problems that are suitable for triclustering had been addressed earlier by ad-hoc meth-
ods [55], Zhao and Zaki [123] proposed the first formal algorithm for triclustering. After that, a few
more algorithms have also been proposed in recent years [98, 57].



392 Data Clustering: Algorithms and Applications

Given G, the set of genes; S, the set of samples; and T , the set of time points; a tricluster C is
a submatrix of the dataset D = G× S×T , where C = X ×Y ×Z =

{
ci jk
}

, with X ⊆ G,Y ⊆ S, and
Z⊆ T provided that certain conditions of homogeneity are satisfied. For example, a simple condition
might be that all values

{
ci jk
}

are identical or approximately equal. If we are interested in finding
common gene co-expression patterns across different samples and times, we can find clusters that
have similar values in the G dimension, but possibly different values in the S and T dimensions.
Other homogeneity conditions can also be defined, such as similar values in S dimension and order
preserving submatrix. [71]. Let B be the set of all triclusters that satisfy the given homogeneity
conditions, then C ∈ B is called a maximal tricluster iff there does not exist another cluster C′ ∈ B
such that C ⊂C′. In most of the cases, we are interested in only the maximal triclusters.

Zhao and Zaki’s method for triclustering is known as TRICLUSTER. It accepts the 3-dimensional
dataset D; the minimum size thresholds, mx,my, and mz, that define the size of the clusters in three
dimensions; and a maximum ratio threshold, ε, which represents the maximum allowed deviation
among values in different cells of a cluster. It then constructs a range multigraph data structure for
the data matrix at each of the timestamps. It uses the range multigraphs of a timestamp to obtain a
set of robust biclusters (involving dimensions G and S) that are observed for that time value. As a
final step, it merges similar biclusters across different timestamps to obtain maximal triclusters. For
this step, it represents each of the biclusters that it has found in the earlier step as a node in a graph,
and defines the node–node (bicluster–bicluster) relationships based of the similarity on the time
dimension; then the maximal triclusters are simply the maximal cliques in this graph. As an optional
step, it also merges and deletes clusters based on the degree of overlap among various dimensions.
Interested readers can read more details on the TRICLUSTER algorithm from the original paper
by the authors [123]. Key features of TRICLUSTER are that it is flexible and can accept various
homogeneity criteria. Also, it is robust and generates only maximal triclusters. The downside of this
method is that it requires a large number of parameters and domain knowledge is necessary to set
the parameter values optimally.

16.2.6 Time-Series Gene Expression Data Clustering

In order to determine the complete set of genes that are expressed under a set of new conditions
and to determine the interaction between these genes in these new conditions, it is important to mea-
sure a time course of expression experiments [11]. In such microarray studies, the gene expression
values are collected over different time points which correspond to the experimental conditions. One
of the key characteristics of such time-series data is that while static data from a sample population
are assumed to be i.i.d. (independent and identically distributed), time series gene expression data
typically exhibit a strong autocorrelation between successive timepoint values. In such scenarios, it
is critical to capture the inherent relationships between genes over time in order to perform cluster-
ing [6]. One of the first models to cluster time series gene expression data was developed in [70].
This clustering algorithm was based on the mixed effects model using B-splines and was applied on
the yeast cell cycle gene expression data. The estimated gene expression trajectory was also used
to fill in the missing gene expression levels for any time point using the available data in the same
cluster.

Hidden Markov Models (HMMs) have also been used to cluster time-series gene expression data
[91]. The primary advantage of using HMMs is that they explicitly take into account the temporal
nature of the expression patterns which will produce high quality clusters. Given gene expression
data, the goal is to find a partition of the data into K HMMs which will maximize the likelihood
of the data given the learned HMM model. For gene expression data, the emission probabilities are
assumed to be Gaussians with fixed variance. The authors of [91] developed a new algorithm for
clustering genes based on a mixture of HMMs. The parameters of this model are learned using an
iterative Expectation-Maximization style algorithm. The two iterative steps in this algorithm are (i)
genes are associated with the HMM that would have most likely generated their time courses and (ii)
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the parameters of each HMM are estimated using the genes assigned to it. This algorithm requires
the number of time points to be much larger than the number of states. Though this algorithm is
suitable for clustering long time-series data, it does not work well on short time-series data.

To tackle the challenges with short time-series data, the authors of [36] proposed an algorithm
specifically designed for clustering short time-series expression data. The algorithm works by as-
signing genes to a predefined set of model profiles that capture the potential distinct patterns. After
determining the significance of each of these profiles, the most significant ones are retained for fur-
ther analysis and can be combined to form clusters. Using immune response data, the authors have
shown that their algorithm can correctly detect the temporal profile of relevant functional categories.
Using Gene Ontology-based evaluation, the algorithm outperformed both general clustering algo-
rithms and algorithms designed specifically for clustering time-series gene expression data. STEM
is a toolkit that is available based on this work for the analysis and clustering of short time series
gene expression data [35]

In certain scenarios, a gene might not instantaneously be correlated with other genes at that
time but a gene might regulate another gene after a certain time. In order to identify time-lagged
coregulated gene clusters, [53] proposes a novel clustering algorithm for effectively extracting the
time-lagged clusters. This algorithm first generates complete time-lagged information for gene clus-
ters by processing several genes simultaneously. Instead of considering the lags for the entire se-
quence, it considers only small interesting parts (subsequences) of the genes that are coregulated
while there is no distinct relationship between the remaining part. It identifies localized time-lagged
co-regulations between genes and/or gene clusters. It builds a novel mechanism that aims to extract
clusters (which are referred to as q-clusters) of (time-lagged) coregulated genes over a subset of
consecutive conditions. Each such cluster essentially contains information of genes that have sim-
ilar expression patterns over a set of consecutive conditions. More recently, authors in [113] have
extended the concept of time-lagged clustering to three-dimensional clustering.

16.2.7 Cluster Validation

All the clustering algorithms that are described in the previous section will yield either groups of
co-expressed genes or groups of samples with a common phenotype [22]. Reliability of the clusters,
which measures the probability that the clusters are not formed by chance, is a commonly used
metric for validating the results of these clustering algorithms. To compute the p-values of a cluster,
typically the genes from a given cluster are mapped to the functional categories defined in annotated
databases such as Martinsried Institute of Protein Sciences (MIPS) or Gene Ontology (GO) [87].
Typically, a hypergeometric distribution is used to calculate the probability of having at least k genes
from a cluster of size n genes by chance in a biological process containing f genes from a total size
of N genes as follows:

P = 1−
k

∑
i=0

( f
i

)(N− f
n−i

)

(N
n

)

This test measures if a gene cluster is enriched with genes from a particular functional category to
a greater extent than what would be expected by chance. The range of the p-values is from 0 to 1.
Lower p-values indicate biological significance of the clusters.

Another popular metric for evaluating the goodness of the clusters is the Figure of Merit (FOM)
which was originally proposed in [119] to estimate the predictive power of clustering algorithms.
The FOM measure computes the mean deviation of the expression levels of genes in a particular
condition relative to their corresponding cluster means. Thus, a small value of FOM indicates high
predictive ability of the resulting clusters.



394 Data Clustering: Algorithms and Applications

16.3 Clustering Biological Networks

Proteins control the functions of the cell [52]. Understanding these functions requires not only
studying the proteins and but also studying their interactions [8]. Protein interactions are essential
elements of all the biological processes [16]. Pairwise protein interactions have been identified and
validated using recent technologies. These interactions have been obtained by different methods
such as mass spectrometry, two-hybrid methods, and genetic studies. The whole network of protein–
protein interactions for a given organism describes the interactome of that organism. The protein–
protein interaction (PPI) network is represented as a graph in which the nodes represent the protein
and the edges represent the interactions between the corresponding proteins [84].

It has been shown that proteins of known functions tend to cluster together [92]. The network
distance is correlated with functional distance, and the proteins that are closer to one another tend to
have similar biological function [96]. Therefore, studying the PPI networks is crucial in discovering
the functions of proteins and thus understanding inner workings of cells [84]. Clustering the PPI
network can be used to predict the unknown functional categories of proteins.

16.3.1 Characteristics of PPI Network Data

We will first describe some of the key characteristics of PPI networks [8]:

1. Scale-free structures [52]: PPI networks contain hub proteins which are typically involved
with many interactions. In other words, most of the proteins in the network have few inter-
actions, and only a few proteins will have a lot of interactions with other proteins. Applying
existing clustering techniques on these networks would produce a few giant clusters (con-
taining the hub nodes) and the remaining clusters would be very small. Hence, the clustering
process should be adapted to produce better results in terms of the size of the clusters.

2. Disassortativity: In many forms of scale-free networks (such as social networks), highly con-
nected nodes usually are strongly connected with each other. This property is known as as-
sortativity. However, in protein interaction networks this is not the case. Hubs are not directly
linked to each other thus causing the disassortativity in such networks though the average path
lengths are relatively shorter compared to other networks.

3. Multifunctionality: The same protein can be involved in several biological processes [105].
Due to these overlapping structures, it becomes difficult to extract groups of proteins in such
a way that a single protein is present in multiple groups.

16.3.2 Network Clustering Algorithms

Several network clustering algorithms have been proposed in the PPI literature. Some of the
most popular ones will be discussed in this section.

16.3.2.1 Molecular Complex Detection

Molecular Complex Detection (MCODE) algorithm was one of the first computational methods
that was proposed to detect protein complexes based on the protein connectivity values in the PPI
networks. The MCODE algorithm aims to detect the densely connected nodes in complex networks
[9]. The algorithm first assigns a weight to each node based on each protein’s local network density
using the highest k-core of the node neighborhood. A k-core is a graph of minimal degree k. As an
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alternative to the clustering coefficient, the MCODE algorithm defines the core-clustering coeffi-
cient of a node u as the density of the highest k-core of the immediate neighborhood of u. The final
weight for any node is the product of the node core-clustering coefficient and the highest k-core
level.

In the next step, the MCODE algorithm selects the highest weighted node and recursively moves
outward from this seed node including the nodes whose weights are above a certain threshold. If a
node is included, its neighbors are recursively checked in the same manner to see if they are part of
the complex until no more nodes can be added to the complex, and this process is repeated for the
next highest unseen weighted node. The experimental results from this algorithm indicate that the
protein complexes obtained are generally small in number and each of the results is a much larger
complex.

16.3.2.2 Markov Clustering

The Markov clustering (MCL) algorithm is one of the widely studied graph clustering algo-
rithms [106]. Markov clustering has been applied to PPI networks such as yeast and human PPI
networks, and the generated clusters accurately map to known protein complexes [65, 85]. MCL is
an iterative algorithm that has two main alternating steps: expansion and inflation. Initially, the graph
is translated into a stochastic Markov matrix so that the sum of the values in each of the columns is 1.
This matrix represents the transition probabilities between all pairs of nodes. The resulting stochas-
tic matrix is then clustered using the following steps [38, 106]. (i) Expansion: The expansion step
spreads the flow out of a node to potentially new nodes and enhances flow in dense regions. This
step leads to strengthening the strong edges and further weakening the weaker edges. (ii) Inflation:
The inflation step aims to strengthen the intracluster flow and weaken the intercluster flow to obtain
the natural clusters. The above two steps are repeated until convergence. The algorithm is said to be
converged when we obtain a doubly idempotent matrix (a nonnegative column-homogenous matrix
idempotent under matrix multiplication). Also, it has been shown that MCL is more robust to noise
and identifies meaningful clusters [107].

16.3.2.3 Neighborhood Search Methods

The Restricted Neighborhood Search Clustering (RNSC) algorithm was proposed in [63] to
cluster PPI data of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans
and predict protein complexes. This algorithm optimizes a cost-based local search algorithm based
loosely on the tabu search metaheuristic [43]. Clustering of a graph begins with an initial random
clustering and a cost function. Nodes are then randomly added or removed from clusters to find a
partition that minimizes the cost function value. This cost function is based on the number of invalid
connections (absence of intracluster connections or presence of intercluster connections) incident
from a particular node. To achieve high accuracy in predicting the protein complexes, some post-
processing is performed based on the functional homogeneity of the complex, density thresholding,
and minimum size thresholding.

16.3.2.4 Clique Percolation Method

In order to extract the overlapping structures from complex networks, Palla et al. [79] proposed
the Clique Percolation Method (CPM). CPM has the ability to generate the overlapping clustering
by identifying the k-clique percolation communities. A k-clique corresponds to a complete subgraph
of size k. A cluster is defined to be the maximal union of k-cliques that can be reached from others
through a series of adjacent k-cliques. A software package named CFinder [1] implements this
method and is currently being used even in other application domains such as social networks [78].
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16.3.2.5 Ensemble Clustering

An ensemble clustering approach applies different clustering methods on the PPI network data
and then combines the clustering results of all these methods (the base clustering algorithms) into a
single comprehensive clustering result of the PPI networks [8]. The following three base clustering
algorithms were used in this work.

(i) Repeated bisections [100]: This method starts with having the complete dataset as one clus-
ter. Then the following steps is repeated until the desired number of clusters is obtained: (1) select
a cluster to bisect into two clusters and (2) compute the similarity score for each cluster. This algo-
rithm optimizes the I2 criterion defined as follows:

I2 = max
k

∑
i=1

√
∑

v,u∈Ci

S(u,v)

where k is the number of clusters, Ci is the set of objects in cluster i and S(u,v) is the similarity
between the two objects u and v.

(ii) Direct k-way partitioning [59]: This method works as follows: (1) select a set of k objects
(seeds), and (2) compute the similarity between each object and the seed, and (3) assign each object
to the most similar cluster. This procedure is repeated to optimize the I2 criterion.

(iii) Multilevel k-way partitioning [59]: This algorithm has three main steps: coarsening, initial
partitioning, and refinement. In the coarsening step, k-way partitioning is used to cluster the graph
into a set of smaller graphs. In the second step, the partitions are projected back onto the original
graph by iterating over intermediate partitions. Finally, the refinement step reduces the edge-cut
while conserving the balance constraints.

The clustering results of the above mentioned base clustering methods are combined by applying
the following three phases:

1. Cluster purification: The similarity between the objects within each cluster is computed, and
the weak clusters are removed such that each protein is a member of at least one third of the
remaining clusters. The result of this step is represented using a binary cluster membership
matrix where each column is a cluster produced by the base clustering algorithms and each
row is a protein.

2. Dimensionality reduction: A dimensionality reduction method, such as PCA, can be used
to reduce the number of dimensions in the cluster membership matrix. This will avoid the
problem of the curse of dimensionality.

3. Consensus clustering: Two different consensus clustering algorithms are applied: (i) the re-
cursive bisection algorithm where the best of the three base clustering algorithms is chosen
and (ii) the agglomerative hierarchical clustering where the desired k-way clustering solution
is computed using the agglomerative method.

Weighted consensus: This method considers the weight of the edges between proteins within
each cluster [8]. In soft consensus clustering, the same protein can belong to more than one cluster.
The cluster membership can be computed as a factor of the distance from the nodes in the cluster.
The soft clustering solves the problem of multifunctional proteins. This ensemble method produced
better results on yeast PPI networks compared to several other methods.

16.3.2.6 Other Clustering Methods

In [48], a clustering algorithm was developed that combines information from expression data
and biological networks and computes a joint clustering of genes and nodes of the biological net-
work. This method was validated using expression data of the yeast, and the results were explained
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in terms of the biochemical network and the gene expression data. In [82], a biclustering-based
approach was proposed to cluster the PPI data and generate both overlapping and nonoverlapping
clusters. This algorithm was applied on human and yeast networks.

16.3.3 Cluster Validation and Challenges

Using different clustering methods, various results are obtained from a given PPI network.
Hence, it is important to compare and evaluate the performance of these clustering algorithms.
Being an unsupervised approach, it is often quite difficult to evaluate and compare the performance
of various clustering algorithms used in the context of PPI network analysis. Validating the clusters
is primarily done by calculating the p-values for the clusters [110]. Statistically significant p-values
indicate that the set of proteins in the same clusters are involved in the same biological functions.
The GO database provides the annotation of known molecular functions and biological processes
[7]. Similar to the evaluation of the gene clusters from the expression data, a hypergeometric distri-
bution is used to calculate the probability of having at least k genes from a cluster of size n genes
by chance in a biological process containing f genes from a total size of N genes. Lower p-values
indicate biological significance of the clusters.

If there are known protein complexes, they can be used as a gold-standard to evaluate the perfor-
mance of the clustering algorithm by comparing the predicted cluster to the known ones. Clustering
the PPI data is still a challenging problem due to various reasons [110]. The false positive and false
negative interactions in the protein network makes it difficult to evaluate the quality of the resulting
clusters. Also, there is a need for clustering methods that allow overlapping between the clusters.
Similar to other applications, identifying the optimal number of clusters in the PPI data is a chal-
lenging task. In addition, the large amount of available data makes it computationally expensive to
analyze the PPI networks.

16.4 Biological Sequence Clustering

Sequence clustering is an essential task in biological data analysis, because the most important
building blocks of living organisms, such as DNA, RNA, mRNA, polypeptides, and proteins, have a
linear structure and can be represented as sequences. For DNA, RNA, and mRNA, the sequences are
made of nucleic acids, also called bases and for polypeptides and proteins, the sequences are made
of amino acids. Earlier studies on biological sequences were mostly limited to pairwise sequence
alignment and multiple sequence alignment. However, in recent years, scientists are amassing an
enormous amount of sequence data as a result of improvement on the high-throughput sequencing.
Similarity search in such a large sequence database using alignment algorithms is extremely costly.
So, alignment-based similarity search is performed on a small cluster of highly similar sequences.
Sequence clustering plays a significant role in finding those small clusters.

16.4.1 Sequence Similarity Metrics

Many of the existing clustering methods that we have discussed in the earlier sections, such as
bi-clustering, graph-theoretic clustering, and Markov clustering can be used for clustering sequences
if a suitable distance (or similarity) metric is available. Formally speaking, a distance metric takes a
pair of sequences and returns a real number which denotes the distance between the given sequences.
Once all pairwise distances among a set of sequences are found, the similarity information can be
encoded in a matrix or in a graph. In the case of a matrix, the rows and the columns correspond to
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the sequences, and for the graph, the nodes represent the sequences and an edge represents a pair
of similar sequences for a chosen similarity threshold. Any traditional clustering algorithm can find
clusters once a similarity matrix or a similarity graph is available.

For clustering biological sequences, finding a suitable distance metric is challenging due to the
complexity associated with these sequences. For instance, a protein sequence may be composed of
various functional domains, and two protein sequences may share only a few of those domains; in
that case the overall similarity between these two proteins will be weak. However, if the matched
functional domains are highly significant, these proteins should belong to the same cluster. Also,
when clustering genome sequences, a similarity metric should consider only the coding part of the
DNA and discard a significant part of the genome sequences, such as junk DNA and tandem repeats.
Below, we discuss a collection of distance metrics that can be used for measuring the distance
between a pair of sequences. It is important to note that though we use the term metric, many of the
similarities measurement may not be a “metric” using its mathematical definition.

16.4.1.1 Alignment-Based Similarity

The most popular distance metric for sequence data is the Levenshtein distance, or edit dis-
tance [46]. It denotes the number of edits needed to transform one string into the other with the
allowable edit operations being insertion, deletion, or substitution of a single character. For a pair
of sequences, this distance can be computed by performing the global alignment between the se-
quences; for two sequences of length l1 and l2, the global alignment cost is O(l1l2). This is costly
considering that biological sequences (particularly, DNA sequences) are typically long. So, Leven-
shtein distance is not an ideal metric for biological sequences for the task of sequence clustering. An-
other limitation of this distance metric is that it captures the optimal global alignment between two
sequences, whereas for clustering biological sequences, local similarities between two sequences
should be considered. Finally, the dependency of the edit distance metric on the length of the se-
quence makes it a poor metric for the cases where the length of the sequences in the dataset varies
significantly.

To capture the local similarity between two sequences, Smith-Waterman’s local alignment
score [46] can be used. Instead of aligning the entire sequence the local alignment algorithm aligns
similar regions between two sequences. The algorithm compares segments of all possible lengths
and optimizes the similarity measure. Though it overcomes some of the problems of global align-
ment, it is as costly as the global alignment algorithm and is simply impractical for clustering thou-
sands of biological sequences.

During the eighties and the nineties, two popular tools, known as FASTA [80] and BLAST
(Basic Local Alignment Search Tool) [5], were developed to improve the scalability of similarity
search from biological sequence databases. Both tools accept a query sequence and return a set
of statistically significant similar sequences from a sequence database. The main benefit of these
tools over an alignment-based method is that they are highly scalable, as they adopt smart heuristics
for finding similar segments after sacrificing the strict optimality. Also, specifically BLAST has
various versions (such as PSI-BLAST, PHI-BLAST, BLAST-tn) that are customized based on the
kind of sequences and the kind of scoring matrix used. For a given set of sequences, FASTA and
BLAST can also be used to find a set of similar sequences that are pairwise similar. For a pair of
similar sequences, BLAST also returns bit score (also known as BLAST-score) which represents
the similarity strength that can be used for clustering sequences.

16.4.1.2 Keyword-Based Similarity

To model the effect of local alignment explicitly, some sequence similarity metrics consider
the q-gram-based method, where a sequence is simply considered as a bag of short segments of
fixed length (say, q); thus, a sequence can be represented as a vector, in which each component
corresponds to the frequency of one of the q-length segments. Then the similarity between two



Clustering Biological Data 399

sequences is measured using any metric that measures the similarity between two vectors, such as
dot product, Euclidean distance, Jaccard coefficient, or even tf-idf [89]. This approach is also known
as a keyword-based method, as one can consider each sequence as a document and each q-gram as a
keyword in the document. The biggest advantage of similarity computation using a keyword-based
method is that it is fast. Another advantage is that this method represents a sequence using an R

n

vector, which can accommodate some of the clustering algorithms (such as, k-means) that work
only on vector-based data.

16.4.1.3 Kernel-Based Similarity

In recent years, kernel-based sequence similarity metrics also got popular. In [67, 66], the au-
thors present several families of k-gram-based string kernels, such as restricted gappy kernels, sub-
stitution kernels, and wildcard kernels, all of which are based on feature spaces indexed by k-length
subsequences (k-mers) from the string alphabet. Typically, kernels are used for supervised classifi-
cation with support vector machines (SVM), however, they can also be used as a similarity metric
for unsupervised clustering.

16.4.1.4 Model-Based Similarity

Probabilistic models, such as HMM are also used for finding similarity metrics. For a given
set of sequences to be clustered, such a method trains one HMM for each of the sequences. Then,
the similarity between two sequences can be obtained from the similarity (or distance) between
the corresponding HMMs. In the past, few authors have proposed approaches for computing the
distance between two HMMs [86]; early approaches were based on the Euclidean distance of the
discrete observation probability, others on entropy, or on co-emission probability of two HMM
models, or on the Bayes probability of error [10].

16.4.2 Sequence Clustering Algorithms

In an earlier section, we discussed that given a similarity metric, we can use any clustering
method for clustering biological sequences. Nevertheless, there have been many clustering methods
that are explicitly proposed for clustering biological sequences. We discuss them under the following
groups.

16.4.2.1 Subsequence-Based Clustering

A subsequence-based clustering method mines a set of frequent subsequences from each of the
sequences and uses them as features for clustering the sequences. The idea of such clustering is
similar to the task of document clustering using the “bag-of-words” representation of a document.
A traditional sequence mining method returns a large number of subsequences that are frequent, but
all such subsequences are not good features for clustering. So, a good clustering method needs to
choose a subset of these subsequences as features so that when projected on the feature-set the sim-
ilarity between a pair of sequences is computed correctly. Different algorithms of sequence cluster-
ing vary in the way they choose the subsequence feature set. The advantages of subsequence-based
clustering methods is that they are typically fast compared to other sequence clustering methods.
However, this approach ignores the relative position of various subsequences, so they cannot model
some of the sequential relations, such as ordering and sequential dependency.

One of the first among subsequence-based sequence clustering methods was proposed by Gu-
ralnik and Karypis [45]. They used traditional frequent sequence mining methods [121] to mine
subsequences, but to control the number of subsequences, they imposed minimum and maximum
length constraint on the mined subsequences; then they used a subset of the mined subsequences
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as the feature set for clustering. To select the feature set, they followed two approaches: global and
local. The global approach prunes the feature space by selecting a set of independent subsequences,
where dependency is defined as the overlap between the symbols of the sequences or as the over-
lap between their support list. On the other hand, the local approach finds independent features
locally from each of the sequences, where two features are independent if they are supported by a
nonoverlapping segment of the corresponding sequences. Once the feature set is defined, they used
a k-means algorithm to cluster the sequences.

A more sophisticated variation of the subsequence-based method was proposed in [111]. In this
paper, the authors introduce the notion of frequent summarization subsequence (FSS) and represent
each sequence by a collection of those FSSs. Intuitively, an FSS is a keyword that can be viewed
as a discriminating feature for clustering the input data sequences. However in this work, the au-
thors use a tf-idf kind of weighting on each symbol to assign weight on each of these FSSs. They
also present an effective method that directly mines all the FSSs from the sequence data. The final
clustering method has two stages. The first stage generates microclusters, which are obtained by
simply grouping the sequences with a shared FSS in a cluster. Typically, the number of microclus-
ters is larger than the desired number of clusters, so a second stage is used to merge the microclus-
ters using a hierarchical agglomerative clustering method, until the desired number of clusters is
obtained.

16.4.2.2 Graph-Based Clustering

A graph-based sequence clustering method represents the sequences in a similarity graph, in
which a vertex represents a sequence and an edge represents the similarity relation between the
corresponding pair of sequences. In such a representation, a partition of the similarity graph rep-
resents a clustering of the input sequences. The crucial requirement in a graph-based sequence
clustering method is to obtain the similarity graph in an efficient manner. A brute-force approach to
obtain a similarity graph computes the similarity values between all

(n
2

)
pairs of sequences (here,

n is the number of sequences) and then uses a user-defined threshold to add edges between se-
quences in a similarity graph. Clearly this is inefficient, as it requires to compute O(n2) similarity
scores explicitly, so many graph-based sequence clustering algorithms use an efficient method for
similarity graph construction. Once a similarity graph is obtained, one of the many available graph-
clustering [90] methods can be used to obtain the desired clustering. In Algorithm 35, we present a
pseudocode for a graph-based sequence clustering algorithm; based on the specific method for the
similarity routine (Line 4) and the graph clustering (Line 9), various graph-based sequence cluster-
ing methods can be obtained.

The graph-based sequence clustering method that is shown in Algorithm 35 is sometimes not
scalable as the computation cost grows quadratically with the number of sequences. Since the sim-
ilarity computation of each pair of sequences is independent, a straightforward remedy to the lack
of scalability is to use distributed or parallel computing to perform the tasks in Lines 2–8. There
also exist algorithmic solutions; instead of finding the similarity between all the sequence-pairs ex-
plicitly, these solutions adopt methods that find similar segment-pairs across all the input sequences
simultaneously. Then, they obtain the similarity between input sequences by scanning the frequency
of highly significant similar segment-pairs. For instance, if two sequences share a large number of
similar segment-pairs, the pair obtains a high similarity score, and hence the method adds an edge
between those two sequences in the similarity graph. The advantage of such methods is that they
avoid the all-pair similarity computation with has quadratic complexity and replace it with a method
that has linear or sublinear complexity.

Line 9 of Algorithm 35 calls a graph-clustering algorithm. Many of the existing graph-clustering
methods, such as spectral clustering [97, 29] or Markov clustering [31], have quadratic (O(|V |2))
complexity and, hence, are not efficient for this task. Also, unlike the earlier task of similarity graph
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Algorithm 35 Generic Graph-Based Sequence Clustering
Require: Sequence database (S )

Similarity threshold (σ)
Cluster count (k)

1: G(V,E) = build-graph(V = S ,E = /0)
2: for each edge s1 ∈ S do
3: for each edge s2 ∈ S do
4: if sim(s1,s2)≥ σ and s1 
= s2 then
5: E = E ∪ (s1,s2)
6: end if
7: end for
8: end for
9: C = graph-clustering(G,k)

10: return C

construction, obtaining a parallel or distributed method for clustering graph is nontrivial. So, the
majority of the methods choose a simple graph clustering algorithm. One such method is single-
link clustering (SLC), which is an agglomerative clustering method that merges two of the existing
clusters based on the largest similarity between a pair of sequences that are taken from those two
clusters. The process continues until the desired number of clusters is obtained. The complexity of
SLC is O(|E|), which is much cheaper than O(|V |2) for sparse graphs. Since similarity graphs are
very sparse, SLC method on such graph is highly efficient. However, the clustering quality of SLC
can be poor; for instance, it can happen that the distance of an object from another object belonging
to a different cluster can be smaller than the distance of the first object to another object belonging
to the same cluster.

One of the earliest sequence clustering methods that uses a graph-based technique is Gene-
RAGE [34]. It performs an all-against-all sequence similarity search using BLAST; if the similarity
between two proteins is higher than a given threshold, an edge is added between those two pro-
teins in the similarity graph. Along this process, GeneRAGE also performs some preprocessing on
the similarity graphs. For example, it identifies whether a protein is multidomain by considering the
transitivity of similarity among other proteins that are similar to the said protein; if multidomain pro-
teins are found, they are allowed to be part of multiple clusters. For the clustering task, GeneRAGE
uses SLC. Another earlier clustering method, called d2 cluster [17] also uses SLC for clustering
EST (expressed sequence tags) and full-length cDNA sequences. In a recent work [73], Miele et. al.
propose a memory-efficient implementation of SLC by following the well-known Union-Rank data
structure for disjoint sets.

Kawaji et al. [60] mention the limitations of single-link clustering and propose to use recursive
graph partitioning to find clusters from the similarity graph. However, the balanced bipartition tech-
nique that they propose uses a one-change optimization scheme, which is very costly. In [81], the
authors use spectral clustering with the multiway normalized cut criteria for clustering the simi-
larity graph; however, as we mentioned earlier, spectral clustering-based methods are not scalable
because they require finding eigenvectors and eigenvalues of similarity matrix—a computationally
intensive task. Another clustering method called BAG [62] also uses partitioning of the similarity
graph, but its partitioning method is targeted to find biconnected components of the similarity graph.
For building the similarity graph, BAG uses the FASTA algorithm in an efficient manner; for every
sequence i : 1 ≤ i≤ n, it calls FASTA(si,S) and finds the pair of similar sequences with only O(n)
number of FASTA calls, instead of O(n2) such calls. Very recently, Voevodski et al. [108] proposed
a method that finds the similarity graph with only k(< n) number of BLAST calls, where the value
of k is decided by following an active learning paradigm.
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16.4.2.3 Probabilistic Models

The probabilistic approach is popular for sequence modeling. For instance, the earliest ap-
proaches for modeling protein families use profile-HMM, a hidden Markov model-based proba-
bilistic approach. However, the main objective of profile-HMM is to perform multiple sequence
alignment. Since then, several methods have been proposed to use HMM for sequence clustering.
We discuss a few of them below.

Smyth’s work [99] is one of the first that uses HMM for clustering biological sequences. His
method has two steps: the first step devises a pairwise distance between observed sequences by
computing a symmetrized similarity. This similarity is obtained by training an HMM for each se-
quence, so that the log-likelihood (LL) of each model, given each sequence, can be computed. This
information is used to build an LL matrix which is then used to cluster the sequences into k groups,
using a hierarchical algorithm. In the second step, one HMM is trained for each cluster; the result-
ing k models are then merged into a composite global HMM, where each HMM is used to design a
disjoint part of this composite model. This initial estimate is then refined using the standard Baum-
Welch procedure. As a result, a global HMM modeling of all the sequences is obtained. The number
of clusters (k) is selected using a cross-validation method.

CLUSEQ [116] uses conditional probability distribution (CPD) for characterizing a cluster, i.e.,
for different clusters the CPD of the next symbol given a preceding segment is different, and hence
the CPD can be used for clustering biological sequences. To store and retrieve the CPD of various
segments, CLUSEQ uses a novel data structure, called a probabilistic suffix tree (PST); every node
in PST stores a probability vector to store the probability distribution of the next symbol given the
label of the node as the preceding segment. Usages of PST make CLUSEQ very efficient. In the
following paragraphs, we describe CLUSEQ in more detail.

The CLUSEQ algorithm accepts a sequence database along with user-defined values for vari-
ous threshold parameters. At the beginning, all sequences in the database are unclustered. Then, an
iterative process is employed to continuously improve the quality of the clustering until no further
improvement can be made. In each iteration, CLUSEQ starts with a set of new clusters; a few ran-
dom sequences from the unclustered set are chosen to be clusters themselves. Then, it examines
each sequence to evaluate its similarity to each of the clusters and updates the cluster membership
of that sequence, if necessary. At the end of the iteration, CLUSEQ also merges multiple clusters, if
their membership overlaps significantly. The key part of CLUSEQ is the step which computes the
similarity of a sequence to a cluster. For this, CLUSEQ uses CPD of symbols given a segment. For
efficient computation of CPD, the sequences in a cluster are stored in a probabilistic suffix tree. If S
is a cluster and σ = s1s2 · · · sl is a sequence, its likelihood to be a member of the cluster S is given
by PS(σ) = PS(s1)×PS(s2|s1)× . . .×PS(Sl |S1 . . .Sl−1), where PS(si|s1 · · ·si−1) is the conditional
probability that the symbol si is the next symbol right after the segment s1 . . .si−1 in the sequence
cluster S. For each cluster, CLUSEQ maintains a PST, which stores the above conditional probabili-
ties effectively. The strengths of CLUSEQ are that is is specifically adapted for biological sequence
clustering and it is very efficient. The weakness is that is has several user-defined parameters that
need to be selected appropriately for good clustering results. Also, due to the randomness, the clus-
tering is nondeterministic, and its quality depends on the random choice of the initial sequences that
constitute the cluster seeds.

In a recent work [112], the authors propose another CPD-based model, called DHCS, which
overcomes some of the difficulties of the CLUSEQ; specifically, DHCS does not choose seed se-
quences randomly, rather it employs a two-tier Markov Model, where the first tier provides a good
initialization for the CPD model in the second tier. The two-tier structure guarantees that the statisti-
cal models in the DHCS algorithm are constructed in a statistically significant way without resorting
to pairwise comparison of sequences.
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16.4.2.4 Suffix Tree and Suffix Array-Based Method

For fast processing of sequence similarity, efficient data structures that index small sequence-
segments are also proposed. The main objective of using a data structure is to avoid the full pairwise
similarity computation, which is infeasible for many clustering tasks because of its quadratic com-
plexity. For example, databases of ESTs sometimes contain millions of ESTs and efficient data
structure is critical for clustering those sequences.

In [72], the authors use suffix arrays to cluster ESTs; suffix arrays are particularly suitable be-
cause ETSs are short subsequences of cDNA sequences. To identify all matching blocks of length
k, this method first adds all suffixes into a suffix array. Then it sorts the suffixes and groups the
suffixes that share a k-length prefix. Then, for each pair of suffixes sharing at least one matching
block, it finds the largest consistent matching blocks and the corresponding matching score. Fi-
nally, starting with the highest scoring sequence pair, it builds hierarchical clusters using single-link
clustering. In [47], the authors propose a clustering tool called CLAGen, that uses a suffix tree for
sequence clustering. CLAGen constructs a suffix tree from the input sequences; this construction is
highly efficient with only linear time complexity. Then, CLAGen uses the suffix tree for searching
and overlapping common subsequences so that it can obtain sequence pairs that are highly simi-
lar. From the pairwise similarity information, CLAGen finds sequence clusters. A nice feature of
CLAGen is that it annotates the gene clusters by using information from the BLAST search. The
CLUSEQ algorithm that we discussed earlier also uses a suffix tree, but it uses it to find the condi-
tional probability of a symbol given a sequence in a cluster.

16.5 Software Packages

Implementations of the well-known clustering algorithms for microarray, protein interaction and
sequence data are available online. We summarize some of the most popular ones that are currently
being used.

The most popular tool for cluster analysis and visualization of microarray data is Cluster [33]
which was developed by Michael Eisen. It contains some of the basic clustering algorithms such
as k-means, hierarchical and self-organizing maps. TreeView is a software (associated with Cluster
software) that provides a graphical user interface to browse through the clustering results. Both of
these work only in the Windows environment and can be downloaded from http://rana.lbl.

gov/EisenSoftware.htm.
Michiel de Hoon of the University of Tokyo has created a version of Cluster (called Clus-

ter 3.0) [23] that implements the same algorithms for different platforms. Routines for hier-
archical (pairwise simple, complete, average, and centroid linkage) clustering, k-means and k-
medians clustering, and 2D self-organizing maps are included. This software can be downloaded
from http://bonsai.hgc.jp/~mdehoon/software/cluster/. Extensions of these modules
to Python and Perl languages are also available.

Java TreeView is a Java-based visualization software that can be used to view the original
microarray data and also the corresponding clustering results [88]. This is an open source software
which can be downloaded from http://sourceforge.net/projects/jtreeview/.

EXCAVATOR (EXpression data Clustering Analysis and VisualizATiOn Resource) was de-
veloped by the Protein Informatics Group of Oak Ridge National Laboratory. It uses concepts from
graph theory (such as minimum spanning trees) to represent gene expression data. In addition to pro-
viding different distance measures for computing clusters, it contains many other additional features
such as automatic selection of the number of clusters, background noise removal, and identifying
gene expression profiles that are similar to a specified set of seed genes. This software is available at
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http://digbio.missouri.edu/software/Excavator/index.html. EMMIX-GENE (avail-
able at http://www.maths.uq.edu.au/~gjm/emmix-gene/) is a software for mixture model-
based clustering for gene expression data.

EXPANDER (EXPression ANalyzer and DisplayER) is a gene expression analysis and visual-
ization tool that contains several clustering methods such as k-means, hierarchical clustering, and
self-organizing maps, and it enables visualizing the gene expression data and their clusters [94]. It
is a Java-based tool which can be downloaded from http://acgt.cs.tau.ac.il/expander/.
The Pvclust is an R package that can be used to assess the uncertainty in hierarchical cluster anal-
ysis. It calculates p-values for each cluster using bootstrap resampling technique [102]. It can be
downloaded from http://www.is.titech.ac.jp/~shimo/prog/pvclust/. Genesis is a Java-
based, platform-independet package for simultaneously analyzing and visualizing gene expression
datasets. It contains several popular clustering algorithm implementations such as hierarchical clus-
tering, self-organizing maps, and k-means clustering [101]. It can be downloaded from http://

genome.tugraz.at/genesisclient/genesisclient\_download.shtml. wCLUTO (avail-
able at http://glaros.dtc.umn.edu/gkhome/cluto/wcluto/overview) is a web-enabled
data-clustering application that is designed for the clustering and data-analysis requirements of
gene-expression analysis. wCLUTO is built on top of the CLUTO clustering library. Users can
upload their datasets, select from a number of clustering methods, perform the analysis on the
server, and visualize the final results. A synthetic generator for gene expression data is available at
http://www.che.udel.edu/eXPatGen/. Such a simulator can generate hypothetical expression
patterns that can be used to evaluate and compare different clustering methods.

A popular tool that implements many popular biclustering algorithms (such as CC, ISA, and
OPSM) is the Biclustering Analysis Toolbox (BicAT) which is available at http://www.tik.
ee.ethz.ch/sop/bicat/. BicAT is a Java-based software that provides a nice graphical user
interface for analyzing gene expression data [12]. TriCluster [123] is the first triclustering algo-
rithm for microarray expression clustering. Tricluster first mines all the biclusters across the gene-
sample slices, and then it extends these into triclusters across time dimensions. This software can be
downloaded from http://www.cs.rpi.edu/~zaki/software/TriCluster.tar.gz. STEM
(Short Time-series Expression Miner) is a Java program for clustering, comparing, and visualizing
short time-series gene-expression data from microarray experiments. It can be downloaded from
http://www.cs.cmu.edu/~jernst/stem/.

clusterMaker [74] provides a unified platform for various traditional clustering and net-
work clustering techniques. It is available at http://www.cgl.ucsf.edu/cytoscape/cluster/
clusterMaker.html. All of the network partitioning cluster algorithms create collapsible “meta
nodes” to allow interactive exploration. These clustering algorithms have been developed as a plugin
to the Cytoscape software [93]. Cytoscape is an open source bioinformatics software platform for
visualizing complex molecular interaction networks. It is available at http://www.cytoscape.
org/.

CFinder is a free software for finding and visualizing overlapping dense groups of nodes in
networks, based on the Clique Percolation Method (CPM) [1]. It is a fast program for locating
and visualizing overlapping, densely interconnected groups of nodes in undirected graphs, and al-
lowing the user to easily navigate between the original graph and the web of these groups. This
software is available at http://www.cfinder.org/. The code for Markov clustering is avail-
able at http://www.micans.org/mcl/. It provides a collection of network analysis tools focused
on analysis of very large networks, scaling up to millions of nodes and hundreds of millions of
edges. The software for MCODE algorithm [9] is made available in the form of a Cytoscape plugin
at http://baderlab.org/Software/MCODE. The network analysis tools (NeAT) [15] provides
a user-friendly web access to a collection of modular tools for the analysis of networks (graphs)
and clusters. It includes a set of tools that support basic graph operations and clustering algorithms.
NeAT is designed to cope with large datasets and provides a flexible toolbox for analyzing biological
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networks stored in various databases or obtained from high-throughput experiments. This software
is available at http://rsat.ulb.ac.be/neat/.

CD-HIT is a very widely used program for clustering protein and DNA sequence. It is available
from http://weizhong-lab.ucsd.edu/cd-hit/. The website has a server that provides CD-
HIT services online. Alternatively, the user can also download the program for off-line use. The
CD-HIT package has various sequence clustering tools that are customized for different biological
sequences. The standard BLAST package includes a program called BLASTclust that can be used
to cluster either protein or DNA sequences. BLASTclust accepts a number of parameters that can be
used to control the stringency of clustering including thresholds for score density, percent identity,
and alignment length. Besides clustering, BLASTclust can also be used to create a nonredundant set
of sequences from a source database. The following website http://toolkit.tuebingen.mpg.
de/blastclust provides access to a blastClust server.

16.6 Discussion and Summary

This chapter provides a survey of different data clustering techniques that have been successfully
applied in the context of biological data. We have discussed different types of biological data where
data clustering has produced promising and biologically meaningful results. For clustering gene
expression data, different categories of clustering, namely, biclustering, triclustering, and time-series
clustering, have been discussed along with some of the standard clustering algorithms. Different
properties of biological networks along with the most widely studied network clustering algorithms
have also been discussed. Various biological sequence similarity measures and clustering algorithms
have been studied. Along with the clustering algorithms, we also have discussed the biological
validation of the clusters obtained.

As more and more biologists become familiar with the advancements in data clustering algo-
rithms, we can envision a data-driven biological science instead of a hypothesis-driven science. In
addition, we also hope that the new insights that these clustering algorithms provide can drive a new
set of biologically constrained experiments that can capture better insights about cellular functions.
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17.1 Introduction

Networks are ubiquitous—ranging from network of computers in the World Wide Web, to con-
nections between users on social networks, from Protein–Protein Interaction (PPI) networks to cita-
tion network among authors, from follower–followee network (on Twitter and similar networks) to
dependency structure between constituent tasks of a large program. Recent advances in technology
have resulted in a diverse range of domains generating network data. Some example domains range
from social [120, 169] to biological [81] from scientific [37, 119] to ecological [14, 153] and the
like. Study of such networks can convey important information about community structures among
the nodes, connection patterns, influence of nodes, etc. [11, 12, 68, 124].

Clustering is one of the most important operations to apply on a network for mining valuable
information from the network. Many other clustering algorithms on other data domains can be
solved as a special case of network clustering. For instance relational data can be expressed as
entity-relation graphs, general object-driven data sets can be represented as graphs with a (sparse)-
similarity matrix between nodes representing the different objects (spectral clustering of relational
data is based on this concept) and so on. Some of the early algorithms (e.g., Chameleon [85]) on
clustering generic data sets are designed as a special case of graph clustering. Graph clustering
is a very powerful abstraction for all kinds of data clustering. Over decades graph clustering has
been studied intensively because of its practical applications and importance [90, 57, 78]. More
recent algorithms have been developed keeping the structure and size of modern networks in mind.
Examples include multilevel graph partitioning algorithms such as Metis [86], Graclus [42], and
MLR-MCL [148]. These algorithms are scalable and can deal with some of the biggest graphs [148];
some with millions of vertices and billions of edges Spectral clustering methods form an important
class of graph partitioning algorithms. They use weighted cuts [151] and are very effective in terms
of quality in the context of social networks. Another important class of graph clustering algorithms
involve Markov Clustering (MCL) [45] that is based on stochastic flow simulation. One drawback of
the original MCL, however, is the lack of scalability. But improvements to the algorithm have been
proposed and the limitations can be effectively redressed while retaining the advantageous features
[148, 150]. There has also been the use of hybrid algorithms such as Metis+MQI.

Some of the practical applications of graph clustering range from analysis of social networks
[125] to analysis of Protein–Protein Interaction (PPI) networks [19], from VLSI design [46] to load
balancing in distributed computing environment [135]. Partitioning and grouping the vertices of a
graph based on objective functions such as similarity and distance have become important aspects
of large network analytics. Some additional applications include community discovery for proxy
caches in World Wide Web context and detection of link farms [20, 65], for personalized recom-
mendation systems [141], for efficient routing in mobile ad-hoc networks [157], and so on. Other
important applications are summarization of activities within network for a better understanding of
the interaction between groups and how the network evolves [10], identification of influential nodes
for marketing purposes [43, 100], and prediction of user rating for given items [93].

In recent years, a number of scalable algorithms have been proposed that efficiently produce
high quality clusters from graphs. Networks can be perfectly represented with graph data structures
and clustering networks, in general, similar to the problems of graph clustering. In this chapter, we
will discuss various techniques proposed in the literature for clustering networks/graphs.
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17.2 Background and Nomenclature

Before discussing various approaches in detail we would like to clarify the terms clustering,
graph partitioning, and community discovery, which are often used interchangeably in the literature.
The term clustering is often described as a method by which one assigns or organizes records,
objects, or entities into groups (clusters) wherein members of each group are more similar to one
another (by some definition) and less similar with elements that lie outside of said group. Clustering
may further be categorized as hard or soft—the former refers to the case where each element strictly
belongs to at most one group while the latter refers to the case where each element may belong to
multiple groups; complete or partial—the former refers to the case where all elements are placed
in one or more groups and the latter refers to the case where most elements are placed into groups;
balanced or skewed—the former refers to the case where the cardinalities of groups are roughly
similar, the latter when there is high skew among the cardinalities.

Graph partitioning is a term that is often associated with a hard form of clustering on graphs,
that is, complete and typically balanced. This concept is natural in many applications such as VLSI
design [46], and the partitioning of physical nodes within a cluster environment [171].

Community discovery is a term that refers to a clustering on graphs that yields tight knit clusters,
typically from a topological standpoint. Community discovery algorithms may yield skewed or
balanced, partial or complete, and hard or soft groupings depending on the needs of the domain.
Although very similar to graph clustering, the term is frequently used in domains where one is
interested only in finding the most densely connected components of the graph and not in the cluster
assignment of each of the vertices. In such scenarios, a complete clustering of the whole network is
not necessary. Rather, finding the most interesting groups often suffices. Lots of computations can
be saved by clustering only the densely connected parts of the network [65].

17.3 Problem Definition

Networks are represented using graph data structures that contain sets of vertices and edges
between vertices. In formal notations, a graph G = (V ,E) consists of a set of n vertices V =
{v1,v2, ...,vn} and a set of edges E . An edge ei, j represents a connection between vertex vi and v j.
Both vertices and edges can have weights associated with them. A weighted edge represents not
only a connection between the nodes, but also a measure of similarity, distance, etc., between the
two nodes. Graphs can also be directed or undirected. Edges are symmetric (ei, j = e j,i) in undirected
graphs while they are not in directed graphs ( ei, j 
= e j,i).

Let k be a positive integer. The graph partitioning problem can be posed as a k-way partition of
G into a set of nonempty subsets C1, ...Ck of G such that

⋃k
i=1 Ci = G . In general, the partitioning

problem has two objectives: the graph should be clustered in such a way that each cluster contains
roughly the same number of vertices and the number of edges between clusters is minimized though
other objectives can be defined based on application requirements.

Given the formulation of the general graph clustering problem, we first discuss commonly used
evaluation criteria followed by a detailed discussion and analysis of different graph clustering algo-
rithms proposed in the literature.
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17.4 Common Evaluation Criteria

In this section, we give an overview of commonly used performance evaluation criteria for
clustering algorithms. A variety of measures have been proposed in the literature that capture the
goodness of a partition of the graph [131].

The simplest function to measure the quality of a partition is “cut” and the most direct way to
construct the partition is to solve the mincut problem [105]. Given the number k of partitions, the
mincut approach chooses a partition C1, ...,Ck that minimizes

cut(C1,C2, ...,Ck) =
1
2

k

∑
i=1

W (Ci,C̄i)

For k = 2 mincut is relatively simple and an easy problem to solve [158]. But in practice, the
partitions are not often satisfactory. More specifically, the solution tends to separate one individual
vertex from the rest of the graph which is not expected [105]. In partitioning, each group should
be large enough. There have been two most popular objective functions to include this aspect of a
partition.

RatioCut, proposed in [74], of a group of vertices C is the sum of the edge weights connecting
C to the rest of the graph normalized by size of C. It is denoted as

RatioCut(C1, ...,Ck) =
1
2

k

∑
i=1

W (Ci,C̄i)

|Ci|
Probably the most popular quality function for graph partitioning is normalized cut [151, 114].

The normalized cut of a group of vertices C is the sum of the weights of the edges connecting C
to the rest of the graph normalized by total edge weight of C and total edge weight of the rest of
the vertices in the graph. Mathematically, the normalized cut of a partition of the graph C ⊂ V is
denoted as

Ncut(C1, ...,Ck) =
1
2

k

∑
i=1

W (Ci,C̄i)

d(Ci)

where d(Ci) is the total degree of cluster Ci

The intuition in both RatioCut and Normalized Cut is to make sure partitions are “balanced”
[105]. Groups with low normalized cut represent good communities because they are well connected
among themselves and sparsely connected to the rest of the graph [131].

The conductance is defined in [83] and is closely related. It is defined as

Conductance(C) =
∑i∈C, j∈C̄ W (i, j)

min(∑i∈C d(i),∑i∈C̄ d(i))

The normalized cut or conductance of a partition of a graph into k clusters C1, ...,Ck is the sum
of the normalized cut or conductance of the individual partitions Ci for i = 1, ...,k [42].

Another popular measure of partition goodness of a graph is Modularity [125]. This measure is
the sum of the differences, for each cluster, between fraction of internal edges and fraction of edges
that are expected to be inside a random cluster with the same total degree. Mathematically,

Q =
k

∑
i=1

[
W (Ci,Ci)

e
−
(

d(Ci)

2e

)2
]

where Cis are clusters, e is number of edges, and d(Ci) represents the total degree of cluster Ci.
Unfortunately, optimizing any of these “normalized” objective functions is NP-hard [64, 151].
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In following sections, we review some of the partitioning algorithms proposed in the literature
for solving the problem of graph clustering. Some of these methods date back to the early 1970s
and have played important roles in laying out the direction for solving graph clustering problems.
Primarily the problem was viewed as a graph bisection problem and the goal was to partition the
graph into two roughly equal sized partitions so that the interpartition edges are minimized; either in
number or in weight. Many of such bisection algorithms were later extended to handle the problem
of k-way partitioning.

Different approaches have been taken to solve the generic problem of graph clustering. Some
of them rely on geometric properties while others need only the graph itself and no additional
information. Some approaches are deterministic in the sense that they always produce the same
result while some employ randomization. In this section, we will present some of the representative
algorithms to cover the whole spectrum.

17.5 Partitioning with Geometric Information

Sometimes a geometric layout of the graph can be known from additional information about the
graph. For instance, a structure in a d-dimensional space can be easily represented as a graph where
the geometric coordinates are attached to the vertices. Such graphs are also referred to as meshes.
Algorithms that deal with meshes usually use only the geometric information and are therefore
limited to graphs that have such geometric information available. In fact, these algorithms do not
use any edge information and, hence, cannot be extended very easily to handle graphs with weighted
edges [51]. But they often produce acceptable results for mesh clustering. The overall approach is to
divide the underlying space into two parts in such a way that the points are divided into two roughly
equal groups. Let us look at some of the common methods.

17.5.1 Coordinate Bisection

This is the simplest coordinate-based method that involves finding a hyperplane that is orthog-
onal to a chosen coordinate axis and that divides the points into two equal parts. This can be done
simply by looking at the corresponding coordinate values and finding a value so that half of the co-
ordinate values are smaller and half are greater. For instance, if y-axis is chosen, a value y is chosen
that divides the y-coordinate values of the points into two groups. There are two ways in which this
technique can be applied recursively:

• Repeatedly bisecting the same axis: This leads to thin partitions leading to long boundaries
which typically results in high cut-size

• Alternately bisecting the coordinate axes: This usually leads to a better partitioning and lower
cut-size

The obvious drawback of coordinate bisection is the dependency on the coordinate system. That
is, the same graph might be partitioned differently in a different coordinate system.

17.5.2 Inertial Bisection

The basic idea of Inertial Bisection [77, 135] is to choose an axis that runs through the “middle”
of the points. Mathematically this corresponds to choosing a line L such that the sum of squared
distances from the points to the line L is minimized. The line L is the axis of minimal rotational
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inertia. In a convex domain, this axis aligns itself with the shape of the mesh and the spatial extend
in the directions orthogonal to the axis is minimized. This usually results in a minimized the cut-size.

17.5.3 Geometric Partitioning

Miller et al. introduced the method in [115] that, for certain graphs, finds a vertex separator that
divides the graph in two roughly equal sizes with high probability. The following definitions are
necessary in order to state the theorem given in [115].

Definition 17.5.1 A k-ply neighborhood system in d dimensions is a set D1,D2, ...,Dn of closed
disks in R

d such that no point of Rd is strictly interior to more than k disks.

Definition 17.5.2 An (α,k) overlap graph is a graph defined in terms of a k-ply neighborhood
system D1,D2, ...,Dn and a constant α≥ 1. Each disk Di is represented by a vertex and there is an
edge between two vertices if expanding the radius of the smaller of the disks by a factor of α causes
the disks to overlap. Mathematically,

E = {ei, j|Di∩αD j 
= 0 and αDi∩D j 
= 0}
A regular n-by-n mesh is a (1,1)-overlap graph. The theorem given in [115] is as follows:

Theorem 1 Given G = (V ,E), an (α,k)-overlap graph in d dimensions with n nodes, there is a
vertex separator VS so that V = V1∪̇VS∪̇V2 with the following properties:

1. V1 and V2 each have at most n(d+ 1)/(d+ 2) vertices, and

2. VS has at most O(αk1/dn(d−1/d)) vertices.

Here ∪̇ represents disjoint union, i.e., U∪̇V is U∪V with U∩V = /0. The separator size given
by the theorem is “asymptotically optimal” for regular meshes in simple geometric shapes.

The proof of the theorem leads to a randomized algorithm running in linear time that will find
a separator of the size given in the theorem with high probability. A d-dimensional sphere defines
the separator and the algorithm randomly chooses the separating circle from a distribution that, with
high probability, satisfies the conclusions of the theorem. We will now define some terminologies
before describing the algorithm.

A stereo-graphic projection is a mapping of points in R
d to the unit-sphere centered at the

origin in R
d+1.

The center-point of a given set of points in R
d is such that every hyperplane through the center-

point divides the set into two subsets so that the sizes differ by at most a ratio of 1:d.
The algorithm is as follows.

Algorithm 36 Geometric Bisection

Project up: Stereographically project points from R
d to unit-sphere in R

d+1

Find Centerpoint: Find centerpoint z of the projected points
Conformal Map: Map the points back on the sphere so that the centerpoint lies at the origin; that
is, to rotate the sphere around the origin and then dilate points so that the new centerpoint lies in
the origin
Find great circle: Intersect the R

d+1-sphere with a random d-dimensional hyperplane through
the origin
Unmap: Unmap the great circle to a circle C in R

d by inverting the dilation, rotation, and stere-
ographic projection
Find Separator: A point separator is found by choosing all points whose corresponding disk,
magnified by a factor of α, intersects C
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Some simplifications to the algorithm were suggested in [66] by Gilbert et al. It is easier to find
the edge separator by the edges cut by the circle C than by finding the point separator because to find
the edge separator, it is not necessary to know the neighborhood system for the graph. The theorem
guarantees a ratio of 1 : d+1 between the two partitions whereas the goal of bisection is to find two
partitions of the same size. This is done by moving the hyperplane along the normal vector until it
divides the points evenly.

Finding the centerpoint is a polynomial time process and, hence, is slow. Heuristics can be used
to find an approximate centerpoint as opposed to the real one in linear time using a randomized
algorithm. The computation can be sped up even more by using only a randomly chosen subset of
points. Although a random great circle has a good possibility to induce good partitions, experiments
in [66] show that it is worthwhile to generate different circles and choose the one that delivers the
result.

The methods discussed in this section work quite well on meshes but they have some drawbacks.
First, these methods assume geometric adjacency among the connected vertices. Second, they re-
quire geometric information about the points. The second condition is critical because even if the
first condition is satisfied, the mesh layout may not be known. In the following section, we describe
methods that do not use geometric information. The algorithms in the following sections rely only
on the connectivity information of a graph and, hence, are applicable to a wider range of practical
problems. They do not assume the availability of geometric information and can be applied to more
generic classes of problems.

17.6 Graph Growing and Greedy Algorithms

One simple idea for graph partitioning is to select a starting vertex and keep adding vertices
to it, based on some criteria, until the partition is of the desired size. These algorithms are often
classified as “greedy” and “graph-growing” algorithms [51]. In “greedy” algorithms (e.g., [30]) the
next vertex is chosen greedily, one that appears to be the “best” in some sense (e.g., minimum
increment in cut-size). In “graph-growing” algorithms, on the other hand, the resultant subgraphs
are grown following a certain order (e.g., breadth-first).

A simple greedy partitioning algorithm is given in [51] where the process starts by selecting a
pseudo-peripheral vertex (one of a pair of maximum distant vertices in the graph [146]) and marking
it the first partition. The algorithm then iteratively keeps adding vertices to the current partition by
selecting one of the unmarked vertices that has the least number of unmarked neighbors until the
partition is big enough. After that, a new starting point for the next partition is chosen by selecting
the unmarked vertex with least number of unmarked neighbors. By choosing new vertices adjacent
to the current partition, it tries to keep the subpartitions connected. Note that the neighborhood
information of each adjacent vertex needs to be available in order to select the next vertex.

Another “greedy” algorithm is Farhat-algorithm [54] which is a graph-growing algorithm but
chooses the starting vertices of each partition in a greedy way. The original algorithm works on
nodes and elements of a FEM mesh. The adapted version for graphs works by growing partitions by
selecting unmarked neighbors of currently marked vertices and adding them to the current partition.
One can choose a pseudo-peripheral vertex as the first vertex. The algorithm adds all unmarked
neighbors of the vertices in the current partition to the current partition until the partition is big
enough. It then proceeds to the next partition in the following way. Among all vertices chosen for
last partition, the one with least nonzero number of unmarked neighbors is chosen and all these
neighbors are marked and added to the current partition. It then follows the iterative method where
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all unmarked neighbors of vertices of the current partition are added to the current partition until it
is big enough and so on.

The graph-growing algorithms are very fast and are able to divide the graph into the desired
number of partitions directly, avoiding recursive bisection. As a result, their running time is typically
independent of the number of desired subpartitions. Although fast, the quality of the partitions is
not always as good and the last subpartitions tend to be disconnected when partitioning complicated
graphs into several subpartitions [51]. Given a predefined size of “big enough,” clusters often tend
to be of the same size which may not result in the best partitions of a graph from a qualitative point
of view. They are also sensitive to the choice of the starting vertex. But one can run the process with
different starting vertices and choose the best result since these algorithms are fast.

17.6.1 Kernighan-Lin Algorithm

One of the earliest graph-partitioning algorithms is the Kernighan-Lin algorithm [90], often
abbreviated as K/L. It was originally developed to optimize the placement of electronic circuits
onto printed circuit cards to minimize the number of connections between cards. The K/L algorithm
does not create partitions, rather improves them iteratively. The original idea was to take random
partitions and apply K/L to them.

Let us introduce some notations before explaining the algorithm. It is more convenient to de-
scribe the algorithm on a graph with weighted edges. Let (V ,E ,WE ) be a graph with given sub-
partitions A and B such that VA ∪̇VB = V . The diff-value of a vertex v is defined to be the amount
the cut-size will decrease when it is moved to the other partition. That is, for v ∈ VA :

di f f (V ) = di f f (v,VA ,VB) := ∑
b∈VB

we(ev,b)− ∑
a∈VA

we(ev,a)

It is obvious that moving a vertex from one partition to the other changes only the vertex’s diff-
value and the diff-values of its the neighbors. The gain-value of a pair of vertices is the change in
cut-size if the pair is swapped.

Lemma 17.6.1 For two partitions A and B and a ∈ VA and b ∈ VB , if a and b are interchanged,
the gain is

gain(a,b) = gain(a,b,VA ,VB) := di f f (a)+ di f f (b)− 2we(ea,b)

Proof 3 Let c be the cost due to all connections between A and B that do not involve a or b.
Then,

T = c+ ∑
y∈VB

we(ea,y)+ ∑
x∈VA

we(eb,x)−we(ea,b)

Let T ′ be the new cost after swapping a and b. Then, we have:

T ′ = c+ ∑
x∈VA

we(ea,x)+ ∑
y∈VB

we(eb,y)+we(ea,b)

Now, gain is the change in cost:

T −T ′ = ∑
y∈VB

we(ea,y)− ∑
x∈VA

we(ea,x)

+ ∑
x∈VA

we(eb,x)− ∑
y∈VB

we(eb,y)

−we(ea,b)−we(ea,b)

= di f f (a)+ di f f (b)− 2we(ea,b)
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Let us describe the algorithm:

Algorithm 37 Kernighan-Lin

Given two partitions VA ,VB

Compute diff-value for all vertices
Unmark all vertices
Let, k0 = cut-size
for i = 1 to min(|VA |, |VB |) do

Find the pair ((ai,bi) | ai ∈VA & bi ∈VB ) with biggest gain among all unmarked vertices
Mark ai and bi

for each neighbor v of ai or bi do
Update diff(v) assuming ai and bi has been swapped, i.e.,

di f f (v) := di f f (v)+ { 2we(ev,ai)− 2we(ev,bi) for v ∈ VA
2we(ev,bi)− 2we(ev,ai) for v ∈ VB

end for
ki = ki−1 - gain(ai,bi), that is, ki would be the cut-size if a1,a2, ...,ai and b1,b2, ...,bi had been
swapped

end for
Select the smallest j such that k j = mini(ki)
Swap the first j pairs. That is,

VA = VA −{a1,a2, ...,a j}∪{b1,b2, ...,b j}
VB = VB −{b1,b2, ...,b j}∪{a1,a2, ...,a j}

Repeat until no further cut-size improvement is achieved

In each iteration, the algorithm swaps pairs of vertices to maximize the gain. This process is
continued until all vertices of the smaller partition are swapped. One important fact is, the algorithm
does not stop as soon as there are no more improvements to be made; rather it continues, even
accepting negative gains in order to climb out of the local-minima.

[57] implemented the algorithm that takes O(|E |) time for one iteration. The reduction in time
is achieved by choosing single nodes to be swapped as opposed to pairs. It also applies a bunch of
other optimizations. There are many variations of the Kernighan-Lin algorithm [78, 86, 104] often
trading execution time against quality or generalizations. Some examples are

• Limiting the number of swapping to a fixed number based on the observation that largest
gains are achieved early on.

• Limiting the number of iterations.

• Evaluating diff-values of vertices near the boundary.

17.7 Agglomerative and Divisive Clustering

Agglomerative approaches start with considering each node as a separate cluster. In subsequent
steps “similar” clusters are merged together until the intended number of clusters are left or until no
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two clusters are similar enough to be merged. Divisive approaches, on the other hand, work in the
opposite direction. That is, they start with the whole graph as a single cluster and then subsequently
split into smaller clusters [131]. Both approaches essentially produce a binary tree, known as a
dendrogram, where leaves represent individual vertices and internal nodes are clusters.

The idea of edge betweenness was proposed to be used in a divisive algorithm for community
detection by Newman and Girvan in [125]. Edge betweenness is defined in such a way that edges
connecting different communities are more likely to receive a higher betweenness score than in-
tracommunity edges. By removing edges with high betweenness scores, communities in the graph
can be found. One simple edge betweenness measure is the shortest path betweenness that relies on
the fact that shortest paths between vertices in different clusters are bound to pass through the few
intercluster edges. As a result, those few intercluster edges will receive a high betweenness score.
This has been proposed and used in the Girvan–Newman (GN) [68] algorithm. This algorithm re-
moves edges with high betweenness scores to split the network. There are also variations such as
random-walk betweenness and current-flow betweenness that assign the betweenness score based
on different principles. The high level structure of the algorithm is as follows [131]:

Algorithm 38 Divisive Clustering Algorithm [105]
Input: Graph G, number k of clusters

repeat
Calculate betweenness score of each edge using any suitable betweenness measure
Remove the edge with maximum betweenness score
Recalculate betweenness score of all remaining edges

until Desired number of clusters are obtained

Experiments showed that the choice of a particular betweenness measure is not very crucial as
long as the recalculation step is executed [131]. The results for different betweenness measures
differ only slightly. Although very intuitive, the algorithm is very costly in terms of computation.
Computation of the betweenness score for all edges is O(|V ||E |) time operation. The whole algo-
rithm takes O(|V |3) time.

A greedy agglomerative clustering technique for optimizing modularity was proposed by New-
man in [123]. Similar to agglomerative algorithms, this approach starts with each node as a different
community. In subsequent steps, smaller communities are merged to form larger communities so
that the modularity of the graph increases after the merge. Modularity is defined as the difference
between the fraction of edges that fall within communities and the expected number of edges that
fall within communities if they fall at random without regard for the community structures. [123]
suggests that a value greater than 0.3 often indicates good community structure. More examples are
given in [125]. The algorithm merges only communities that share at least one edge because other-
wise it does not improve the modularity. Hence, this step has complexity O(|E |). Maintaining and
updating an additional data structure that stores the fraction of shared edges between each pair of
communities in the current partition has worst-case complexity of O(|V |). Since there are |V |− 1
mergers, the total complexity is O|V |2). The complexity was improved by the use of data structures
such as max-heaps to O(|E |d log |V |) by Clauset et. al. in [37]. Here d denotes the depth of the
dendrogram describing the partitions found during the execution of the algorithm.

17.8 Spectral Clustering

Spectral clustering has become one of the most popular clustering methods in recent years. It
is simple to implement and can be solved efficiently with standard linear algebra software. Spectral
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clustering does not use geometric information of the graph. It does not operate on the graph itself
but on a mathematical representation of the graph. One advantageous feature of spectral clustering
is that the decision about each vertex is taken based on a more global view of the problem. In the
following sections we discuss spectral clustering in detail.

17.8.1 Similarity Graphs

Given a set of data points x1,x2, ...,xn and some notion of similarity si, j ≥ 0 between all pairs xi

and x j, a simple and nice way of representing data is in the form of similarity graph G = (V ,E).
Each data point xi is represented by a vertex vi in the graph and two vertices vi and v j are connected
if the similarity si, j between corresponding data points xi and x j is greater than some threshold
value. The edge is weighted by si, j. The clustering problem can be reformulated as the problem of
partitioning the similarity graph so that the edges between different groups have very low weights.

Let G = (V ,E) be a weighted undirected graph, the weighted adjacency matrix of the graph is
matrix W = wi, j for i, j = 1, ...,n. The degree of a vertex vi is defined to be

di =
n

∑
j=1

wi, j

Because wi, j = 0 if vi and v j are not connected, this sum runs over vertices adjacent to
vi. The degree matrix D is defined to be diagonal matrix with d1, ...,dn on the diagonal. Let
F = ( f1, ..., fn)

′ ∈ R
n as the vector with fi = 1 if vi ∈ A and fi = 0 otherwise. A few more notions

are as follows:
W (A,B) := ∑

i∈A, j∈B

wi j

Given a subset A⊂V , the “size” of A is as follows:

|A| := Number o f vertices in A

vol(A) := ∑
i∈A

di

Subset A⊂ V of a graph is connected if there is a path between each pair of vertices in A such
that no intermediate vertex is from V \A or Ā. Subset A is called a connected component if it is
connected and there are no connections between vertices in A and Ā. The nonempty sets A1, ...,Ak

form a partition of the graph if Ai∩A j = /0 and ∪k
i=1Ai = V .

17.8.2 Types of Similarity Graphs

Given a set of data points x1,x2, ...,xn and a pairwise similarity si, j (or dissimilarity di, j) mea-
sure, there are several popular methods to convert these points into a similarity graph [105]. In this
section we discuss several well-known methods for constructing a similarity graph from a set of
points and the pairwise similarity/dissimilarity function.

ε-neighborhood graph: In this method, all points with pairwise distance smaller than ε are
connected. Since the distance is smaller than ε for all connected pairs, weighting the edges usually
does not convey much more information. Hence, these graphs are typically unweighted.

k-nearest neighbor graph: In this approach, vertex vi is connected with v j if v j is among
k-nearest neighbors of vi. However, since the neighborhood relationship is not symmetric, this defi-
nition leads to a directed graph. There are two standard ways to deal with this issue:
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• The simplest solution is to just ignore the directions of the edges. In this method vi and v j are
connected if v j is among k-nearest neighbors of vi or if vi is among k-nearest neighbors of v j.
Resulting graph is called k-nearest neighbor graph.

• The second way is to connect vi and v j only if both v j is in k-nearest neighbors of vi and vi is
in k-nearest neighbors of v j. The resulting graph is called mutual k-nearest neighbor graph.

After connecting the vertices, the edges are weighted by the similarity of the endpoints.
Fully connected graph: In this case all points are connected with each other and the edges are

weighted by the similarity function si, j. An important issue is that since all pairs are connected, it is
important that the similarity function reflects the local neighborhoods. A popular similarity function
is the Gaussian similarity function s(xi,x j) = exp(−||xi− x j||2/(2σ2)). The parameter σ controls
the width of the neighborhood and plays a role similar to that of ε in the ε-neighborhood graph. The
paper [105] provides a discussion on the choice of similarity graph construction methods and the
resultant cluster quality based on a toy graph.

17.8.3 Graph Laplacians

Graph Laplacian matrices are the principal tool for spectral clustering and there is a dedicated
area of study for those matrices (see [36]). There are variants of graph Laplacians, and unfortunately,
there is no unique definition of a matrix that exactly is “graph Laplacian” [105]. Let G = (V ,E ,W )
be an undirected, weighted graph with weight matrix W with wi, j ≥ 0. While using eigenvectors of
a matrix, we do not assume them to be normalized, i.e., constant vector F and aF for some a 
= 0
are the same eigenvectors. Eigenvalues will be ordered in ascending order respecting multiplicities.

17.8.3.1 Unnormalized Graph Laplacian

The unnormalized graph Laplacian matrix L is defined as

L = D−W

Some of the important properties of graph Laplacian matrices that are critical for spectral clus-
tering are given below. Mohar gives an overview of the properties of the matrices in more detail in
[116, 117].

Properties of graph Laplacian: Matrix L has the following properties:

• for every vector f ∈ R
n,

f ′L f = 1
2

n

∑
i, j=1

wi j( fi− f j)
2

• L is symmetric and positive semi-definite.

• The smallest eigenvalue of L is 0 with the corresponding eigenvector F (constant one vector).

• L has n nonnegative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ...≤ λn.

Proof of these properties is available in [105]. It is noticeable that self-edges in a graph do
not change the corresponding graphs Laplacian. The unnormalized graph Laplacian, its eigenvec-
tors and eigenvalues can describe many properties of graphs [116, 117]. One such property that is
important for spectral clustering is as follows:

Number of connected components and spectrum of L: For an undirected graph G with non-
negative weights, the multiplicity k of the eigenvalue 0 of L equals the number of connected compo-
nents in the graph. Proof of this proposition can be found in [105].
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17.8.3.2 Normalized Graph Laplacians

The following two matrices are known as normalized graph Laplacians [36]:

Ls := D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw := D−1L = I−D−1W

Ls is a symmetric matrix while Lrw is related to random walk. Some of the properties of normalized
graph Laplacians are as follows:

• for every vector f ∈ R
n,

f ′Ls f = 1
2

n

∑
i, j=1

wi j(
fi√
di
− f j√

d j
)2

• λ is an eigenvalue of Lrw with eigenvector u iff λ is an eigenvalue of Ls with eigenvector
w = D1/2u.

• λ is an eigenvalue of Lrw with eigenvector u iff the generalized eigenproblem Lu = λDu is
solved by λ and u.

• 0 is an eigenvalue of Lrw with constant one eigenvector F and an eigenvalue of Ls with eigen-
vector D1/2

F.

• Both Ls and Lrw are positive semidefinite with n nonnegative real-valued eigenvalues 0 =
λ1 ≤ λ2 ≤ ...≤ λn.

For proofs of these properties, please see [105].
Number of connected components and spectra of Ls and Lrw: Similar to unnormalized graph

Laplacians, for (non-negative) weighted undirected graph G the multiplicity k of the eigenvalue 0
of both Ls and Lrw equals the number of connected components in the graph.

17.8.4 Spectral Clustering Algorithms

Let x1,x2, ...,xn be n data points and si j = s(xi,x j) be a pairwise similarity function between
points. We assume si j is symmetric and nonnegative. Let S = (si j)i, j=1...n be the similarity matrix.
The following algorithm describes the unnormalized spectral clustering.

Algorithm 39 Unnormalized Spectral Clustering [105]

Input: Similarity Matrix S ∈ R n×n, number k of clusters

Construct Similarity Graph (using a method from 17.8.2)
Let W be the weighted adjacency matrix
Calculate unnormalized Laplacian L
Compute first k eigenvectors l1, l2, ..., lk of L
Let U ∈ R

n×k be the matrix containing vectors l1, l2, ..., lk as columns
Let yi ∈ R

k be the ith row of U for i = 1,2, ...,n
Cluster points yi for i = 1,2, ...,n into k clusters C1,C2, ...,Ck using k-means algorithm

Output clusters A1,A2, ...,Ak with Ai = { j|y j ∈Ci}

For normalized graph Laplacians, there are two versions of normalized spectral clustering. Shi
and Malik [151] proposed the following normalized spectral clustering algorithm [105]. Since the
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algorithm uses generalized eigenvectors of L that correspond to eigenvectors of Lrw, it is called
normalized spectral clustering.

Algorithm 40 Normalized Spectral Clustering [151]

Input: Similarity Matrix S ∈ R n×n, number k of clusters

Construct Similarity Graph (using a method from 17.8.2)
Let W be the weighted adjacency matrix
Calculate unnormalized Laplacian L
Compute first k generalized eigenvectors l1, l2, ..., lk of the generalized eigenproblem Lu = λDu
Let U ∈ R

n×k be the matrix having vectors l1, l2, ..., lk as columns
Let yi ∈ R

k be the ith row of U for i = 1,2, ...,n
Cluster points yi for i = 1,2, ...,n into k clusters C1,C2, ...,Ck using k-means algorithm

Output clusters A1,A2, ...,Ak with Ai = { j|y j ∈Ci}

The following algorithm by Ng et al. [126] uses matrix Ls instead of Lrw.

Algorithm 41 Normalized Spectral Clustering [126]

Input: Similarity Matrix S ∈ R n×n, number k of clusters

Construct Similarity Graph (using a method from 17.8.2)
Let W be the weighted adjacency matrix
Calculate normalized Laplacian Ls

Compute first k eigenvectors l1, l2, ..., lk of Ls

Let U ∈ R
n×k be the matrix having vectors l1, l2, ..., lk as columns

Normalize rows of U to norm 1 to obtain matrix T ∈ R
n×k, i.e., set ti j = ui j/(∑k u2

ik)
1/2

Let yi ∈ R
k be the ith row of U for i = 1,2, ...,n

Cluster points yi for i = 1,2, ...,n into k clusters C1,C2, ...,Ck using k-means algorithm

Output clusters A1,A2, ...,Ak with Ai = { j|y j ∈Ci}

The three spectral clustering algorithms given here are rather similar, differing only in their
use of the graph Laplacians. However, the critical part is the conversion of data points xi to points
yi ∈R

k, and because of the properties of graph Laplacians this change is useful.

17.9 Markov Clustering

Markov Clustering (MCL), proposed by Stijn van Dongen, clusters graph by simulation of
stochastic flows on a graph [45]. MCL is based on iterative application of two operations on the
transition probability matrix or stochastic flow matrix of the graph: Expand and Inflate. Expand(M)
is simply a matrix–matrix multiplication as follows:

MExpand = M×M

while Inflate(M,r) corresponds to raising each element of matrix M to its rth power and normalizing
the columns to sum to 1. r is the inflation parameter (r > 1) and is typically set to 2.

MIn f late(i, j) =
M(i, j)r

∑k M(k, j)r



Network Clustering 429

These two steps are followed by a Prune step that prunes away smaller values in each col-
umn (smaller with respect to the values in respective columns, of course). Remaining values are
renormalized to make sure each of the columns of the matrix sums to 1, and hence, the matrix is a
stochastic flow matrix. Starting with the initial flow matrix, the whole process is iterated until con-
vergence. Expand step spreads flow out of a vertex to new vertices. This enhances the intracluster
flows as there are more paths between two nodes within the same cluster than between two nodes
in two different clusters [150]. Nonlinearity is brought into the process through the Inflate opera-
tion that strengthens the intracluster flow and weakens the intercluster flow. The process sets up a
positive feedback loop forcing all nodes within a tightly linked group to flow to one attractor node
within the group [131]. MCL is particularly popular within the bioinformatics community because
of its effectiveness in clustering protein–protein interaction networks [19, 102]. The pseudocode for
the MCL algorithm is as follows.

Algorithm 42 Markov Clustering, MCL
A := A+ I // Add self loop to the vertices
M := AD−1 // M is the canonical flow matrix
repeat

M := MExpand := Expand(M)
M := MIn f late := In f late(M,r)
M := Prune(M)

until M converges
Interpret M as the resulting clustering

MCL has two major shortcomings [148]. First, it is slow because it involves a matrix–matrix
multiplication. Especially, during the first few iterations when the flow matrix is dense, the Expand
step becomes very time consuming. Second, it has a tendency to produce imbalanced clusters, e.g.,
singleton clusters or clusters with few nodes, or to produce one very big cluster.

17.9.1 Regularized MCL (RMCL): Improvement over MCL

Recently there have been variants of MCL in an effort to address major drawbacks of MCL
with respect to scalability and imbalanced clustering. Regularized MCL (RMCL) [148, 150] has
succeeded in solving the problem associated with imbalanced clustering, especially the problem
related to producing singleton clusters. Satuluri and Parthasarathy [148] observed that the reason
behind MCL’s producing too many clusters is the fact that it allows columns of pairs of neighboring
nodes in flow matrix M to diverge significantly. This happens because MCL uses the adjacency
matrix of the input graph only at the start of the algorithm to initialize the flow matrix and, in the
iterative step, uses only the current flow matrix, which allows MCL to “overfit.” RMCL addresses
the problem by regularizing (or smoothing) the flow distributions with respect to neighbors, i.e.,
by taking into account the neighborhood structure in each Expand step. Essentially it changes the
Expand (M :=M×M) step of MCL into a Regularize (M :=M×MG) step where MG is the canonical
transition matrix of the graph. That is,

MRegularize = M×MG

The pseudocode of the algorithm is given in Algorithm 43.
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Algorithm 43 Regularized Markov Clustering, RMCL [148]
A := A+ I // Add self-loop to the vertices
M := AD−1 // M is the canonical flow matrix
repeat

M := MRegularize := M×MG

M := MIn f late := In f late(M,r)
M := Prune(M)

until M converges
Interpret M as the resulting clustering

17.10 Multilevel Partitioning

The multilevel approach has been successfully applied to a variety of problems [165] and has
resulted in fast and high quality results. This powerful framework can also be applied to graph par-
titioning and often produces fast, accurate, and high quality partitions. The basic idea is to coarsen
the graph successively to get a small enough graph, partition the small graph, and use the result to
successively project the partition back to the original graph [131]. A schematic of the multilevel
framework is given in Figure 17.1. Many well-known graph partitioning algorithms use multi-level
graph partitioning techniques. Some of them are multilevel spectral clustering [13], Metis (optimiz-
ing K/L objective function) [86], Graclus (optimizing normalized and other weighted cuts) [42]
and MLR-MCL [148].

There are three main components of any multilevel graph partitioning approach. They are briefly
discussed below:

1. Coarsening: The goal of coarsening is to get a smaller graph that retains the most important

FIGURE 17.1: Multilevel graph partitioning.
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characteristics of the original graph. Often this step is applied repeatedly until the resultant
graph reduces to a manageable “small enough” size. As a consequence, partitioning can be
applied on the small graph very efficiently. One popular method is to construct a maximal
matching on the graph [105]. A matching is a subset of edges (M ⊂E) such that no two edges
share the same endpoint. A matching is maximal if no edge can be added to the matching.
Once a matching has been constructed, vertices at the ends of each edge are collapsed into
a super node in the coarsened graph. Specifically, for edge ei, j ∈M , vertices vi and v j are
collapsed into a single vertex. The weight of the new vertex is w(vi)+w(v j) and the neighbors
are combined neighbors of vi and v j [105].

Different techniques exist for construction of a maximal matching. One can use random-
ized methods for coarsening graphs fairly quickly. A simple randomized matching (RM) is
given in [78] which randomly selects eligible edges until the matching is maximal. A slight
modification of RM which is known as heavy edge matching (HEM) has been proposed in
[86]. The basic idea is to try to reduce the total edge weight of the coarser graph which results
in reduced cut-size in coarser as well as the original graph. However, one problem associated
with this approach is that it can miss some heavy weight edges as pointed out in [105]. An-
other modification was proposed in [72] by Gupta that suggests sorting the edges by weight
and then choosing the heaviest permissible edge. This is called heaviest edge matching. Since
sorting is an additional cost for this approach, it is often applied in the later stages of the
coarsening process.

2. Partitioning the Coarsest Graph: Once the graph is small enough, it is simple to apply
any partitioning algorithm on the coarsest graph. One may even try several methods or the
same randomized method several times. Some of the popular choices include graph-growing,
spectral clustering or simple Kernighan-Lin algorithm with random starting partitions. Note
that since the size of the graph is small, it is feasible to apply a slow method like spectral
clustering in order to get high quality output [105].

3. Uncoarsening and Projecting Up: In this step the partition of the coarsest graph is used to
initialize partitions on finer (bigger) graph. This is called “projecting up”. Since each vertex in
finer graph can be traced to a vertex in the coarser graph, assigning the vertices of finer graph
to appropriate partitions is simple once we have the partition on the coarser graph. The finer
connectivity given by uncoarsening is used to refine the partition. This is done using some
local search, or some variants of Kernighan-Lin algorithm (Metis [86]) or weighted kernel
k-means (Graclus [42]) [131, 105]. This step is continued until the original graph has been
reached.

Metis [86] supports different matching schemes for the coarsening step including RM and HEM.
For partitioning the coarsest graph, Metis implements four different schemes: three based on graph-
growing heuristics and one based on spectral bisection. During the uncoarsening phase, Metis uses
the K/L algorithm [57] as a partition refinement algorithm. Since the K/L algorithm can take many
iterations before converging, Metis also implements Greedy Refinement (GR) that performs only
a single iteration and a Boundary Kernighan-Lin Refinement (BKLR) that allows swapping only
vertices that are along the boundary of the bisection. More detailed discussion about Metis can be
found in [86].

Graclus [42] generalizes the coarsening process of Metis to a max-cut coarsening procedure to
make it effective for a wider range of objectives. For clustering the coarsest graph, three base clus-
tering approaches are explored—the extremely efficient region-growing algorithm of Metis [86],
the spectral clustering algorithm, and the bisection method. In the Refinement step, Graclus uses
weighted kernel k-means. A more detailed discussion about the algorithm can be found in [42].

Multilevel Regularized MCL (MLR-MCL) [148] combines RMCL (Section 17.9.1) with the
powerful multilevel framework to solve the scalability issue associated with MCL. The coarsening
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step involves finding a matching on the graph and collapsing incident vertices on each edge of the
matching into a super node. RMCL is run on the resulting coarsest graph for a few (4 or 5) iterations.
The projection step involves plotting the flows into vertices on a coarser graph to the vertices in a
refined graph and running RMCL for a few iterations on the refined graph. This continues until the
original graph has been reached. Finally, RMCL is run on the original graph until convergence. A
detailed explanation of the algorithm can be found in [148].

17.11 Local Partitioning Algorithms

Local algorithms solve the partitioning problem for a given vertex or a set of vertices without
looking at the whole graph. These algorithms are important in the context of large graphs when
one is interested in a few vertices as opposed to all the vertices in the graph. They are interesting
because the complexity of the algorithms, to a large extent, no longer depends on the size of the
graph, but rather on the size of the solution. The intuition being that random walks from inside
a well-connected group of nodes will not mix well enough since the cluster boundary acts as a
bottleneck that prevents the probability of easily going out of the cluster [131].

Such local clustering using random walks has been described in [156, 154]. Let pt,u be the
probability distribution of a t-step random walk starting at vertex u. Let Γ be the permutation of
the vertices of the graph according to descending order of degree-normalized probability for each t.
That is,

pt (Γi)
d(Γi)

≥ pt(Γi+1)
d(Γi+1)

Let us define sweep set St
j = Γ1, ...,Γ j . Given all random walks within a component converge to

the same stationary distribution [131], let Ψu be the final stationary distribution of the random walk.
The main theoretical result exploited says that either the difference between pt(St

j) and Ψu(St
j) is

small or there exists a cut with low conductance among sweep sets. Thus, by checking conductance
of sweep sets St

j at each step t, one can discover clusters of low conductance. This work was ex-
tended for seed sets as opposed to seed vertex by Andersen and Lang [6]. It has been shown that the
local clustering approach can recover the original community for real datasets with a random subset
of vertices belonging to a known community as seeds.

Spielman and Teng’s algorithm [156] was improved by Andersen et al. [5] by the simulation of
random walks with restarts (Personalized PageRank). Another local graph clustering algorithm is
Nibble [155].

Improving partitions by Flow-Based Postprocessing: Partitions of a graph can be improved
using algorithms for computing maximum flow in flow networks. Flake et al. [58] use a focused
crawler to obtain an approximate community and then set up a max-flow/min-cut problem that
produces the actual community in order to discover web communities. A strategy for improving
conductance of any arbitrary cut of the graph was discussed by Lang and Rao in [97]. For a given
cut (C,C̄) of a graph, their algorithm finds the best improvement among all cuts (C′,C̄′) such that
C′ is a strict subset of C. They formulate a new instance of the max-flow problem such that the
polynomial time solution to this problem can be used to find C′ with lowest conductance among all
subsets of C. This method is referred to as Max-flow Quotient-cut Improvement (MQI). They use
Metis+MQI recursively to bipartition the input graph. In a step, Metis is used first to bipartition the
graph and then MQI is used to improve the partition. MQI can improve partitions given by local
clustering as well [6].

Community Discovery via Shingling: Web documents can be clustered using shingles and
fingerprints (also known as sketches) as proposed in [18]. A length-s shingle of an object is s of all
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parts of the object. For instance, a length-s shingle of a document is a contiguous subsequence of
length s contained in the document. A sketch is a fixed-size subset of all shingles with a specific
length. The property that makes sketch an object’s fingerprint is the fact that the similarity between
two objects’ sketches is approximately equivalent to the similarity between the objects themselves.
Here, the similarity refers to Jaccard similarity, i.e.,

Sim(A,B) = |A∩B|
|A∪B|

Shingling has been applied for extracting dense communities from large graphs [65]. In this
work, each node’s outgoing links are used to get the first-level shingling where each vertex v is
associated with a certain number of shingles c, each of which includes n nodes selected from nodes
to which v points. After this an inverted index is built that contains each first-level shingle and a
list of vertices associated with the shingle. Second-level shingles (also known as meta-shingles) and
sketches are built from first-level shingles. Two first-level shingles are considered as relevant if they
share at least one meta-shingle. A graph is constructed where nodes stand for first-level shingles
and edges indicate the meta-shingles relationship. Clusters of first-level shingles refer to connected
components in this new graph. Communities are extracted by mapping first-level shingles clusters
back to original nodes and including associated common meta-shingles. The algorithm is applicable
to bipartite and directed as well as undirected graphs and is very efficient and scalable [131].

Different Definitions of Communities: Community in a graph is most commonly defined as a
subset of vertices well connected internally and loosely connected to the rest of the graph. But there
have been alternative characterization and definitions of community in the literature.

One recent community structure has been proposed by Asur and Parthasarathy in [8]. They
define viewpoint neighborhoods as a group of influential and salient nodes from the viewpoint of a
single node or a subset of nodes in the graph. Viewpoint neighborhood basically refers to the clusters
of nodes local to the node or the subset of nodes. The authors use activation spread models in their
algorithm to extract viewpoint neighborhoods. These models are general enough to incorporate
various notions of influence and salience. Viewpoint neighborhood provides a new and exciting tool
for analysis of large graphs.

Another class of communities, as found by Leskovec et al. [101], is whiskers which is a group
of nodes that are connected to the rest of the graph by only one edge (similarly, groups of nodes
connected to the rest of the graph with 2 edges are called 2-whiskers). The authors find that accord-
ing to the measure of conductance, some of the best communities in a wide variety of real-world
networks are simply whiskers. They propose a core-and-whiskers model for structures of networks
where most networks have a core part surrounded by whiskers connected to the rest of the graph by
only one or two edges.

17.12 Hypergraph Partitioning

A hypergraph is a generalization of a graph where an edge, called hyperedge, can connect more
than two vertices. Hypergraphs appear naturally in many problems such as Boolean SATisfiability
problem and circuit layout [129]. Hypergraphs are also popular in the areas of workload partitioning
in parallel processing, restructuring sparse matrices [27], load balancing and scientific computing
[28], scheduling of batch-shared I/O tasks in Grid [91] as well as in automatic management of
memory hierarchies in global address space programming [94].

Formally, a hypergraph is defined as H = (V ,N ) where V is the set of vertices and N is the
set of nets (hyperedges) among those vertices. Weights can be easily associated with the vertices of
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the graph. Every net n j ∈ N is a subset of vertices in the graph. That is, n j ⊆ V . Vertices in a net
are called its pins.

A k-way partitioning of a hypergraph partitions the vertices into k disjoint nonempty partitions.
Typically a solution to the problem tries to minimize a cost function. One standard cost function
is net cut which is simply the sum of weights of the edges that span more than one partition. Con-
straints are usually added to the partitioning problem. Some such constraints are fixed constraint
where certain vertices are fixed in their partitions and balance constraint where the total vertex
weight in each partition is balanced [129]. Optimal hypergraph partitioning with balanced con-
straint is known to be NP-hard [63]. However, heuristic algorithms with near-linear runtime have
been developed. Some move-based heuristics for k-way partitioning are given in [22, 57, 90] and
some refinements are proposed in [104, 47, 4, 84, 48].

Clustering a hypergraph, in general, refers to the process of finding a coarser hypergraph from
the input hypergraph by merging vertices into larger groups (clusters). Weight of a cluster is simply
the sum of weights of the vertices within the cluster [129].

Performance is always a big concern for hypergraph partitioning algorithms because in many
of their applications the size of the input graph increases considerably every year. For instance,
in VLSI design the number of transistors grows exponentially following Moore’s law, and thus, the
algorithms applicable to them must scale for the larger inputs to be used effectively. In the following
section, we give a brief review of different partitioning themes.

Exhaustive Search: These methods produce optimal partitions, but have an exponential asymp-
totic complexity. Evaluation of each solution is the bottleneck and can be sped up by incrementally
evaluating the cost objective. Iteratively updating the cut of a solution when a vertex is moved is
quite straightforward [25]. However, the complexity grows exponentially in the number of vertices
and makes it infeasible for large, practical cases.

Branch and Bound: Intelligent pruning of the search space can be applied to exhaustive meth-
ods in order to improve their scalability. This technique is known as Branch and Bound (B&B). It
performs a recursive depth first search on the tree of partial assignment (of vertices to partitions)
and finds the best partition for the next unassigned vertex. In the worst case it can search the entire
solution space resulting in an exponential time complexity, but maintains optimality by bounding
away suboptimal results. Different constraints can be used for pruning and bounding [129].

Fiduccia–Mattheyses Heuristic: Even B&B methods take an impractical amount of time to
produce the optimal output for any realistic input. The Fiduccia–Mattheyses (FM) heuristic is an
amortized near-linear time heuristic for iterative improvement of hypergraph partitions. The FM
algorithms prioritize moves by gain. Here move is the change of assignment of a vertex to a partition
and gain is the corresponding change to the cost function. The algorithm runs in passes where
each vertex is moved exactly once. The initial solution is usually produced by some randomized
algorithm and then passes are continued until convergence.

Multilevel FM Framework: The multilevel framework provides the best known results for
large scale hypergraphs [129]. It involves three major steps as does any multilevel algorithm,
namely, coarsening, partitioning, and uncoarsening. MLFM is one of the best techniques for parti-
tioning practical sized hypergraphs.

Other techniques: Several other techniques have been proposed in the literature for partitioning
hypergraphs [44, 50, 174]; most have some drawbacks that make it impractical to use them for
real applications. Meta-heuristics such as simulated annealing and tabu search often produce better
quality results at the cost of an impractical increase in runtime [50]. Other techniques have some
constraints associated with them that limit their applicability in some practical cases. One such
example is the spectral techniques [44]. Yang and Wong’s [174] method relies on min-cut max-
flow algorithms and efficient network flow algorithms. These are polynomial-time algorithms that
cannot take the balance constraint into account which results in costly trial-and-error in flow-based
partitioning [129].
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17.13 Emerging Methods for Partitioning Special Graphs

The abundance of data these days is spawning newer challenges in the context of network/graph
clustering. Graphs with millions of nodes and billions of edges are commonplace and even larger
graphs with a billion nodes are emerging. These novel issues have led to the formulation of special
types of graphs and newer challenges. In addition to having large number of vertices and edges,
modern graphs come with other interesting properties. For example, some of the graphs are also
dynamic, in the sense that they are evolving continuously. Events such as addition and removal of
nodes, edges, and communities take place continuously in these graphs. Other issues include the
directionality of edges, availability of rich content information, etc.

Given these huge graphs and their special characteristics, we are now facing unprecedented
challenges of processing and analyzing them. With that in mind, some of the newer and emerging
challenges, existing approaches and methods related to processing of modern, special graphs are
briefly outlined below. It should be noted that this is by no means a comprehensive list of emerging
challenges, techniques, and methods. We briefly touch upon some of the major challenges and ex-
isting approaches to dealing with these problems. Note that, these techniques are still under active
research and lots of innovations have yet to be made.

17.13.1 Bipartite Graphs

Bipartite graphs are widely used in many graph applications. A bipartite graph (or bigraph) is a
special type of graph whose vertices can be divided into two disjoint sets such that no edge connects
two vertices from the same set. That is, for graph G = (V ,E) the set of vertices V is divided into
two sets V1 and V2 such that V1 ∩V2 = /0 and each edge e ∈ E connects vertices (v1,v2) where
v1 ∈V1 and v2 ∈V2. Many practical graphs can be represented as a bipartite graph. For example, in
a text corpus terms and documents can be represented as a bipartite graph where one set of vertices
represents the documents while the other represents terms that appear in the corpus. The edges in
the graph represents the co-occurrence of the term and the document in the corpus. Other examples
include graphs representing the relationship of buyers and items in a departmental store or reviewers
and movies in a movie recommendation system. Bipartite graphs, having been used in the literature
to solve clustering problems, are extremely important in Matching Systems partitioning.

Zha et al. [176] uses bipartite graph partitioning for data clustering by minimizing the normal-
ized sum of edge weights between unmatched pair of vertices in the underlying bipartite graph. The
formulation of the bipartite graph naturally leads to partial Singular Value Decomposition (SVD)
problems for an underlying edge weight matrix. This work computes a partial SVD of the associated
edge weight matrix of the graph to obtain an approximate solution to the minimization problem.

Dhillon [41] uses bipartite graph partitioning for clustering documents and words simultane-
ously. He models the document collection as bipartite graph between documents and words and
use spectral co-clustering for bipartitioning. Using the theoretical property of the proposed algo-
rithm, he demonstrates, that the algorithm provides an optimal solution to a real relaxation of the
NP-complete co-clustering objective.

Qiu [138] uses bipartite graphs to model images and their content descriptors in image databases.
A partitioning algorithm is developed for co-clustering images and their content description so that
each image cluster is automatically associated with the set of features that best describe the image
content. This work develops a Hopfield Network [79]-based solution for partitioning a bipartite
graph.

Fern and Brodley [56] uses bipartite graph partitioning to solve the cluster ensemble problems of
how to combine multiple clusterings to yield superior clustering result. This work solves the problem
by proposing a lossless reduction that constructs a bipartite graph from a given cluster ensemble that



436 Data Clustering: Algorithms and Applications

models both instances and clusters of the ensemble as vertices of the graph. Consequently, this graph
is partitioned to solve the problem.

17.13.2 Dynamic Graphs

So far we have discussed clustering algorithms that assume that the underlying network is stable
and static. But in many real networks this assumption cannot be made because the networks are
changing continuously. For instance, social networks keep changing, and hence, the assumption
of a static structure is not very practical. As a result, several questions arise such as: How do the
communities evolve over time? How are communities formed? How should existing algorithms be
modified to accommodate these dynamic networks? How persistent are the communities? What is
the temporal pattern in the network? Some of the recent work has started looking at these problems.
We give an overview of some of the representative works that have looked into these emerging
questions.

An event-based approach that provides a structured way to reason about how communities and
individuals in these networks evolve over time and what characterizes their behavior was proposed
by Asur et al. [10] where typical events involving communities are form, dissolve, merge, split,
continue, k-merge, k-split, etc., and events involving individuals are join, appear, disappear, etc. The
authors demonstrate that their framework can effectively detect behavioral indices such as stability,
influence, and a diffusion model and use that to analyze real-life evolving networks “incrementally.”
This model can predict future behaviors such as collaboration between groups as well as identify
influential nodes. One important capability of this model is that semantic content can be integrated
into it very naturally.

A simple approach to dealing with dynamic networks is to treat each snapshot of the network
independently and apply conventional clustering algorithms on each. But this may result in un-
wanted fluctuations in community structures between snapshots. One extreme example is given in
[29] where an “optimal” clustering would cause the resultant clusters to change radically and using
a consistent feature would provide consistent clustering while providing arbitrarily close to optimal
answers. This problem was handled by constructing temporal slices of the network and discovering
community in individual slices to detect temporal change in community structure between slices.
Berger-Wolf and Saia [16] took partitions of nodes at each timestamp as input in order to find a
metagroup of sequence of similar groups. They defined three extreme metagroups as most persis-
tent, most stable, and largest and discussed algorithms for extracting them. Given the affiliation of
each individual in each timeslice, Tantipathananandh et al. [164] tried to identify “true”community
affiliations of them in a dynamic setting by formulating this as a combinatorial optimization prob-
lem and proving it to be NP-hard. They solve the problem using approximate greedy heuristics and
dynamic programming [131].

Another interesting approach to dynamic analysis is referred to as evolutionary clustering as
proposed by Chakrabarti et al. [29]. This approach takes a holistic view of the community discovery
across time-slices by constraining division in a time-slice from diverging too much from previous
time-slices. The critical contribution is, as opposed to first extracting communities on snapshots and
finding connections among them across snapshots, that it considers quality of snapshot and history
cost as a whole [131]. It allows the study of community structure and its evolution at the same time
as well as the compromise between these two by linear combination of snapshot quality and history
cost. Different clustering techniques have also been adapted for the framework.

Use of the Minimum Description Length (MDL) principle was proposed by Sun et al. [160] as an
alternative approach to clustering dynamic graphs. Graphs of consecutive timestamps are grouped
into graph stream segments divided by change-points that represent drastic change in network struc-
ture. Minimizing the cost of this solution, however, was proved to be NP-hard, leading to a greedy
algorithm called GraphScope based upon alternating minimizations. It decides when to start a new
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stream segment and looks for ways of finding communities among the snapshots in a single segment.
GraphScope does not require any input parameter.

In order to extend spectral clustering to dynamic networks, Chi et al. [33] propose two frame-
works, Preserving Cluster Quality (PCQ) and Preserving Cluster Membership (PCM), to measure
history cost. PCQ defines how well the partition, at a particular time, performs on the data at the
previous time. PCM, on the other hand, measures similarity between the two consecutive partitions.
This framework allows insertion and removal of nodes in the graph.

FacetNet uses probabilistic community membership models for dynamic community discovery
and was proposed by Lin et al. [103]. The authors use K/L-divergence to measure quality and his-
tory cost. One key benefit of such probabilistic models is that they allow membership to multiple
communities for individuals by assigning weights indicating the degree of membership. When cer-
tain conditions hold, optimization of total cost is equivalent to maximizing log-likelihood function
L(Ut) = logP(Wt |Ut)+ logP(Ut |Ut−1) where Wt is data at time t and Ut is the cover at t [131].

Kim and Han [92] revisited the cost function and found that smoothing at the clustering level
can degrade the performance. What they suggest as a remedy is to push down the cost to each pair of
nodes to get a temporal-smoothed version of pairwise node distance and then apply density-based
clustering. Greedy local clustering mapping based on mutual information was used to make the
model capable of dealing with arbitrary creation/dissolution and growing/shrinking of a community
over time [131].

17.13.3 Heterogeneous Networks

Traditional clustering algorithms assume a homogeneous underlying network where the nodes
and edges are of uniform types. In the real world, however, the nodes are often different from
each other and so are the edges; for instance, relationships based on communication methods as
shown in [73] or both nodes and edges may differ at the same time [162]. Another example is
the IMDB network where nodes can represent movies, actors, directors, etc., and consequently,
the edges can represent different relationships. We often have to deal with heterogeneous social
networks as well. These diverse networks bring great opportunities as well as harder challenges—
opportunity in the sense that we may gain valuable information from such diverse information rich
networks and challenges because we do not know of any obvious methods yet for appropriately
clustering such heterogeneous networks.

SONAR API aims at aggregating social network information from emails, instant messages,
charts, blogs, and so on for the purpose of user recommendations based on an aggregated network.
It was designed by Guy et al. [73] who showed that the recommendations based on an aggregated
network performed better than any of the input networks. However, methods to find the best com-
bination scheme were not discussed.

Cai et al. [24] focused on finding the best linear combination of different source networks aimed
at building a target network with adjacency matrix M̃ and regressing it on source networks Mi.

aopt = argmin
a
‖M̃−

n

∑
i=1

aiMi‖2 (17.1)

Here ais are coefficients of corresponding source networks. Since the target network is rarely known
in full, it depends on the users provision of a few example target relationships and finds a linear
programming formulation that efficiently solves the regression problem [131].

Sun et al. [162] proposed the NetClus algorithm that clusters star network schema. In these
networks each record is a compound of a single target type and several attribute types. A generative
model is used to iteratively rank the posterior probabilities for cluster assignment until convergence.
Using ranking distribution for each type of object, typewise influence ranking can be retrieved. But
as mentioned above, this algorithm is limited to only networks with star network schema [131]. The
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RankClus algorithm of Sun et al. [161] similarly deals with only bi-type networks where the vertex
set has only two types of vertices.

Ensemble clustering [9, 159] refers to a class of clustering techniques where results of multiple
clustering are combined to get the final result. We envision that this class of clustering can also be a
potential solution for dealing with heterogeneous networks.

Some recent approaches use a combination of content and link structure for clustering purposes
[142]. There has also been a focus on clustering web images with the use of associated text from
the web page [23] but these approaches do not use linkage structure for clustering. Qi et al. [137]
focused on jointly clustering media objects, textual context objects, and users in social media net-
works. The authors propose a Heterogeneous Random Field (HRF) model to model structure and
content of social media networks and determine clusters. This work introduces an energy function
on edges and shows that the most probable clusters on the graph are found by minimizing the en-
ergy function. One advantage of this algorithm is that it can detect noisy links which are fairly
commonplace in real networks.

Aggarwal et al. [1] focused on community detection from the perspective of heterogeneity of
link density in social networks. Their method uses local methods that adapt well to local variations
in density to extract interesting, coherent, and balanced clusters from all parts of a network. They
use a min-hash based approach to find a small number of local communities specific to each node
and then merge them into a (concise) set of global communities.

17.13.4 Directed Networks

Network clustering and community discovery algorithms, in general, work with undirected net-
works. But in the real world, many interesting and important networks are essentially directed.
Examples include graphs representing Web Pages, Twitter users, or citations between research pa-
pers. Many studies have just ignored the directionality of the edges and very few have worked on
community detection in directed networks [60]. But simply ignoring the edge directionalities can
lead to false results [131].

Recently there has been some work on this matter. Researchers have extended their algorithms
to take the directionality information for edges into account. Directed versions of Normalized Cuts
have been defined using random-walks interpretation of Normalized Cuts [114] by multiple re-
searchers. Let P be the transition matrix of a random walk on directed graph and π be its stationary
distribution vector (i.e., the PageRank vector) satisfying the condition that πP = π. The directed
Normalized Cut for a group S ⊂V is [35, 80, 113]

Ncutdir(S) =
∑i∈S, j∈S̄ π(i)P(i, j)

∑i∈S π(i)
+

∑ j∈S̄,i∈S π( j)P( j, i)

∑ j∈S̄ π( j)

Spectral clustering can be used to minimize the objective function above by postprocessing the top
eigenvectors of the directed Laplacian defined as [35, 80, 113]:

L = I− π1/2Pπ−1/2 +π−1/2P′π1/2

2

Here P and π are defined as above. The directed version of modularity [125] was introduced by
Leicht and Newman [99] as follows:

Q =
1
e ∑

i j
[Ai j−

din
i dout

j

e
]δci,c j

where e is number of edges, din
i and dout

i refer to the indegree and outdegree of node i, respectively,
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δi, j is the Kronecker delta symbol, and ci is the label of the community to which vertex i is as-

signed. The definition of modularity matrix B is modified as Bi j = Ai j− din
i dout

j
e to fit the new metric

into spectral optimization proposed in [124]. Since B alone may not be symmetric, the modularity
function is rewritten as

Q =
1
4e

sT (B+BT )s

Here s is the vector whose elements are si such that si is +1 if vertex i is assigned to community
1 and −1 if vertex i is assigned to community 2. But as Fortuanto and Barthéleney [61] point out,
the algorithm may still suffer from resolution problem.

Satuluri and Parthasarathy [149] claim that such objective functions still favor clusters with
high interconnectivity structures, and hence, clustering with low-directed normalized cut or high-
directed modularity are often not the most meaningful way to cluster directed graphs. They argue
that high interconnectivity is not necessarily required for a group of nodes to form a meaningful
group in a directed graph. They propose a more general framework that converts the input directed
graph into a weighted undirected graph using a symmetric similarity measure for the vertices of
the directed graph. They demonstrate that similarity measures using in-link and out-link similarity
while discounting common links perform better than existing approaches [131].

Macropol and Singh [106] proposed Top Graph Clusters (TopGC) that probabilistically finds
“best” (top scoring) clusters on directed edge weighted graphs in linear time using Locality Sen-
sitive Hashing (LSH) [67] for similarity search. The key idea is to create an LSH signature based
on the node neighborhoods and calculate the Jaccard Index [18]. Next, they create a signature of a
certain length for each node and use that for matching two nodes. But given some limitations re-
garding weights and other issues, they modify their algorithm to overcome these based on weighted
neighborhood and pruning of search space.

17.13.5 Combining Content and Relationship Information

One of the major issues associated with the analysis of modern network is the incorporation
of content information with the relationship information. Even though the relationship part of so-
cial networks has been studied extensively in the literature, there have been only a few efforts at
coupling content information with the structural data. Without content information, a network’s re-
lationship information is simply a plain graph with vertices and edges. It gets interesting when we
consider the content information at the vertices and edges. With the advent of content-rich nodes
and edges in modern networks, it is now necessary to include this information into the analysis of
these networks. Contents are often in the form of text, images, events, tags, etc. With the availability
of such information, communities are expected to be not only topologically well connected but also
semantically coherent and meaningful with respect to their content. For example, consider an email
network where an edge between two nodes represents an email communication. Now if we just look
at the edge between nodes, a spammer is most likely to become the hub of the network and be the
center of clusters which is hardly what we want. Taking into account the content we can filter out the
spam emails and extract more meaningful clusters. Although many previous studies have worked
on datasets with content information, in most cases the content has been used just to extract links
between nodes based on similarity or some other measure but not for community extraction [131].

Content information may be available in various formats. Content associated with vertices may
come from user profile in social networks or material created by the user while content with edges
my come from interactions. The goal is to combine content and structural information for finding
more meaningful communities.

Here we review some approaches that use Bayesian generative models for incorporating textual
contents. Wang et al. [168] propose a Group-Topic model which is an extension of stochastic block
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structures models [127] where both relations and their attributes are considered. An entity is related
to another if they behave the same way to an event and if texts associated with the event are this
relationship’s attributes. Moreover, each event corresponds to one of T latent topics, and hence,
group membership of an entity is no longer constant; rather it changes with respect to different
topics. The discovery of groups by topics and vice-versa is guided by this framework of directed
probabilistic model [131].

The notion of semantic community and two corresponding Community-User-Topic (CUT) mod-
els were introduced by Zhou et al. [178] where the objective is to extract semantic community from
communication documents. The CUT1 model is more similar to conventional community discovery
algorithms because a community is still nothing more than a group of users. Here, the distribution
of topics is conditioned on users, who are, in turn, conditioned on communities. The CUT2 model,
on the other hand, assumes a tighter connection between community and topic and lets communi-
ties decide topics and topics decide users. The experiments report that the CUT2 model finds higher
quality semantic communities and is computationally more efficient as well.

Another model called Community-Author-Recipient-Topic (CART) model in an email commu-
nication network setting was presented by Pathak et al. [133]. This model assumes that discussion
among users within a community is relevant to the users as well as the community and constrains
all users involved and topics discussed in the email conversation to belong to a single community
while same users and topics in a different conversation can be assigned to different communities
[131]. It is claimed that this model emphasizes the joint effect of topic and relationships on commu-
nity structures more than the other models discussed above. However, a common concern with all
three methods discussed above is that inference of the generative model using Gibbs sampling may
converge slowly leading to a longer running time for large-scale datasets.

Moser et al. [118] introduce the problem of Connected X Clusters (CXC) inspired by traditional
graph clustering. The algorithm requires each cluster to be internally connected using relationship
information and assumes each cluster to be compact and distinctive from neighboring ones (by con-
tent information). The proposed algorithm is called JointClust and is essentially an agglomerative
clustering method. After determining cluster atoms based on number of initial centroids, it merges
cluster atoms in a bottom-up fashion based on an extension of the traditional Silhouette coefficient
known as Joint Silhouette Coefficient [88]. The advantage is that it does not require a prespecified
cluster number. However, it still takes the minimum size of each cluster as a parameter.

Negoescu et al. [121] proposed an algorithm for identifying groups on the Flickr image-sharing
website. This algorithm defines groups to be a set of self-organized users who are elements of
the final communities. A community is also called a hypergroup. The algorithm first extracts bag-
of-tags from the groups’ images which are treated as the content generated by the group. Then
Latent Dirichlet Allocation (LDA) is applied to get the distribution of latent topics over each group.
Different similarity measures can be used to build a similarity matrix for groups, and the original
problem is converted into a clustering problem on a similarity matrix. This algorithm is applicable
to finding communities of users as well [131]. The concern, again, is the efficiency that is associated
with all latent-topic-based approaches.

Sun et al. [163] propose a topic modeling framework, called iTopicModel, on arbitrary document
networks. This framework builds a generative topic model that considers both text and structure
information for documents. Their model provides a joint distribution function for both text and
structure of documents. Estimation of the topic model is done by maximizing the log-likelihood of
the joint probability using an EM-based iterative solution.

17.13.6 Networks with Overlapping Communities

In modern networks, especially in social networks, each node in the network can belong to
multiple groups (i.e., communities). Another example is the biological network where each node
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(protein) can have multiple functions. Kelley et al. [89] show that overlap is a significant feature of
many social networks. Most of the partitioning algorithms explained in this chapter target a disjoint
clustering of the network. Recently, there has been a growing interest in algorithms that can detect
overlapping community structures.

Given a graph G = (V,E), a cover, C = (c1,c2, ...,ck), is a set of clusters found by overlapping
community detection [96], and each node is associated with a community by a belonging factor
b1,b2, ...,bk [122]. Generally it is assumed that 0≤ bi≤ 1 and ∑i bi = 1. Node assignment to clusters
can be crisp or fuzzy [71]. In crisp assignment, a node either belongs to a community or does not;
but in fuzzy assignment the membership of a node in a cluster is expressed as a belonging factor
[172].

Xie et al. [172] categorize algorithms for overlapping community detection into following five
categories based on how communities are identified.

• Clique Percolation Algorithm (CPM) assumes that a community consists of overlapping fully
connected subgraphs and, hence, searches for adjacent cliques in order to detect communities.
CFinder is the implementation of CPM which has a polynomial time complexity in many
applications [128] and does not terminate in many large social networks [172]. Related works
under this category include subgraph intensity threshold for weighted networks by Farkas et
al. [55] and SCP by Kumpula et al. [95] that finds clique communities of given size. SCP is
faster than CPM and allows multiple weight threshold in a single run.

• Line Graph and Link Partitioning explores the idea of link partitioning and calls a node in the
graph overlapping if links connected to it are partitioned into more than one clusters. Some
works in this context are presented in [3, 53, 52]. Despite being intuitively natural, there is no
guarantee that it gives better detection than node-based methods [59] because it depends on
an ambiguous definition of community.

• Local Expansion and Optimization are based on growing a natural [96] or partial community
that relies on local benefit function characterizing the quality of a densely connected group of
nodes. Baumes et al. [15] propose a two-step process: RankRemoval finds the seed commu-
nities for the second step Iterative Scan (IS). LFM, proposed in [96], expands a community
from random seed with respect to a fitness function. Havemann et al. proposed MONC [75]
that uses a modified fitness function of LFM. A thorough study of local expansion and opti-
mization algorithms can be found in [172].

• Fuzzy Detection algorithms quantify a soft membership vector or belonging factor [70] for
each node which represents the strength of association between each pairs of nodes and
communities. Nepusz et al. [122] model the problem as nonlinear constrained optimization
that can be solved using simulated annealing methods. Zhang et al. [177] propose a spectral
clustering-based algorithm that uses fuzzy c-means (FCM) to obtain a soft assignment. Use
of mixture models has also been explored in this context and some examples are SPAEM
[143] and FOG [39]. OSBM [98] and MOSES [110] are based on the Stochastic Block Model
(SBM) [127] generative model. More detailed descriptions of above mentioned and related
algorithms can be found in [172].

• Agent Based and Dynamical Algorithms extend the label propagation algorithm [139] to over-
lapping community detection. In COPRA [70] each node averages the belonging coefficients
of neighbors in a synchronous fashion to update its coefficients in each time step. SLPA [173]
follows pairwise interaction rules to spread labels between nodes based on a general speaker-
listener-based information propagation process. Chen et al. [32] propose a game theoretic
framework where a community is associated with a Nash local equilibrium and each agent
has a gain and loss function. The assumption is agents are selfish and form communities
based on respective utilities. Breve et al. [17] propose a process where particles walk and
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compete with each other to occupy nodes, and particles represent different communities. A
comprehensive study on this topic can be found in [172].

Many other algorithms have been proposed in the literature to address the problem.
CONGO [69] allows a node to split into multiple copies, extends Girvan-Newman’s (GN)
divisive clustering algorithm [68], and optimizes for associated high computational complex-
ity of it for speed. Xie et al. present an exhaustive discussion on available algorithms in [172].

• Overlapping Markov Clustering has recently been proposed by Shih and Parthasarathy [152].
This approach extends Regularized Marcov Clustering (RMCL) [148] and allows soft cluster-
ing. This method, called SR-MCL, executes RMCL algorithm iteratively but penalizes flows
going to previous attractor nodes. As a consequence, RMCL produces slightly different clus-
tering each time. SR-MCL then combines all this clustering to generate overlapping clusters.
It also performs some postprocessing to remove unqualified and redundant clusters [152].

17.13.7 Probabilistic Methods

In this section we briefly talk about some of the probabilistic methods in the area of network
clustering.

• Generative Model-Based Methods assume that the data is part of some unobserved probabil-
ity distribution. Generative models describe probabilistically how a dataset may be formed.
In other words, they are the hypothesis of the underlying distribution that created the data.
Assuming the hypothesis to be true, algorithms like Expectation Maximization can be used
to find clustering that best agrees with the underlying model [7]. Fu and Banerjee [62] show
that mixture models can be constructed as generative model as well. Magdon-Ismail and
Purnell [107] use spectral clustering to map the network into a d-dimensional space and
train a Gaussian Mixture Model (GMM) using the Expectation Maximization (EM) algo-
rithm. Increase in log-likelihood of adding a cluster is used to determine the number of
communities [172].

For groups in the networks, SBM is another type of generative model [127]. However, fit-
ting an empirical network to SBM requires inferring model parameters. In OSBM [98] each
node is associated with a latent vector with K independent Boolean variables where K is the
number of communities. As in [144], the latent vector is inferred by maximizing the posterior
probability conditioned on the presence of edges. Because the factorization in the observed
condition distribution for edges given the latent vector is in general intractable, OSBM re-
quires more effort than mixture models [172]. McDaid and Hurley combine OSBM with
local optimization scheme in MOSES [110] where the fitness function is defined based on the
observed condition distribution. MOSES greedily expands community from edges and has a
worst-case time complexity of O(en2) where e is the number of edges expanded. Recently
McDaid et al. [111] extended the SBM of Nowicki and Snijders [127] exploiting parameter
collapsing to integrate out block parameters. This model defines a posterior over the number
of clusters and cluster memberships and allows the number of clusters to be directly estimated.
Another SBM based model was proposed by McDaid et al. in [112] for finding communities
in networks.

• Exponential Random Graph (p*) Models [170] for social networks have enjoyed a growing in-
terest from the research community in recent years. These models regard possible ties among
nodes of a network as random variables. The general form of the exponential random graph
model for the network is determined by assumptions about dependencies among these ran-
dom tie variables. An observed network is regarded as one realization from a set of possible
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networks with similar characteristics. In other words, any observed network is an outcome of
some unknown stochastic process. The goal is to formulate a model to propose a theoretically
principled hypothesis for the unknown process [145].

17.14 Conclusion

Clustering networks with efficiency and scalability is a hard challenge in general. In this chap-
ter, we present a comprehensive survey on different approaches to network clustering and describe a
wide range of clustering algorithms based on their working principles. We discuss different formu-
lations of the problem in the literature and most commonly used evaluation criteria for measuring
the quality of the resulting clusters. Next, we describe core methods and representative algorithms
in each category starting from early geometric partitioning through to modern spectral methods and
Markov clustering. We then discuss major emerging challenges and state-of-the-art approaches to
solving them in the area of network clustering. In this concluding section, we briefly portray some
of the modern research themes that, as we envision, will guide the advancement of future research
in the area of network clustering in a broader sense.

• Summarization and Ranking: One of the biggest challenges with modern networks is the
fact that they are large. With increasing sizes of the networks, it becomes extremely challeng-
ing to mine them and convey meaningful information. One intuitive and effective approach to
dealing with large networks is to summarize and rank information for efficient analytic opera-
tions. Ranking patterns in order of importance helps experts focus on the most significant part
of the large network and explore from there. It also facilitates interactive browsing of differ-
ent parts of the network based on the analysts’ interest. Given a region of interest, the analyst
may want to apply operations similar to rollup or drill down for further analysis. Although
there have been significant research efforts in the generic area of summarization and ranking,
application and adaption of these techniques in the context of dynamic large networks needs
to be explored by more researchers.

• Visualization and Interactive Browsing: Visualizing modern billion-node networks is a
hard challenge because one often runs out of pixels on a commodity display device. It gets
harder when one targets visualizing topological characteristics and behavior of such networks.
Efficient interactive visualization and browsing is key to efficient analysis of modern net-
works. But providing these capabilities entails a number of big challenges from the domain
of visualization and graph miming. Unfortunately, this area has seen limited work in the con-
text of network partitioning thus far [20, 167, 175]. Visualization and Browsing has multiple
important roles in the context of network analytics: First of all, as a front end interactive tool
for visualizing dynamic networks at different levels of abstractions on demand. Next, as a tool
for understanding and analyzing the network. Also, as a means to validate and guide the clus-
tering process interactively. All these operations are challenging and, hence, more research in
this area are necessary.

• Scalable Algorithms for Distributed Systems: Due to the complex structure, increasing
size, and the tremendous amount of information associated with modern networks, scalabil-
ity of the clustering algorithms is going to be a critical factor in determining the usability
of a particular algorithm in real scenarios. Algorithms that can scale well for billion-node
networks on a parallel and distributed systems framework are going to be necessary to pro-
cess the ever growing networks. Recently, substantial research efforts have been made toward



444 Data Clustering: Algorithms and Applications

TABLE 17.1: Different Clustering Methods
Clustering Category Tunable Free

Method Parameters Software
Partitioning with Balanced Chaco [77]

Geometric Bipartitioning
Information

Coordinate Bisection Balanced Party [136]
Bipartitioning

Inertial Bisection Balanced Chaco [77]
Bipartitioning

Geometric Bisection Bipartitioning Overlap Graph Chaco [77],
Parameters Zoltan [179]

α and k

Kernighan-Lin Hard Partitioning Number of Party [136],
Algorithm partitions k Chaco [77]

Agglomerative and Hierarchical Number of Orange [38],
Divisive Algorithms Clustering partitions k hcluster [49]

Spectral Clustering Hard Clustering Number of Chaco [77],
partitions k MATLAB package [31]

Markov Clustering Hard Clustering Inflation Param. MCL
r controls software [166]

Granularity of
clusters

Multilevel Hard Clustering Coarsening & Metis [86],
Partitioning Uncoarsening Graclus [42],

Overhead Chaco [77],
SCOTCH [134]

MLR-MCL Hard & Soft Inflation Parameter MLR-MCL
Clustering r, Software [147]

Size of Coarsest
Graph c

Hypergraph Hard Clustering Number of PaToH [26],
Partitioning Partitions k, Zoltan [179],

Number of Cells hMetis [87]
in Coarsest
Hypergraph

Bipartite Graph Hard Clustering Co-clustering
Partitioning software [34],

Metis [86]

Dynamic Graph Hard & Soft
Partitioning Clustering

Directed Graphs Hard & Soft Number of GraphClust [140]
Partitioning Clustering Clusters,

Definition of
Substructures

Networks with Soft Clustering MOSES Software [109]
Overlapping
Communities

Probabilistic Hard & Soft SBM & SCF
Methods Clustering Software [108]
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scalable solutions to network clustering problems. These include scalable, parallel, and dis-
tributed algorithms for processing graphs and networks that exceed the storage capacity of a
single machine. At the algorithmic level, multilevel algorithms that depend on graph coars-
ening offer advantages over other conventional methods that work directly on the input graph
[42, 86, 148]. Streaming algorithms [2] as well as architecture-aware algorithms on GPU and
multicores offer an orthogonal approach [21, 132]. Algorithms on platforms such as Hadoop
[82, 130] are also gaining popularity because of the recent trend toward commodity clusters
of shared-nothing architectures and cloud computing.

• Use of Domain Knowledge: Underutilization of domain knowledge during the model build-
ing process has been a common tendency in data mining research. Researchers in the area
of data mining often intentionally discard important domain knowledge during the training
phase that allows them to independently validate the effectiveness of the proposed methods
during testing [131]. Such tendency often limits the robustness of the solutions and scientific
advances within the domain. It is necessary to reconsider how the domain knowledge can be
incorporated into the approaches. We believe domain knowledge is too valuable a resource to
simply ignore during the discovery process as it can effectively guide the whole process. Es-
pecially modern graphs are well known to have a tremendous amount of valuable information
and metadata associated with them. Hence, robust algorithms are necessary that make use of
the available rich information to produce better results during the clustering process.

Even though the problem of network partitioning has been studied for decades, large modern
networks with a substantial amount of information associated with the nodes and edges pose novel,
complicated and hard-to-overcome challenges, demanding a fresh investigation, novel techniques,
and robust innovative approaches for dealing with them. Generic scalable algorithms for parallel and
distributed systems, architecture-aware solutions on GPUs and multicore systems, and algorithms
using Map-Reduce [40] framework and running on cloud systems need to be developed to handle
these ever growing graphs. Given that this is an exciting area of research with lots of promises, we
expect to see many more novel algorithms, principled approaches, and exciting results on this topic
in future.
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Sabidussi (Eds.) Graph Symmetry: Algebraic Methods and Applications, Vol 497 of NATO
ASI Series C, pages 227–275. Springer, The Netherlands, 1997.

[118] F. Moser, R. Ge, and M. Ester. Joint cluster analysis of attribute and relationship data without
a-priori specification of the number of clusters. In KDD ’07: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 510–
519. ACM New York, NY, 2007.



Network Clustering 453

[119] F. Murray. Innovation as co-evolution of scientific and technological networks: exploring
tissue engineering. Research Policy, 31(8-9):1389–1403, 2002.

[120] S. F. Nadel. The Theory of Social Structure. Cohen and West, London, 1957.

[121] R. A. Negoescu, B. Adams, D. Phung, S. Venkatesh, and D. Gatica-Perez. Flickr hyper-
groups. In Proceedings of the Seventeen ACM International Conference on Multimedia,
pages 813–816, 2009.
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18.1 Introduction

Many data sets which are collected often have uncertainty built into them. In many cases, the
underlying uncertainty can be easily measured and collected. When this is the case, it is possible
to use the uncertainty in order to improve the results of data mining algorithms. This is because
the uncertainty provides a probabilistic measure of the relative importance of different attributes in
data mining algorithms. The use of such information can enhance the effectiveness of data mining
algorithms, because the uncertainty provides a guidance in the use of different attributes during
the mining process. Some examples of real applications in which uncertainty may be used are as
follows:

• Imprecise instruments and hardware are sometimes used in order to collect the data. In such
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cases, the level of uncertainty can be measured by prior experimentation. A classic example
of such hardware is sensors, in which the measurements are often imprecise.

• The data may be input by statistical methods, such as forecasting. In such cases, the uncer-
tainty may be inferred from the methodology used in order to perform the function.

• Many privacy-preserving data mining techniques use probabilistic perturbations [11] in order
to reduce the fidelity of the underlying data. In such cases, the uncertainty may be available
as an end result of the privacy-preservation process. Recent work [5] has explicitly connected
the problem of privacy-preservation with that of uncertain data mining and has proposed a
method which generates data, which is friendly to the use of uncertain data mining methods.

The problem of uncertain data has been studied in the traditional database literature [14, 43], though
the issue has seen a revival in recent years [3, 5, 15, 19, 21, 22, 40, 49, 51, 52]. The driving force
behind this revival has been the evolution of new hardware technologies such as sensors which
cannot collect the data in a completely accurate way. In many cases, it has become increasingly
possible to collect the uncertainty along with the underlying data values. Many data mining and
management techniques need to be carefully redesigned in order to work effectively with uncertain
data. This is because the uncertainty in the data can change the results in a subtle way, so that
deterministic algorithms may often create misleading results [3]. While the raw values of the data
can always be used in conjunction with data mining algorithms, the uncertainty provides additional
insights which are not otherwise available. A survey of recent techniques for uncertain data mining
may be found in [10].

The problem of clustering is a well-known and important one in the data mining and manage-
ment communities. The problem has been widely explored in the context of deterministic data.
Details of a variety of clustering algorithms may be found in [38, 34]. The clustering problem has
been widely studied in the traditional database literature [28, 47, 56] because of its applications to a
variety of customer segmentation and data mining problems.

Uncertainty modeling is very relevant in the context of a number of different clustering appli-
cations. An example is illustrated in [42] in which uncertainty was incorporated into the clustering
process in the context of a sales merchandising application. Since the problem of data clustering is
closely related to that of classification, the methods for uncertain data clustering can also be used to
enable algorithms for other closely related data mining problems such as outlier detection [9] and
classification [3]. This is because clustering serves as a general-purpose summarization tool, which
can be used in the context of a wide variety of problems.

The presence of uncertainty significantly affects the behavior of the underlying clusters because
the presence of uncertainty along a particular attribute may affect the expected distance between the
data point and that particular attribute. In most real applications, there is considerable skew in the
uncertainty behavior across different attributes. The incorporation of uncertainty into the clustering
behavior can significantly affect the quality of the underlying results.

The problem of uncertain data clustering is often confused with that of fuzzy clustering [50].
In the case of uncertain data clustering, the uncertainty belongs to the representation of the source
objects which are being clusters, and the actual clustering model may be either probabilistic or
deterministic. In the case of fuzzy clustering [50], the source objects are typically deterministic, and
the membership of objects to clusters is probabilistic. In other words, each object has a degree of
belongingness to the different clusters, which is “fuzzy” or probabilistic in nature.

In this chapter, we will provide a survey of clustering algorithms for uncertain data. The main
classes of clustering algorithms for uncertain data are as follows:

• Mixture-Modeling Algorithms: Mixture modeling techniques use probabilistic models for
clustering uncertain data. A classic example of such an approach is given in [33], which uses
an EM-approach [23] for the clustering process.
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• Density-Based Methods: A density-based method for uncertain data was proposed in [40].
This is referred to as the FDBSCAN algorithm. This approach modifies the DBSCAN algo-
rithm to the case of uncertain data. An alternative method modifies the OPTICS algorithm to
the case of uncertain data [41]. This is referred to as the FOPTICS algorithm.

• Partitional Methods: The K-means algorithm has been modified for the case of uncertain
data [16, 48, 44, 20, 27]. Typically, the main challenge in these methods is that the uncertain
distance computations for the k-means algorithms are too slow. Therefore, the focus is on
improving efficiency by using pruning methods [48], speeding up distance computations [44],
or by using fast approximation algorithms, which provide worst-case bounds [20, 27].

• Streaming Algorithms: The problem of clustering uncertain data has been extended to the
case of data streams [8]. For this purpose, we extend the microclustering approach [6] to the
case of data streams.

• High-Dimensional Algorithms: High-dimensional data poses a special challenge in the un-
certain data, because the data is distributed in a very sparse way to begin with. The addition
of uncertainty and noise further adds to the sparsity. Therefore, effective methods need to be
designed for approximately determining clusters in such applications.

In this chapter, we will provide a detailed discussion of each of the above algorithms for un-
certain data. This chapter is organized as follows. In the next section, we will discuss mixture
model clustering of uncertain data. In Section 18.3, we will describe density-based clustering al-
gorithms for uncertain data. These include extensions of popular deterministic algorithms such as
the DBSCAN and OPTICS algorithms. In Section 18.4, we will discuss partitional algorithms for
clustering uncertain data. Most of these methods are extensions of the k-means and k-median algo-
rithms. This includes methods such as the UK-means, CK-means, and a number of approximation
algorithms for clustering uncertain data. Section 18.5 discusses streaming algorithms for clustering
uncertain data. Section 18.6 discusses high-dimensional algorithms for clustering uncertain data.
The uncertain data clustering problem has also been explored in the context of the possible worlds
model in Section 18.7. Section 18.9 contains the conclusions and summary.

18.2 Mixture Model Clustering of Uncertain Data

Mixture model clustering [23] is a popular method for clustering deterministic data, and it mod-
els the clusters in the underlying data in terms of a number of probabilistic parameters. For example,
the data can be modeled as a mixture of Gaussian clusters, and then the parameters of this mixture
can be learned from the underlying data. The core idea [23] is to determine model parameters, which
ensure a maximum likelihood fit of the observed instantiations of the data with the proposed model.
A popular method in order to determine these model parameters is the EM algorithm, which uses
an Expectation-Maximization approach to iteratively update the parameters with the observed data
instances.

The work in [33] generalizes this approach to the case of uncertain data, where each data value
may be drawn from an interval. The main difference between the uncertain version of the algorithm
and the deterministic version is that each instantiation is now an uncertain value of the record, rather
than a deterministic value. Correspondingly, the EM algorithm is also changed in order to evaluate
the expressions in the E-step and M-step as an expectation over the uncertain range of the data
value. We note that the approach can be used fairly easily for any uncertain distribution, which is
represented in the form of a probability histogram of values.
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Another algorithm known as the MMVar algorithm has been proposed in [29], in which the
centroid of a cluster C is defined as an uncertain object CMM, that represents the mixture model
of C. The cluster compactness criterion used by the MMVar algorithm is the minimization of the
variance of the cluster centroid.

18.3 Density-Based Clustering Algorithms

Density-based methods are very popular in the deterministic clustering literature, because of
their ability to determine clusters of arbitrary shapes in the underlying data. The core idea in these
methods is to create a density profile of the data set with the use of kernel density estimation meth-
ods. This density profile is then used in order to characterize the underlying clusters. In this section,
we will discuss two variations of such density-based methods, which are the FDBSCAN and FOP-
TICS methods.

18.3.1 FDBSCAN Algorithm

The presence of uncertainty changes the nature of the underlying clusters, since it affects the
distance function computations between different data points. A technique has been proposed in
[40] in order to find density-based clusters from uncertain data. The key idea in this approach is to
compute uncertain distances effectively between objects which are probabilistically specified. The
fuzzy distance is defined in terms of the distance distribution function. This distance distribution
function encodes the probability that the distances between two uncertain objects lie within a certain
user-defined range. Let d(X ,Y ) be the random variable representing the distance between X and Y .
The distance distribution function is formally defined as follows.

Definition 18.3.1 Let X and Y be two uncertain records, and let p(X ,Y ) represent the distance
density function between these objects. Then, the probability that the distance lies within the range
(a,b) is given by the following relationship:

P(a≤ d(X ,Y )≤ b) =
∫ b

a
p(X ,Y )(z)dz (18.1)

Based on this technique and the distance density function, the method in [40] defines a reachabil-
ity probability between two data points. This defines the probability that one data point is directly
reachable from another with the use of a path, such that each point on it has density greater than a
particular threshold. We note that this is a direct probabilistic extension of the deterministic reach-
ability concept which is defined in the DBSCAN algorithm [24]. In the deterministic version of
the algorithm [24], data points are grouped into clusters when they are reachable from one another
by a path which is such that every point on this path has a minimum threshold data density. To
this effect, the algorithm uses the condition that the ε-neighborhood of a data point should con-
tain at least MinPts data points. The algorithm starts off at a given data point and checks if the
ε neighborhood contains MinPts data points. If this is the case, the algorithm repeats the process
for each point in this cluster and keeps adding points until no more points can be added. One can
plot the density profile of a data set by plotting the number of data points in the ε-neighborhood
of various regions, and plotting a smoothed version of the curve. This is similar to the concept of
probabilistic density estimation. Intuitively, this approach corresponds to the continuous contours of
intersection between the density thresholds of Figures 18.1 and 18.2 with the corresponding density
profiles. The density threshold depends upon the value of MinPts. Note that the data points in any
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FIGURE 18.1: Density-based profile with
lower density threshold.
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FIGURE 18.2: Density-based profile with
higher density threshold.

contiguous region will have density greater than the threshold. Note that the use of a higher density
threshold (Figure 18.2) results in 3 clusters, whereas the use of a lower density threshold results
in 2 clusters. The fuzzy version of the DBSCAN algorithm (referred to as FDBSCAN) works in a
similar way as the DBSCAN algorithm, except that the density at a given point is uncertain because
of the underling uncertainty of the data points. This corresponds to the fact that the number of data
points within the ε-neighborhood of a given data point can be estimated only probabilistically and
is essentially an uncertain variable. Correspondingly, the reachability from one point to another is
no longer deterministic, since other data points may lie within the ε-neighborhood of a given point
with a certain probability, which may be less than 1. Therefore, the additional constraint that the
computed reachability probability must be greater than 0.5 is added. Thus, this is a generalization
of the deterministic version of the algorithm in which the reachability probability is always set to 1.

18.3.2 FOPTICS Algorithm

Another related technique discussed in [41] is that of hierarchical density-based clustering. An
effective (deterministic) density-based hierarchical clustering algorithm is OPTICS [12]. We note
that the core idea in OPTICS is quite similar to DBSCAN and is based on the concept of reachability
distance between data points. While the method in DBSCAN defines a global density parameter
which is used as a threshold in order to define reachability, the work in [41] points out that different
regions in the data may have different data density, as a result of which it may not be possible to
define the clusters effectively with a single density parameter. Rather, many different values of the
density parameter define different (hierarchical) insights about the underlying clusters. The goal is
to define an implicit output in terms of ordering data points, so that when the DBSCAN is applied
with this ordering, one can obtain the hierarchical clustering at any level for different values of
the density parameter. The key is to ensure that the clusters at different levels of the hierarchy
are consistent with one another. One observation is that clusters defined over a lower value of ε are
completely contained in clusters defined over a higher value of ε, if the value of MinPts is not varied.
Therefore, the data points are ordered based on the value of ε required in order to obtain MinPts in
the ε-neighborhood. If the data points with smaller values of ε are processed first, then it is assured
that higher density regions are always processed before lower density regions. This ensures that if
the DBSCAN algorithm is used for different values of ε with this ordering, then a consistent result is
obtained. Thus, the output of the OPTICS algorithm is not the cluster membership, but it is the order
in which the data points are processed. We note that since the OPTICS algorithm shares so many
characteristics with the DBSCAN algorithm, it is fairly easy to extend the OPTICS algorithm to the
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uncertain case using the same approach as was used for extending the DBSCAN algorithm. This
is referred to as the FOPTICS algorithm. Note that one of the core concepts needed to order data
points is to determine the value of ε which is needed in order to obtain MinPts in the corresponding
neighborhood. In the uncertain case, this value is defined probabilistically, and the corresponding
expected values are used to order the data points. A different hierarachical clustering algorithm with
the use of an information-theoretic approach was proposed in [30].

18.4 Partitional Clustering Algorithms

Partitional clustering methods are algorithms which extend the k-means and k-medoid principles
to the case of uncertain data. In this section, we will discuss these methods. The advantage of using
partitional clustering methods is their relative simplicity and quick execution.

18.4.1 The UK-Means Algorithm

A common approach to clustering is the k-means algorithm. In the k-means algorithm, we con-
struct clusters around a predefined number of cluster centers. A variety of distance functions may be
used in order to map the points to the different clusters. A k-means approach to clustering uncertain
data was studied in the context of moving object data [16, 48]. In the case of moving objects, the
actual locations of the objects may change over time as the data is reported intermittently. Thus, the
position of a vehicle could be an arbitrary or circle region which uses the reported location as its
center and has a size which is dependent upon the speed and direction of the vehicle. A probability
density function could be used to model the probability of the presence of the vehicle at a given
location at a particular time.

One possibility is to simply replace each uncertain data point by a representative point such as
its centroid, and apply the (deterministic) k-means clustering method directly to it. The UK-means
clustering approach is very similar to the K-means clustering approach, except that we use the
expected distance from the data’s uncertainty region to the representative of the candidate cluster to
which it is assigned. It was shown in [16] that the use of expected distances has clear advantages
over an approach which uses deterministic clustering algorithms over representative data points.
This approach is referred to as the UK-means algorithm.

A key challenge is the computation of the expected distances between the data points and the
centroids for the k-means algorithm. A natural technique for computing these expected distances
is to use Monte-Carlo sampling, in which samples for the data points are used in order to compute
the uncertain distances. Another technique is to create discrete buckets from both distributions and
compute the expected distances by a pairwise weighted average from different pairs of buckets.
Thus, if one probability density function (pdf) is discretized into m1 buckets, and another pdf is
discretized into m2 buckets, such an approach would require m1 ·m2 distance computations. The
Monte-Carlo approach can be very expensive because a large number of samples may be required
in order to compute the distances accurately. Similarly, a large number of discrete buckets may
be required in order to compute the pairwise distances accurately. The work in [16] uses a purely
brute-force version of the UK-means algorithm in which no optimization or pruning of the distance
computations is performed. This version can be impractical, especially if a high level of accuracy is
required in the clustering process. Clearly, some kind of pruning is required in order to improve the
efficiency of the approach.

The work in [48] improves on the work of [16] and designs a pruned version of the UK-means
algorithm. The idea here is to use branch-and-bound techniques in order to minimize the number
of expected distance computations between data points and cluster representatives. The broad idea
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is that once an upper bound on the minimum distance of a particular data point to some cluster
representative has been quantified, it is necessary to perform the computation between this point and
another cluster representative, if it can be proved that the corresponding distance is greater than this
bound. In order to compute the bounds, the minimum bounding rectangle for the representative point
for a cluster region is computed. The uncertain data point also represents a region over which the
object may be distributed. For each representative cluster, its minimum bounding rectangle (MBR)
is used to compute the following two quantities with respect to the uncertain data point:

• The minimum limit on the expected distance between the MBR of the representative point
and the uncertain region for the data point itself.

• The maximum limit on the expected distance between the MBR of the representative point
and the uncertain region for the data point itself.

These upper and lower bound computations are facilitated by the use of the minimum bounding
rectangles in conjunction with the triangle inequality. We note that a cluster representative can be
pruned, if its maximum limit is less than the minimum limit for some other representative. The
approach in [48] constructs a k-d tree on the cluster representatives in order to promote an orderly
pruning strategy and minimize the number of representatives which need to be accessed. It was
shown in [48] that such an approach significantly improves the pruning efficiency over the brute-
force algorithm.

18.4.2 The CK-Means Algorithm

While the work in [16] claims that UK-means provides qualitatively superior results to deter-
ministic clustering, the work in [44] shows that the model utilized by the UK-means is actually
equivalent to deterministic clustering, by replacing each uncertain data point by its expected value.
Thus, the UK-means approach actually turns out to be equivalent to deterministic clustering. This
contradicts the claim in [16] that the UK-means algorithm provides superior results to a determinis-
tic clustering method which replaces uncertain data points with their centroids. We further note that
most of the computational complexity is created by the running time required for expected distance
calculations. On the other hand, deterministic distance computations are extremely efficient and are
almost always superior to any method which is based on expected distance computations, whether
or not pruning is used.

The UK-means algorithm aims to optimize the mean square expected distance about each cluster
centroid. A key step is the computation of the expected square distance of an uncertain data point
Xi with a cluster centroid Y , where the latter is approximated as a deterministic entity. Let Y be the
centroid of a cluster, and X1 . . .Xr be the set of data points in the cluster. Then, the expected mean
square distance of data point Xi about Y is given by E[||Xi−Y ||2]. Then, if Y is approximated as a
deterministic entity, we can show the following.

Lemma 18.4.1 Let Xi be an uncertain data point, and Y be a deterministic point. Let ci = E[Xi] and
var(Xi) represent the sum of the variances of the pdfs in Xi over all dimensions. Then, we have

E[||Xi−Y ||2] = E[||Xi||2]−||ci||2 + ||ci−Y ||2
= var(Xi)+ ||ci−Y ||2

We will provide a proof of a generalized version of this lemma slightly later (Lemma 18.4.2). We
further note that the value of E[||Xi||2]− ||ci||2 is equal to the variance of the uncertain data point
Xi (summed over all dimensions). The term ||ci −Y ||2 is equal to the deterministic distance of
the Y to the centroid of the uncertain data point Xi. Therefore, the expected square distance of an
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uncertain data point Xi to the centroid Y is given by the square sum of its deterministic distance and
the variance of the data point Xi. The variance of the data point is not dependent on the value of
Y . Therefore, while computing the expected square distance to the different centroids for the UK-
means algorithm, it suffices to compute the deterministic distance to the centroid ci of Xi instead of
computing the expected square distance. This means that by replacing each uncertain data point Xi

with its centroid, the UK-means can be replicated exactly with an efficient deterministic algorithm.
It is important to note that the equivalence of the UK-means method to a deterministic algo-

rithm is based on the approximation of treating each cluster centroid (in intermediate steps) as a
deterministic entity. In practice, some of the dimensions may be much more uncertain than others
in the clustering process over most of the data points. This is especially the case when different di-
mensions are collected using collection techniques with different fidelity. In such cases, the cluster
centroids should not be treated as deterministic entities. Some of the streaming methods for uncer-
tain data clustering such as those discussed in [8] also treat the cluster centroids as uncertain entities
in order to enable more accurate computations. In those case, such deterministic approximations are
not possible. Another method, which treats cluster centroids as uncertain entities was later proposed
independently in [31]. The work on clustering streams, while treating centroids as uncertain entities
will be discussed in a later section of this chapter.

18.4.3 Clustering Uncertain Data with Voronoi Diagrams

The work in [48] uses minimum bounding boxes of the uncertain objects in order to compute
distance bounds for effective pruning. However, the use of minimax pruning can sometimes be
quite restrictive in efficiently characterizing the uncertain object, which may have arbitrary shape.
An approach which is based on voronoi diagrams, also improves the UK-means algorithms by
computing the voronoi diagrams of the current set of cluster representatives [37]. Each cell in this
voronoi diagram is associated with a cluster representative. We note that each cell in this voronoi
diagram has the property that any point in this cell is closer to the cluster representative for that cell
than any other representative. Therefore, if the MBR of an uncertain object lies completely inside a
cell, then it is not necessary to compute its distance to any other cluster representatives. Similarly,
for any pair of cluster representatives, the perpendicular bisector between the two is a hyperplane
which is equidistant from the two representatives and is easily derivable from the voronoi diagram.
In the event that the MBR of an uncertain object lies completely on one side of the bisector, we can
deduce that one is the cluster representatives is closer to the uncertain object than the other. This
allows us to prune one of the representatives.

As in [48], this work is focused on pruning the number of expected distance computations. It
has been shown in [37] that the pruning power of the voronoi method is greater than the minimax
method proposed in [48]. However, the work in [37] does not compare its efficiency results to those
in [44], which are based on the equivalence of UK-means to a deterministic algorithm and does
not require any expected distance computations at all. It would seem that any deterministic method
for k-means clustering (as proposed in the reduction of [44]) should be much more efficient than a
method based on pruning the number of expected distance computations, no matter how effective
the pruning methodology might be.

18.4.4 Approximation Algorithms for Clustering Uncertain Data

Recently, techniques have been designed for approximation algorithms for uncertain clustering
in [20]. The work in [20] discusses extensions of the k-mean and k-median version of the prob-
lems. Bicriteria algorithms are designed for each of these cases. One algorithm achieves a (1+ ε)-
approximation to the best uncertain k-centers with the use of O(k ·ε−1 · log2(n)) centers. The second
algorithm picks 2k centers and achieves a constant-factor approximation.

A key approach proposed in [20] is the use of a transformation from the uncertain case to a
weighted version of the deterministic case. We note that solutions to the weighted version of the
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deterministic clustering problem are well known and require only a polynomial blow-up in the
problem size. The key assumption in solving the weighted deterministic case is that the ratio of
the largest to smallest weights is polynomial. This assumption is assumed to be maintained in the
transformation. This approach can be used in order to solve both the uncertain k-means and k-
median version of the problem with the aforementioned approximation guarantees. We refer the
reader to [20, 27] for details of these algorithms.

18.4.5 Speeding Up Distance Computations

We note that there are two main ways in which the complexity of distance computations in
a k-means algorithm can be reduced. The first is by using a variety of pruning tricks, which cuts
down on the number of distance computations between data points and cluster representatives. The
second is by speeding up the expected distance computation itself. This kind of approach can be
especially useful where the pruning effectiveness of a technique such as that proposed in [48] is
not guaranteed. Therefore, a natural question arises as to whether one can speed up the uncertain
distance computations, which cause the performance bottleneck in these methods.

The work in [54] designs methods for speeding up distance computations for the clustering pro-
cess. We note that such fast distance computations can be very effective not only for the UK-means
algorithm, but for any clustering technique which is dependent on expected distance computations.
The work in [54] proposes a number of methods for performing distance computations between un-
certain objects, which provide different tradeoffs between effectiveness and efficiency. Specifically,
for a pair of uncertain objects X and Y , the following methods can be used in order to compute the
distances between them:

• Certain Representation: Each uncertain object can be replaced by a certain object, corre-
sponding to the expected values of its attributes. The distances between these objects can be
computed in a straightforward way. While this approach is very efficient, it provides very poor
accuracy.

• Sampling: It is possible to repeatedly sample both objects for pairs of instantiations and com-
pute the distances between them. The average of these computed distances can be reported
as the expected value. However, such an approach may require a large number of samples in
order to provide a high quality approximation.

• Probability Histograms: Each uncertain object can be approximated by a set of bins, which
corresponds to its probability histogram. Then, for every pair of bins between the two objects,
the probability of that instantiation and the distance between the average values of those
bins is computed. The weighted average over all pairs of bins is reported. Such an approach
can still be quite inefficient in many scenarios, where a large number of bins is required to
represent the probability histogram effectively.

• Gaussian Mixture Modeling with Sample Clustering: Each uncertain object can be approx-
imated with a mixture of Gaussians. Specifically, we sample each uncertain object with the
use of its pdf, and then cluster these samples with deterministic k-means clustering. Each of
these clusters can be fit into a Gaussian model. Then, the pairwise weighted average distances
between each of the components of the mixture can be computed.

• Single Gaussian Modeling: It turns out that it is not necessary to use multiple components in
the mixture model for the approximation process. In fact, it suffices to use a single component
for the mixture.

The last result is actually not very surprising in light of Lemma 18.4.1. In fact, the Gaussian as-
sumption is not required at all, and it can be shown that the distance between a pair of uncertain
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objects (for which the pdfs are independent of one another) can be expressed purely as a function of
their means and variances. Therefore, we propose the following (slight) generalization of Lemma
18.4.1.

Lemma 18.4.2 Let Xi and Yi be two uncertain data points, with means ci and di respectively. Let
the sum of the variances across all dimensions of these points be var(Xi) and var(Yi), respectively.
Then, we have

E[||Xi−Yi||2] = ||ci− di||2 + var(Xi)+ var(Yi) (18.2)

Proof: We can expand the term within the expectation on the left-hand side as follows:

E[||Xi−Yi||2] = E[||(Xi− ci)+ (ci− di)+ (di−Yi)||2] (18.3)

We further note that the three expressions within the round brackets on the right-hand side are
statistically independent of one another. This means that their covariances are zero. Furthermore,
the expected values of (Xi−ci) and (di−Yi) are both 0. This can be used to show that the expectation
of the product of any pair of terms within the round brackets on the right-hand side of Equation 18.3
is 0. This implies that we can rewrite the right-hand side (RHS) as follows:

E[||Xi−Yi||2] = E[||Xi− ci||2]+ (ci− di)
2 +E[||di−Yi||2] (18.4)

The first term on the RHS of the above expression is var(Xi) and the last term is var(Yi). The result
follows.

The aforementioned results suggest that it is possible to compute the distances between pairs
of uncertain objects very efficiently, as long as the uncertainties in different objects are statistically
independent. Another observation is that these computations do not require knowledge of the full
probability density function of the probabilistic records, but can be made to work with the more
modest assumption about the standard error var(·) of the underlying uncertainty. This is a more
reasonable assumption for many applications. Such standard errors are included as a natural part
of the measurement process, though the full probability density functions are rarely available. This
also suggests that a lot of work on pruning the number of expected distance computations may not
be quite as critical to efficient clustering as has been suggested in the literature.

18.5 Clustering Uncertain Data Streams

In many applications such as sensor data, the data may have uncertainty, due to errors in the
readings of the underlying sensors. This may result in uncertain streams of data. Uncertain streams
pose of special challenge because of the dual complexity of high volume and data uncertainty. As
we have seen in earlier sections, efficiency is a primary concern in the computation of expected
distances, when working with probability density functions of data points. Therefore, it is desirable
to work with simpler descriptions of the underlying uncertainty. This will reduce both the underlying
data volume and complexity of stream computations. In recent years, a number of methods have
specifically been proposed for clustering uncertain data streams.

18.5.1 The UMicro Algorithm

In this section, we will introduce UMicro, the Uncertain MICROclustering algorithm for data
streams. We assume that we have a data stream which contains d dimensions. The actual records in
the data are denoted by X1, X2, . . . XN . . .. We assume that the estimated error associated with the
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jth dimension for data point Xi is denoted by ψ j(Xi). This error is defined in terms of the standard
deviation of the error associated with the value of the jth dimension of Xi. The corresponding d-
dimensional error vector is denoted by ψ(Xi). Thus, the input to the algorithm is a data stream in

which the ith pair is denoted by (Xi,ψ(Xi)).
We note that most of the uncertain clustering techniques work with the assumption that the en-

tire probability density function is available. In many real applications, a more realistic assumption
is that only the standard deviations of the errors are available. This is because complete probabil-
ity distributions are rarely available and are usually inserted only as a modeling assumption. An
overly ambitious modeling assumption can also introduce modeling errors. It is also often quite
natural to be able to estimate the standard error in many modeling scenarios. For example, in a sci-
entific application in which the measurements can vary from one observation to another, the error
value is the standard deviation of the observations over a large number of measurements. In a k-
anonymity-based data (or incomplete data) mining application, this is the standard deviation of the
partially specified (or imputed) fields in the data. This is also more practical from a stream perspec-
tive, because it reduces the volume of the incoming stream and reduces the complexity of stream
computations.

The microclustering model was first proposed in [56] for large data sets and subsequently
adapted in [6] for the case of deterministic data streams. The UMicro algorithm extends the mi-
croclustering approach of [6] to the case of uncertain data. In order to incorporate the uncertainty
into the clustering process, we need a method to incorporate and leverage the error information into
the microclustering statistics and algorithms. As discussed earlier, it is assumed that the data stream
consists of a set of multidimensional records X1 . . .Xk . . . arriving at time stamps T1 . . .Tk . . .. Each
Xi is a multidimensional record containing d dimensions which are denoted by Xi = (x1

i . . .x
d
i ). In

order to apply the microclustering method to the uncertain data mining problem, we also need to
define the concept of error-based microclusters. We define such microclusters as follows.

Definition 18.5.1 An uncertain microcluster for a set of d-dimensional points Xi1 . . .Xin with times-

tamps Ti1 . . .Tin and error vectors ψ(Xi1) . . .ψ(Xin) is defined as the (3 · d + 2)tuple (CF2x(C ),
EF2x(C ), CF1x(C ), t(C ), n(C )), wherein CF2x(C ), EF2x(C ), and CF1x(C ) each correspond to a
vector of d entries. The entries in EF2x(C ) correspond to the error-based entries. The definition of
each of these entries is as follows:
• For each dimension, the sum of the squares of the data values is maintained in CF2x(C ). Thus,

CF2x(C ) contains d values. The pth entry of CF2x(C ) is equal to ∑n
j=1(x

p
i j
)2. This corresponds to

the second moment of the data values along the pth dimension.
• For each dimension, the sum of the squares of the errors in the data values is maintained in

EF2x(C ). Thus, EF2x(C ) contains d values. The pth entry of EF2x(C ) is equal to ∑n
j=1 ψp(Xij )

2.
This corresponds to the sum of squares of the errors in the records along the pth dimension.
• For each dimension, the sum of the data values is maintained in CF1x(C ). Thus, CF1x(C )

contains d values. The pth entry of CF1x(C ) is equal to ∑n
j=1 xp

i j
. This corresponds to the first

moment of the values along the pth dimension.
• The number of points in the data is maintained in n(C ).
• The timestamp of the last update to the microcluster is maintained in t(C ).

We note that the uncertain definition of microclusters differs from the deterministic definition, since
we have added additional d values corresponding to the error information in the records. We will
refer to the uncertain microcluster for a set of points C by ECF(C ). We note that error-based mi-
croclusters maintain the important additive property [6] which is critical to its use in the clustering
process. We restate the additive property as follows.

Property 18.5.1 Let C1 and C2 be two sets of points. Then all nontemporal components of the
error-based cluster feature vector ECF(C1∪C2) are given by the sum of ECF(C1) and ECF(C2).
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The additive property follows from the fact that the statistics in the individual microclusters are
expressed as a separable additive sum of the statistics over individual data points. We note that the
single temporal component t(C1∪C2) is given by max{t(C1), t(C2)}. We note that the additive prop-
erty is an important one, since it ensures that it is easy to keep track of the cluster statistics as new
data points arrive. Next, we will discuss the process of uncertain microclustering. The UMicro algo-
rithm works using an iterative approach which maintains a number of microcluster centroids around
which the clusters are built. It is assumed that one of the inputs to the algorithm is nmicro, which
is the number of microclusters to be constructed. The algorithm starts off with a number of null
clusters and initially creates new singleton clusters, to which new points are added subsequently.
For any incoming data point, the closest cluster centroid is determined by using the expected dis-
tance of the uncertain data point to the uncertain microclusters. The process of expected distance
computation for the closest centroid is tricky and will be subsequently discussed. Furthermore, for
the incoming data point, it is determined whether it lies within a critical uncertainty boundary of
the microcluster. If it lies within this critical uncertainty boundary, then the data point is added to
the microcluster, otherwise a new microcluster needs to be created containing the singleton data
point. In order to create a new microcluster, either it must be added to the current set of micro-
clusters, or it needs to replace one of the older microclusters. In the initial stages of the algorithm,
the current number of microclusters is less than nmicro. If this is the case, then the new data point
is added to the current set of microclusters as a separate microcluster with a singleton point in it.
Otherwise, the new data point needs to replace one of the older microclusters. For this purpose,
we always replace the least recently updated microcluster from the data set. This information is
available from the temporal timestamp in the different microclusters. The overall framework for
the uncertain stream clustering algorithm is illustrated in Figure 18.3. Next, we will discuss the
process of computation of individual subroutines such as the expected distance or the uncertain
boundary.

Algorithm UMicro(Number of Clusters: nmicro)

begin
S = {};
{ Set of micro-clusters }
repeat

Receive the next stream point X;
{ Initially, when S is null, the computations below

cannot be performed, and X is simply

added as a singleton micro-cluster to S }
Compute the expected similarity of X to the closest

micro-cluster M in S;
Compute critical uncertainty boundary of M ;

if X lies inside uncertainty boundary

add X to statistics of M
else
add a new micro-cluster to S containing singleton

point X;
if |S|= nmicro + 1 remove the least recently

updated micro-cluster from S;
until data stream ends;

end

FIGURE 18.3: The UMicro algorithm.
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In order to compute the expected similarity of the data point X to the centroid of the cluster C ,
we need to determine a closed form expression which is expressed only in terms of X and ECF(C ).
We note that just as the individual data points are essential random variables with a given error, the
centroid Z of a cluster C is also a random variable. We make the following observation about the
centroid of a cluster:

Lemma 18.5.1 Let Z be the random variable representing the centroid of cluster C . Then, the
following result holds true:

E[||Z||2] =
d

∑
j=1

CF1(C )2
j/n(C )2 +

d

∑
j=1

EF2(C ) j/n(C )2 (18.5)

Proof: We note that the random variable Zj is given by the current instantiation of the centroid and
the mean of n(C ) different error terms for the points in cluster C . Therefore, we have

Zj =CF1(C ) j/n(C )+ ∑
X∈C

e j(X)/n(C ) (18.6)

Then, by squaring Zj and taking the expected value, we obtain the following:

E[Z2
j ] =CF1(C )2

j/n(C )2 + 2 · ∑
X∈C

E[e j(X)] ·CF1(C ) j/n(C )2 +E[( ∑
X∈C

e j(X))2]/n(C )2 (18.7)

Now, we note that the error term is a random variable with standard deviation ψ j(·) and zero mean.
Therefore, E[e j] = 0. Further, since it is assumed that the random variables corresponding to the
errors of different records are independent of one another, we have E[e j(X) · e j(Y )] = E[e j(X)] ·
E[e j(Y )] = 0. By using these relationships in the expansion of the above equation, we get

E[Z2
j ] =CF1(C )2

j/n(C )2 + ∑
X∈C

E[e j(X)2]/n(C )2 =CF1(C )2
j/n(C )2 + ∑

X∈C
ψ j(X)2/n(C )2

=CF1(C )2
j/n(C )2 +EF2(C ) j/n(C )2

By adding the value of E[Z2
j ] over different values of j, we get

E[||Z||2] =
d

∑
j=1

CF1(C )2
j/n(C )2 +

d

∑
j=1

EF2(C ) j/n(C )2 (18.8)

This proves the desired result.
Next, we will use the above result to directly estimate the expected distance between the centroid

of cluster C and the data point X . We will prove the following result:

Lemma 18.5.2 Let v denote the expected value of the square of the distance between the uncertain
data point X = (x1 . . .xd) (with instantiation (x1 . . .xd) and error vector (ψ1(X) . . .ψd(X)) and the
centroid of cluster C . Then, v is given by the following expression:

v =
d

∑
j=1

CF1(C )2
j/n(C )2 +

d

∑
j=1

EF2(C ) j/n(C )2 +
d

∑
j=1

x2
j +

d

∑
j=1

(ψ j(X))2− 2
d

∑
j=1

x j ·CF1(C ) j/n(C )

(18.9)
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Proof: Let Z represent the centroid of cluster C . Then, we have

v = E[||X−Z||2] = E[||X ||2]+E[||Z||2]− 2E[X ·Z] = E[||X ||2]+E[||Z||2]− 2E[X] ·E[Z]

Next, we will analyze the individual terms in the above expression. We note that the value of X is a
random variable, whose expected value is equal to its current instantiation, and it has an error along
the jth dimension which is equal to ψ j(X). Therefore, the expected value of E[||X ||2] is given by

E[||X ||2] = (E[X ])2 +
d

∑
j=1

(ψ j(X))2 =
d

∑
j=1

x2
j +

d

∑
j=1

(ψ j(X))2

Now, we note that the jth term of E[Z] is equal to the jth dimension of the centroid of cluster C . This
is given by the expression CF1(C ) j/n(C ), where CF1 j(C ) is the jth term of the first order cluster
component CF1(C ). Therefore, the value of E[X ] ·E[Z] is given by the following expression:

E[X ] ·E[Z] =
d

∑
j=1

x j ·CF1(C ) j/n(C ) (18.10)

The results above and Lemma 18.5.1 define the values of E[||X ||2], E[||Z||2], and E[X ·Z]. Note that
all of these values occur in the right-hand side of the following relationship:

v = E[||X ||2]+E[||Z||2]− 2E[X] ·E[Z] (18.11)

By substituting the corresponding values in the right-hand side of the above relationship, we get

v =
d

∑
j=1

CF1(C )2
j/n(C )2 +

d

∑
j=1

EF2(C ) j/n(C )2 +
d

∑
j=1

x2
j +

d

∑
j=1

(ψ j(X))2− 2
d

∑
j=1

x j ·CF1(C ) j/n(C )

(18.12)
The result follows.

The result of Lemma 18.5.2 establishes how the square of the distance may be computed (in
expected value) using the error information in the data point X and the microcluster statistics of C .
Note that this is an efficient computation which requires O(d) operations, which is asymptotically
the same as the deterministic case. This is important since distance function computation is the
most repetitive of all operations in the clustering algorithm, and we would want it to be as efficient
as possible.

While the expected distances can be directly used as a distance function, the uncertainty adds
a lot of noise to the computation. We would like to remove as much noise as possible in order to
determine the most accurate clusters. Therefore, we design a dimension-counting similarity function
which prunes the uncertain dimensions during the similarity calculations. This is done by computing
the variance σ2

j along each dimension j. The computation of the variance can be done by using the
cluster feature statistics of the different microclusters. The cluster feature statistics of all micro-
clusters are added to create one global cluster feature vector. The variance of the data points along
each dimension can then be computed from this vector by using the method discussed in [56].
For each dimension j and threshold value thresh, we add the similarity value max{0,1−E[||X−
Z||2j ]/(thresh∗σ2

j)} to the computation. We note that this is a similarity value rather than a distance
value, since larger values imply greater similarity. Furthermore, dimensions which have a large
amount of uncertainty are also likely to have greater values of E[||X − Z||2j ] and are often pruned
from the computation. This improves the quality of the similarity computation.

Next, we describe the process of computing the uncertain boundary of a microcluster. Once the
closest microcluster for an incoming point has been determined, we need to decide whether it should
be added to the corresponding microclustering statistics, or whether a new microcluster containing
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a singleton point should be created. We create a new microcluster, if the incoming point lies outside
the uncertainty boundary of the microcluster. The uncertainty boundary of a microcluster is defined
in terms of the standard deviation of the distances of the data points about the centroid of the
microcluster. Specifically, we use t standard deviations from the centroid of the cluster as a boundary
for the decision of whether to include that particular point in the microcluster. A choice of t = 3
ensures a high level of certainty that the point does not belong to that cluster with the use of the
normal distribution assumption. Let W be the centroid of the cluster C , and let the set of points in it
be denoted by Y1 . . .Yr. Then, the uncertain radius U is denoted as follows:

U =
r

∑
i=1

d

∑
j=1

E[||Yi−W ||2j ] (18.13)

The expression on the right-hand side of the above equation can be evaluated by using the relation-
ship of Lemma 18.5.2.

18.5.2 The LuMicro Algorithm

A variation of the UMicro algorithm has been discussed in [55], which incorporates the concept
of tuple uncertainty into the clustering process. The primary idea in this approach is that the instance
uncertainty of a cluster is quite important, in addition to the expected distances of assignment. If T
is the set of possible probabilistic instances of a tuple, then the instance uncertainty U(T ) is defined
as follows:

U(T ) =− ∑
xi∈T

p(xi) · log(p(xi)) (18.14)

We note that the value of U(T ) is somewhat akin to the concept of entropy, is always at least 0, and
takes on the least value of 0 for deterministic data. This concept can also be generalized to a cluster
(rather than a single tuple) by integrating all possible probabilistic instances into the computation.
As more data points are added to the cluster, the tuple uncertainty decreases, because the data in
the cluster tends to be biased toward a few common tuple values. Intuitively, this is also equivalent
to a reduction in entropy. The LuMicro algorithm implements a very similar approach as the UMi-
cro method in terms of assigning data points to their closest clusters (based on expected distance),
except that the distance computation is only used to narrow down to a smaller set of candidate cen-
troids. The final decision on centroid assignment is performed by determining the cluster to which
the addition of the data point would result in the greatest reduction in uncertainty (or entropy).
Intuitively, this can be considered an algorithm which incorporates distance-based and probabilis-
tic entropy-based concepts into the clustering process. Unlike the UMicro algorithm, the LuMicro
method works with the full probability distribution functions of the underlying records, rather than
only the error values because the computation of the uncertainty values requires knowledge of the
full probability distribution of the tuples.

18.5.3 Enhancements to Stream Clustering

The method for clustering uncertain data streams can be further enhanced in several ways:

• In many applications, it is desirable to examine the clusters over a specific time horizon rather
than the entire history of the data stream. In order to achieve this goal, a pyramidal time frame
[6] can be used for stream classification. In this time frame, snapshots are stored in different
orders depending upon the level of recency. This can be used in order to retrieve clusters over
a particular horizon with very high accuracy.

• In some cases, the behavior of the data stream may evolve over time. In such cases, it is useful
to apply a decay-weighted approach. In the decay-weighted approach, each point in the stream
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is a weighted by a factor which decays over time. Such an approach can be useful in a number
of scenarios in which the behavior of the data stream changes considerably over time. In order
to use the decay-weighted approach, the key modification is to define the microclusters with
a weighted sum of the data points, as opposed to the explicit sums. It can be shown that such
an approach can be combined with a lazy-update method in order to effectively maintain the
microclusters.

18.6 Clustering Uncertain Data in High Dimensionality

Recently, this method has also been extended to the case of projected and subspace clustering of
high-dimensional uncertain data [32, 4]. The high-dimensional scenario suffers from data sparsity,
which makes it particularly susceptible to noise. The addition of uncertainty typically increases
the noise and reduces the correlations among different dimensions. This tends to magnify the high
dimensional sparsity issue and makes the problem even more challenging.

In the case of the standard clustering problem, the main effect of uncertainty is the impact on
the distance computations. However, in the uncertain case, the uncertainty also affects the choice
of dimensions to be picked. The reason for this is that different dimensions in the data can have
very different levels of uncertainty. Clearly, the level of uncertainty in a given dimension is critical
information in characterizing the clustering behavior along a particular dimension. This is partic-
ularly important for the high dimensional case in which a very large number of dimensions may
be available with varying clustering behavior and uncertainty. The interplay between the clustering
of the values and the level of uncertainty may affect the subspaces which are most optimal for the
clustering process. In some cases, if the uncertainty data is not used in the mining process, this may
result in a clustering which does not truly reflect the underlying behavior.

For example, consider the case illustrated in Figure 18.4. In this case, we have illustrated two
clusters which are denoted by “Point Set A” and “Point Set B.” In each case, we have also illustrated
the uncertainty behavior with elliptical contours. The two data sets are identical, except that the
uncertainty contours are very different. In the case of point set A, it is better to pick the projection
along the X-axis, because of lower uncertainty along that axis. On the other hand, in the case of point
set B, it is better to pick the projection along the Y-axis because of lower uncertainty in that direction.
This problem is further magnified when the dimensionality increases, and the different dimensions
have different patterns of data and uncertainty distributions. We will examine the interplay between
data uncertainty and projections along different dimensionalities for the clustering process. We will
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FIGURE 18.4: Effect of uncertainty in picking projections.
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show that the incorporation of uncertainty information into critical algorithmic decisions leads to
much better quality of the clustering.

In this section, we will discuss two different algorithms, one of which allows overlap among the
different clusters, and the other designs a method for strict partitioning of the data in the uncertain
streaming scenario. The first case creates a soft partitioning of the data, in which data points belong
to clusters with a probability. This is also referred to as membership degree, a concept which we
will discuss in the next subsection.

18.6.1 Subspace Clustering of Uncertain Data

A subspace clustering algorithm for uncertain data was proposed in [32]. The algorithm uses a
grid-based method, which attempts to search on the space of medoids and subspaces for the cluster-
ing process. In the grid-based approach, the support is counted with a width w on the relevant subset
of dimensions. Thus, for a given medoid m, we examine a distance w from the medoid along each
of the relevant dimensions. The support of the hypercubes of this grid provide us with an idea of
the dense subspaces in the data. For the other dimensions, unlimited width is considered. A Monte-
Carlo sampling approach is used in order to search on the space of possible medoids. The core
unit of the algorithm is a Monte-Carlo sampling approach, which generates a single good subspace
cluster from the database.

In order to achieve this goal, a total of numMedoids are sampled from the underlying data. For
each such medoid, its best possible local subspace is constructed in order to generate the grid-based
subspace cluster. The quality of this local subspace is identified, and the best medoid (and associated
subspace cluster) among all the numMedoids different possibilities is identified. In order to generate
the local subspaces around the medoid, a support parameter called minSup is used. For all local
subspaces (corresponding to grid width w), which have support of at least minSup, the quality of the
corresponding subspace is determined. The quality of a local subspace cluster is different from the
support in order to account for the different number of dimensions in the different subspaces. If this
quality is the best encountered so far, then we update the best medoid (and corresponding subspace)
encountered so far. The quality function for a medoid m and subspace S is related to the support as
follows:

quality(m,S) = support(m,S)∗ 1/β|S| (18.15)

Here β ∈ (0,1) normalizes for the different number of dimensions in the different subspaces S. The
idea is that a subspace with a larger number of dimensions, but with the same support, is considered
to be of better quality. A number of different methods can be used in order to compute the support
of the subset S of dimensions:

• Expectation-Based Support: In this case, the support is defined as the number of data points,
whose centroids lie within a given distance w of the medoid along the relevant dimensions.
Essentially, this method for support computation is similar to the deterministic case of replac-
ing uncertain objects with their centroids.

• Minimal Probability-Based Support: In this case, the support is defined as the number of
data points that have a minimum probability of being within a distance of w from the medoid
along each of the relevant dimensions.

• Exact Probability-Based Support: This computes the sum of the probabilities that the dif-
ferent objects lie within a distance of w along each of the relevant dimensions. This value
is actually equal to the expected number of objects which lie within a width of w along the
relevant dimensions.

We note that the last two measurements require the computation of a probability that an uncertain
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object lies within a specific width w of a medoid. This probability also reflects the membership
degree of the data point to the cluster.

We note that the aforementioned technique only generates a single subspace cluster with the
use of sampling. A question arises as to how we can generalize this in order to generate the overall
clustering. We note that repeated samplings may generate the same set of clusters, a scenario which
we wish to avoid. In order to reduce repeated clusters, two approaches can be used:

• Objects which have a minimal probability of belonging to any of the previously generated
clusters are excluded from consideration for being medoids.

• The probability of an object being selected as a medoid depends upon its membership degree
to the previously generated clusters. Objects which have very low membership degrees to
previously generated clusters have a higher probability of being selected as medoids.

The work in [32] explores the different variations of the subspace clustering algorithms, and shows
that the methods are superior to methods such as UK-means and deterministic projected clustering
algorithms such as PROCLUS [7].

18.6.2 UPStream: Projected Clustering of Uncertain Data Streams

The UPStream algorithm is designed for the high dimensional uncertain stream scenario. This
algorithm can be considered an extension of the UMicro algorithm. The error model of the UP-
Stream algorithm is quite different from the algorithm of [32] and uses a model of error standard
deviations rather than the entire probability distribution. This model is more similar to the UMicro
algorithm.

The data stream consists of a set of incoming records which are denoted by X1 . . .Xi . . .. It is
assumed that the data point Xi is received at the timestamp Ti. It is assumed that the dimensionality
of the data set is d. The d dimensions of the record Xi are denoted by (x1

i . . .x
d
i ). In addition, each

data point has an error associated with the different dimensions. The error (standard deviation)
associated with the jth dimension for data point Xi is denoted by ψ j(Xi).

In order to incorporate the greater importance of recent data points in an evolving stream, we use
the concept of a fading function f (t), which quantifies the relative importance of the different data
points over time. The fading function is drawn from the range (0,1) and serves as a multiplicative
factor for the relative importance of a given data point. This function is a monotonically decreasing
function and represents the gradual fading of importance of a data point over time. A commonly
used decay function is the exponential decay function. The exponential decay function f (t) with
parameter λ is defined as follows as a function of the time t:

f (t) = 2−λ·t (18.16)

We note that the value of f (t) reduces by a factor of 2 every 1/λ time units. This corresponds to the
half-life of the function f (t). We define the half-life as follows.

Definition 18.6.1 The half-life of the function f (·) is defined as the time t at which f (t) = (1/2) ·
f (0). For the exponential decay function, the half-life is 1/λ.

In order to keep track of the statistics for cluster creation, two sets of statistics are maintained:

• Global data statistics which keep track of the variance along different dimensions of the data.
This data is necessary in order to maintain information about the scaling behavior of the
underlying data.

• Fading microcluster statistics which keep track of the cluster behavior, the projection dimen-
sions as well as the underlying uncertainty.
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Let us assume that the data points that have arrived so far are X1 . . .XN . . .. Let tc be the current time.

• For each dimension, the weighted sums of the squares of the individual dimensions of
X1 . . .XN . . . over the entire data stream are maintained. There are a total of d such entries.
The ith component of the global second-order statistics is denoted by gs(i) and is equal to
∑N

j=1 f (tc−Tj) · (xi
j)

2.

• For each dimension, the sums of the individual dimensions of X1 . . .XN . . . over the entire data
stream are maintained. There are a total of d such entries. The ith component of the global
first-order statistics is denoted by g f (i) and is equal to ∑N

j=1 f (tc−Tj) · (xi
j).

• The sum of the weights of the different values of f (Tj) are maintained. This value is equal to
∑N

j=1 f (tc−Tj). This value is denoted by gW .

The above statistics can be easily maintained over a data stream since the values are computed
additively over arriving data points. At first sight, it would seem that the statistics need to be updated
at each clock tick. In reality, because of the multiplicative nature of the exponential distribution, we
only need to update the statistics on the arrival of each new data point. Whenever a new data point
arrives at time Ti, we multiply each of the statistics by e−λ·Ti−Ti−1 and then add the statistics for the
incoming data point Xi. We note that the global variance along a given dimension can be computed
from the above values. Therefore, the global variance can be maintained continuously over the entire
data stream.

Observation 18.6.1 The variance along the ith dimension is given by gs(i)
gW − g f (i)2

gW 2 .

The above fact can be easily proved by using the fact that for any random variable Y the variance
var(Y ) is given by E[Y 2]−E[Y ]2. We will denote the global standard deviation along dimension i
at time tc by σ(i, tc). As suggested by the observation above, the value of σ(i, tc) is easy to maintain
by using the global statistics discussed above.

An uncertain microcluster C = {Xi1 . . .XiN} is represented as follows.

Definition 18.6.2 The uncertain microcluster for a set of d-dimensional points Xi1 . . .Xin with time-

stamps given by Ti1 . . .Tin , and error vectors ψ(Xi1) . . .ψ(Xin) is defined as the (3 · d + 3) tuple
ECF(C ) = (CF2(C ),EF2(C ), CF1(C ), t(C ),W (C ),n(C )), and a d-dimensional bit vector B(C ),
wherein the corresponding entries are defined as follows:

• For each of the d dimensions, we maintain the weighted sum of the squares of the data values
in CF2(C ). The pth entry is given by ∑n

j=1 f (t−Ti j) · (xp
i j
)2.

• For each of the d dimensions, we maintain the weighted sum of the squares of the errors (along
the corresponding dimension) in EF2(C ). The pth entry is given by ∑n

j=1 f (t−Ti j) ·ψp(Xij )
2.

• For each of the d dimensions, we maintain the weighted sum of the data values in CF1(C ).
The pth entry is given by ∑n

j=1 f (t−Ti j) · xp
i j

.

• The sum of the weights is maintained in W(C ). This value is equal to ∑n
j=1 f (t−Ti j).

• The number of data points is maintained in n(C ).

• The last time at which a data point was added to the cluster is maintained in t(C ).

• We also maintain a d-dimensional bit-vector B(C ). Each bit in this vector corresponds to a
dimension. A bit in this vector takes on the value of 1, if that dimension is included in the
projected cluster. Otherwise, the value of the bit is zero.
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This definition is quite similar to the case of the UMicro algorithm, except that there is also a
focus on maintaining dimension-specific information and the time-decay information. We note that
the microcluster definition discussed above satisfies two properties: the additive property and the
multiplicative property. The additive property is common to all microclustering techniques:

Observation 18.6.2 Additive Property Let C1 and C2 be two sets of points. Then the components
of the error-based cluster feature vector (other than the timestamp) ECF(C1∪C2) are given by the
sum of ECF(C1) and ECF(C2).

The additive property is helpful in streaming applications, since the statistics for the microclusters
can be modified by simply adding the statistics for the incoming data points to the microcluster
statistics. However, the microcluster statistics also include time-decay information of the underlying
data points, which can potentially change at each timestamp. Therefore, we need an effective way
to update the microcluster statistics without having to explicitly do so at each timestamp. For this
purpose, the multiplicative property is useful.

Observation 18.6.3 Multiplicative Property The decaying components of ECF(C ) at time tc can
be obtained from the component values at time ts < tc by multiplying each component by 2−λ·(tc−ts)

provided that no new points have been added to a microcluster.

The multiplicative property follows from the fact the statistics decay at the multiplicative rate of
2−λ at each tick. We note that the multiplicative property is important in ensuring that a lazy-update
process can be used for updating the decaying microclusters, rather than at each clock-tick. In the
lazy-update process, we update a microcluster only when a new data point is added to it. In order to
do so, we first use the multiplicative property to adjust for time decay, and then we use the additive
property to add the incoming point to the microcluster statistics.

The UPStream algorithm uses a continuous partitioning and projection strategy in which the
different microclusters in the stream are associated with a particular projection, and this projection
is used in order to define the assignment of data points to clusters. The input to the algorithm is the
number of microclusters k which are to be determined by the algorithm. The algorithm starts off
with a empty set of clusters. The initial set of k data points is assigned to singleton clusters in order
to create the initial set of seed microclusters. This initial set of microcluster statistics provides a
starting point which is rapidly modified by further updates to the microclusters. For each incoming
data point, probabilistic measures are computed over the projected dimensions in order to determine
the assignment of data points to clusters. These assignments are used to update the statistics of the
underlying clusters. These updates are combined with a probabilistic approach for determining the
expected distances and spread along the projected dimensions. In each update iteration, the details
of the steps performed are as follows:

• We compute the global moment statistics associated with the data stream by using the multi-
plicative and additive properties. If ts is the last time of arrival of a data stream point, and tc
is the current time of arrival, then we multiply the moment statistics by 2−λ·(tc−ts) and add the
current data point.

• For each microcluster, we compute and update the set of dimensions associated with it. This
computation process uses both the uncertainty information of data points within the different
microclusters. A critical point here is that the original data points which have already been
received from the stream are not available, but only the summary microcluster information is
available. The results in [4] show that the summary information encoded in the microclusters
is sufficient to determine the projected dimensions effectively.

• We use the projected dimensions in order to compute the expected distances of the data points



A Survey of Uncertain Data Clustering Algorithms 477

to the various microclusters. The closest microcluster is picked based on the expected pro-
jected distance. As in the previous case, the original data points which have already been
received from the stream are not available. The information encoded in the microclusters is
sufficient to compute the expected distances.

• We update the statistics of the microclusters based on the incoming data points. The addi-
tive and the multiplicative properties are useful for updating the microclusters effectively for
each incoming data point. Since the microcluster statistics contains information about the last
time the microcluster was updated, the multiplicative property can be used in order to up-
date the decay behavior of that microcluster. Subsequently, the data point can be added to the
corresponding microcluster statistics with the use of the additive property.

The steps discussed above are repeated for each incoming data point. The entire clustering algorithm
is executed by repeating this process over different data stream points.

18.7 Clustering with the Possible Worlds Model

The “possible worlds model” is the most generic representation of uncertain databases in which
no assumptions are made about the independence of different tuples in the database or across dif-
ferent dimensions [1]. All the algorithms discussed so far in this chapter make the assumption of
independence between tuples and also among different dimensions. In practice, many uncertain
databases, in which the records are generated by mutually exclusive or correlated events, may be
highly dependent in nature. Such databases are drawn from the possible worlds model, and a partic-
ular instantiation of the database may have a high level of dependence among the different tuples.
Such a method for possible worlds-based clustering has been proposed in [53].

A general-purpose method for performing data analytics in such scenarios is to use Monte-Carlo
sampling to generate different instantiations of the database and then apply the algorithms to each
sample [35]. Subsequently, the output of the algorithms on the different samples is merged in order
to provide a single global result. We note that the key to the success of this method is the design
of an effective sample generator for the uncertain data. In this case, an effective methodology is the
use of the value generator functions [35] for VG+ function.

For the case of the clustering application, a total of M possible worlds is generated with the use
of the VG+ function. Each of these local samples is then clustered with the use of the deterministic
DBSCAN algorithm [24]. In practice, any clustering methodology can be used, but we work with
DBSCAN because it was used in the case of the possible world clustering proposed in [53]. Since
the different samples are completely independent of one another, it is possible to use a high level of
parallelism in the clustering process. This results in a total of M possible clusterings of the different
samples.

The final step is to merge these M different clusterings into a single clustering. For this purpose,
a clustering aggregation method which is similar to that proposed in [26] is leveraged. A similarity
graph is generated for each of the clusterings. Each uncertain tuple in the database is treated as a
node, and an edge is placed between two tuples if they appear in the same cluster in that particular
sample. Thus, a total of M possible similarity graphs can be generated. These M different similarity
graphs are merged into a single global similarity graph with the use of techniques discussed in [26].
The final set of clusters is determined by determining the clustered regions of the global similarity
graph.
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18.8 Clustering Uncertain Graphs

In recent years, uncertain graphs have been studied extensively, because of numerous applica-
tions in which uncertainty is present on the edges. Many forms of graphs in biological networks are
derived through statistical analysis. Therefore, the links are uncertain in nature. Thus, an uncertain
graph is defined as a network G = (N,A,P), where N is the set of nodes, A is the set of edges, and
P is a set of probabilities such that each edge in A is associated with a probability in P.

Many techniques can be used in order to perform the clustering:

• It is possible to use the probabilities as the weights on the edges. However, such an approach
does not explicitly account for the connectivity of the underlying network and its interac-
tion with the combinatorial nature of the underlying graph. Intuitively, a good cluster in the
network is one which is hard to disconnect.

• The possible worlds model has been used in [39] in order to perform the clustering. The edit
distance is used on the underlying network in order to perform the clustering. A connection
is established with the problem of correlation clustering [13] in order to provide an approxi-
mation algorithm for the problem.

• The problem of graph clustering is explicitly connected to the problem of subgraph reliability
in [36, 45]. The work in [36] determines methods for finding “reliable” subgraphs in uncertain
graphs. These subgraphs are those which are hard to disconnect, based on a combination of
the combinatorial structure of the graph and the edge uncertainty probabilities. Thus, such an
approach is analogous to the deterministic problem of finding dense subgraphs in determinis-
tic graphs. However, it is not specifically focussed on the problem of partitioning the graph.
A solution which finds reliable partitions from uncertain graphs is proposed in [45].

18.9 Conclusions and Summary

In this chapter, we discussed recent techniques for clustering uncertain data. The uncertainty
in the data may be specified either in the form of a probability density function or in the form of
variances of the attributes. The specification of the variance requires less modeling effort, but is more
challenging from a clustering point of view. The problem of clustering is significantly affected by the
uncertainty, because different attributes may have different levels of uncertainty embedded in them.
Therefore, treating all attributes evenly may not provide the best clustering results. This chapter
provides a survey of the different algorithms for clustering uncertain data. Most of the conventional
classes of deterministic algorithms such as mixture modeling, density-based algorithms, partitioning
algorithms, streaming algorithms, and high-dimensional algorithms have been extended to the case
of uncertain data. For the streaming and high-dimensional scenarios, uncertain data also creates
additional challenges because of the following reasons:

• In the streaming scenario, the uncertain data has additional volume. The distance calculations
are also much slower in such cases.

• In the high-dimensional scenario, the sparsity problem is exacerbated by uncertainty. This is
because the uncertainty and noise reduce the correlations among the dimensions. Reduction
of correlation between dimensions also results in an increase in sparsity.
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We discussed several algorithms for the high dimensional and streaming case, which can be used
for effective clustering of uncertain data.
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19.1 Introduction

Clustering algorithms group data objects together based on some notion of distance or similarity.
This resembles visual tasks that are easy for humans: spotting a cluster of stars in the night sky or
identifying a cluster of old houses within a modern city. The human visual system “has evolved to
facilitate quick and considered detection of the visually like and unlike through a wide variety of
cues – e.g. location and relative proximity, movement, shape, colour, texture, and matching against
predetermined patterns. Consequently, visualization is a natural and powerful resource for cluster
analysis; it is especially valuable in identifying unanticipated structure”[33].

Many algorithms have been proposed to formalize the concept of a cluster and to automatically
detect such clusters in large sets of data objects. Many algorithms use Euclidean distance. When
the notion of Euclidean distance is extended to vector spaces with more than three dimensions,
clustering by proximity becomes formally possible for more complex data objects. Complex data
objects are often described by a large but fixed set of features. Therefore, they are coded as high-
dimensional vectors. Thus, the intuition of visually perceptible clusters is carried over to high-
dimensional cases. While technically and mathematically possible, the three-dimensional intuitive
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understanding of distances and clusters can be misleading in high-dimensional cases due to several
counterintuitive phenomena in such spaces [1].

Clusters of data objects that are computed by automatic algorithms are influenced by two major
factors. First, complex data objects are described by high-dimensional feature vectors. In nearly all
cases these are lossy descriptions of the original objects that neglect some aspects. Second, the def-
initions of clusters used by different algorithms involve complex algorithmic operations rendering
the algorithm into a black box for end users. Therefore, there is in most cases no easy answer to
simple questions such as: Why are two specific points put together into the same cluster? Further-
more, nearly all definitions of clusters include pathological cluster configurations that are unwanted
but sometimes difficult to detect automatically.

The consequences of the interplay of the two factors—high-dimensional feature vectors and
definitions of clusters—are in different degrees not directly accessible to humans. Thus, visual aids
will enhance the understandability of cluster analysis. Visualization techniques have been devised
that use four main concepts to enhance the understanding of clusters. The first idea is to cluster the
data directly using visual and interactive tools. Thus, no automated clustering algorithm is used.
Instead, all decisions about how to group the data objects into clusters are made by the user. There-
fore, the produced results should be well understandable. This approach avoids problems caused by
the second factor—the definitions of clusters by a black box algorithm. However, the first factor—
understanding data sets of high-dimensional feature vectors—becomes more difficult to be visually
communicated to the user.

The second approach is to use an automated clustering algorithm. However, the black box is
opened and intermediate states of the algorithm are visually communicated to the user. This implies
the hope that the user better understands the clusters, when the cluster construction itself is somehow
documented. Further, the user might interact with the algorithm to steer the search toward well-
interpretable clusterings.

The third approach puts the user into the position of a model selector. Many different clustering
algorithms with different parameters and distance measures are run on the same data set. The results
constitute the space of clusterings that is presented to the user. The visual representation of the space
of clusterings helps the users to navigate through the clustering results. Alternative clusterings can
be compared and possible interpretations can be explored. The structured space helps the user to
reduce the number of such pairwise comparisons of clusterings.

The last major concept is to use visualization techniques that help to inspect the found clusters
in the context of the particular application at hand. Those approaches often break with the visual
metaphor of a cluster of stars. Instead, data objects themselves, the cluster information, and the
semantic context are visualized.

In the remainder of the chapter we introduce all of these concepts and discuss the applicability
to real world problems. Section 19.2 discusses visualization techniques to derive data clusters in a
completely interactive and visual way. In detail techniques bases on scatterplots as well as parallel
coordinates are discussed. Section 19.3 shows approaches to visually steer automatic, unsupervised
clustering algorithms and Section 19.4 discusses the interactive comparison of several readily de-
rived clusterings. Visual inspection of clustering results and sensemaking is discussed in Section
19.5 using the example of clustering document streams. Section 19.6 summarizes the chapter.

19.2 Direct Visual and Interactive Clustering

Automated clustering algorithms are difficult to understand for nonexperts. Therefore, it seems
natural to ask whether the black box with the clustering algorithm can be replaced by an interactive
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and visual procedure to find clusters. Such procedure could be operated by a domain expert, who
understands both, data and context. This would lift the burden of understanding the impact of choos-
ing a clustering algorithm and finding parameters for it that produce understandable and meaningful
clusters.

Tools toward this end have been developed in the contexts of statistics and information visual-
ization. A major challenge is to present multi- and high-dimensional data to the user in a meaningful
way that allows visual cluster detection by hand. High-dimensional vectors are not easily mapped
to visual attributes in a direct way. We discuss methods based on scatterplots as well as parallel
coordinates in the next two subsections.

19.2.1 Scatterplots

Multidimensional vectors cannot be shown directly as points in a space when the dimensionality
is larger two or three. Therefore, several low-dimensional projections are shown as multiple two-
dimensional scatterplots instead. Those low-dimensional projections are linked either spatially or
temporally to visualize high-dimensional phenomena.

A typical example for spatially linked projections is a matrix of scatter plots [19, 10]. While
presenting all two-dimensional projections of the high-dimensional data to the data analyst in one
view, the large mass of such two-dimensional projections makes it difficult to visually recognize
interesting structures in the data. Further, even when well-separated clusters are spotted in some
of the two-dimensional projections, it is difficult or impossible to tell whether clusters in different
projections are aligned. This problem can be alleviated by using an interaction technique called
brushing and linking. By coloring a cluster in one projection, the selected points are also colored
in the other projections. The pattern of the colored points in the other projections indicates whether
two clusters in different projections are aligned.

An alternative to brushing and linking is to link projections temporally. A well-known exam-
ple is Grand Tour [6] that cycles continually through all two-dimensional projections. Between two
axis-parallel projections, the shown projections are linearly interpolated. When the two axis-parallel
projections share one variable, the transition from one projection to the other corresponds to a rota-
tion around the shared variable axis. This is well understandable for users. Through the continually
changing positions of all points in the projections, the alignment of clusters in both projections is
visually recognizable without brushing and linking. However, this property is lost, when the two
projections do not share a common variable or the two projections are not consecutive in the Grand
Tour.

Both visualization techniques, matrix of scatterplots and Grand Tour, lack effective means to
navigate through the space of two-dimensional projections. Hurley and Oldford [26] introduced to
this end navigational graphs. Each node in a navigational graph represents a two-dimensional axis
parallel projection onto two variables. An edge between two nodes is drawn if the two nodes share a
variable. The RnavGraph tool [45] uses navigational graphs together with scatter plots to facilitate
the exploration of high-dimensional data. It allows one to interactively drag a button from one node
to another along an edge. This translates to a rotation in a three-dimensional space spanned by the
variables in nodes adjacent to the edge. The rotation of the data is shown during the transition in the
scatterplot window of RnavGraph. As the user can control the speed and direction of the rotation
by dragging the button, a smooth transition of points and clusters becomes recognizable.

Figure 19.1 shows an example of such a transition using the four-dimensional Iris data with
dimensions petal width, petal length, sepal width, and sepal length. Figure 19.1(a) shows the pro-
jection onto (sepal width, petal width), which is indicated by the large empty node in the upper left
corner of the navigational graph. Figures 19.1(b) and 19.1(c) show intermediate projections toward
the projection (sepal length, petal width), where large empty node is in middle of the edge and Fig-
ure 19.1(d) shows the state after the transition is complete. The smoothly changing scatterplots on
the right show that changing from (sepal width, petal width) to (sepal length, petal width) reduces
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(a) (b)

(c) (d)

FIGURE 19.1: Usage of RnavGraphwith Iris data. The left part of each subfigure shows the naviga-
tional graph. The large empty node in each graph indicates the current two-dimensional projection.
The subfigures show the transition between the projections on (sepal width, petal width) and (sepal
length, petal width).

the variance of the left cluster. The user can drag large empty node back and forth and observe si-
multaneously during this simple interaction the related changes in the scatterplot. The navigational
graph on the right side acts as a simple map that represents symbolically the space of projections.

Using interactive brushing the user can color different points to mark visually detected clusters.
Points can be deactivated in the plot as well to focus on specific data subsets. In case simple two-
dimensional projections do not help to differentiate between visually close points, the full multi-
dimensional data of the objects can be visually shown as star glyphs as well. More details can be
found in the manual of the RnavGraph package [45].

The navigational graph does not necessarily include all two-dimensional projections as nodes.
Data with larger dimensionality d would require

(d
2

)
nodes, which would render such navigational

graph useless as an effective map for the space of projections. In [33] the use of scagnostic measures
[49] is suggested to pick two-dimensional projections with interesting data distributions. Scagnos-
tics are briefly introduced by Tukey and Tukey [44]. The ideas are further developed and described
in more detail in [49]. In a nutshell, a number of k measures are computed for each of the dis-
tributions in the

(d
2

)
axis-parallel projections of a d-dimensional data set to guide the selection of

interesting projections. The measures are designed to quantify a wide range of characteristics that
appear in two-dimensional distributions. To illustrate the measures, the two-dimensional projec-
tions of the mtcars-dataset [22] were quantified by the proposed k = 9 measures [49]. A subset of
produced measurement vectors, each with a dimensionality of nine, is shown with the respective
distributions in a biplot in Figure 19.2. A biplot [15] reduces the multidimensional vectors to first
two principal components and plots the reduced vectors together with the projected unit vectors of
the original data space.

RnavGraph computes all of those scagnostic measures. A particular projection is included in
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FIGURE 19.2: Biplot of nine scagnostic measures with a subset of the two-dimensional projections
of the mtcars-dataset.

the navigational graph, if it has top scores in any of the measures with respect to the total set of
projections. This strategy helps to cope with multidimensional data. However, as the number of
projections to be evaluated with scagnostic measures grows quadratically with dimensionality of
the data, this approach is not suitable for very high-dimensional data such as images or documents.
Oldford and Wadell [33] suggest in this case to use some dimensionality reduction method first.

The IPCLUS-system [2] combines dimensionality reduction and cluster specification. It repet-
itively presents two-dimensional projections to the user and asks for manual cluster specification
within those projections. Projections are selected by an iterative process that starts with the full-
dimensional space and reduces the dimensionality by cycling through the following steps: (i) sam-
pling a small subset of points called polarization anchors, (ii) computing neighbor sets for each
polarization anchor, (iii) centering each neighbor set with the respective polarization anchor, and
(iv) retain the principal components with least variance preservation of the union of the centered
neighbor sets. The number of principal components retained is reduced by a constant factor in each
iteration until a two-dimensional subspace is reached. The assignments of the data objects to clus-
ters that the user might have specified within a projection are stored. The cluster specifications from
all projections are combined to final clusters.

A related approach is taken by the HD-Eye system [23]. It evaluates several one- and two-
dimensional projections to see whether they yield a potential separation of clusters. The potential
separation is visually encoded into a row of icons, one icon for each potential cluster. The colors
and the shapes of the icons show cluster sizes and degrees of separation, respectively. Thus, the user
can choose, which projections are most interesting to examine further in more detail. However, in
contrast to RnavGraph, IPCLUS and HD-Eye offer the user rather limited options to navigate and
explore the space of projections.

In all cases, clusters are specified in scatterplots by selecting and coloring points. As not all
dimensions are shown in a two-dimensional projection, RnavGraph can show star-plot glyphs of
individual data objects that visualize the full data vectors. The idea of glyphs and icons for clus-
ter visualization is further developed in [9]. The new icon technique–called Dicon–overcomes the
problem of cluster visualization once a set of data objects has been interactively grouped together.
Star-plot glyphs could show only something like a centroid or a medoid of the newly created cluster.
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However, cluster size and the contributions of the individual data objects to the cluster are hidden.
The icons proposed in [9] for cluster visualization can grow from individual data objects to larger
clusters. During the process of cluster growing, the icons get visually larger. Therefore, the user gets
the impression of interactively building clusters.

The principle of growing icons, first assigns all data objects a certain amount of visual space.
When a data object is not yet part of any cluster, that visual area is a connected and convex region.
The area of a data object is subdivided into as many subareas as there are dimensions. The sizes
of the subareas are proportional to the data values in the feature vector describing the respective
data object. This assumes that the feature vectors consist of quantitative attributes only. The color
of each subarea indicates the respective dimension. When data objects are grouped together, their
visual spaces add up to form the icon of the newly built cluster. The subareas of the individual
data objects are rearranged such that subareas of same color form a connected larger subarea. Thus,
adding a data object to a clusters corresponds visually to adjoin the subareas to the visual space of
the cluster. Once the subareas are fit into the cluster, they are still discernible, thus the user could
click on the cluster and the other subareas of the respective data objects are highlighted. Beside
the relative contributions of the dimensions, the visualization of a cluster icon can also show some
information about the data distribution within the cluster, e.g., the Kurtosis. Limitations of Dicon
are (i) the number of dimensions is bound to the number of discernible colors and (ii) the number
of data objects is limited by the screen resolution.

19.2.2 Parallel Coordinates

The difficulty of displaying multidimensional points with more than three dimensions in a single
view instead of multiple linked views can be alleviated by using parallel coordinates [28, 27]. Paral-
lel coordinates display a multidimensional data vector as a set of connected line segments (polyline)
drawn in a two-dimensional space. The active domain of each dimension of the multidimensional
data space is represented by an axis. All axes are scaled to the same size and drawn in parallel.
Each end point of a polyline segment is placed at one of the parallel axes. The position of it there is
computed by mapping the numerical value of the data vectors’ respective dimensions onto the line
segment of the respective axis. Thus, the polyline corresponding to a multidimensional data vector
connects the numerical values of that vector mapped onto the parallel axes. An example of a single
data vector taken from the Iris data set is shown in Figure 19.3(a).

Clusters would show up in parallel coordinates as bands that become dense at one or several
dimensions, e.g., see the petal length and petal width at the bottom of Figure 19.3(b). As lines in the
original geometric space show up as common intersections of many polyline segments in parallel
coordinates [27], this visualization technique has been considered to explore correlations in the data
[30]. However, parallel coordinates suffer from several types of visual clutter as shown in Figure
19.3(b). The problems include the many crossings of polyline segments and the ambiguity of the
graphical vector representation in case two different vectors share a (nearly) common data value in
one of the dimensions that is not displayed at the border of the visualization.

Several approaches have been suggested that address these problems and especially enhance the
visual recognition of clusters in parallel coordinate displays. A general idea is to combine density
with parallel coordinates in order to emphasize high density regions in the plot. Clusters in data are
closely related to the density in the data space, as cluster centers are often regions of high density.
Data density is a function defined on the whole data space that measures how many data vectors
are close to a given location in the data space [40, 42]. A simple example of a density function is a
histogram. One-dimensional histograms showing marginal distributions of single dimensions have
been added to parallel coordinates as bars of different thickness that are centered around the axes
[20]. Two-dimensional histograms defined by pairs of consecutive dimensions have been used in
[5]. The density of a data vector in the projection to a particular pair of consecutive dimensions is
mapped to the brightness of the line segment that connects the respective data values. The drawing
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FIGURE 19.3: Parallel coordinates with Iris data: (a) a single data vector (5.9,3,5.1,1.8) and (b)
the full Iris data set with a total of 150 data vectors.

algorithm orders the line segments of each pair of consecutive dimensions such that brighter line
segments are always drawn on top of darker ones. Dense clusters appear as bright ribbons. Note
that this visualizations assumes a black background. A similar effect is obtained when pixels of
lines segments are drawn brighter when they are hit more often by other line segments [47]. Using
modern SVG-rendering devices such as Firefox or Inkscape, this feature can be easily implemented
using lines with opacity less than 100%. See Figure 19.4 for an example.

A further technique in that direction is proposed in [52]. One-dimensional histograms that are
parallel to axes are introduced in between the axes that count how many line segments pass through
a specific histogram bin. The average of the normalized bin counts that a particular polyline passes
assigns a numerical value called average density to each data vector. Interactively specified transfer
functions for different color and brightness channels are used to translate average density into color.
The polylines of the data vectors are colored with respect to that transfer function. During the
interactive specification, the user can see the effects of the coloring in the parallel coordinates plot
and can adjust the transfer function as necessary.

A second kind of enhancement is to replace the straight line segments by curves. The proposed
approaches are differently motivated. In order to alleviate ambiguity, curved segments are suggested
in [16]. Incoming segments meeting at the same position at an axis can now be uniquely associated

FIGURE 19.4: Parallel coordinates with brighter intersections of line segments. The graphic is
produced using SVG where the line segments have opacity of 37%.
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to the respective outgoing segments by having similar slopes. The Visual-Clustering-approach [52]
use curves in the same spirit as bundled edges [24]. Original line segments that go in the same di-
rection are replaced by curves that are drawn close together. This reduces the visual space formerly
needed by the line segments, and consequently visual clutter is reduced in the plot. The curves are
defined by introducing a few new middle points at each segment between two consecutive axes. The
positions of all middle points are computed by minimizing a heuristically defined energy function.
This energy function balances two terms, one forcing the middle points to keep the original posi-
tion and a counterpart that accounts for attraction forces between the curves. Both terms involve
parameters that need to be heuristically set by the user. The energy minimization involves solving a
large linear program using a simplex-based lp-solver. Therefore, the layout computation is between
minutes and hours, which does not allow for interactive search of suitable parameter settings for the
energy function.

A third use of curved segments is motivated by integrating parallel coordinates and scatterplots.
The idea in [50] is to plot middle points between consecutive axes that define the curves as splines in
such a way that the positions of middle points resemble the distances between data vectors in some
projections of the high-dimensional data space. Thus, a curve connects two data values of the same
data vector, and the middle point at this curve represents the data vectors relative distances in some
projected space. This integrates scatterplots represented by middle points and parallel coordinates
represented by curves into a single plot. Given d dimensions the technique allows us to integrate
at most d− 1 of such scatterplots. The positions of the middle points are derived from distances of
the data vectors in some low-dimensional projection using multidimensional scaling (MDS) [36].
However, the visualization technique does not restrict this low-dimensional projected space to be
the axis-parallel projection onto the two consecutive dimensions framing the integrated scatterplot.

A much simpler embedding of scatterplots into parallel coordinates has been proposed in [25].
This integration shows the two-dimensional scatter plots between consecutive axes. Axes labels are
effectively shared by rotating the scatterplots 45◦. Figure 19.5 shows an example of Iris data.

The user study presented in [25] also shows that the embedding of scatterplots into parallel coor-
dinates is most helpful for users to detect clusters. This visualization performed significantly better
with respect to response time and accuracy of the number of detected clusters than standard parallel
coordinates, parallel coordinates with cluster enhancement by color and brightness as well as par-
allel coordinates with curves discussed above. The user study also shows that animation techniques
such as Grand Tour [6, 47] for parallel coordinates are less effective for cluster identification.

Sepal.Length Sepal.Width Petal.Length Petal.Width

FIGURE 19.5: Scatterplots embedded into Parallel Coordinates showing the Iris data. The bold
lines in the scatter plots show the directions of the sepal-width axis. Note, the intersections of the
axes in the scatterplots are not the origin but the data mean.
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19.2.3 Discussion

Visualization of multidimensional data is an effective tool to explore and identify clusters, when
the numbers of data vectors, clusters, and dimensions of the data are not large. Depending on the
visualization technique a few hundred up to a few thousand data vectors can be processed. The num-
ber of clusters shown in the applications in the cited papers seldom exceeds ten. The dimensionality
of the data is in almost all cases is below 15.

Given such setting, visual interactive clustering without using an automated algorithm has the
potential to allow effective exploration of the data and the identification of meaningful groupings
that are useful in certain applications. This mainly complements automated algorithms that have
their strengths on scalability to large data sets of high dimensionality possibly comprising a large
number of clusters.

19.3 Visual Interactive Steering of Clustering

A few approaches have explored the possibility to combine an automated clustering algorithm
with an interactive visualization technique. The proposed combination can be quite specific, which
means that special properties of algorithm and/or the data visualization are required. The general
design pattern of such combination is to replace some part of the algorithm with an interactive
visual procedure that allows the user to influence the automated clustering algorithm during the
computation of the clustering. A simple example is to replace the stopping criterion of an iterative
clustering algorithm by visualizing the current state of the algorithm with respect to the given data
and let the user visually decide whether the algorithm has reached a satisfying solution. Another
example is to use interactive visualization techniques to build a hierarchical clustering. Depending
on the underlying algorithm, the user decides, based on visualizations, which cluster found so far
could be split further.

The last example is to influence iterative learning algorithms like self-organizing maps (SOM)
during the initialization or during the learning procedure itself. The user can influence the algorithm
by visually changing parts of the data structure, e.g. some neurons in the SOM, that are otherwise au-
tomatically initialized or updated. That kind of interaction biases the algorithm into a some direction
that the algorithm would possibly have not explored by following the internal learning procedure.
In case of machine learning by optimization of some criterion, such user interaction could help the
algorithm to break free of some local optima that would correspond to nonmeaningful clusterings.

19.3.1 Visual Assessment of Convergence of Clustering Algorithm

Some clustering algorithms work in an iterative way by updating internal data structures. How-
ever, not all such algorithms are guarantied to converge toward a nontrivial solution. An example is
topology learning neural gas [31]. Given a data set of multi-dimensional vectors and a predefined
number of neurons (aka cluster centers), the topology learning neural gas algorithm cycles after
random initialization of the neurons positions through the following steps:

• Randomly select a data vector.

• Move the neurons that are close to the selected data vector toward it.

• Add an edge with zero age between the two neurons that are the closest and second closest
ones. If such an edge already exists, zero the age.

• Increase the ages of all existing edges by one.
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• Remove all edges with ages above some predefined threshold.

Depending on the data and the parameters for measuring closeness of neurons, adaption toward
selected data points, and age threshold, the algorithms finds arbitrarily shaped clusters as connected
components of the graph defined by neurons and the edges between them. However, it is obvious
that trivial solutions—no edges except the most recently inserted ones—could appear, e.g., in case
of too low age threshold.

An algorithm that is similar to the topology learning neural gas algorithm is combined with a
visualization technique based on parallel coordinates [51]. In that algorithm the static data vectors
take the role of neurons which is a special case of topology learning neural gas. The visual algorithm
starts by drawing all data vectors in same color and same opacity into a parallel coordinates plot.
Then it cycles through the following steps:

• Randomly select a data vector.

• Increase the opacity of complete polylines of the close neighbors of the selected data vector

• Reduce the opacity of polylines of all data vectors by a given ratio.

Depending on parameters, the algorithm produces a series of visualizations starting with a crowded
parallel coordinates plot that fades during the run of the algorithm. Outliers, noise, and data vec-
tors at the borders of clusters fade faster than data vectors close to a cluster center because the
former are less often selected as neighbors, and therefore, their opacity is less often increased than
the opacity of the latter ones. The user can visually decide to stop the fading process when clus-
ter centers become clearly visible. Alternatively, the full series of visualizations can be computed
and afterwards interesting frames are visually selected. In case of hierarchically nested clusters,
larger clusters would show up first and then subclusters within larger clusters would appear. Once a
suitable visualization is found, parameters like the number of clusters needed for further automatic
processing can be determined. In the case that no clustering turns up in the visualization and the
parallel coordinates plot just fades until all polylines have almost zero opacity, different parameters
of the fading process could be tried.

19.3.2 Interactive Hierarchical Clustering

Three-dimensional projections of high-dimensional data are much less explored in information
visualization than two-dimensional ones. One visual difficulty of three-dimensional projection is
that points with different coordinates are plotted at the same position on the two-dimensional screen.
This ambiguity makes it difficult for the user to judge distances between points, and therefore,
clusters are less reliably detected. The possibility to interactively rotate the view helps the user to
alleviate the visual ambiguity by identifying point groups with similar motion.

Another visual technique to turn three-dimensional visualizations into a useful tool for cluster-
ing is to use surfaces that engulf already computed clusters [43]. The surfaces transform clusters
from point clouds to solid three-dimensional objects. The use of partial transparency, shading, and
light reflection helps the user to resolve visual ambiguities in the visualization and to recognize
the particular spatial extensions of clusters. The goal of this approach is to produce distinguishable
three-dimensional objects. The simplest approach that encloses each cluster with a sphere or an
ellipsoid would produce visualizations with clusters that look quite uniform. Furthermore, details
of the data distribution within a cluster could be deemphasized using overly simple convex shapes
only. Therefore, a nonconvex surface—called BLOB—is constructed for each cluster by (1) placing
spheres at border points of the cluster and (2) finding minimal radius of the spheres such that the
cluster is still enclosed by the union of the spheres and the volume defined by that union does not
break into disconnected regions. The method used in [43] does not guarantee finding the global
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FIGURE 19.6 (See color insert): Two selected three-dimensional clusters shown with their hull.
Note that the red cluster consists of two separate regions.

minimum of that optimization; however, it produces visually suitable results for nonpathological
cases.

The algorithm and the visualization proposed in [43] integrates a hierarchical graph clustering
algorithm based on edge collapsing with a three-dimensional visualization. The graph clustering
algorithm first places the data objects in the three-dimensional view space using a spring-embedder
that models data vectors as points in the three-dimensional space, and the distances between original
data vectors are represented by the stiffness of springs placed between the points. The embedding
of the original data in the three-dimensional space is computed by finding a low-energy state of the
spring-system. This is similar to MDS [36]. The cluster hierarchy is computed using centroid link-
age in the three-dimensional space based on the embedded three-dimensional points. Hierarchical
clusters are shown as BLOBs within BLOBs, a technique that is called H-BLOBs.

The concept of using three-dimensional projections for clustering is further developed in [34].
Instead of relying on a readily computed cluster hierarchy, the user can interactively construct
the hierarchy top-down by selecting a cluster and compute subclusters with some automated al-
gorithm. The results are then shown as three-dimensional objects within larger transparent three-
dimensional objects. The interactive system is demonstrated in videos that are available from
http://infoserver.lcad.icmc.usp.br/infovis2/3Dproj. An example is shown in Figure
19.6.

The Hierarchical Clustering Explorer (http://www.cs.umd.edu/hcil/hce/) uses an alter-
native approach described in [41]. This tool relies on standard visualizations like scatterplots and
parallel coordinates combined with dendrogram plots to interactively analyze high-dimensional
data. Lessons learned from that project are that it is important to select the most relevant features
first using interactive visual techniques and automated feature ranking methods. Then hierarchical
clustering can be performed in the subspaces spanned by the selected features.
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19.3.3 Visual Clustering with SOMs

A Self-Organizing Map (SOM) is a clustering-like algorithm originally invented by Kohonen
[29] that is inspired by the architecture of the brain [35]. Given a set of high-dimensional data
vectors, the learning algorithm folds a two-dimensional grid consisting of nodes that act as cluster
centers into the high-dimensional data space. Each inner node of the grid is statically connected
to four neighbor nodes via an edge. The learning algorithm cycles through the data vectors and
determines the nearest node for each of them. The nearest node and to a lesser degree the neighbors
of the node with respect to the grid topology are moved a certain amount toward the current data
vector in the high-dimensional space. That amount decreases during training at a given learning
rate. Thus, the map reaches a stable configuration overall after some iterations.

The learning algorithm tries to preserve the neighborhood with respect to the two-dimensional
grid in the high-dimensional data space. That means, neighboring nodes tend to be mapped to close
positions in the high-dimensional space. Therefore, a path along the edges of the two-dimensional
map is often also a path with small local jumps in the high-dimensional space. The map visualization
that shows the grid is therefore a nonlinear embedding of the two-dimensional plane in the high-
dimensional space. Simple visualizations show class attributes or other features at the nodes of such
a map.

An interactive visualization technique is to plot some small object visualization—e.g., some
glyphs—at the node positions [38]. In principle, every type of icon or glyph such as Chernoff-faces
or star-plots works for this combination with a SOM. The only restriction is the effectiveness of
the glyph type for high-dimensional data, which is usually limited to visualize vectors with at most
10 or 15 dimensions. The two-dimensional map combined with glyph visualizations then shows
smooth or rough transitions between neighboring nodes.

An interesting feature of the technique proposed in [38] is that the user can specify some glyphs
interactively before the initialization and the learning of the SOM. The glyphs translate directly
to high-dimensional vectors. The node positions of the interactively specified glyphs in the high-
dimensional space are kept fixed during the SOM learning. Thus, the layout of the SOM can be
directly specified by the user in an interactive and visual way. The gaps between the specified nodes
in the map are automatically filled by the SOM learning algorithm. The technique of visual in-
teractive editing SOMs can also be used during the training procedure to steer the SOM learning
algorithm toward configurations the user prefers. The technique has also been used with small geo-
graphic maps instead of glyphs [3].

19.3.4 Discussion

The few examples that combine automated algorithms with interactive visualizations are rather
simple with respect to both the algorithm and the visualization technique. Both ingredients are
proven techniques in all cases. Whether the combination of automated algorithm and visualizations
is really superior over fully automated algorithms on one side and purely interactive approaches on
the other is yet to be studied. To the best of our knowledge, there exist no user studies that compare
automated approaches with interactive visual clustering. Performance metrics to evaluate visual
analytic systems in general have been proposed in [37]. However, it is not just the application of
standard usability testing as done in human-computer-interface (HCI) research to visual analytics
systems. The complex nature of the dialog between the analyst and the computer software using
visualizations involves cognitive processes that are yet to be explored [4]. Thus, an open research
question still exists regarding how to evaluate visual analytics systems in general and those for
interactive visual clustering in particular.
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19.4 Interactive Comparison and Combination of Clusterings

A novel concept that combines capabilities of humans with those of computers is computer-
assisted clustering [17]. The premise is that all automatic clustering approaches are driven by their
own well-justified optimization function to partition the given data. However, it is difficult tell be-
forehand which of the existing clustering algorithms will produce a partition the user recognizes as
“insightful” or “useful” with respect to the application at hand. Therefore, computer-assisted clus-
tering computes a large collection of clusterings using proven methods with different settings for
parameters and distance functions. This is called the collective wisdom of the statistical community.
All pairs of these clusterings are compared using variational information [32] and a distance matrix
of all clusterings is computed. The metric space of clusterings defined by the distance matrix is em-
bedded into the two-dimensional plane using Sammon’s multidimensional scaling algorithm [36].
This two-dimensional map produces a visualization that allows the user to recognize the impact of
choosing one of the different clustering methods given the data at hand. Furthermore, the map is
used to interpolate between similar clusterings. Next, we introduce details of the construction of the
space of clusterings, the visualization of it and discuss the overall approach.

19.4.1 Space of Clusterings

Given some data with N objects, the idea of computer-assisted clustering is to apply a large
number M of automated clustering algorithms to it and select suitable clusterings afterwards. A
clustering is here defined as a partition of the data instances. A first prerequisite of the approach is
to compile a list of automated clustering algorithms that should be included. Further, several clus-
ter algorithms are able to work with a set of different distance/similarity measures. Thus, suitable
distance/similarity measures have to be chosen for each clustering algorithm as well. While picking
algorithms and distance/similarity measures can be done independently of given data, parameters
of the algorithms cannot be chosen in such a data-independent way. Despite no details about the
parameter setting problem being given in [17] nor the respective supplementary material, general
parameters like numbers of clusters could be specified once for all methods that need such an input.
If in doubt as to what would be the right number of clusters, several different choices could be speci-
fied. This parameter is needed to specify the number of components of finite mixture models as well
as to convert hierarchical clusterings into flat ones. The result of this step is a set of M clusterings,
called the wisdom of the statistical community.

The space of flat clusterings (partitions) is build on a metric that compares two different cluster-
ings. All such comparison functions are built on the confusion matrix, also called association matrix
and contingency table. For completeness, we briefly describe the basics of variational information
[32], on which metric computer-assisted clustering is based. Given two clusterings C and C ′ of N
objects, the confusion matrix is a K ×K′ matrix where each entry is the size of the intersection
between a cluster Ck ∈ C and C′k′ ∈ C ′. The normalized variant of the confusion matrix specifies the
discrete joint distribution of the cluster labels of the two clusterings:

P(k,k′) =
|Ck ∩C′k′ |

N
(19.1)

This quantity says how likely it is that a randomly drawn data object is a member of both clusters
Ck and C′k′ . The marginal distributions quantify the probabilities that a data object is member of a
cluster in the respective clustering:

P(k) =
|Ck|
N

P′(k′) =
|C′k′ |

N
(19.2)
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All these distributions are needed to define the mutual information I(C ,C ′) between two clusterings:

I(C ,C ′) =
K

∑
k=1

K′

∑
k′=1

P(k,k′) log
P(k,k′)

P(k) ·P′(k′) (19.3)

as well as for the definitions of the entropies of both clusterings:

H(C ) =−
K

∑
k=1

P(k) logP(k) H(C ′) =−
K′

∑
k′=1

P′(k′) logP′(k′) (19.4)

Following [32], variational information between two clusterings is defined as

VI(C ,C ′) = H(C )+H(C ′)− 2I(C ,C ′) (19.5)

Most important for computer-assisted clustering, variational information is a metric over the space
of possible clusterings [32], which means it is always positive, equals zero if and only if the two
clusterings are equal, is symmetric, and obeys the triangle inequality. The derivation of variational
information, proofs, and discussions of the properties as well as relations to other clustering com-
parison measures can be found in [32].

Variational information is used to compute distances between all of the M clusterings produced
by the different algorithms with their different distance/similarity measures and parameters that
were selected to represent the wisdom of the statistical community. The compiled distance matrix
has dimensions M×M and defines a metric space of clusterings for the given data set. This space
is a discrete space that means distances are defined only for those clusterings that are included
in the wisdom of the statistical community. For purpose of visualization, the metric space of the
clusterings is embedded into the two-dimensional plane where distance is measured by Euclidean
distance between points. Each of the M two-dimensional points {x1, . . . ,xM} represents a clustering
in this space. The embedding is computed using Sammon’s multidimensional scaling [36]. As the
two-dimensional plane is a continuous space, [17] propose an interpolation scheme that assigns
clusterings to the points in the plane that do not correspond to one of the clusterings computed so
far.

The interpolation scheme takes a particular point x of the two-dimensional plane as input. Then,
all precomputed clusterings are weighed using kernel density estimation in the two-dimensional
plane, where each clustering is a two-dimensional point. Kernel density estimation places a kernel
at each of the two-dimensional points {xm}m=1...M that represent the M clusterings. The kernels used
in [17] are Gaussians N (x|xm,σ2). The weight of the mth clustering with respect to the particular
point x is the normalized contribution of the corresponding kernel to the density estimate at x:

wm(x) =
N (x|xm,σ2)

∑M
m′=1 N (x|xm′ ,σ2)

(19.6)

The smoothing parameter σ2 needs to be adjusted by the user. The M weights together with corre-
sponding clusterings are used to construct a voting matrix V . The mth clustering Cm is represented
as an N ×Km matrix. A row in that matrix assigns a data object to the clusters. In case of hard
cluster assignment, a row contains only a single one and zeros in all other entries, and in case of
soft cluster assignment, a row consists of nonnegative numbers that sum up to one. The weighed
clusterings are concatenated to form the voting matrix V = [w1C1, . . . ,wMCM], which has dimen-
sions N×∑M

m=1 Km. The voting matrix V defines a similarity matrix S =V ·V ′, which in turn defines
the interpolated clustering for the selected point x. It is argued in [17] that any clustering method
can be used to compute the interpolated clustering assigned to x based on the similarity matrix S.
The number of clusters is set to the weighed average of those of the neighboring clusterings. The
interpolation scheme extends the discrete set of clusterings to a larger set of clusterings, such that
every point on the two-dimensional plane corresponds to a clustering. This two-dimensional plane
is called the space of clusterings.
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19.4.2 Visualization

The space of clusterings is visualized as a scatter plot. The names of the clustering methods are
placed at the locations {xm}m=1...M computed by the embedding algorithm. The user can contin-
uously move a point like a cursor over the scatter plot and the respective clustering is shown in a
separate window. In principle, every cluster visualization method can be used to show the clustering.
When the user examines example clusterings from different parts of the space of clusterings, he or
she learns about the structure of the space. As the space of clusterings is visualized like a map with
meaningful distances not all clusterings have to be examined. Looking at examples should help to
understand the nearby clusterings as well.

A crucial assumption of the visualization of the space of clusterings is that the visualization of
an individual clustering can be intuitively consumed by the user and facilitates a rapid interpreta-
tion of the single clusters as well as the total clustering. The example application shown in [17]
meets that precondition. The data objects in the example application are biographies of US pres-
idents. Thus, each document has a short and meaningful title, namely, just the president’s name.
Therefore, a clustering consists of groups of president names that often can be easily interpreted.
Furthermore, the number of biographies is rather small, which allows nearly interactive exploration
of the space of clusterings. In general, such ideal circumstances are rarely met in practice, even in
the case of document clustering. Document titles may become less expressive in the case of large
inhomogeneous corpora. Even just showing groups of many document titles on a limited display
in way that helps the user to deduce an interpretation is a nontrivial task. Thus, many visualization
problems with respect to scaling to large data as well as transfering computer-assisted clustering to
other application domains remain unresolved. Furthermore, there is plenty room to study the use of
brushing-and-linking techniques in combination with the visualization of the space of clusterings.

19.4.3 Discussion

The idea of visualizing the space of clusterings corresponds to the model selection task, which is
heavily studied in machine learning and statistics [39, 18, 46]. Instead of relying on some statistical
or information-theoretic criteria that could be computed in some way, computer-assisted clustering
delegates this task to the user. The success of this approach depends heavily on the effectiveness of
the used visualization of the individual clusterings.

19.5 Visualization of Clusters for Sense-Making

Clusters are computed using quite abstract concepts such as distance between data objects living
in some feature spaces. Users do not easily understand these concepts. Therefore, clustering results
are not easily accessible for them, and it is difficult to find out whether they can trust the clustering
results with respect to the application at hand. Once a clustering is computed, the ultimate goal of
a user is to interpret the clusters and make sense of them. Visualization can support such a sense-
making process. We discuss temporal document clustering as an example.

Document clustering [12] as well as topic models [8] represent clusters/topics as distributions
or feature vectors over the vocabulary of unique words. When looking at the words ordered by
decreasing probability with respect to a cluster/topic, users often recognize a semantic topic, even
if general terms describing the topic are not mentioned among the top-words. However, naming a
cluster/topic is very difficult to do automatically. Even humans, who know the document corpus
well, have problems with that task. Thus, visualizations of clusters/topics are demanded to support
the sense-making. The task becomes even more challenging in the case of temporal document clus-
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FIGURE 19.7: The cell in row k and column (i+ 1) of Topic Table corresponds to the kth clus-
ter/topic of the ith batch of documents. Features of Topic Table are (a) top-words of cluster/topic
(bold face words are new), (b) width of the background river of each row is proportional to the sim-
ilarity between the respective clusters/topics of the consecutive batches, (c) the radii of the back-
ground circles indicate the relative sizes/strengths of the clusters/topics with respect to the same
batch, and the color of the background river indicates similarity among all clusters/topics across all
time points: similar clusters/topics have a similar color.

tering, where each time point is associated with a separate batch of documents. Applying clustering
independently to the individual document batches produces a set of clusters for each time point.
The artificial cluster labels assigned by the algorithms often depend on the initialization of the al-
gorithms; e.g., k-means or other types of models fitted with some sort of inference like expectation
maximization or Gibbs sampling could produce the same clustering but with permuted cluster labels
when run several times on the same data. Thus, clusters from consecutive time points with the same
artificial cluster labels do not necessarily match semantically.

The dynamic topic model [7] and adaptive probabilistic semantic indexing [13] solve the prob-
lem of label switching between clusters/topic of consecutive time points. This allows to us present
the clusterings/topics of all document batches as a large table where rows and columns indicate
clusters and time points, respectively. A cell in this table shows the top-words of a particular clus-
ter/topic at a certain time point. The Topic-Table visualization [14] shows additional information in
such a table by visually stacking graphics behind the words to help the user to visually structure the
table. The added data are newness of top-words, similarity between consecutive clusters/topics with
same index, relative strengths of clusters/topics, and global similarities between all clusters/topics.
Details are shown in Figure 19.7.

The color mapping is computed in two steps. First, all pairwise similarities/distances between
the clusters/topics represented by the individual table cells are computed. Second, the similar-
ity/distance matrix is used to compute an embedding of the clusters/topics into a three-dimensional
color space. Thus, each cluster/topic becomes a point in the color space. Using Sammon’s multi-
dimensional scaling algorithm [36] the similarities/distances are preserved in the color space as
much as possible. By drawing the river in each cell of the topic table with the respective color,
global connections between similar clusters/topics can be easily spotted.

An alternative metaphor is the ThemeRiver [21]. It shows the relative sizes of a series of clus-
ters with the same label as stacked layers of different widths. See Figure 19.8 for an example.
The TIARA System [48] uses this visualization technique to visualize dynamic documents clus-
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time

FIGURE 19.8: ThemeRiver visualization of stacked layers. Each layer represents the strength of a
series of document clusters at different times.

ters/topics. The clusters/topics are indicated by different colors. In contrast to TopicTable, color
here has the function to discriminate between distinct clusters/topics. The top words of the clus-
ters/topics are inserted into the layers at time points when a cluster/topic is strongly present, and
therefore, the respective time series is represented by a wide layer. The user can interactively ex-
plore the visualization. Less dominant clusters/topics that have no space to insert top-words could
be zoomed and annotated with words after a certain minimum width is reached. Search functionality
is included to easily retrieve documents related to clusters/topics.

A different extension of the ThemeRiver metaphor for temporal document clustering is TextFlow
[11]. Instead of squeezing as many words as possible into the layers representing the clusters, the
user can interactively pick a bunch of keywords. The temporal relations between a keyword and the
clusters/topics are shown as topic threads (polygon lines) that are drawn on top of the layers. In case
two keywords do co-occur in a certain cluster/topic, a wave bundle is drawn that weaves the threads
of the keywords together. The amplitude of the wave bundle encodes to occurrences of the involved
keywords.

Furthermore, so-called critical events are shown by special icons. Such icons show sources,
sinks, splits, and merges. A source indicates the appearance of a new cluster/topic and is shown as
filled circle. A sink marks the death of a cluster/topic and is shown as a donut. Splits and merges are
shown as the letter Y rotated to the right and left, respectively.

Last, TextFlow expands the layout of the stacked graphs to include secondary branches as well.
The original layout as proposed in the ThemeRiver approach connects a cluster/topic present at a
certain time point only with the best matching cluster/topic of the next time point. The TextFlow
approach also computes and shows connections to the second best matching clusters/topics. This
extension works only for dynamic cluster/topic models that construct temporal relations as a post-
inference process that means links between clusters back and forth in time are computed after the
clusters have been already found at the individual time points. The layout with secondary branches
is computed using force-directed simulations to reduce crossing of branches and to smooth clus-
ter/topic layers.

In summary, all three approaches for visualizing temporal document clusters/topics emphasize
different aspects of the sense-making process. All visualizations can be combined with interactive
methods to dig deeper into the data. Thus, visualization is not the only component in the sense-
making process. Other interactive features like semantic zooming, searching relevant documents
and so on are important as well. There are no user studies, or stories of successful applications
available yet that show which visualizations combined with interactive features are really helpful for
end users. New evaluation measures are needed that capture usefulness originating in the interplay
of visualization search and analytics.
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19.6 Summary

Visual and interactive clustering is an active research field that combines information visualiza-
tion techniques with concepts and algorithms for cluster analysis. The main challenge is to bridge
the chasm between the intuitive concept of clustering that users understand and the reality of data
distributions in abstract feature spaces. The consequence of this chasm is that users have difficul-
ties understanding the results of clustering algorithms. Current approaches of visual clustering use
different ways to make clusters understandable, namely, (a) completely replacing the automated al-
gorithm by visual interactive procedures, (b) visual interactive steering of an automated clustering
algorithm, (c) visual interactive selection of readily computed clusterings, and (d) visual represen-
tation of clusters to aid sense-making of the results. A general problem with all these approaches is
scalability with respect to large data sets, with respect to high dimensionality of feature vectors, and
with respect to a large number of clusters. Overview visualizations showing all clusters, data objects
or dimensions in a single view become less effective in the case of very large data. Therefore, inter-
active search interfaces need to be integrated into the concepts of visual clustering. First steps into
this direction have been demonstrated with systems such as TIARA [48] that have a search index
as an integral part of the visualization system. Furthermore, new evaluation measures for interactive
clustering procedures are needed to guide the development of such systems.
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20.1 Introduction

Semisupervised clustering (SSC) has become an important part of data mining. With an ever
increasing volume of data in several problem domains, it is more important than ever to leverage
known information and observed relationships among data points to guide clustering.

Clustering methods are broadly divided into two groups depending on the data representation
they use: feature-based, where each data point has a representation in terms of a feature vector
or a structured representation such as sequence, time series, or graphs, and graph-based, where a
similarity graph among the data points is given. Methods such as k-means and mixture of Gaussians
work with feature-based representations, whereas spectral clustering methods work with graph-
based representations.

Existing works on SSC can be broadly divided into two groups, depending on whether one
adds semisupervision to a feature-based or a graph-based clustering algorithm. Much of early work
in SSC focussed on extending feature-based clustering methods to the semisupervised setting. In
particular, the literature has focussed on two types of semisupervision: pointwise [2], where the
cluster labels of a small number of points are available to guide clustering, and pairwise [37, 3, 4,
20], where “must-link” and “cannot-link” constraints between some pairs of points are available.
Such methods have been extensively studied over the past decade [6], with emphasis on suitably
generalizing feature based clustering algorithms such as k-means and its variants to leverage the
semisupervision. These methods have been generalized to incorporate metric learning in the context
of SSC and also as parameter estimation and inference in suitable graphical models [9, 3, 5, 4]. We
discuss this family of SSC methods in Section 20.2.

There are several SSC approaches based on the graph-based representation and graph-based
clustering methods. The literature on graph-based SSC has primarily focused on pointwise semi-
supervision. Spectral clustering methods are widely used for unsupervised clustering with graph-
based representations [36, 17] and can be viewed as solving a relaxation of suitable graph-cut
problems. In the semisupervised setting, one can approach the problem as one of semisupervised
graph-cuts, where the labeled points with the same cluster label are expected to be in the same cut.
We illustrate that the relaxed versions of the semisupervised graph-cut problems can be solved by
suitable semisupervised spectral clustering methods, which in turn are intimately related to label
propagation methods [15].

We also present a generalized label propagation (GLP) framework which includes a variety of
graph-based semisupervised learning methods developed over the past decade, and includes the
semisupervised spectral clustering methods as special cases. Further, the same framework also in-
cludes semisupervised nonlinear embedding methods as special cases. Based on the unified treat-
ment, we provide a generic recipe for converting nonlinear embedding methods to semisupervised
label propagation methods. We illustrate the generic recipe by deriving semisupervised label prop-
agation methods based on three well-known nonlinear embedding methods, viz locally linear em-
bedding (LLE) [32], Laplacian eigenmaps (LE) [8], and local tangent space alignment (LTSA) [44].
We also present an empirical performance evaluation of some of the existing semisupervised label
propagation methods as well as the ones which can be derived from nonlinear embedding. We illus-
trate that there are no clear winners across all datasets, although a few methods consistently show
up among the top performing methods.

It is important to note that for pointwise semisupervision, where labels on certain individual
points are available, the semisupervised clustering and classification problems are closely related.
For feature-based data representation, the methods for semisupervised clustering [2] can in principle
be compared against transductive classification methods [26, 27], although different loss functions
are usually meaningful in the two settings. For graph-based representation, the methods are indeed
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related especially if the effectiveness of the learning is measured by accuracy of predicted clus-
ter/class labels in the unlabeled set.

The rest of the chapter is organized as follows. In Section 20.2, we discuss approaches for SSC
based on pointwise and pairwise semisupervision for feature-based representations and related clus-
tering algorithms. In Section 20.3, we describe semisupervised graph-cuts and spectral clustering.
In Section 20.4, we introduce the GLP formulation, present a unified view of existing label propaga-
tion methods, and illustrate their relationship to semisupervised graph-based clustering. We discuss
semisupervised manifold embedding and a set of embedding-based label propagation methods in
Section 20.5. We present empirical results in Section 20.6 and conclude in Section 20.7.

20.2 Clustering with Pointwise and Pairwise Semisupervision

Semisupervised clustering with pointwise and pairwise semisupervision has been widely studied
for feature-based clustering methods. In this section, we review some of the approaches from the
literature [6].

20.2.1 Semisupervised Clustering Based on Seeding

One of the earliest ideas on SSC focussed on pointwise label supervision, where the cluster ids
of a small number of points are made available. SSC based on seeding focuses on centroid-based
clustering algorithms, such as k-means [2, 11]. In an unsupervised setting, such algorithms usually
start from a random initialization and perform expectation-maximization (EM)-style iterative up-
dates of cluster memberships and cluster parameters. The main idea in SSC based on seeding is to
improve the initialization based on the available cluster ids. In particular, [2] looks at two variants
applied to k-means: seeded k-means and constrained k-means. Seeded k-means initializes the clus-
ter centroids using the available cluster ids and then runs the iterative updates for k-means. In seeded
k-means, the cluster id assignment of the labeled set can change during the iterative updates if the
objective function improves as a result. Let X = {x1, . . . ,xN},xi ∈ R

d denote a set of data points,
let K be the number of clusters and let set S = ∪K

l=1Sl denote the initial seeds. The seeded k-means
algorithm can be summarized in the following steps.

• Initialize cluster centers μh← 1
|Sh| ∑x∈Sh

x, for h = 1, . . . ,K

• Assign each data point to the cluster h∗ = argmin
h
||x−μh||2

• Estimate cluster centers μh← 1
|Xh| ∑x∈Xh

x, for h = 1, . . . ,K

• Repeat last two steps until convergence

Constrained k-means also initializes the cluster centroids with the available cluster ids, but the
cluster id assignments of these labeled points are not allowed to change during the iterative updates.
Seeded constrained k-means is thus more appropriate when the initial seed labeling is noise free.

SSC based on seeding can be generalized to other clustering methods beyond k-means, and
[2] empirically evaluate the spherical-k-means method. The seeding approach can be viewed in
the probabilistic clustering setting where one uses the EM algorithm to learn mixture models [21],
and each mixture component corresponds to a cluster. In particular, the semisupervision is used
to set the posterior probability p(zi|xi,Θ) of the labeled points to be 1 for the true cluster, and 0
otherwise. Empirical results in [2] illustrate the advantages of the seeding approach, with clustering
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performance sharply increasing with a small number of seeds. The method has also been applied to
the scenario where the labeled data covers only a fraction of the clusters, and the centroids of the
other clusters have to be randomly initialized.

20.2.2 Semisupervised Clustering Based on Pairwise Constraints

One of the most popular frameworks for SSC is based on pairwise constraints. Given a dataset
X , pairwise semisupervision is typically given in the form of two types of constraints: must-link
and cannot-link constraints. If (xi,x j) ∈ M , the set of must-link constraints, then the clustering
algorithm is encouraged to keep (xi,x j) in the same cluster; if (xi,x j) ∈ C , the set of cannot-link
constraints, then the clustering algorithm is encouraged to keep (xi,x j) in different clusters. Several
approaches use a suitable constraint violation penalty, whereas some approaches even consider the
constraints to be binding [37, 3, 5, 20, 38].

One of the early approaches to SSC with pairwise constraints focused on modifying the k-
means algorithm [38] to incorporate must-link and cannot-link constraints. In each iteration of the
algorithm, a sorted list of suitable clusters is considered for every point. The algorithm moves down
the list until a cluster assignment is found that does not violate any constraints. If no such cluster is
found, the algorithm terminates.

The approach presented in [38] posed a considerable improvement over the unsupervised version
of k-means and allowed semisupervised background knowledge to be incorporated. However, one
obvious drawback from a practical standpoint is the requirement for all constraints to be satisfied.
One has to ensure that no contradicting constraints are specified.

Alternative approaches focused on modifying the k-means objective to take into account pair-
wise constraint violations [3] in terms of penalties. In particular, the pairwise constrained clustering
with k-means (PCKMeans) objective function can be written as:

JPCC(M,Y ) =
1
2 ∑

xi∈X
‖xi−μyi‖2 + ∑

(xi,x j)∈M
wi j1(yi 
= y j)+ ∑

(xi,x j)∈C
w̄i j1(yi = y j) , (20.1)

where wi j , w̄i j are appropriate constants which serve as penalties for constraint violation, M =
{μ1, . . . ,μk} is the set of cluster means, and Y = {y1, . . . ,yn}, where yi ∈ {1, . . . ,k} are the clus-
ter ids of the data points. Several generalizations of the above formulation have been considered in
the literature. One of the prominent threads of development involves incorporating metric learning
which suitably modifies how distances are computed between data points and cluster centroids.
Local Metric Learning: Metric learning approaches in the context of clustering focus on a parame-
terized divergence function, where the parameters can be suitably chosen based on semisupervision.
One can consider a semisupervised metric learning approach, where the following objective is opti-
mized based on pointwise or pairwise semisupervision

JLML(M,Y,A) =
1
2 ∑

xi∈X

{
(xi−μyi)

T Ayi(xi−μyi)+ log(det(Ayi))
}
, (20.2)

where Ayi is a positive definite matrix for cluster yi, and A = {A1, . . . ,Ak}. One can consider A−1
yi

as the covariance of the multivariate Gaussian distribution corresponding to cluster yi. Since each
cluster h= 1, . . . ,k has its own parameter Ah, this can be considered a local metric learning approach.

In [9], a hybrid approach is proposed which is capable of both incorporating constraints in terms
of must-link and cannot link constraints, and also adapting the underlying distance measure. The
idea in [9] is to combine the strengths of the two approaches. The method works by combining the
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two clustering objectives in Equation 20.1 and Equation 20.2. The combined objective is given by

JPCCM(M,Y,A) = ∑
xi∈X

{
(xi−μyi)

T Ayi(xi−μyi)+ log(det(Ayi))
}

(20.3)

+ ∑
(xi,x j)∈M

wi j fM(xi,x j)1[yi 
= y j]+ ∑
(xi,x j)∈C

w̄i j fC(xi,x j)1[yi = y j] ,

where fM and fC are the constraint violation functions which depend on (xi,x j). The function fM

is defined such that the penalty for violation of must-link constraints between points that are distant
should be higher. Such a construction makes sense since if two distant points need to be must-linked,
then the metric currently in use needs a major update, and a high penalty will be able to accomplish
that. Since a violated must-link constraint involves two clusters, the penalty function is defined in
terms of both metrics:

fM(xi,x j) =
1
2
(xi− x j)

T Ayi(xi− x j)+
1
2
(xi− x j)

T Ayj (xi− x j) . (20.4)

In the case of cannot-link violations, the penalty corresponding to nearby points should be higher.
The following penalty term is considered:

fC(xi,x j) =
1
2
(x
′
yi
− x

′′
yi
)T Ayi(x

′
yi
− x

′′
yi
)− 1

2
(xi− x j)

T Ayi(xi− x j) , (20.5)

where (x
′
yi
,x
′′
yi
) are the maximally separated set of points in the data set according to Ayi . These

weight functions are introduced in order to produce a more relevant adherence to the constraints.
The objective function is optimized by using the EM algorithm, which alternates between updat-
ing the cluster assignments, and updating the cluster means μh and metrics Ah until convergence.
For scalability and numerical stability, [9] suggest using metrics with simpler structures, such as
diagonal matrices, for high-dimensional problems.
Global Metric Learning: A generalization of the PCKMeans setting was considered in the liter-
ature [9, 5, 4], where the distance metric used to measure the within-cluster distortion is globally
parameterized, and the parameters are learned as part of the SSC process. In particular, if A is a
positive definite matrix, one considers the following problem:

JGML(M,Y,A) =
1
2 ∑

xi∈X
(xi−μyi)

T A(xi−μyi)+ ∑
(xi,x j)∈M

wi j1(yi 
= y j)+ ∑
(xi,x j)∈C

w̄i j1(yi = y j) .

(20.6)
Although the above exposition focuses on the k-means clustering setting, the formulation can be
generalized to several other settings, such as information theoretic clustering and spherical cluster-
ing. The two main choices in each setting are (i) a parameterized function dA(xi,μyi), which mea-
sures the divergence of each data point from its corresponding cluster mean, and (ii) suitable penalty
functions fML(i, j) and fCL(i, j) which respectively measure the cost of violating a must-link and a
cannot-link constraint. In Equation 20.6, we have dA(xi,μyi) = (xi−μyi)

T A(xi−μyi), fML(i, j) = 1,
and fCL(i, j) = 1.
Parameterized divergence functions: One can consider more general divergence functions, in-
cluding parameterized versions of information theoretic and directional divergences. In particu-
lar, information theoretic clustering uses the following divergence function [22, 4]: dI(xi,μh) =

∑d
j=1 xi j log

xi j
μh j
−∑d

j=1(xi j−μh j), where xi,μh are assumed to be positive vectors or probability dis-

tributions. In the latter case, the divergence reduces to the KL-divergence [19]. The parameterized
version of I-divergence considers a diagonal matrix A = diag(a j) with nonnegative weight a j corre-
sponding to each dimension j leading to dI,A(xi,μh) = ∑d

j=1 a jxi j log
xi j
μh j
−∑d

j=1 a j(xi j−μh j). One

can similarly define a parameterized version of directional divergence based on the cosine similarity

as dcos,A(xi,μh) = 1− xT
i Aμh

‖xi‖A‖μh‖A
, where ‖x‖A =

√
xT Ax.
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While parameterized divergences give the additional flexibility of rotating and/or scaling the
feature space appropriately in order to match the given pairwise semisupervision, without proper
regularization, such formulations can yield degenerate solutions. For example, setting A = 0, the
zero matrix makes all distances zero and, hence, minimizes the objective function, but it is not
meaningful. To avoid such degenerate solutions, one considers suitable regularizers R(A) on A or
putting constraints on A, e.g., making sure A is positive semidefinite, as is commonly done in metric
learning [41].
Constraint violation functions: The second major choice involves the constraint violation func-
tions fML(i, j) and fCL(i, j). For the must-link constraints, one often considers penalty functions
which are proportional to the distance, i.e., fML(i, j) = dA(xi,x j). For points which are far apart
according to the distance function, a must-link constraint provides valuable information regard-
ing the structure of the clustering. As a result, the penalty is more if such a constraint is violated.
For cannot-link constraints, one considers penalty functions which decrease with the distance, i.e.,
fCL(i, j) = dmax

A − dA(xi,x j), where dmax
A is a suitable upper bound on the pairwise distances be-

tween points in the dataset. Thus, cannot-link constraints between points which are nearby are
given more weight as they suggest that the cluster structure may be substantially different from
the one suggested by the distance measure. One can consider alternative definitions of the functions
as appropriate for a given problem domain.

With the above two generalizations, the objective function for PCC can be written as

JPCCM(M,Y,A) =
1
2 ∑

xi∈X
dA(xi,μyi)+R(A) (20.7)

+ ∑
(xi,x j)∈M

wi j fM(i, j)1(yi 
= y j)+ ∑
(xi,x j)∈C

w̄i j fC(i, j)1(yi 
= y j) .

Such a general formulation can be interpreted as the log-likelihood of a probabilistic graphical
model known as the hidden Markov random field (HMRF) [5, 4]. The HMRF model for SSC
consists of the following sets of variables and parameters: (i) an observable set X = (x1, . . . ,xn)
corresponding to the given data points X ; (ii) an unobservable (hidden) set Y = (y1, ...,yn) corre-
sponding to cluster assignments of points in X , where each hidden variable yi encodes the cluster
label of the point xi and takes values from the set of cluster indices (1, . . . ,K); (iii) a set of generative
model parameters Θ = {A,M}, which consists of divergence parameters A and cluster representa-
tives M = (μ1, . . . ,μK); and (iv) an observable set of constraint variables C = (c12,c13, . . . ,cn−1,n),
where each ci j is a tertiary variable taking on a value from the set (−1,0,1), where ci j = 1 indicates
that (xi,x j) ∈M , the set of must-link constraints, ci j = −1 indicates that (xi,x j) ∈ C , the set of
cannot-link constraints, and ci j = 0 corresponds to pairs (xi,x j) that are not constrained.

Consider the posterior distribution P(Y,Θ|X ,C), which by Bayes rule is proportional to

P(X ,Y,Θ|C) = P(Θ|C)P(Y |Θ,C)P(X |Y,Θ,C) . (20.8)

We assume the model parameters Θ = (M,A) to be independent of the constraints C, so that
P(Θ|C) = P(Θ) = P(M,A) = P(M)P(A), where we further assume M and A to be independent.
The latent variables Y are assumed to form a pairwise Markov random field (MRF) with only pair-
wise potentials [39, 4], so that

P(Y |Θ,C) =
1
Z

exp

{

−∑
i, j

f (i, j)

}

, (20.9)

where Z is the partition function, and the pairwise potentials are given by

f (i, j) =

⎧
⎪⎨

⎪⎩

wi j fML(i, j) , if ci j = 1and yi 
= y j

w̄i j fCL(i, j) , if ci j =−1and yi = y j

0 , otherwise .

(20.10)
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The conditional distribution P(X |Y,Θ,C) = P(X |Y,Θ) = ∏i p(xi|yi,Θ) is determined by a mixture
model, where the mixture component is determined by yi, and Θ contains the parameters of the mix-
ture model. The literature has considered a variety of components, including multivariate Gaussians
distributions, von Mises-Fisher distributions, and multinomial distributions [4]. More generally, one
can consider a functional form of the conditional distribution determined by a parameterized diver-
gence function: p(xi|yi,Θ) = 1

ZΘ
exp(−dA(xi,μyi)), where ZΘ is the partition function. The negative

log-likelihood of the posterior distribution, is given by

− logP(Y,Θ|X ,C)=∑
i

dA(xi,μyi)+∑
i, j

f (i, j)− log P(Θ)+n logZΘ+ logZ+ logP(X |C) . (20.11)

Since logP(X |C) is a constant, with R(Θ) = n logZΘ− logP(Θ), Equation 20.11 is equivalent to the
objective function in Equation 20.8.

Given a dataset, such models are learned using a suitable version of the EM algorithm. In par-
ticular, for the objective function in Equation 20.11, one has to estimate the parameters Θ = (M,A)
and the cluster memberships Y = {y1, . . . ,yn} for every data point. The EM algorithm is initialized
with some value Θ(0) for the parameters and then proceeds with the following alternating updates
until convergence:

E-step Given Θt = (Mt ,At), update cluster memberships Yt+1 to minimize the objective

M-step: M-update Given (At ,Yt+1), update cluster means Mt+1 to minimize the objective

M-step: A-update Given (Mt+1,Yt+1), update distortion parameter At+1 to minimize the objective

For a variety of semisupervised clustering problems, the above SSC approach has been shown to
perform well and has, hence, evolved as one of the standard approaches to SSC with pairwise
constraints [5, 4, 6].

20.2.3 Active Learning for Semisupervised Clustering

Since SSC works with a few pairwise (or pointwise) labels, active learning is a natural frame-
work to consider in this setting. Given a fixed number of allowed queries on pairwise labels, the
goal is to decide which pairwise relationships to query in order to get must-link and cannot-link
information. In [3], a two-stage method is outlined for active learning for SSC with pairwise labels.
In the first stage, called explore, the focus is on getting at least one point from each cluster with a
small number of queries. The first point is chosen at random and assigned to a cluster. All subse-
quent points are chosen by farthest first traversal, i.e., by picking the point which is farthest from
all existing points, where farthest point to a set is measured by the distance to the nearest point in
the set. Once a point is selected, pairwise queries are made with any one point from each of the
existing clusters. If a must-link constraint is found with any of the existing clusters, then the point
is assigned to that cluster, and the method picks the next farthest point. If no must-link constraint is
found with any of the existing clusters, then a new cluster is initialized with this point as the mem-
ber. The explore process continues until at least one point from each cluster is found or the budget
of queries is exhausted. In the second stage, called consolidate, additional data points are selected at
random and assigned to the correct clusters by pairwise querying. Given a data point, all clusters are
first sorted in increasing order of distances to the corresponding cluster centroids. Pairwise queries
are made with any one point from each of the clusters in sorted order until a point/cluster with a
must-link constraint is found. In that case, the new point is assigned to that cluster, and the process
continues by picking another point at random. The querying is expected to be efficient, i.e., for a
k-clustering problem, much fewer than k queries will usually be needed. Empirically, [3] show the
active learning strategy is shown to be effective in practice, leading to better test-set performance
with fewer queries as compared to choosing the queries at random.
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20.2.4 Semisupervised Clustering Based on User Feedback

A set of ideas for SSC was pursued by [18], where the semisupervision is done with the user in
the loop. The development acknowledges the fact that there can be multiple ways semisupervision
can be provided and advocates updating the clustering based on input received from the user. In
particular, [18] consider a scenario where a user is iteratively providing feedback about the quality
of clusters. Typically a divergence measure d is defined up front and used to produce a clustering.
Based on the user’s feedback on the initial clustering, the method attempts to adjust what it means
to be similar. In other words the divergence measure d in this case is not fixed, but rather learned
as the user provides feedback. It is instructive to note that such ideas in [18] were also considered
by others [4], as discussed in Section 20.2.2, but [18] explicitly consider the user to be a part of the
process.

The problem of interest in [18] is the clustering of documents. Once an initial clustering has been
done, the user can provide the following types of feedback: (i) an indication that a given document
is in the wrong cluster; (ii) given a more appropriate cluster, an indication that the document in
question should be moved to it; (iii) whether two given documents should be within the same cluster;
and (iv) whether two documents should be in different clusters. Indeed, the type of feedback is
closely related to pointwise and pairwise semisupervision discussed earlier.

The user is assumed to have no knowledge about how many clusters there really are. After the
feedback is incorporated into the distance measure, the clustering algorithm is rerun. These steps
are repeated as long as user feedback is available or until convergence. In practice, only very few
iterations of user feedback are considered.

Following a bag of words model, a document d is assumed to be generated from a multinomial
mixture model θ over words w [31, 18]. Words are defined by a vocabulary V . Within this prob-
abilistic setting, KL divergence is selected as a natural choice of distance measure to be used in
clustering. In order to enable adjustments based on user feedback the authors propose a weighted
version of KL divergence:

dA(d1||d2) = ∏
w j∈V

a j p(wj|θ1) log
p(wj |θ1)

p(wj |θ2)
, (20.12)

where a j are constrained to be positive. The divergence used in [18] is in fact a symmetrized version
of the parametrized KL-divergence where one computes the weighted average KL-divergence of
individual document frequencies to a discrete distribution with mean of the word frequencies of
the documents, and the weighting is determined by the number of words in each document. Once
user feedback is provided for a given pair of documents, dA is optimized by suitably updating a j.
The iterative updates are similar to the ideas discussed in Section 20.2.2 based on a parametrized
KL-divergence.

In terms of results, the approach appears to provide a clear boost in performance when compared
to unsupervised clustering. In particular, it seems that the algorithm performs well even with very
little user feedback. Approaches such as the one proposed in [18] are referred to as metric-based,
since they incorporate semisupervision only by adapting a distance metric. Several approaches have
been proposed in literature with different distance measures such as [28, 10, 42].

The algorithm proposed in [28] is a variant of the complete-link hierarchical agglomerative
clustering, whereby the Euclidean distance metric is altered according to user feedback. For pairs
of points which are considered must-link, a distance value of zero is used. For pairs of points which
have cannot-link constraints associated with them, the maximum distance plus one is used. The
motivation behind the approach is to combine pairwise constraints with spatial constraints, so that
local neighborhoods are affected by the pairwise constraints. As a result performance is improved
significantly compared to using pairwise constraints alone. Furthermore, outliers in the output are
reduced since spatial relationships are taken into consideration.
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20.2.5 Semisupervised Clustering Based on Nonnegative Matrix Factorization

In [29], a Nonnegative Matrix Factorization (NMF) framework is proposed for both concensus
clustering and semisupervised clustering. For the purposes of this chapter, we will focus on the
semisupervised clustering part. The main contribution of [29] is to show how both semisupervised
k-means and semisupervised kernel k-means can be approached as an NMF problem.

The authors consider an indicator matrix H = [h1 . . .hk] with

hk = [0, . . . ,0,

nk︷ ︸︸ ︷
1, . . . ,1,0, . . . ,0]T/n1/2

k , (20.13)

where the nonzero entries in hk represent the points belonging to cluster k, and nk denotes the
number of those points. [29] make the observation that the k-means clustering objective can be
expressed as

max
HT H=I,H≥0

Jk = Tr(HTW H), (20.14)

where wi j = xT
i x j for k-means and wi j = φ(xi)

T φ(x j) for kernel k-means. By encoding must-link
and cannot-link constraints with indicator matrices A and B, respectively, the authors show that the
semisupervised k-means algorithm can be posed as an optimization problem of the form:

max
HT H=I,H≥0

Tr[HTWH +αHT AH−βHT BH]. (20.15)

Letting W+ =W +α ≥ 0, W− = βB, and removing the orthogonality constraint, a relaxed version
of the optimization problem can be expressed as

max
H≥0
||(W+−W−)−HHT ||2. (20.16)

This is an objective function where (W+−W−) is approximated by HHT with nonnegativity con-
straints on H. Related problems are widely studied in the context of NMF, and the above problem
can be solved with updates of the form

Hik = Hik

√
(W+H)ik

(W−H)ik(HHT H)ik
(20.17)

The authors provide a proof of convergence as well as correctness. The NMF approach performs fa-
vorably in comparison to certain existing algorithms in the literature [29]. In [29], the SSC problem
is posed as a semidefinite optimization problem which incorporates constraints. Conceptually this
approach is not too different from [9], where the constraints are considered and co-variance matrices
are estimated in an iterative fashion. In [29] a decomposition of (W+−W−) is estimated with W
denoting a distance measure. As such [29] can also be seen combining both constrained-based and
metric-based aspects.

20.3 Semisupervised Graph Cuts

In this section, we consider SSC with graph-based representations, with focus on semi-
supervised graph-cuts. The key difference between the methods in Section 20.2 and the ones con-
sidered here is that the dataset is in the form of a similarity graph G among data points, rather than
feature vectors corresponding to each data point.
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We start by briefly reviewing some problems and concepts relevant to unsupervised graph cuts.
Let G = (V,E) be a weighted undirected graph with weight matrix W . If V1,V2 is a partitioning of
V , i.e., V1∩V2 = /0,V1∪V2 =V , then the value of the cut implied by the partitioning (V1,V2) is given
by

cut(V1,V2) =
1
2 ∑

vi∈V1,v j∈V2

wi j . (20.18)

The minimum cut problem is to find a partitioning (V1,V2) such that cut(V1,V2) is minimized. Due
to practical reasons, one often works with a normalized cut objective, such as the ratio-cut [25] or
normalized-cut [34], which encourage the partitions V1,V2 to be more balanced. The objective for
ratio-cut is as follows:

Rcut(V1,V2) =
cut(V1,V2)

|V1| +
cut(V2,V1)

|V2| . (20.19)

The objective for normalized-cut is similar; however, it normalizes cuts by the weight of the edges
in each partition. For any subset Vh ⊆V , letting Vol(Vh) = ∑i∈Vh

Dii where Dii = ∑ j wi j , we have

Ncut(V1,V2) =
cut(V1,V2)

Vol(V1)
+

cut(V2,V1)

Vol(V2)
. (20.20)

There are extensions of the above formulations for k-cuts [36], but we focus on the 2-cut setting in
this chapter for ease of exposition.
Graph Laplacians: Next, we briefly review graph Laplacians, which will play an important role
in our exposition. For an undirected weighted graph G = (V,E) with weights wi j ≥ 0, let D be a
diagonal matrix with Dii = ∑ j wi j. In the existing literature, there are three related matrices that
are called the graph Laplacian, and there does not appear to be a consensus on the nomenclature
[36]. These three matrices are intimately related, and we will use all of them in our analysis. The
unnormalized graph Laplacian Lu is defined as

Lu = D−W . (20.21)

The following property of the unnormalized graph Laplacian is important for our analysis: For any
f ∈ Rn, we have

f T Lu f =
1
2 ∑

i, j
wi j( fi− f j)

2 . (20.22)

The matrix Lu is a symmetric and positive semidefinite. There are also two normalized graph Lapla-
cians in the literature [17] given by

Lr = D−1Lu = I−D−1W , (20.23)

Ls = D−1/2LuD−1/2 = I−D−1/2WD−1/2 . (20.24)

For the symmetrically normalized graph Laplacian, the following property holds. For any f ∈ R
n,

we have

f T Ls f =
1
2 ∑

i, j

wi j

(
fi√
Dii
− f j√

D j j

)2

. (20.25)

We refer the reader to [30, 17, 36] for further details on Laplacians and their properties.
Semisupervised Graph Cuts: While the graph-cut problems outlined above are unsupervised,
given pointwise semisupervision on some nodes, one can construct semisupervised graph-cut prob-
lems that respects the given information. In particular, the labels may indicate that two nodes with
the same label should remain within the same subgraph after the cut [12, 13]. The same information
can also be conveyed by specifying a must-link relationship between pairs (or subsets) of nodes, so
that the must-linked nodes should ideally belong to the same subgraph. For ease of exposition, we
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consider the 2-cut setting. The extension to k-cuts is straightforward, and we report empirical results
on such problems in Section 20.6.

Let A1 be the subset of vertices with cluster id 1, and A2 be the subset with cluster id 2. Clearly,
A1 and A2 are disjoint subsets of V . The semisupervised unnormalized cut problem can be posed
as follows: Find a partitioning (V1,V2) such that cut(V1,V2) is minimized subject to the constraint
A1 ⊆ V1,A2 ⊆ V2. In order to achieve balanced cuts, we also consider semisupervised versions of
the ratio-cut (or normalized-cut) problem. In particular, the semisupervised ratio-cut problem can
be posed as follows: Find a partitioning (V1,V2) such that Rcut(V1,V2) is minimized subject to the
constraint A1 ⊆ V1,A2 ⊆ V2. Similarly, one can pose the semisupervised normalized-cut problem
using Ncut(V1,V2) instead of Rcut(V1,V2) above. The problems outlined above are NP-hard, and
there has been some work on developing polynomial-time approximation schemes (PTASs) for
related problems [12, 13].

20.3.1 Semisupervised Unnormalized Cut

Consider a graph partitioning given by V1 and V2. Let f be defined as follows:

fi =

{
1 if vi ∈V1

−1 if vi ∈V2 .
(20.26)

From Equation 20.22, we now have

f T Lu f =
1
2

n

∑
i, j=1

wi j( fi− f j)
2 = 4cut(V1,V2) . (20.27)

For any given disjoint sets A1,A2 which constitute the semisupervision, we construct constraints on
the labels as yi = +1 if vi ∈ A1 and yi = −1 if vi ∈ A2. Then, for all nodes in the labeled set, i.e.,
vi ∈ A1 ∪A2 = L , we have the constraint that fi = yi. Then, the semisupervised unnormalized cut
problem can be written as

min
V1,V2

f T Lu f , s.t. fi is as in Equation 20.26, ∀vi ∈ L, fi = yi . (20.28)

By relaxing the problem such that f ∈ R
n and noting that the constraint above is equivalent to

∑�
i=1( fi− yi)

2 ≤ 0, we obtain the following formulation:

min
f∈Rn

f T Lu f , s.t.
�

∑
i=1

( fi− yi)
2 ≤ 0. (20.29)

20.3.2 Semisupervised Ratio Cut

In the context of the ratio-cut problem, consider again a graph partitioning given by V1 and V2.
Let f be defined as

fi =

{
+
√|V2|/|V1| if vi ∈V1

−√|V1|/|V2| if vi ∈V2 .
(20.30)

Now, following Equation 20.22, we can express

f T Lu f =
1
2 ∑

i, j

wi j( fi− f j)
2,= |V |Rcut(V1,V2), (20.31)
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where |V | is a constant. From the predefined values of f we can see that f T 1 = 0, and || f ||2 = n.
The objective function for the semisupervised ratio-cut problem can therefore be expressed as

min
V1,V2

f T Lu f , s.t. f ⊥ 1, || f ||2 = n, f as in Equation 20.30, ∀vi ∈ L, fi = yi . (20.32)

We relax the problem and perform the optimization over f ∈ R
n such that f ⊥ 1. Note that in the

unsupervised case, i.e., L = /0, the empty set, the solution to the problem is simply the second
eigenvector of L corresponding to the second smallest eigenvalue. Now, relaxing the constraint1 on
|| f || and allowing fi to mildly deviate from yi on vi ∈ L , we get the following problem:

min
f∈Rn

f T Lu f , s.t. f ⊥ 1 ,
�

∑
i=1

( fi− yi)
2 ≤ ε , (20.33)

The key difference between the relaxed unnormalized formulation in Equation 20.29 and the
normalized formulation in Equation 20.33 is the constraint f ⊥ 1⇒ ∑i fi = 0, which ensures f lies
in the subspace of Rn orthogonal to 1. The balancing constraint ensures the total score on positive
predictions is the same as that on the negative predictions.

20.3.3 Semisupervised Normalized Cut

In the context of normalized cut, for a graph partitioning given by V1 and V2, let f be defined as
follows:

fi =

{√
vol(V2)/vol(V1) if vi ∈V1

−√vol(V1)/vol(V2) if vi ∈V2 .
(20.34)

Following an analysis similar to that of ratio-cut, a semisupervised normalized cut can be posed as
the following optimization problem:

min
V1,V2

f T Lu f , s.t. D f ⊥ 1, f T D f = vol(V ) , f as in Equation 20.34,∀vi ∈ L, fi = yi . (20.35)

First, we relax the problem and perform the optimization over f ∈ R
n such that f ⊥ 1. With g =

D1/2 f , the relaxed problem is

min
g∈Rn

gT D−1/2LuD−1/2g s.t. g⊥ D1/21, ||g||2 = vol(V ), ∀vi ∈ L,gi = D1/2yi. (20.36)

Note that if L = /0, then the solution to the problem is simply the second eigenvector of the symmet-
rically normalized Laplacian Ls = D−1/2LuD−1/2 corresponding to the second smallest eigenvalue.
Now, relaxing the constraint on ||g|| and allowing gi to mildly deviate from D1/2yi on vi ∈ L , we get
the following problem:

min
g∈Rn

gT Lsg s.t. g⊥ D1/21,
�

∑
i=1

||gi−D1/2yi||2 ≤ ε . (20.37)

There have been notable attempts in the literature to directly solve some of the semisupervised
graph-cut problems [12, 13]. Among such methods, the spectral graph transducer (SGT) [27] solves
a problem closely related to the semisupervised ratio-cut problem, and reduces to the algorithm
described in [7] under certain assumptions.

1Since the clustering depends on sign( fi), the norm constraint || f ||2 = n does not have an effect on the accuracy.
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20.4 A Unified View of Label Propagation

The semisupervised graph-cut problems discussed in Section 20.3 belong to a widely studied
family of problems which can be solved using label propagation methods [15]. In this section, we
present a Generalized Label Propagation (GLP) framework, discuss various specific instantiations
of the framework from the literature, and illustrate its connections to the semisupervised graph-cut
problems.

20.4.1 Generalized Label Propagation

GLP formulation considers a graph-based semisupervised learning setting. Let W be the sym-
metric weight matrix and L be a corresponding graph Laplacian. Note that L may be any of the
Laplacians discussed in Section 20.3, and we will see how different label propagation formulations
result from specific choices of the Laplacian. Let f ∈ R

n, where n = �+ u, be the predicted score
on each data point xi, i = 1, . . . ,n; the predicted cluster label on xi can be obtained as sign( fi). The
GLP problem can be formulated as follows:

min
f∈S

f T L f , s.t.
�

∑
i=1

( fi− yi)
2 ≤ ε , (20.38)

where ε ≥ 0 is a constant and S ⊆ R
n. For most existing formulations S = R

n, whereas for a few
S = { f | f ∈ R

n, f ⊥ 1} where 1 is the all ones vector. The Lagrangian for the GLP problem is
given by L( f ,μ) = f T L f +μ∑�

i=1( fi−yi)
2, where μ≥ 0 is the Lagrangian multiplier. Some variants

assume yi = 0 for i=(�+1), . . . ,n, so the constraint will be of the form ∑n
i=1( fi−yi)

2≤ ε. Assuming
the Laplacian to be symmetric, which is true for Lu and Ls, the first order necessary conditions are
given by (L+ μI) f = μy, where I is the identity matrix. Several existing methods work with the
special case ε = 0, which makes the constraints binding so that ∑�

i=1( fi−yi)
2 = 0 and fi = yi on the

labeled points. The first order conditions for the special case are given by L f = 0. In the next several
sections, we show how most of the existing label propagation methods for semisupervised learning
can be derived directly as a special case of the GLP formulation or alternatively with special case
choices of the Laplacian L, the constant ε, and the subspace S .

20.4.2 Gaussian Fields

Motivated by the assumption that neighboring points in a graph will have similar labels in Gaus-
sian fields (GFs), the following energy function is considered [46]:

E( f ) =
1
2

n

∑
i, j=1

wi j( fi− f j)
2 . (20.39)

The GF method computes labels by minimizing the energy function E( f ) with respect to f under the
contraint that fi = yi for all labeled points. As observed in [46], the energy function is harmonic, i.e.,
it is twice continuously differentiable and it satisfies Laplace’s equation [24]. From the harmonic
property of the energy function it follows that the predicted labels will satisfy: f =D−1W f . In terms
of block matrices corresponding to labeled and unlabeled points we have:

[
D�� 0
0 Duu

][
f�
fu

]
=

[
W�� W�u

Wu� Wuu

][
f�
fu

]
.



518 Data Clustering: Algorithms and Applications

Since f� = y� due to the constraints,2 the above system can be simplified to get a closed form for fu

given by
fu = (Duu−Wuu)

−1Wulyl . (20.40)

We can interpret the objective function in GF as a special case of the GLP problem in (20.38). In
particular, using the identity in Equation 20.22 and noting that the constraints on the labeled points
are binding, GF can be seen as a special case of GLP with L = Lu and ε = 0, i.e.,

min
f∈Rn

f T Lu f , s.t.
�

∑
i=1

( fi− yi)
2 ≤ 0 . (20.41)

20.4.3 Tikhonov Regularization (TIKREG)

Given a partially labeled data set, TIKREG [7] is an algorithm for regularized regression on
graphs, where the objective is to infer a function f over the graph. The objective function for
TIKREG is given by

min
f∈Rn

1
2

n

∑
i, j=1

wi j( fi− f j)
2 +

1
γ�

�

∑
i=1

( fi− yi)
2 (20.42)

with the constraint that f ⊥ 1, i.e., f lies in the orthogonal subspace of 1, the all ones vector. The
parameter γ is a suitably chosen (positive) real number. A closed form solution for the above problem
is obtained [7] as

f = (�γLu + Ik)
−1(ŷ+μ1), (20.43)

where ŷ = (y1,y2, . . . ,yl ,0, . . . ,0), Ik = diag(1, . . . ,1,0, . . . ,0) with the number of ones equal to
the number of labeled points. The orthogonality constraint on f is enforced through the Lagrange
multiplier μ, which is optimally computed as

μ=− 1T (�γLu + Ik)
−1ŷ

1T (�γLu + Ik)−11
. (20.44)

The objective function in Equation 20.42 can be viewed as a special case of the GLP objective in
(20.38). As previously, the first term is f T Lu f , where Lu is the unnormalized Laplacian. The second
term corresponds to the constraint ∑i( fi− yi)

2 ≤ ε, in (20.38) where 1/γ� is the optimal Lagrange
multiplier corresponding to the constraint. In other words, if ε(1/γ�) is the constraint value that
leads to the optimal Lagrange multiplier of 1/γ�, the TIKREG problem can be seen as a special case
of GLP:

min
f∈Rn, f⊥1

f T Lu f , s.t.
�

∑
i=1

( fi− yi)
2 ≤ ε(1/�γ) . (20.45)

20.4.4 Local and Global Consistency

The Local and Global Consistency (LGC) approach [45] gives an alternative graph-based regu-
larization framework for semisupervised learning. In particular, the LGC is formulated based on the
following objective function [45]:

min
f∈Rn

1
2

⎛

⎝
n

∑
i, j=1

wi j

(
1√
Dii

fi− 1
√

D j j
f j

)2

+μ
n

∑
i=1

( fi− yi)
2

⎞

⎠ (20.46)

2We abuse notation and denote [ f1, . . . , f�]T by f� (similarly for y�) and [ f(�+1), . . . , fn]
T by fu in the sequel.
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with μ> 0 as the regularization parameter. Note that LGC assumes that there is a valid yi for all
points; operationally, the yi, i = 1, . . . , � is set to the true given label, whereas yi, i = �+1, . . . ,n is set
to 0. The problem is solved using an iterative label propagation algorithm. Given a weight matrix
W among the points, the weights are normalized to obtain S = D−1/2WD−1/2 where D is a diagonal
matrix with Dii = ∑ j wi j . Starting from an initial guess f (0), the iterative algorithm proceeds with
the following updates:

f (t+1) = αS f (t) + (1−α)y , (20.47)

where α ∈ (0,1). As shown in [45], this update equation converges to f ∗ = (1−α)(I−αS)−1y,
which can be shown to optimize the objective function in (20.46) when α = 1/(1+ μ). We now
show that the LGC formulation is a special case of the GLP formulation in (20.38). From the identity
involving the normalized Laplacian in Equation 20.25, LGC can be seen as a special case of GLP
as follows:

min
f∈Rn

f T Ls f , s.t.
n

∑
i=1

( fi− yi)
2 ≤ ε(μ) , (20.48)

where ε(μ) is the constant corresponding to the optimal Lagrange multiplier μ. Note that since in
LGC one starts with an initial label yi, i = 1, . . . ,n, the constraint involves terms corresponding to
all the points.

20.4.5 Related Methods

We review three other methods from the literature, viz, cluster kernels, Gaussian random walks,
and local neighborhood propagation for graph-based semisupervised learning which are closely
related to the GLP framework.

20.4.5.1 Cluster Kernels

The main idea in cluster kernels (CK) [16] is to embed the data into a lower dimensional space
based on its cluster structure and then subsequently build a semisupervised learner on the low-
dimensional data. If K denotes a suitable kernel on the data space, the embedding method focuses
on the k primary eigenvectors of the symmetrized matrix D−1/2KD−1/2. If K corresponds to the
edge weights on the graph G = (V,E) between the points, i.e., K = W , then the embedding corre-
sponds to the k eigenvectors of the symmetrized Laplacian Ls = I−D−1/2WD−1/2 corresponding
to the smallest k eigenvalues. In particular, for k = 1, the embedding is given by the eigenvector
corresponding to the smallest eigenvalue of Ls which is the solution to LGC in absence of any
semisupervision. CK trains a suitable semisupervised learner on the low-dimensional embedding to
obtain the final label assignments.

20.4.5.2 Gaussian Random Walks EM (GWEM)

Consider a random walk on the graph with transition probability P = D−1W . The GWEM
method [35] works with the m-step transition probability matrix Pm so that the probability of going
from xi to x j is given by pm|0(x j|xi) = (Pm)i j. The random walk is assumed to start with uniform
probability from any one of the nodes, so P(xi) = 1/n. Using Bayes rule, one can obtain the poste-
rior probabilities P0|m(xi|x j). Now, each point is assumed to have a (possibly unknown) distribution
p(y|xi) over the cluster labels. For any point x j, the posterior probability of cluster label y is given by
P(y j = c|x j) = ∑i P(yi = c|xi)p0|m p(xi|x j). The cluster label is based on y j = argmaxc P(y j = c|x j).
Now, since P(yi|xi) is unknown for the unlabeled points, an EM algorithm can be used to alternately
maximize the log-posterior probability of known labels on the labeled points

�

∑
k=1

logP(yk|xk) =
�

∑
k=1

log
N

∑
i=1

P(yi|xi)P0|m(xi|xk). (20.49)



520 Data Clustering: Algorithms and Applications

As shown in [35], the EM algorithm alternates between the E-step which estimates P(xi|xk,yk) ∝
P(yk|xi)P0|m(xi|xk), where k denotes an index over labeled points, and the M-step, which computes

P(y = c|xi) =
∑�

k:yk=c P(xi|xk,yk)

∑�
h=1 P(xi|xh,yh)

. (20.50)

We now show that GWEM can be interpreted in terms of spectral decomposition of a suitable
asymmetrically normalized Laplacian Lr as in Equation 20.23. For a fixed number of steps m for the
random walk, let ZT = Pm = (D−1W )m. Note that ZT itself is a transition probability matrix, and
Zi j = Pm|0(xi|x j). Let DZ be a diagonal matrix such that DZ,ii = ∑ j Zi j . Since the prior probability
P(xi) = 1/n, by Bayes rule we have

P0|m(x j|xi) =
Pm|0(xi|x j)

∑i′ Pm|0(xi′ | j)
= (D−1

Z Z)i j . (20.51)

Let f j = P(y j|x j). When the EM algorithm converges we will have

f = D−1
Z Z f ⇒ (I−D−1

Z Z) f = 0 , (20.52)

where fi = yi for the labeled points. Since D−1
Z Z is a transition probability matrix, from Equation

20.23 we note that (I−D−1
Z Z) can be viewed as a asymmetrically normalized Laplacian Lr so that

Lr f = 0. Finally, since DZ f = Z f resembles the fixed point equation for GFs, a block decomposition
as in Equation 20.40 yields fu = (Dz,uu−Zuu)

−1Zu�y�.

20.4.5.3 Linear Neighborhood Propagation

Linear Neighborhood Propagation (LNP) [40] is another recent approach, which differs from
the other methods as LNP computes a stochastic transition matrix U directly from the data. In par-
ticular, one computes a probability distribution over neighboring points so that their expectation
best approximates the point under consideration: minui

∥
∥xi−XN

i ui
∥
∥2

, where ui is probability distri-
bution over the neighbors of xi and XN

i is a matrix each of whose columns is a neighbor of xi. Once
the transition probability matrix U is computed, the semisupervised learning problem is posed as
follows:

min
f∈Rn

n

∑
i, j=1

ui j( fi− f j)
2 +μ

n

∑
i=1

( fi− yi)
2 , (20.53)

where, similar to LGC [45], the labels yi, i = 1, . . . , � are set to their true values, and the unknown
labels yi, i = �+1, . . . ,n are set to 0. Similar to LGC, the LNP problem is solved by an iterative label
propagation algorithm. Starting from an initial guess f (0), the iterative algorithm proceeds with the
following updates:

f (t+1) = αU f (t) + (1−α)y , (20.54)

where α = 1/(1+ μ) ∈ (0,1). The updates are the same as in Equation 20.47 for LGC [45] with
the difference that U is not normalized symmetrically, but is a transition probability matrix of a
random walk. In spite of the similarities, a careful consideration of the analysis in [40] reveals that
update equation in Equation 20.54 does not solve the problem in Equation 20.53. On convergence,
the iterative updates in Equation 20.54 leads to f = (I−αU)−1(1−α)y. On the other hand, setting

derivatives of Equation 20.53 to zero leads to f =
(
I−α(U +UT )/2

)−1
(1−α)y. The issue arises

in the analysis [40] when one assumes [(I−U)+ (I−U)T ] f ≈ 2(I−U) f , which is not true unless
U is symmetric.
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20.4.6 Label Propagation and Green’s Function

We briefly describe an interesting relationship between label propagation and the discrete
Green’s function [23]. Green’s functions are typically used to convert nonhomogenous partial dif-
ferential equations with boundary conditions into an integral problem. In particular, the inverse
Laplace operator with the zero mode removed can be interpreted as a Green’s function for the dis-
crete Laplace operator [23]. Let G = L† be the generalized inverse of the Laplacian L. The solutions
for both GF and GWEM can be expressed as fu = (Duu−Wuu)

−1Wulyl = L†
uuzul where zul =Wulyl .

Discarding the zero mode of Luu, we have fu≈Guuzul . As argued in [23], discarding the zero mode is
important to ensure that the Green’s function exists; further, it does not affect the final result. Then
fu can be viewed as a solution to a partial differential equation with boundary value constraints.
The interpretation is intuitive if the labeled points are treated as electric charges. In particular one
assumes labeled points to be postive and negative charges. Using the Green’s function one then
computes the influence of these charges on unlabeled points [23]. For methods such as LGC and
LNP the solution has the form f = (I−A/(1+μ))−1μy/(1+μ), with A = D−1/2WD−1/2 for LGC
and A = U for LNP. Considering the strong regularization limit as μ→ 0 and removing the zero
mode in L, we obtain: f = L†y≈ Gy.

20.4.7 Label Propagation and Semisupervised Graph Cuts

We now describe how relaxed versions of semisupervised graph cuts, as discussed in Sec-
tion 20.3, lead to special cases of the GLP formulation for a suitable choice of the Laplacian L
and the constraint ε and, hence, can be solved using label propagation methods. For semisupervised
unnormalized cut, the objective function in (20.29) is a special case of our GLP formulation using
an unnormalized graph Laplacian and ε = 0. In particular (20.29) is exactly the same as the formu-
lation for Gaussian Fields [46]. For semisupervised ratio cut, the objective described in (20.33) is
equivalent to the problem TIKREG solves [7]. For semisupervised normalized cut, the formulation
in 20.37 is nearest to that of CK, but not the same since CK is a two-step method which uses the
normalized Laplacian for embedding, and then applies a classification algorithm on the embedding.
It is also similar to LGC [45], although the constraint in LGC includes all points with yi = 0 for
i = (�+ 1), . . . ,n and does not involve the D1/2 scaling on yi in the constraint.

20.5 Semisupervised Embedding

In this section, we show how SSC methods based on graph-based representations, as discussed
in Sections 20.3 and 20.4, can be viewed as doing semisupervised embedding. The geometric per-
spective helps in identifying relationships between existing embedding and label propagation meth-
ods, e.g., between Laplacian Eigenmaps [8] and Gaussian Fields [46]. Further, we illustrate that
it is possible to derive novel SSC methods based on existing embedding methods, including Lo-
cally Linear Embedding (LLE) [33], Local Tangent Space Alignment (LTSA) [44] and Laplacian
Eigenmaps (LE) [8]. While all such methods can be seen as a special case of the GLP formula-
tion, they differ in the details—in particular, in the choice of the postive semidefinite matrix L and
nature of constraints. Since our exposition is focussed on two clusters, the embedding will always
be on R, a one-dimensional space. For number of clusters k > 2, the embedding space may be of
dimensionality k or logk, depending on the representation used.
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20.5.1 Nonlinear Manifold Embedding

Manifold embedding methods obtain a lower dimensional representation of a given dataset such
that some suitable neighborhood structures are preserved. In this section we briefly review three
popular embedding methods and demonstrate that their semisupervised generalizations solve a vari-
ant of the GLP formulation.
Locally Linear Embedding (LLE): In LLE [32], the assumption is that each point in the high-
dimensional space can be accurately approximated by a locally linear region. In particular, the neigh-
borhood dependencies are estimated by solving minW ∑i ||xi−∑ j∈Ni

wi jx j||2, such that ∑ j∈Ni
wi j =

1, where Ni is the set of neighboring points of xi. Then W is used to reconstruct the points in a lower
dimensional space by solving:

min
f∈Rn ∑

i
|| fi−∑

j
wi j f j||2 , s.t. f ⊥ 1, || f ||2 = n . (20.55)

Letting M = (I −W )T (I−W ), which is positive semidefinite and can be viewed as an iterated
Laplace operator [8], we can rewrite the objective function as

min
f∈Rn

f T M f , s.t. f ⊥ 1 , || f ||2 = n . (20.56)

Laplacian Eigenmaps (LE): LE is based on the correspondence between the graph Laplacian and
the Laplace Beltrami operator [8]. The symmetric weights between neighboring points are typically
computed using the RBF kernel as wi j = exp(−||xi− x j||2/σ2). Then W is used to reconstruct the
points in a lower dimensional space by solving:

min
f∈Rn

1
2 ∑

i, j
wi j( fi− f j)

2 , s.t. f ⊥ D1 , f T D f = I . (20.57)

Using (20.22), the objective function is f T Lu f . Letting g = D1/2 f , with M = Ls = D−1/2LuD−1/2

we can express the objective function as

min
g

gT Mg , s.t. g⊥ D1/21 , ||g||2 = 1 . (20.58)

Local Tangent Space Alignment (LTSA): In LTSA, the tangent space at each point is approxi-
mated using local neighborhoods, and a global embedding is obtained by aligning the local tan-
gent spaces. If XN

i denotes the matrix of neighbors of xi, then it can be shown [44] that the
principal components of XN

i give an approximation to the tangent space of the embedding fi.
Let gi1, . . . ,gik be the top k principal components for XN

i . Let Gi = [e/
√

k,gi1, . . . ,gid ]
T . If Ni

are the indices of the neighbors of xi, submatrices of the alignment matrix M are computed as
M(Ni,Ni)← M(Ni,Ni)+ I−GiGT

i for i = 1, . . . ,n. Finally, using M, which is guaranteed to be
positive semidefinite, an embedding is subsequently obtained by minimizing the alignment cost:

min
f

f T M f , s.t. f ⊥ 1 , || f ||2 = n. (20.59)

We refer the reader to [44] for a detailed analysis of LTSA.

20.5.2 Semisupervised Embedding

In this section, we consider two variants of semisupervised embedding and its relationship to
graph-based SSC. The variants differ in whether they consider the constraints associated with the
corresponding unsupervised embedding problem. As discussed in Section 20.5.1, there are typically
two types of constraints: f ⊥ A1, where A= I or D1/2, and || f ||2 = c, a constant. Since the clustering
is based on sign( fi), the norm constraint does not play any role and will be ignored for our analysis.
The two variants we consider are based on whether f ⊥ A1 is enforced or not, in addition to the
constraints coming from the partially labeled data.
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20.5.2.1 Unconstrained Semisupervised Embedding

Following [43], we want to obtain an embedding f = [ f� fu]
T , where the exact embeddings of

the first � points are known and given by y�.3 The objective for semisupervised embedding is given
by

min
f

f T M f , s.t f� = y� , (20.60)

where M is a suitable positive semidefinite matrix. Since f� is fixed, the problem can be cast in terms
of block matrices as

min
fu

[
f T
� f T

u

]
[

M�� M�u

Mu� Muu

][
f�
fu

]
. (20.61)

Setting the first derivative to zero, one obtains

fu =−M−1
uu Mu�y� . (20.62)

In the context of label propagation for a 2-clustering setting, we will have yi = +1 or yi = −1
for i = 1, . . . , �. In other words, the labeled points are being embedded to their true cluster label,
and the rest will be embedded while trying to maintain the neighborhood structure. For LLE, M =
(I−W )T (I−W) and we call the corresponding label propagation algorithm LLELP. Similarly, for
LTSA, M is as discussed in Section 20.5.1, and the corresponding algorithm will be called LTSALP.
For unconstrained LE from Equation 20.57, M = Lu, and the corresponding algorithm will be called
LELP. For LELP, since M = Lu, the unnormalized Laplacian, from Equation 20.62 we have

fu = −L−1
uu Lu�y� =−(Duu−Wuu)

−1(Du�−Wu�)y�
= (Du�−Wu�)

−1Wu�y� ,

since Du� = 0 as D is a diagonal matrix. We note that the solution is exactly the same as that for GF
as in Equation 20.40 implying the equivalence of GF and LELP.

20.5.2.2 Constrained Semisupervised Embedding

In this section, we consider embedding problems when the orthogonality constraint of the form
f ⊥ A1 is enforced. In particular, we consider the following problem:

min
f

f T M f , s.t.
�

∑
i
( fi− yi)

2 ≤ ε , f ⊥ A1 , (20.63)

where A = I for LLE and LTSA, and A = D1/2 for LE. Let α and μ be the Lagrange multipliers for
the two constraints, respectively. The first order necessary conditions obtained from the Lagrangian
corresponding to (20.63) yield

f = (M+αIk)
−1(αy+μA1/2). (20.64)

Since 1T AT f = 0, a direct calculation gives the optimal Lagrange multiplier as

μ=−2α
1T AT (M+αIk)

−1y
1T AT (M+αIk)−1A1

. (20.65)

The multiplier α can also be computed by using existing results on solving quadratically constrained
quadratic programs (QCQPs) with a single quadratic constraint [14]. For LLE, M =(I−W )T (I−W)
and A = I, and we call the corresponding algorithm LLELPC. For LTSA, M is as discussed in
Section 20.5.1 and A= I, and we call the corresponding algorithm LTSALPC. For LE as in Equation
20.58, M = Lsym = I−D1/2WD1/2 and A = D1/2 and we call the corresponding algorithm LELPC.

3While the constraints can be relaxed to consider ∑�
i=1( fi− yi)

2 ≤ ε, we do not focus on the general case here.



524 Data Clustering: Algorithms and Applications

20.6 Comparative Experimental Analysis

In this section, we provide an empirical evaluation of SSC with graph-based representations.
Our experiments are divided into two parts: First, we compare seven methods on 14 benchmark
data sets in terms of their accuracy; later, we take a closer look at the performance of the label prop-
agation methods obtained from the perspective of semisupervised manifold embedding. For the first
set of experiments, the methods we consider include 6 standard methods: GF, LNP, CK, GWEM,
TIKREG, and LGC, as discussed in Section 20.4. In addition, we include LTSALP, an approach
based on semi-supervised LTSA embedding. For the second set of experiments, the methods we
consider are the 6 embedding based methods introduced in Section 20.5.
Methodology: We conducted our experiments on 14 well-known benchmark data sets. They include
the following 8 UCI data sets: Hepatitis, Cancer, Pima, Wine, Iris, Glass, USPS (1-4 only), and Let-
ter (E and F only). In addition we also ran experiments on 6 text datasets, which are all subsets of
the 20Newsgroup data set: Different100, Similar100, Same100, Different1000 and Same1000 [1].
Each dataset contains a subset of 3 newsgroups with varying degrees of difficulty for clustering.
Different100 (1000) includes alt.atheism, rec.sport.baseball, and sci.space and are, hence, easy
to cluster; Same100 (1000) includes comp.graphics, comp.os.ms-windows, comp.windows.x and
are difficult to cluster; whereas Similar100 includes talk.politics.guns, talk.politics.mideast, and
talk.politics.misc and are moderately difficult to cluster. We also used the well-known Classic-3
benchmark data set containing 3893 documents, whereby 1033 are from medical journals, 1400 are
aeronautical system papers, and 1460 are information retrieval papers. For each method and each
data set, we ran five-fold semisupervised cross-validation. In particular, the training points were cho-
sen from four folds with increasing number of labeled points, and the test error was measured on
the fifth fold. All points were used to construct the neighborhood graph. Further, for each approach
involving parameters, e.g., CK using SVMs with RBF kernel, parameter values were selected by
cross-validation. Performance is evaluated based on error rate of the true cluster label on the test
set, unless noted otherwise.

20.6.1 Experimental Results

The performance of the 7 methods is shown in Figures 20.1, 20.2 and 20.3. All results reported
are on the test set. To avoid clutter, we display the results for the top five methods based on average
test-set error in Figures 20.1 and 20.2. The performance comparison results of 7 semisupervised
learning methods on 14 datasets are shown in Tables 20.1–20.3 with different numbers of labeled
points (30, 40, and 50). We make the following observations based on the results:

• There is no dominating method across all datasets. However, there is a set of methods that
seems to be fairly consistently among the top few, and the performance of the top few meth-
ods is typically close. While across the top methods, the differences typically do not appear
significant when compared to the worst methods, the improvements do tend to be significant.
For instance, if we examine the results in Figure 20.1(e) for the USPS data set, we can see
that the error rate for the top methods is around 1.5–1.8%, while the performance for the
worst methods is between 3.0% and 7.6%. The improvements of the best methods are clearly
significant in comparison to the worst methods judging by the standard deviation in error.

• Our results also indicate that no given method is always among the best methods for each data
set. For any method, we could find at least one data set where its performance is among the
worst. It appears that the assumptions made by various approaches do not work well across
all cluster structures encountered in various data sets.
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FIGURE 20.1: Five-fold cross-validation results on UCI datasets as increasingly many points are
labeled.
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FIGURE 20.2: Five-fold cross-validation results on text datasets as increasingly many points are
labeled.
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FIGURE 20.3: Comparison of (constrained) embedding based label propagation methods:
LELP(C), LTSALP(C), and LLELP(C) on UCI datasets.
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TABLE 20.1: Semisupervised Learning Performance Comparisons with 30 Labeled Points on 14
Datasets and 6 Methods

gf mwem lnp lgc tikreg ck ltsalp
Hepatitis 21.1± 0.4 21.4± 0.7 25.8± 3.0 22.7± 1.2 20.8± 0.0 20.8± 0.0 24.3± 2.5
Cancer 11.2± 1.9 12.7± 2.5 10.6± 1.7 11.1± 2.5 10.8± 1.9 11.3± 1.3 10.3± 1.5
Wine 31.9± 1.7 32.2± 0.9 29.6± 3.5 32.4± 2.1 30.7± 2.2 30.1± 2.2 23.4± 3.0
Iris 5.5± 2.5 4.8± 4.1 6.0± 2.5 5.3± 3.8 5.7± 3.4 9.2± 1.0 5.3± 1.9

Glass 40.8± 4.0 41.4± 4.1 39.5± 4.2 41.2± 5.5 42.8± 5.5 49.6± 4.5 45.3± 4.9
Pima 31.6± 2.5 34.1± 3.3 36.0± 3.0 34.5± 2.5 33.2± 2.1 34.8± 0.2 32.1± 3.2
USPS 2.2± 0.4 13.0± 2.1 6.3± 0.9 4.9± 0.7 3.4± 1.4 1.5± 0.1 2.4± 0.4

Letter(EF) 8.3± 2.8 15.4± 2.8 8.5± 1.0 9.8± 2.7 8.3± 1.7 48.5± 0.5 7.8± 2.6
Dif100 7.3± 1.4 12.4± 1.3 13.6± 2.4 13.0± 1.2 11.5± 2.6 6.1± 0.6 12.7± 2.2
Sim100 27.0± 3.6 34.3± 5.3 32.7± 5.1 32.6± 2.5 32.5± 7.0 63.4± 2.1 41.0± 5.8
Sam100 48.8± 8.5 45.9± 4.5 47.9± 1.9 45.3± 3.6 47.0± 2.3 65.7± 2.0 51.7± 7.6
Dif1000 19.0± 13.6 23.3± 2.6 16.0± 1.9 19.7± 3.1 12.0± 1.5 65.8± 2.5 28.2± 14.6
Sam1000 54.9± 8.9 47.0± 3.4 47.7± 3.6 45.4± 4.0 46.0± 3.6 66.4± 1.4 61.0± 4.7
Classic3 9.3± 10.5 12.1± 1.7 29.2± 1.1 28.8± 0.7 5.7± 4.1 1.6± 0.1 14.7± 10.4

• TIKREG is among the most consistent methods on the text datasets. However, its performance
is not consistent on the UCI data sets.

• In spite of an issue with its formulation (see Section 20.4.5.3), LNP is found to be quite
competitive across several UCI and text datasets. Its parameter insensitivity makes it rather
easy to use.

• When CK does well, it outperforms all the other methods. However, it does not have a consis-
tent performance, which probably can be addressed by more thorough cross-validation over
its parameter choices.

• GF seems to be slow starter, not performing well for a small number of labeled points, but

TABLE 20.2: Semisupervised Learning Performance Comparisons with 40 Labeled Points on 14
Datasets and 6 Methods

gf mwem lnp lgc tikreg ck ltsalp
Hepatitis 21.4± 1.7 21.0± 1.0 23.8± 3.0 22.3± 1.8 20.9± 0.6 20.9± 0.6 25.4± 1.4
Cancer 10.1± 1.3 9.5± 0.9 9.3± 1.3 8.9± 1.0 10.6± 2.3 12.1± 2.3 8.8± 1.2
Wine 31.0± 1.6 31.4± 1.0 27.0± 3.0 31.2± 1.5 30.3± 2.4 30.1± 1.8 22.8± 2.4
Iris 2.5± 2.0 3.1± 0.5 6.4± 2.7 3.6± 1.9 4.0± 2.1 9.6± 1.4 4.4± 2.3

Glass 39.9± 1.9 38.7± 3.6 39.1± 4.0 40.1± 4.1 42.4± 2.1 44.4± 3.7 41.3± 3.8
Pima 31.3± 1.6 32.0± 2.7 35.0± 1.4 33.2± 2.5 33.7± 2.9 34.8± 0.2 31.1± 3.0
USPS 1.9± 0.3 9.0± 2.1 5.4± 1.5 4.0± 0.8 3.2± 1.8 1.5± 0.1 2.1± 0.7

Letter(EF) 8.0± 3.5 12.7± 2.6 7.7± 2.4 8.6± 2.1 7.9± 1.5 48.8± 0.6 7.8± 3.3

Dif100 6.8± 1.1 11.3± 1.6 13.5± 1.7 13.4± 1.8 11.4± 1.4 6.5± 0.3 11.8± 2.3
Sim100 24.5± 3.9 31.6± 4.5 29.8± 3.7 31.7± 3.2 25.8± 2.3 60.2± 3.0 37.8± 6.6
Sam100 41.6± 6.0 40.3± 6.3 43.7± 2.8 40.5± 4.5 44.0± 4.6 66.0± 2.9 44.3± 5.4
Dif1000 13.0± 10.2 20.8± 1.8 15.2± 1.4 17.5± 1.3 11.1± 3.2 65.7± 2.6 19.6± 8.1
Sam1000 48.7± 10.9 45.0± 3.0 44.6± 4.6 42.4± 4.0 42.5± 4.1 65.9± 1.0 55.4± 9.0
Classic3 3.2± 2.5 9.2± 0.5 28.5± 0.2 28.5± 0.3 4.1± 1.8 1.6± 0.1 4.7± 2.1
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TABLE 20.3: Semisupervised Learning Performance Comparisons with 50 Labeled Points on 14
Datasets and 6 Methods

gf mwem lnp lgc tikreg ck ltsalp
Hepatitis 22.1± 1.0 21.7± 1.2 25.0± 2.2 22.1± 1.6 21.7± 1.2 21.7± 1.2 24.8± 2.1
Cancer 9.0± 1.7 9.0± 0.7 9.4± 1.6 8.9± 0.7 11.3± 2.7 10.6± 1.8 8.4± 1.0
Wine 29.5± 2.4 29.1± 1.4 25.9± 5.8 30.2± 2.6 29.7± 3.3 28.0± 1.9 22.0± 2.4
Iris 3.2± 1.1 3.8± 0.4 6.6± 2.9 4.4± 1.1 4.2± 1.3 9.2± 2.3 3.2± 1.1

Glass 41.1± 1.9 40.4± 2.4 39.1± 1.8 39.9± 2.3 42.0± 2.8 42.9± 2.8 42.1± 4.4
Pima 31.1± 1.6 31.5± 2.2 35.3± 2.4 32.8± 1.9 33.7± 2.7 34.8± 0.3 30.7± 0.8
USPS 1.8± 0.2 7.6± 1.6 4.6± 1.2 3.6± 0.4 3.0± 1.4 1.5± 0.1 1.8± 0.4

Letter(EF) 7.4± 2.7 10.8± 3.3 6.5± 1.9 7.2± 1.8 6.2± 2.8 48.8± 0.6 7.7± 3.1

Dif100 6.9± 1.1 9.6± 1.6 10.7± 2.3 10.0± 1.2 7.5± 1.9 6.7± 1.0 10.2± 1.3
Sim100 21.4± 2.1 28.5± 3.1 27.3± 2.5 28.7± 1.3 22.4± 2.2 62.6± 3.0 30.6± 2.6
Sam100 35.6± 3.6 36.0± 4.2 40.0± 2.7 37.4± 3.9 41.1± 3.7 65.4± 2.0 39.6± 5.4
Dif1000 9.1± 7.7 18.9± 1.8 14.7± 1.2 16.2± 1.1 10.2± 2.8 63.5± 2.5 18.0± 6.6
Sam1000 43.0± 9.9 43.0± 2.1 42.2± 2.9 41.1± 3.1 39.4± 3.6 65.3± 1.4 55.6± 5.8
Classic3 2.2± 1.1 7.6± 1.5 28.5± 0.1 28.5± 0.4 3.4± 1.0 1.6± 0.1 3.4± 1.2

improving significantly as the number of labeled points increases; this can particularly be seen
on the text data sets. As more labeled points are considered, GF becomes the best performing
method on several text data sets. Generally, GF is among the consistently well-performing
methods.

• GWEM does not demonstrate a consistent performance and seems quite sensitive to the pre-
defined number of steps in the random walk.

• The semisupervised embedding method LTSALP is among the top performing methods in
most of the UCI datasets. However, it performs poorly on the text datasets possibly indicating
that the idea of aligning the tangent spaces may have to be suitably modified for sparse high-
dimensional datasets.

20.6.2 Semisupervised Embedding Methods

We now compare the six label propagation methods based on semisupervised manifold em-
bedding (see Section 20.5). In particular we examine both variants of Laplacian Eigenmaps-based
Label Propagation (LELP, LELPC), Locally Linear Embedding-based Label Propagation (LLELP,
LLELPC), and Local Tangent Space Alignment-based Label Propagation (LTSALP, LTSALPC).
We compare the methods on the UCI datasets and show representative plots in Figure 20.3.4 Based
on our experiments, we observe that LELP and LTSALP performed well most consistently, while
LLELP did well only on specific data sets such as Wine. The performance of LLELP seems to be
more sensitive to the geometry of a data set. The effect of the orthogonality constraint on these
methods can be understood when comparing the results for Cancer and Hepatitis in Figure 20.3.
While the performance is clearly affected by the constraints, it does not necessarily result in im-
proved performance. For example, the constraints lead to better performance in Hepatitis but worse
performance in Cancer.

4We report results on 2-clustering problems in Figure 20.3. Since Wine is a 3-cluster dataset, we constructed a 2-cluster
subset Wine(2) for these experiments.
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FIGURE 20.4: Unsupervised and unconstrained semisupervised embedding on Wine. The predic-
tion performance (top) is better if the unsupervised embedding (bottom) keeps the clusters separate.

For the embedding methods, the quality of semisupervised label propagation seems to depend
on how well the unsupervised embedding preserves the cluster structure. Figure 20.4 illustrates the
difference between unsupervised embedding and semisupervised embedding on Wine. Note that the
unsupervised embedding obtained from LLE and LTSA maintains the cluster separation better than
LE for this particular dataset. When semisupervision is added, the embedding obtained from all
the methods changes suitably. The cluster separation is most clear in LLELP followed by LTSALP
and LELP, a fact reflected in the test-set error rates in Figure 20.5. In general, SSC in graph-based
representations with a semisupervised embedding method works well if the geometric structure of
the cluster labels is well aligned with the biases of the embedding method.

20.7 Conclusions

The literature on semisupervised clustering can be broadly divided into two families, based on
whether one considers feature-based or graph-based representation of the input data. The methods
for feature-based representations usually generalize corresponding centroid-based clustering meth-
ods, such as k-means and variants, in order to incorporate constraints or penalty functions associated
with the semisupervision. Such methods also consider metric learning under semisupervision and
can be viewed as inference and parameter estimation in certain probabilistic graphical models. For
graph-based representations, semisupervised clustering can be posed as a suitable semisupervised
graph-cut problem. We developed a unified perspective to a variety of seemingly disparate methods
for graph-based semisupervised learning and illustrate that semisupervised graph-cut problems can
be viewed as a special case of such problems, which are often solved using label propagation. Inter-
estingly, semisupervised nonlinear embedding methods also belong to the same broad family, and
hence can be used for semisupervised clustering. Our empirical evaluation reveals that while there
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FIGURE 20.5: Comparison of embedding-based label propagation methods on Wine (correspond-
ing to Figure 20.4).

is no clear winner in terms of performance, certain methods seem consistent across several datasets
including some of the semisupervised embedding-based methods.
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21.1 Introduction

Clustering is one of the most fundamental and important techniques in knowledge discovery and
is used in a wide variety of fields, ranging from biomedicine and information retrieval to financial
analysis and Web mining. Clustering analysis provides a way to automatically identify patterns and
relationships in complex data, to form hypotheses about their structure, and to make predictions for
subclasses of objects.
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There exists a large variety of knowledge discovery workflows that rely on clustering. In its
basic form, clustering analysis is used to explore a complex dataset, by automatically identifying
object groupings. Given an input dataset for analysis, a clustering algorithm, such as k-means, can
be executed, producing a clustering as output. This output clustering consists of a set of clusters
which partition the objects in the dataset.

It is well known that the process of clustering is subjective and the clustering that is output is
strongly dependent on the nature of the specific clustering algorithm chosen. Indeed, vastly different
outputs may be possible if one changes the clustering algorithm or varies the parameters input to a
fixed algorithm. Alternative outputs are also possible according to different preprocessing methods
for the input, such as when applying a feature selection step.

This inherent subjectiveness and instability of clustering is widely recognized and has provided
impetus to the emerging area of multiple clustering analysis. The philosophy here is that making
the assumption that only a single clustering exists for a dataset is too strict. Instead, one should
expect that multiple alternative clusterings are reasonable for a dataset. Each one of these alterna-
tives corresponds to a different grouping of the objects and reflects a different perspective, view, or
hypothesis about the nature of the data.

Why might multiple clusterings be reasonable for the same dataset? First, the data being ana-
lyzed could be very complex, containing many features, which may be of different types. Different
combinations of these features (or subspaces) may provide natural alternative perspectives of the
data. The data might also consist of many instances, meaning a diversity of possible subpopula-
tions, resulting in many possible views. Second, the data could be temporal in nature and evolving
over time. As the data evolves, concept drift can occur, meaning that different groupings of the data
become stronger or weaker. Third, the data may be spatial in nature, meaning that the different per-
spectives have a spatial origin. Fourth, the data objects may be diverse, due to datasets being merged
or information having been integrated from multiple sources (e.g., a large clinical cohort study that
pools data from multiple sites). Again, this may mean that multiple perspectives of the data are
necessary and natural for knowledge discovery, rather than relying on just a single perspective.

Given that multiple clusterings or views of the data are possible, it is therefore also important to
consider why they may be important for a user. First, clustering analysis is frequently exploratory
in nature. A user often does not know what behavior he is looking for. What he needs is to navigate
through and assess multiple alternatives, so different options can be evaluated. Conversely, the user
may have a strong hypothesis (clustering) in mind and desire to verify that no other strong hypothe-
ses are supported by the data. Second, users themselves can differ widely in their requirements and
expectations. It is therefore unlikely that a single clustering will be appropriate for all users. Third,
a common scenario in data mining studies is that the investigation focuses on a new or novel clus-
tering algorithm and it is necessary to test the flexibility and limits of this proposed algorithm, to
assess how many alternatives it is able to identify.

Due to these reasons, the area of multiple clustering analysis has been attracting considerable
attention. Indeed, several recent workshops have been devoted to the topic [29, 30, 31, 37, 25]. The
literature in the area is also growing fast, with a number of algorithms proposed, which particularly
focus on the problem of generating alternative clusterings, that are each of high quality and also
dissimilar to one another [15, 16, 12, 5, 27, 7, 2, 3, 9, 8, 28, 32, 22, 11, 10].

The focus of this chapter is to review algorithms for generating alternative clusterings, which is
one of the prime tasks in the field of multiple clustering analysis. We also highlight connections to
the areas of multiview clustering and subspace clustering, which are distinct, yet closely related. In
multiview clustering, the aim is to learn a single clustering using multiple sources (representations)
of the data [4, 20, 35, 6, 23, 17]. These sources usually contain the same set of objects, but with
different features. In subspace clustering, the aim is to discover different subspaces, where each
subspace contains a good cluster (as opposed to clustering). (See Chapter 9 for more on subspace
clustering methods).

An outline of the rest of this chapter is as follows. In Section 21.2, we present necessary ter-
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minology and definitions. In Section 21.3.1, we present a taxonomy of alternative clustering tech-
niques and discuss different dimensions of evaluation. In Sections 21.3.2, 21.3.3, 21.3.4 and 21.3.5,
we review specific approaches for alternative clustering. In Section 21.4, we compare the areas of
multiview clustering and subspace clustering to alternative clustering and identify similarities and
dissimilarities. In Sections 21.5 and 21.6 we outline future directions and conclude.

21.2 Technical Preliminaries

Let D be a dataset containing N objects o1, . . . ,oN and using n features F1, . . . ,Fn. A (hard)
clustering1 C is a partition of the objects in D into k clusters {c1, . . . ,ck}, where each cluster is a set
of objects and ci ∩ c j = /0. Let the universe of all clusterings of D be denoted as CD . We will also
use the notation Ci to refer to cluster ci of clustering C.

The quality of a clustering may be measured using a function Qual : CD→ [0,1] where higher
values indicate higher quality. A large range of quality measures have been defined, with some
well-known examples being the Dunn Index [13], the Davies-Bouldin Index [12], and the Silhouette
Width [34].

Let C1 = {c1, . . . ,ck} and C2 = {c′1, . . . ,c′k′ } be two clusterings of D. The similarity between
C1 and C2 may be measured using a function Sim : CD×CD→ [0,1] where higher values indicate
higher similarity. For measuring similarity, there are a number of possible measures, including the
Rand Index [33], Adjusted Rand Index [21], Jaccard Index [18], Normalized Mutual Information
[24], and Adjusted Mutual Information [36]. Measurement of similarity between clusterings is im-
portant, since it provides insight for the user into the relationship between them. When managing
multiple clusterings, assessment of similarity may allow removal of redundant clusterings, selec-
tion of interesting clusterings, or increased understanding about clustering evolution. It is also a key
step when exploring the convergence properties of a clustering algorithm or assessing its output
compared to an expert generated clustering.

Given the large range of measures that can be “plugged in” for measuring quality and similarity,
appropriate choices are often be made in an application dependent way. We will shortly describe the
issues involved in generating alternative clusterings and the different dimensions along which the
existing algorithms may be compared. A general description of the task is as follows.

Definition 21.2.1 Generalized Alternative Clustering: Given a (possibly empty) collection of clus-
terings K = {C1, . . . ,Cm} provided as background knowledge (either K = /0, or K 
= /0 and m ≥ 1),
generate j alternative clustering(s) O = {Cm+1, . . . ,Cm+ j}, such that i) ∑m+ j

i=m+1 Qual(Ci) is maxi-
mized and ∑i, j∈[1,m+ j] sim(Ci,Cj) is minimized.

The task here corresponds to generating a set of new (alternative) clusterings, where each in-
dividually is of high quality and also the pairwise similarity between the clusterings is low (the
clusterings are distinctive). Three common cases are

• |K|= 1 and |O|= 1: singular alternative clustering

• K = 0 and |O|= 2: clusterings in O are generated in parallel: simultaneous alternative clus-
tering

• |K|> 1 and |O|= 1: sequential alternative clustering

1It is also possible to use fuzzy clusterings as the basis for development, but the literature on alternative fuzzy clustering
is less mature and we concentrate on the hard case.
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In the next section, we consider the ways in which the behaviour of alternative clustering algo-
rithms can be explained and specified.

21.3 Multiple Clustering Analysis Using Alternative Clusterings

In this section, we first review the different dimensions that may be used for assessing the be-
haviour of alternative clustering algorithms. We then describe in detail the different approaches,
broken down according to style of technique.

21.3.1 Alternative Clustering Algorithms: A Taxonomy

Alternative clustering algorithms (ACAs) may be characterized in a range of different ways. We
review the different options in turn.

Format of the input: The input to an ACA consists of the dataset to be clustered, which may
be represented as feature valued instances or by a similarity matrix for all pairs of objects. A tech-
nique might additionally require features to be either continuous or discrete. In addition to these,
the input may optionally include background knowledge, which is a single existing clustering or a
collection of two or more existing clusterings that are already available. It is not specified where
the background knowledge comes from; it might come from the application of a standard clustering
algorithm or from user insights.

Format of the output: The output can consist of a single alternative clustering or two or more
alternative clusterings. Some algorithms may place constraints on the number of clusters in each
clustering (e.g., they must be equal), or may require that the number of clusters in the output matches
with the number of clusters in the clustering that is input as background knowledge. Also, the output
may consist of either an entire (alternative) clustering or a partial alternative clustering. The latter
is useful if the user only wishes to change some characteristics (clusters) of the clustering(s) being
used as background knowledge, while keeping other characteristics the same.

Style of output generation: If more than one alternative clustering can be output, is each alter-
native generated one at a time in a greedy fashion (sequential generation) or are all alternatives
generated in parallel (simultaneous generation)? The latter may produce a more globally optimal
solution. However, the former may be more realistic when one or more existing clusterings exist. It
might also identify some strong clusterings which would be missed by a simultaneous generation
technique.

Style of Technique: This describes the overall process of alternative clustering generation. One
class of techniques is unguided generation, where no background knowledge is used for generation
of alternatives. The other class of techniques is guided generation, where background knowledge
is used as input and explicit effort is made to ensure dissimilarity between new clusterings and
existing ones specified in the background knowledge. Guided generation techniques can be fur-
ther broken down, according to whether the technique (i) relies on the use of inferred constraints to
generate alternatives (constraint based), (ii) operates by generating feature spaces which are orthog-
onal to the existing feature space and to each other (orthogonal feature space transformation—such
a transformation means the feature space of the alternative clustering(s) is different from that of
the clustering(s) in the background knowledge), or (iii) uses an objective function based on infor-
mation theoretic criteria, in order to optimize quality and dissimilarity characteristics (information
theoretic).
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Style of clustering algorithm: Is the method tied to a specific technique (e.g., k-means, hierar-
chical, or expectation maximization)? Or can any clustering algorithm be plugged in? The latter is
typically possible for the orthogonal feature space transformation style, where once an orthogonal
feature space is discovered, any clustering algorithm can be used to generate the alternative. This
increases flexibility and means an appropriate clustering algorithm can be chosen according to the
dataset and desired cluster characteristics.

Parameter requirements: Apart from the number of clusterings output and the number of clusters
in each, are there any other parameters that must be specified to use the technique? Many techniques
rely on the use of a regularization/tradeoff parameter, which is used to tune the relative weightings
of quality and dissimilarity criteria in the objective function.

We now proceed with a description of the different approaches, grouped according to the style
of the technique.

21.3.2 Unguided Generation

Unguided generation techniques do not employ any background knowledge for generating the
alternative clustering(s). There are a variety of approaches in this category, ranging from the simple
to the sophisticated.

21.3.2.1 Naive

The most basic technique is the naive method. Using this technique, alternative clusterings are
obtained by (i) running a clustering algorithm multiple times, using different parameters each time,
(ii) running different clustering algorithms, or (iii) a combination of (i) and (ii). The advantage of
such an approach is that it is straightforward to implement and any clustering algorithm(s) may be
used The principal disadvantage is that its behavior can be quite random and there is a risk of gen-
erating alternative clusterings that are very similar to one another. Background knowledge is also
not taken into account. Due to the issue of redundancy, postprocessing is required to filter out clus-
terings having a high amount of overlap. Naive generation is a very common technique employed
by users who are not familiar with alternative clustering. It is also often used in conjunction with
consensus clustering, where the alternatives are combined into a single clustering using a voting
strategy.

21.3.2.2 Meta Clustering

An extension of the naive technique is the approach of meta clustering [5]. Similar to naive,
meta clustering does not make use of any background knowledge to generate alternatives. Instead,
it adopts a more principled approach to achieve dissimilarity. In particular, k-means is repeatedly
used with (i) random choices of initial centroids and (ii) different attribute weightings in the distance
functions, according to a Zipf distribution. After generation of alternative clusterings in this fashion,
meta clustering then treats the output clusterings as objects themselves and clusters them using a
cluster difference distance function. This yields a meta level perspective for the clusterings, which
can be explored by the user. While the generation strategy here is more sophisticated than the naive
one, it still does not explicitly ensure that the output clusterings will be dissimilar, but only that they
will have a reasonable chance to be dissimilar. Also, the random use of centroids in k-means again
may result in duplicates. Furthermore, the use of differently weighted distance functions, while it
increases the chance of dissimilarity between alternatives, may have an impact on the quality of the
clusterings, since some weightings may produce unnatural output clusterings. For these reasons, as
with the naive technique, the results are likely to need postprocessing to reduce redundancy. Again
though, as does naive, meta clustering has the advantage of being simple and clean to implement.
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21.3.2.3 Eigenvectors of the Laplacian Matrix

Dasgupta and Ng [10] show that alternative clusterings can be found by looking at different
eigenvectors of the Laplacian matrix. The input is a similarity matrix S and no background knowl-
edge is used. There is the strong requirement that each alternative clustering output is constrained to
have two clusters. The approach is a spectral one, where the objects are represented as a graph with
edges between nodes indicating pairwise similarities, and a partition is generated using a normal-
ized cut criterion. Let Di,i = ∑ j Si, j and the Laplacian matrix L is L = D−1/2(D−S)D−1/2. The first
alternative clustering is found by applying 2-means to the objects represented by e2, the eigenvector
corresponding to the second smallest eigenvalue of L. The mth alternative clustering is produced
by applying 2-means to the objects represented by the (m+1)th eigenvector of L. The dissimilarity
objective is achieved by the orthogonality of the different eigenvectors. Quality is achieved by the
2-means algorithm, but the second and later alternatives will be “suboptimal,” compared to the first,
since the optimality decreases as m increases. The approach has the advantage of being simple to
implement, but the limitation of two clusters in each clustering is restrictive.

21.3.2.4 Decorrelated k-Means and Convolutional EM

The approach by Jain et al [22] is a simultaneous one for generating two clusterings C1 and C2,
without using any background knowledge. Supposing each of the output clusterings has k1 and k2

clusters, respectively; then, they are generated in a decorrelated fashion using k-means style. The
objective function has the form:

k1

∑
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∑
x∈Ci

1
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where λ is a parameter used for regularization, μi and ν j are the representative vectors of clusters
Ci

1 and C j
2, respectively, and αi and β j are the mean vectors of Ci

1 and C j
2, respectively. The initial

two terms correspond to k-means-type error terms, while the second two terms ensure dissimilar-
ity (decorrelation) between the two clusterings. The objective function can be extended to generate
more than 2 clusterings, by including an extra k-means-type error term for each new clustering and
including a pairwise dissimilarity term for each possible pair of clusterings. An iterative approach
is used to minimize the objective function. The regularization parameter λ is set empirically, and it
is also possible to extend the objective to a kernelized version to handle nonlinearities. A disadvan-
tage is that the representative vectors in the decorrelated k-means algorithm do not have a natural
interpretation for the user.

In a companion proposal to decorrelated k-means, the work in [22] also outlines a convolutional
expectation maximization (EM) algorithm, where it is assumed that the data can be modeled as the
sum of two mixtures of distributions, each of which is associated with a clustering. One clustering
has k1 clusters; the other has k2 clusters. Then, since the distribution of the sum of two independent
random variables is the convolution of the distributions, the data is modeled as being sampled from
a convolution of two mixtures. This then leads to the problem of learning a convolution of mixture
distributions, using an EM method to determine the distributions’ parameters. The technique is again
simultaneous and can be kernelized.

21.3.2.5 CAMI

The CAMI [8] algorithm is designed to discover two alternative clusterings at the same time
using the original data space. Formulating the clustering problem under mixture models, CAMI
optimizes a dual-objective function in which the log-likelihood (accounting for clustering quality)
is maximized, while the mutual information between two mixture models (accounting for the dis-
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tinction between two clusterings) is minimized. The objective function of CAMI can be written
as

L̄(Θ,D) = L(Θ1;D)+L(Θ2;D)−η∑
i, j

p(Ci
1,C

j
2) log

p(Ci
1,C

j
2)

p(Ci
1)p(C j

2)

The first two terms correspond to the likelihood of each of the two clusterings that will be
simultaneously discovered and Θ1 and Θ2 are their parameters. The third term corresponds to the
dissimilarity between the clusterings C1 and C2 as measured by mutual information. The η is a
regularization parameter used to trade off dissimilarity and quality (and which can be specified by
the user). Using Gaussian mixture models, an EM approach can be used to optimize the objective
function.

21.3.3 Guided Generation with Constraints

The next class of techniques uses constraints to guide the generation of one or more alternative
clusterings. The type of constraints and the way they are used distinguishes each of the methods.

21.3.3.1 COALA

The COALA method takes as input a similarity matrix and a single existing clustering as back-
ground knowledge. It uses hierarchical algorithm. Using the existing clustering, a set of “cannot-
link” constraints is generated, one for each pair of objects in the same cluster. Intuitively, it is less
desirable for objects in these pairs to again be together in the same cluster of the alternative cluster-
ing. A hierarchical clustering approach is then used. At each iteration, COALA finds two candidate
pairs of clusters for a possible merge, one denoted as (q1,q2), called a qualitative pair, and the
other denoted as (o1,o2), called a dissimilar pair. The qualitative pair is the one with the minimum
distance over all the pairs of clusters (ensuring the highest quality clusters when merged). The dis-
similar pair has the minimum distance over all the pairs of clusters that also satisfies the cannot-link
constraints (these pairs may be the same). COALA will select just one of these pairs to merge. Given
a tradeoff factor parameter ω, if d(q1,q2)

d(o1,o2)
≥ ω, then the pair (o1,o2) is merged. Otherwise, the pair

(q1,q2) is merged. By varying the value of ω, different behaviours can be achieved.
COALA is a simple and intuitive technique and has been used as a baseline method for com-

parison in a range of papers. A limitation of COALA is that it is specifically tied to a hierarchical
clustering algorithm. It also was not formulated for the case of generating multiple alternative clus-
terings. However, it is easy to conceive generalizations in which multiple clusterings are used as
background knowledge, yielding a larger set of cannot-link constraints for generating the alterna-
tive clustering.

21.3.3.2 Constrained Optimization Approach

The approach of Qi and Davidson in [32] uses constraints in a different way. It takes the original
dataset X = {x1, . . . ,xn} and transforms it to a new dataset Y = {y1, . . . ,yn}, where Y = DX and
D is a transformation matrix representing a distance metric. Any clustering algorithm can then be
applied to the new dataset to generate an alternative to the original clustering.

The objective function is formulated as a constrained optimization task

min
B#0

DKL(py(y)||px(x)) s.t.
1
n

n

∑
i=1

∑
j=1,xi /∈Cj

||(xi−μj)||aB ≤ β

where B = DT D, ||.||B is the Mahalanobis distance using matrix B, and B# 0 signifies that B is
required to be positive semidefinite.
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The original dataset X follows probability density function px(x), and dataset Y follows proba-
bility density function py(y). DKL signifies the KL divergence between two distributions and a ≥ 1
is a tradeoff parameter, with larger values ensuring higher dissimilarity of the alternative clustering.

The first part of the objective aims to ensure that the transformed data preserves the characteris-
tics of the original data (with the KL distance being zero when they are identical). The second part
of the objective ensures dissimilarity and discourages the original clusters being found by requiring
each object in the new data space to be closer to the cluster centers of the cluster of which it was
not originally part. To achieve a closed form solution to the objective function, a mixture model of
multivariate Gaussian distributions can be assumed, having the same covariance matrix.

Some advantages of this approach are that (i) any clustering algorithm may be used to generate
the alternative clustering, once the new dataset is obtained, and (ii) the approach extends naturally
for discovering a partial alternative clustering. Users may specify properties of the original cluster-
ing they wish to keep (i.e., some original clusters or groups of objects should remain the same) and
then solve the objective function with the intention of finding only some alternative clusters to add
to the desired original clusters. A limitation of the approach is that it is somewhat unclear what kind
of properties of the original dataset X get preserved in the new dataset Y , due to the generality of
the KL-distance function.

21.3.3.3 MAXIMUS

Work by Bae, Bailey and Dong in [3] describes an algorithm known as MAXIMUS for discover-
ing multiple alternative clusterings in a sequential manner. The MAXIMUS algorithm calculates the
maximum dissimilarity between any currently available clusterings and a potential target alternative
solution, by forming an integer programming model. The objective of this integer programming
model is to maximize the distance between the density profiles of the known clusterings, versus the
unknown target alternative clustering. It then uses the output of the model to generate an alternative
clustering.

MAXIMUS is based on the use of a clustering similarity function known as ADCO, which can
compare clusterings according to their spatial characteristics. At a high level, the ADCO measure
constructs a spatial histogram for each cluster and represents a clustering as a vector containing the
spatial histogram counts for the clusters. The two clusterings can then be compared using vector
operations. Intuitively, the output of ADCO is a containment judgment between a clustering C1 and
a clustering C2, expressed as “How much of clustering C2 is contained in clustering C1?” or “What
percentage of clustering C2 is contained in clustering C1?”

Using the ADCO measure, one may generate a spatial template to ensure that a single alternative
clustering has maximal (average) dissimilarity from the input background clusterings. This template
describes how many objects must be present in bins within one-dimensional projections of the
feature space. Using the template, a constrained k-means algorithm is used to derive a clustering for
each bin. Next, consensus clustering is then used to combine the clusterings from all the bins into
a single clustering. Thus, the quality of the alternative clustering is achieved by the use of k-means
and consensus clustering. The dissimilarity objective is achieved by using the integer programming
model and the ADCO measure to obtain a spatial template which can be expected to have very high
dissimilarity from the background knowledge clusterings.

In order to use MAXIMUS, it is necessary to specify the binning strategy for representing the
density profile (10 bins equidensity is recommended as a default). Unlike some other algorithms,
MAXIMUS does not require the user to specify a regularization parameter to trade off between the
quality and dissimilarity objectives.



Alternative Clustering Analysis: A Review 543

21.3.4 Orthogonal Transformation Approaches

Our next class of approaches consider approach the task of alternative clustering from a feature
space perspective. Using an existing clustering as background knowledge, this style of approach
constructs a new feature space which is “orthogonal” to the data space that is characterised by
the existing clustering. Once this orthogonal feature space is generated, any clustering algorithm
can be used in this space to generate an alternative clustering. Thus, the objectives of quality and
dissimilarity are decoupled, with the former being tied to the use of the chosen clustering algorithm
and the latter being tied to the characteristics of the orthogonal space that gets generated. Overall,
these approaches have an appealing mathematical formulation based on linear algebra. They are
also relatively efficient. A limitation is that the orthogonality requirement may be too strict for some
datasets and it is not always clear how it trades off against the quality of the clustering.

21.3.4.1 Orthogonal Views

Work by Cui et al in [7] presents two approaches that can generate multiple alternative cluster-
ings, in a sequential manner. Each alternative clustering is determined by subsets of features of the
data set, which are best described by the clustering. Given a clustering C1, a subset of features that
are well represented in C1 is found and then another set of features, which are orthogonal to the first
subset, is found. Their first approach carries out a transformation as follows: Each data object xi

from cluster j is projected onto its cluster center μj and then a residue is found by projection onto
an orthogonal subspace:

xnew
i = (I− μjμT

j

μT
j μj

)xi

One then clusters the data in this orthogonal subspace to obtain an alternative clustering. The method
may be executed iteratively to generate multiple alternative clusterings. A version where the input
is a soft (fuzzy) clustering is also outlined.

In the second approach, a feature subspace F2 that is a good representation for the clustering
C1 is first found using principal component analysis on the mean vectors of C1. The data X is then
projected to a subspace that is orthogonal to F2, and a clustering algorithm is applied to the new data
Xnew to generate an alternative clustering C2. Specifically,

Xnew = ((I−F2(F
T
2 F2)

−1FT
2 )X

Again, the method can be applied iteratively to generate further alternative clusterings.

21.3.4.2 ADFT

Work By Davidson and Qi [11] describes the ADFT approach to finding an alternative clustering,
using a set of instance level constraints. This approach is also a transformation approach like that of
[7]. However, instead of characterizing the background knowledge clustering C1 according to mean
vectors or a feature subset, it is characterized using instance must-link and cannot-link constraints
and then a distance function DC1 is learned using these constraints. This distance function can be
decomposed using singular value decomposition into DC1 = HSA, where H is the hanger matrix, S
is the stretcher matrix, and A is aligner matrix.

Once the characteristic distance function DC1 has been learned, an alternative distance function
can be computed that is equal to HS−1A. This alternative distance function is then employed to
generate a new dataset Xnew = (HS−1A)X . The alternative clustering is then found by applying any
clustering algorithm on Xnew.

This method has an advantage over the approach of [7], since it can be applied in situations
where the dimensionality of the dataset is smaller than the number of clusters (as is common for
spatial data).
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21.3.5 Information Theoretic

Another approach to the generation of alternative clusterings is based on the use of objective
functions using information theoretic principles. Such approaches are mathematically attractive and
incorporate the use of mutual (or similar) information to measure the strength of correlations be-
tween clustering. Several algorithms fall into this category, beginning with the approach of Gondek
and Hofmann [16], which was the first (to our knowledge) alternative clustering algorithm to be
proposed.

21.3.5.1 Conditional Information Bottleneck (CIB)

The conditional information bottleneck (CIB) approach for alternative clustering is described
in [15, 16]. This algorithm takes as input an existing clustering C1 as background knowledge and
sequentially generates a single alternative clustering C2 by optimizing the objective function

max
C2

(I(C2;F |C1) − λ1I(C2;X) + λ2I(C2;F))

where F is the features, X is the objects, and the existing clustering is C1. The term I(C2;F |C1) cor-
responds to the mutual information between the new alternative clustering being discovered and the
features, given the predefined clustering. The term I(C2;X) corresponds to the mutual information
between the desired alternative clustering and the objects (this is desired to be small, to avoid being
overly confident about the groupings), and I(C2;F) corresponds to the mutual information between
the desired alternative clustering and the features (we want this to be high). The symbols λ1 > 0
and λ2 > 0 are regularization parameters, used to trade off the different components of the objective
function. The approach of [16] describes an alternating optimization scheme with deterministic an-
nealing, which can be used for generating C2 with this objective function. In practice, this style of
approach has been found to behave particularly strongly for document datasets.

21.3.5.2 Conditional Ensemble Clustering

The CIB approach of [15, 16] was further extended in [14], which introduced the CondEns
(Conditional Ensemble) alternative clustering algorithm.

CondEns operates in three stages. (1) Given the clustering C1 = {c1, . . . ,ck} as background
knowledge, for each cluster ci, a local clustering is generated using any clustering algorithm. This
yields k local clusterings. (2) Each of the k local clusterings is extended into a global clustering,
by assigning instances not already part of a local clustering, to one of its clusters. (3) The k global
clusterings are then combined using a consensus technique based on the conditional information
bottleneck, to yield a single alternative clustering.

As with the approach of [16], CondEns also performs well for text datasets. A limitation of
CondEns is its guarantees about the dissimilarity of the alternative clustering are somewhat unclear,
since the clusters in the original clustering c1 may be quite similar among themselves. This means
that the alternative clustering may in turn be similar to the background knowledge clustering.

21.3.5.3 NACI

The NACI algorithm was proposed by Dang and Bailey in [9] and targets scenarios where the
borders between clusters in the alternative clustering may not be linearly separable.

At a high level, its objective function can be expressed as finding an alternative clustering C2,
given a clustering C1 as background knowledge, according to

C2 = argmax
C2

{I(C2;X)−ηI(C1;C2)}

where
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where η is a regularization parameter, p(·, ·) is the probability density, and the mutual information
I(C1;C2) is in fact a quadratic form of the mutual information, which has the advantage of being
amenable to density estimation using a Parzen window technique with Gaussian Kernel. This ob-
jective can then be used as a component within a hierarchical clustering framework to generate an
alternative clustering. To use NACI, choices must be made for both the regularization parameter and
the kernel parameter.

Another approach in the same spirit as NACI is that of minCEntropy [27], which instead of using
a hierarchical algorithm with the quadratic mutual information, uses a k-means style algorithm with
quadratic mutual information. The style is again sequential and requires specification of a kernel
width parameter and a tradeoff parameter.

21.3.5.4 mSC

The final method we mention in this section is the mSC alternative clustering approach out-
lined in [28]. This is a spectral approach which can simultaneously generate multiple alternative
clusterings.

Rather than being based on mutual information, it uses the Hilbert-Schmidt Independence Cri-
terion (HSIC) to assess the correlation between clusterings. As with mutual information, the HSIC
is also able to recognize nonlinear dependencies. Specifically, the mSC technique embeds the HSIC
measure within a spectral clustering framework. The objective is a dual function, where at each
iteration, one term is fixed and the other term is optimized. The user is able to specify the number
of alternative clusterings that are desired and the number of clusters in each.

21.4 Connections to Multiview Clustering and Subspace Clustering

We have thus far reviewed a range of techniques that can be used for generating alternative clus-
terings, which is a core component for multiple clustering analysis. We now mention the connections
that exist between alternative clustering analysis and two other directions: multiview clustering and
subspace clustering.

Multiview clustering is also concerned with multiple clusterings, but from a different angle.
In multiview clustering, one is provided with multiple sources or representations of data (multiple
views) and wishes to learn a single clustering which is both consistent with and a good reflection
of the multiple views. A prototypical example is Web pages, which may be modeled using fea-
tures which describe the frequencies of words occurring in the page (View 1), or modeled using
features which describe the links into the page (View 2), or modeled using features which describe
the anchor text in the links going out from the page (View 3). It has been found that using the
information in all views simultaneously, one can generate a better quality clustering than using
only a single view obtained by merging the feature spaces. A particular benefit of multiview clus-
tering is that using multiple views to produce a clustering can reduce the effect of noise within
individual views. If one were to use a single view to derive a clustering, the presence of noise
might corrupt the clusters and make the detection of cluster structure more difficult. Using multiple
views to cluster, however, lessens the likelihood of noise within a view being dominant and in-
stead emphasizes the commonalities between views and their contribution toward the overall cluster
structure.
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Broadly speaking, there are two kinds of approaches for multiview clustering [23]. In the first
approach (centralized), the multiple views are used in parallel to cluster the dataset [4, 38, 6]. In
the second approach (distributed), a clustering is generated for each view independently and the
clusterings are later merged to produce a single clustering [23, 17].

For the centralized approach, Bickel and Scheffer [4] consider the setting of a dataset which has
been generated by a mixture model and the objective of which is to determine the parameters for
each of the components of the mixture. They develop both a multiview EM algorithm and a mul-
tiview k-means algorithm, which is based on an assumption of independence between views. They
find that the multiview EM algorithm is able to optimize the agreement between the views and that it
can achieve a significant improvement in performance compared to a single view version. They also
evaluate an agglomerative multiview approach, but find that its results are not improved compared
to a single view version. Zhou and Burges [38] consider a spectral clustering approach and pro-
pose an algorithm that generalizes the (single view) normalized cut to incorporate information from
multiple views (graphs). The approach uses a random walk technique, that traverses the vertices of
both graphs, to derive a multiple graph cut which is good on average for both graphs. They find
their approach consistently performs better than just using a single view. Chaudhuri et al [6] address
the problem of clustering in high dimensions and how to discover a lower dimensional subspace,
in which a standard clustering algorithm can then be applied. In their work, this lower dimensional
subspace is found using the information from multiple views, where each view is composed of a
mixture of distributions. A canonical correlation technique is used for subspace learning.

For the distributed approach, Long et al [23] propose a pattern-based technique based on the
use of a mapping function. After independently clustering each view, these clusterings are then
combined into a single view using the mapping function. The objective function minimizes the
averaged mapped distance of the views to the overall clustering, using an iterative algorithm. Greene
and Cunningham [17] tackle the problem by proposing a matrix factorization approach. Specifically,
a matrix is constructed that summarizes all the clusterings (one clustering per view). This matrix
is then factorized (possibly with some approximation error) into the product of two nonnegative
matrices. The first contains information about the contribution of each cluster from the views to
the overall, final clustering. The second matrix describes the membership of objects in the final
clustering.

A key issue for multiview clustering is how to balance the relative contributions of the views and
ensure that noisy views do not degrade the final result [35]. Another key issue for multiview cluster-
ing is how to handle application-specific multiview integration. For example, the techniques needed
to combine multiple views in a document domain may be quite different from what is appropriate
for combining multiple views in a protein (bioinformatics) domain. The multiview paradigm has
also been extended to the discovery of subspaces, rather than aiming to produce only one, overall
clustering [20].

Like alternative clustering, subspace clustering is also concerned with discovering multiple so-
lutions. Here though, the principal aim is to discover multiple clusters, each hidden in a lower di-
mensional subspace, rather than discovering multiple clusterings. The motivation is that the dataset
can contain features which are irrelevant to and confusing for clustering structure. Removing these
features can make the clustering structure clearer and of better quality. Some well-known examples
include CLIQUE [1], MAFIA [26], and DENCLUE [19]. Issues for subspace clustering analysis
include ensuring the dissimilarity between subspace clusters (which may otherwise have large over-
lap) and controlling the number of subspace clusters (which may be exponential in the number of
features).
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21.5 Future Research Issues

There are a number of issues that still remain to be explored in alternative clustering analysis.

1. Many good approaches have been proposed for generating alternative clusterings. These have
tended to be evaluated on synthetic data, or small real-world data. Their degree of scalability
is thus often untested. In order to extend the reach and applicability of alternative clustering,
more serious evaluation will be needed that is based on the use of very large datasets.

2. Discovery of alternative clusterings is intuitively reasonable. However, it will be important to
identify application scenarios and compelling case studies where alternative clusterings have
influence for a real application area. Good visualization tools for alternative clusterings could
have potential impact here.

3. A number of alternative clustering methods are capable of generating more than one alterna-
tive. This raises the issue of how many alternatives is sufficient. Is this an issue which is user
dependent, much like choosing the number of clusters, or are there more principled ways to
evaluate the viability of alternatives? Coupled with this issue is the companion question of
how many clusters should be included in each alternative clustering.

4. The traditional notion of a “complete” alternative may sometimes be too strict. Instead, a
user may sometimes desire partial alternatives, where the new clustering is similar in some
respects, but different in other respects to the existing clustering(s). Work by Qi and Davidson
[32] is a promising basis here.

21.6 Summary

We have reviewed the area of alternative clustering analysis. The impetus for the field has come
from the complexity and heterogeneity of today’s datasets. Users wish to obtain not only a single
view or hypothesis of their data, but also be presented with several alternatives.

We have seen that a number of approaches for alternative clustering exist, possessing consider-
able diversity in their technical details. At the core of each, though, is the capability to generate new
clusterings which achieve a balance between being novel and being different from clusterings that
are already known.

The area has grown rapidly in the last few years and we believe it has a bright future. As the tech-
niques become more widely known, the generation of alternative clusterings may become common
place. This invites the following speculation: “In the future, might every clustering be accompanied
by an alternative clustering?”
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22.1 Introduction

The design of multiple classifier systems to solve difficult classification problems, using tech-
niques such as bagging, boosting, and output combining [54, 62, 38, 36], has resulted in some of
the most notable advances in classifier design over the past two decades. A popular approach is
to train multiple “base” classifiers, whose outputs are combined to form a classifier ensemble. A
survey of such ensemble techniques—including applications of them to many difficult real-world
problems such as remote sensing, person recognition, one vs. all recognition, and medicine — can
be found in [51]. Concurrently, analytical frameworks have been developed that quantify the im-
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provements in classification results due to combining multiple models [61]. The extensive litera-
ture on the subject has shown that from independent, diversified classifiers, the ensemble created
is usually more accurate as well as more reliable than its individual components, i.e., the base
classifiers.

The demonstrated success of classifier ensembles provides a direct motivation to study effective
ways of combining multiple clustering solutions as well. This chapter covers the theory, design, and
application of cluster ensembles, which address the problem of combining multiple “base cluster-
ings” of the same set of objects into a single consolidated clustering. Each base clustering refers
to a grouping of the same set of objects or its transformed (or perturbed) version using a suitable
clustering algorithm. The consolidated clustering is often referred to as the consensus solution. At
first glance, this problem sounds similar to the problem of designing classifier ensembles. However,
combining multiple clusterings poses additional challenges. First, the number of clusters produced
may differ across the different base solutions [6]. The appropriate number of clusters in the con-
sensus is also not known in advance and may depend on the scale at which the data is inspected.
Moreover, cluster labels are symbolic and thus aligning cluster labels across different solutions
requires solving a potentially difficult correspondence problem. Also, in the typical formulation,1

the original data used to yield the base solutions are not available to the consensus mechanism,
which has only access to the sets of cluster labels. In some schemes, one does have control on
how the base clusterings are produced [21], while in others even this is not granted in order to
allow applications involving knowledge reuse [56], as described later. Despite these added com-
plications, cluster ensembles are inviting since typically the variations in quality across a variety
of clustering algorithms applied to a specific dataset tends to be more than the typical variation
in accuracies returned by a collection of reasonable classifiers. This suggests that cluster ensem-
bles may achieve greater improvements over the base solutions, when compared with ensembles of
classifiers [24].

In fact, the potential motivations for using cluster ensembles are much broader than those for us-
ing classification or regression ensembles, where one is primarily interested in improving predictive
accuracy. These reasons include the following:

1. Improved Quality of Solution

Just as ensemble learning has been proved to be more useful compared to single-model solu-
tions for classification and regression problems, one may expect that cluster ensembles will
improve the quality of results as compared to a single clustering solution. It has been shown
that using cluster ensembles leads to more accurate results on average as the ensemble ap-
proach takes into account the biases of individual solutions [39, 31].

2. Robust Clustering

It is well known that the popular clustering algorithms often fail spectacularly for certain
datasets that do not match well with the modeling assumptions [33]. A cluster ensemble
approach can provide a “meta” clustering model that is much more robust in the sense of
being able to provide good results across a very wide range of datasets. As an example, by
using an ensemble that includes approaches such as k-means, SOM, and DBSCAN that are
typically better suited to low-dimensional metric spaces, as well as base clusterers designed
for high-dimensional sparse spaces (spherical k-means, Jaccard-based graph clustering, etc.),
one can perform well across a wide range of data dimensionality [56]. Authors in [53] present
several empirical results on the robustness of the results in document clustering by using
feature diversity and consensus clustering.

1In this chapter, we shall not consider approaches where the feature values of the original data or of the cluster represen-
tatives are available to the consensus mechanism, e.g. [30].



Cluster Ensembles: Theory and Applications 553

3. Model Selection

Cluster ensembles provide a novel approach to the model selection problem by consider-
ing the match across the base solutions to determine the final number of clusters to be ob-
tained [25].

4. Knowledge Reuse

In certain applications, domain knowledge in the form of a variety of clusterings of the objects
under consideration may already exist due to past projects. A consensus solution can integrate
such information to get a more consolidated clustering. Several examples are provided in
[56], where such scenarios formed the main motivation for developing a consensus clustering
methodology. As another example, a categorization of web pages based on text analysis can
be enhanced by using the knowledge of topical document hierarchies available from Yahoo!
or DMOZ.

5. Multiview Clustering

Often the objects to be clustered have multiple aspects or “views,” and base clusterings may
be built on distinct views that involve nonidentical sets of features or subsets of data points.
In marketing applications for example, customers may be segmented based on their needs,
psychographic or demographic profiles, attitudes, etc. Different views can also be obtained
by considering qualitatively different distance measures, an aspect that was exploited in clus-
tering multifaceted proteins to multiple functional groups in [5]. Consensus clustering can be
effectively used to combine all such clusterings into a single consolidated partition. Strehl and
Ghosh [56] illustrate empirically the utility of cluster ensembles in two orthogonal scenarios:

• Feature Distributed Clustering (FDC): different base clusterings are built by selecting
different subsets of the features but utilizing all the data points.

• Object Distributed Clustering (ODC): base clusterings are constructed by selecting dif-
ferent subsets of the data points but utilizing all the features.

Fern and Brodley [17] also show that clustering in high dimensions is much more effective
compared to clustering with PCA when the data points are randomly projected onto a sub-
space, clustered in that subspace, and consensus clustering is performed with this ensemble.

6. Distributed Computing

In certain situations, data is inherently distributed and it is not possible to first collect the
entire data at a central site due to privacy/ownership issues or computational, bandwidth, and
storage costs [46]. An ensemble can be used in situations where each clusterer has access to
only a subset of the features of each object, as well as where each clusterer has access to only
a subset of the objects [25, 56].

The problem of combining multiple clusterings can be viewed as a special case of the more
general problem of comparison and consensus of data “classifications,” studied in the pattern recog-
nition and related application communities in the 70s and 80s. In this literature, classification was
used in a broad sense to include clusterings, unrooted trees, graphs, etc, and problem-specific for-
mulations were made (see [47] for a broad, more conceptual coverage). For example, in the building
of phylogenetic trees, it is important to get a strict consensus solution, wherein two objects occur
in the same consensus partition if and only if they occur together in all individual clusterings [13],
typically resulting in a consensus solution at a much coarser resolution than the individual solutions.
A quick overview with pointers to such literature is given by Ayad and Kamel [6]. Moreover, based
on the success of classifier and cluster ensembles, efforts have been made to combine both types of
ensembles [1, 23]. Unsupervised models can provide a variety of supplementary constraints which
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can be useful for improving the generalization capability of the resulting classifier, especially when
labeled data is scarce. Also, they might be useful for designing learning methods that are aware of
the possible differences between training and target distributions, thus being particularly interesting
for applications in which concept drift might take place [2, 22]. A reasonable coverage of these
problems is not feasible here, instead this article focuses on the cluster ensemble formulations and
associated algorithms that have been proposed in the past decade.

This chapter is organized as follows. In Section 22.2, we formulate the cluster ensemble prob-
lem. In Section 22.3, different measures for comparing a pair of clustering solutions are introduced.
Details of different cluster ensembles algorithms are presented in Section 22.4 followed by the ap-
plications of cluster ensembles in Section 22.5.

22.2 The Cluster Ensemble Problem

We denote a vector by a bold faced letter and a scalar variable or a set in normal font. We
start by considering r base clusterings of a data set X = {xi}n

i=1 with the qth clustering contain-
ing k(q) clusters. The most straightforward representation of the qth clustering is λ(q) = {C�|� =
1,2, ...,k(q) andC� ⊆ X }. Here, each clustering is denoted by a collection of subsets (not necessar-
ily disjoint) of the original dataset. For hard partitional clustering (clustering where each object is
assigned to a single cluster only), the qth clustering can alternatively be represented by a label vec-
tor λ(q) ∈ Z

n
+. In this representation, each object is assigned some cluster label, and 0 is used if

the corresponding object is not available to that clusterer. The third possible way of representation

of an individual clustering is by the binary membership indicator matrix Hq ∈ {0,1}1×k(q) which
is defined as Hq = {hq

i�|hq
i� ∈ {0,1} ∀xi,C�,λ(q)}. For partitional clustering, we additionally have

k(q)

∑
�=1

hq
i� = 1 ∀xi ∈ X .

A consensus function Γ is defined as a function Z
n×r
+ → Z

n
++ mapping a set of clusterings to

an integrated clustering Γ : λ(q)|q ∈ {1,2, .....,r} → λ̂. For conciseness, we shall denote the set of
clusterings {λ(q)}r

q=1 that is available to the consensus mechanism by Λ. Moreover, the results of

any hard clustering2 of n objects can be represented as a binary, symmetric n× n co-association
matrix, with an entry being 1 if the corresponding objects are in the same cluster and 0 otherwise.
For the qth base clustering, this matrix is denoted by S(q) and is given by

S(q)i j =

{
1 (i, j) ∈C�(λ(q)) for some � ∈ {1,2, ...,k(q)}
0 otherwise

(22.1)

Broadly speaking, there are two main approaches to obtaining a consensus solution and de-
termining its quality. One can postulate a probability model that determines the labeling of the
individual solutions, given the true consensus labels, and then solve a maximum likelihood formu-
lation to return the consensus [60, 64]. Alternately, one can directly seek a consensus clustering that
agrees the most with the original clusterings. The second approach requires a way of measuring the
similarity between two clusterings, for example, to evaluate how close the consensus solution is to
each base solution. These measuring indices will be discussed in more details in Section 22.3. For
now, let φ(λ(a),λ(b)) represent a similarity index between two clustering solutions λ(a) and λ(b). One
can express the average normalized similarity measure between a set of r labelings, Λ, and a single

2This definition is also valid for overlapping clustering.
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consensus labeling λ̂, by

φ(Λ, λ̂) =
1
r

r

∑
q=1

φ(λ(q), λ̂) (22.2)

This serves as the objective function in certain cluster ensemble formulations, where the goal is to
find the combined clustering λ̂ with k̂ clusters such that φ(Λ, λ̂) is maximized. It turns out though
that this objective is intractable, so heuristic approaches have to be resorted to.

22.3 Measuring Similarity Between Clustering Solutions

Since no ground truth is available for clustering problems, cluster ensemble algorithms instead
aim to maximize some similarity measure between the consensus clustering and each of the base
clustering solutions. Two of the most desirable properties of such similarity measures are

• The index should be normalized for easy interpretation and comparison across solutions with
varying number of clusters.

• The expected value of the index between pairs of independent clusterings should be constant
(and preferably zero indicating no similarity). The utility of such a property will be clarified
later in this section.

Below, we present different indices and show how these indices are modified to achieve zero ex-
pected value of the same. The general rule for any “adjustment for chance” is as follows:

adjusted index =
index – Expected-index

Max-index – Expected-index
(22.3)

where Expected-index is calculated according to a permutation model [40]. In such a model, cluster
labels are assumed to be generated randomly subject to the constraints of a fixed number of clusters
and a fixed number of points in each cluster. Max-index is the maximum value the index can take.

Now let us discuss two key approaches for measuring the similarity of two clustering solutions
[50]. The first approach is based on counting the number of pairs in agreement or in disagreement
in two clustering solutions. The second approach uses concepts from information theory.

1. Pair Counting-Based Measures: Measures of this type are built on counting the num-
ber of pairs of points on which two candidate clustering solutions agree or disagree. More

formally, suppose we have two candidate clusterings λ(a) = {C (a)
h |h = 1,2, ...,k(a)} and

λ(b) = {C�
(b)|� = 1,2, ...,k(b)}. Let n(a)h be the number of objects in cluster C(a)

h and n(b)l

be the number of objects in cluster C(b)
l . Table 22.1 is a contingency table that shows the

overlap between different clusters of these clusterings, where nh� = |C (a)
h ∩C(b)

� |. The most
well-known index of this class is the Rand Index (RI) which is a normalized measure of
number of agreements between two candidate solutions and is defined as

φ(RI)(λ(a),λ(b)) =∑
h�

(
n(a)h�
2

)
/

1
2
(Sa + Sb) (22.4)

Expected value of RI, however, is not constant. This led Hubert and Arabie [32] to propose
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TABLE 22.1: Contingency Table Explaining Similarity Measurement of Clustering Solutions
C1

(b) C2
(b) · · · Ck(b)

(b) sum

C1
(a) n11 n12 · · · n1k(b) n1

(a)

C2
(a) n21 n22 · · · n2k(b) n2

(a)

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

Ck(a)
(a) nk(a)1 nk(a)2 · · · nk(a)k(b) nk(a)

(a)

sum n1
(b) n2

(b) · · · nk(b)
(b) n

the Adjusted Rand Index (ARI) to correct for a zero baseline. ARI, according to the general
strategy of correcting for chance, is defined as follows:

φ(ARI)(λ(a),λ(b)) =

∑
h�

(
nh�

2

)
− SaSb/

(
n
2

)

1
2 (Sa + Sb)− SaSb/

(
n
2

) (22.5)

where Sa = ∑
h

(
n(a)h
2

)
and Sb = ∑

�

(
n(b)�
2

)
. The second term in both numerator and de-

nominator adjusts for the expected number of overlaps that will occur “by chance.” Values
of RI lie between 0 and 1. However, values of ARI can be negative which is of no practical
interest. ARI is 1 when the two candidate clustering solutions match exactly and is 0 when
the index value equals its expected value.

In [4], the authors mention as many as 22 different indices of this class. Subsequent work [66]
shows that after correction for chance, some of these indices become equivalent. However,
ARI remains the most popular index of this class. Very recently, a probabilistic version of
Rand Index (PRI) [11] has been proposed in which the agreements and disagreements of the
pairs of data points are weighted according to their occurrence by chance.

2. Information Theoretic-Based Measures: There are numerous information theory-based
measures in the literature [50]. We discuss only two of them here and show how they can
be corrected for occurrence by chance.

(a) Normalized Mutual Information (NMI)
Strehl and Ghosh [56] propose NMI to measure the similarity between two candidate

clusterings. The entropy associated with clustering λ(a) is H(λ(a)) = −∑h
n
(a)
h
n log(

n
(a)
h
n )

and that with clustering λ(b) is H(λ(b)) =−∑�
n
(b)
�
n log(

n
(b)
�
n ). Similarly, the joint entropy

of λ(a) and λ(b) is defined as H(λ(a),λ(b)) =−∑h,�
nh�
n log( nh�

n ). Now, the NMI between
λ(a)and λ(b) is defined as

φ(NMI)(λ(a),λ(b)) =
I(λ(a),λ(b))

√
H(λ(a))H(λ(b))

(22.6)

Here, I(λ(a),λ(b)) = H(λ(a)) + H(λ(b))−H(λ(a),λ(b)) is the mutual information be-
tween two clusterings λ(a) and λ(b) [7], which is normalized by the geometric mean
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of H(λ(a)) and H(λ(b)) to compute the NMI. It should be noted that I(λ(a),λ(b)) is non-
negative and has no upper bound. φ(NMI)(λ(a),λ(b)), on the other hand, lies between 0
and 1 and is suitable for easier interpretation and comparisons.

(b) Variation of Information (VI)
VI is another information theoretic distance measure proposed for cluster validation
[44, 45] and is defined as follows:

φ(V I)(λ(a),λ(b)) = H(λ(a))+H(λ(b))− 2I(λ(a),λ(b)) (22.7)

It turns out that VI is a metric. But its original definition is not consistent if data sets of
different sizes and clusterings with different number of clusters are considered. There-
fore, several normalized versions of VI have been proposed. The one proposed by [37]
takes the following form:

φ(NVI1)(λ(a),λ(b)) = 1− I(λ(a),λ(b))

max{H(λ(a)),H(λ(b))} (22.8)

which again is a metric. However, the one proposed by Wu et. al. [68] is not a metric
and takes the following form:

φ(NVI2)(λ(a),λ(b)) = 1− 2I(λ(a),λ(b))

H(λ(a))+H(λ(b))
(22.9)

Both of these measures lie between 0 and 1. Note that one could also define a distance
measure from NMI just by taking its 1-complement. However, such distance measure is
not a metric.

Vinh et. al. [50] empirically show that like RI, the information theoretic-based indices do
not attain any constant baseline. The problem is more severe when the number of clusters is
comparable to the number of data points. With increase in the number of clusters, the expected
values of the indices either increase (for NMI) or decrease (for VI). Therefore, if one needs to
make a decision based on the observed values of the indices, on average, a clustering solution
with more (or fewer for VI) clusters will unjustifiably be preferred.

Therefore, following the generalized suggestion for correction by chance given in Equation
22.3, Vinh et. al. [50] proposed to correct these measures with the expected value of the
mutual information of the solutions and empirically showed the invariance of the modified
measures w.r.t the number of clusters. The expression for the expected value of the mutual
information under the permutation model is given by

E[I(Sa,Sb)] = ∑
h�

min{n(a)h +n
(b)
� }

∑
nh�=max{n(a)h +n

(b)
� −n,0}

nh�

n
log(

nh�n

n(a)h n(b)�

) (22.10)

.
n(a)h !n(b)� !(n− n(a)h )!(n− n(b)� )!

nh�!n!(n(a)h − nh�)!(n
(b)
� − nh�)!(n− n(a)h − n(b)� + nh�)!

However, if the ratio of the number of data points and the number of clusters is more than 100
for both solutions, empirical studies show that E[I(Sa,Sb)] is fairly close to zero, and hence,
no adjustment for chance is necessary. Unfortunately, with such adjustment for chance, none
of the distances measures is a metric anymore. Therefore, depending on the applications, one
needs to make a choice between the metric property and the zero baseline property.
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22.4 Cluster Ensemble Algorithms

Cluster ensemble methods are now presented under three categories: (i) probabilistic ap-
proaches, (ii) approaches based on co-association, and (iii) direct and other heuristic methods.

22.4.1 Probabilistic Approaches to Cluster Ensembles

The two basic probabilistic models for solving cluster ensembles are described in this subsec-
tion.

22.4.1.1 A Mixture Model for Cluster Ensembles (MMCE)

In a typical mixture model [10] approach to clustering, such as fitting the data using a mixture of
Gaussians, there are k̂ mixture components, one for each cluster. A component-specific parametric
distribution is used to model the distribution of data attributed to a specific component. Such an
approach can be applied to form the consensus decision if the number of consensus clusters is
specified. This immediately yields the pioneering approach taken in [60]. We describe it in a bit
more detail as this work is essential to build an understanding of later works [64, 65].

In the basic mixture model of cluster ensembles [60], each object xi is represented by yi =Λ(xi),
i.e., the labels provided by the base clusterings. We assume that there are k̂ consensus clusters each
of which is indexed by �̂. Corresponding to each consensus cluster �̂ and each base clustering q, we

have a multinomial distribution β(q)

�̂
of dimension k(q). Therefore, a sample from this distribution is a

cluster label corresponding to the qth base clustering. The underlying generative process is assumed
as follows:

For ith data point xi,

1. Choose zi = I�̂ such that �̂∼multinomial(θ). Here I�̂ is a probability vector of dimension k(q)

with only the �̂th component being 1, and θ is a multinomial distribution of dimension k̂.

2. For the qth base clustering of the ith data point, choose the base clustering result yiq = � ∼
multinomial(β(q)

�̂
).

These probabilistic assumptions give rise to a simple maximum log-likelihood problem that can
be solved using the Expectation Maximization (EM) algorithm. This model also takes care of the
missing labels in a natural way.

22.4.1.2 Bayesian Cluster Ensembles (BCE)

A Bayesian version of the multinomial mixture model described above was subsequently pro-
posed by Wang et al. [64]. As in the simple mixture model, we assume k̂ consensus clusters with

β(q)

�̂
being the multinomial distribution corresponding to each consensus cluster �̂ and each base

clustering q. The complete generative process for this model is as follows:
For ith data point xi,

1. Choose θi ∼ Dirichlet(α) where θi is a multinomial distribution with dimension k̂.

2. For the qth base clustering:

(a) Choose ziq = I�̂ such that �̂∼multinomial(θi). I�̂ is a probability vector of dimension k̂
with only the �̂th component being 1.

(b) Choose the base clustering result yiq = �∼multinomial(β(q)
�̂
).
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FIGURE 22.1: Graphical model for MMCE. FIGURE 22.2: Graphical model for BCE.

So, given the model parameters (α,β = {β(q)
�̂
}), the joint distribution of latent and observed

variables {yi,zi,θi} is given by

p(yi,zi,θi|α,β) = p(θi|α)
r

∏
q=1,∃yiq

p(ziq = I�̂|θi)p(yiq|β(q)
�̂
) (22.11)

where ∃yiq implies that there exists a qth base clustering result for yi. The marginals p(yi|α,β) can
further be calculated by integrating over the hidden variables {zi,θi}. The authors used variational
EM and Gibb’s sampling for inference and parameter estimation. The graphical model correspond-
ing to this Bayesian version is given in Figure 22.2. To highlight the difference between Bayesian
cluster ensembles and the mixture model for cluster ensembles, the graphical model corresponding
to the latter is also shown alongside in Figure 22.1.

22.4.1.3 Nonparametric Bayesian Cluster Ensembles (NPBCE)

Recently, a nonparametric version of Bayesian cluster ensemble (NPBCE) has been proposed
in [65] which allows the number of consensus clusters to adapt with data. The stick-breaking con-
struction of the generative process of this model is described below. The authors use a truncated
stick-breaking construction of the Dirichlet process with truncation enforced at k̂. If k̂ is made suf-
ficiently large, the resulting Dirichlet Process (truncated) closely approximates a Dirichlet Process.

1. Generate v�̂ ∼ β(1,α) ∀�̂ ∈ {1,2, · · · , k̂}. Let θ�̂ = v�̂∏�̂−1
j=1(1− v j).

2. For each base clustering (indexed by q), generate β(q)

�̂
∼G(q)

0 ∀�̂ ∈ {1,2, · · · , k̂} where G(q)
0 is

a symmetric Dirichlet distribution of dimension k(q).

3. For the ith data point xi, generate zi ∼ multinomial(θ). zi is an indicator vector of dimension
k̂ with only one component being unity and others being zero.

4. For the qth base clustering of the ith data point, generate the base clustering result yiq = � ∼
multinomial(β(q)

�̂
).

One should note that NPBCE does not allow multiple base clustering solutions of a given data
point to be generated from more than one consensus cluster. Therefore, the model is more restrictive
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FIGURE 22.3: Graphical model for NPBCE.

compared to BCE and is really a nonparametric version of MMCE. The graphical model shown
in Figure 22.3 illustrates this difference more clearly. It should be noted that although all of the
generative models presented above were used only with hard partitional clustering, they could be
used for overlapping clustering as well.

22.4.2 Pairwise Similarity-Based Approaches

In pairwise similarity-based approaches, one takes the weighted average of all r co-association
matrices to form an ensemble co-association matrix S which is given as follows:

S =
1
r

r

∑
q=1

wqS(q) (22.12)

Here wq specifies the weight assigned to the qth base clustering. This ensemble co-association ma-
trix captures the fraction of times a pair of data points is placed in the same cluster across the r base
clusterings. The matrix can now be viewed as a similarity matrix (with a corresponding similarity
graph) to be used by the consensus mechanism for creating the consensus clusters. This matrix is
different from the similarity matrix Ŝ that we obtain from the consensus solution λ̂. We will explain
the difference in detail in Section 22.4.2.1.

Note that the co-association matrix size is itself quadratic in n, which thus forms a lower bound
on computational complexity as well as memory requirements, inherently handicapping such a tech-
nique for applications to very large datasets. However, it is independent of the dimensionality of the
data.

22.4.2.1 Methods Based on Ensemble Co-Association Matrix

The Cluster-based Similarity Partitioning Algorithm (CSPA) [56] used METIS [34] to partition
the induced consensus similarity graph. METIS was chosen for its scalability and because it tries
to enforce comparable sized clusters. This added constraint is desirable in several application do-
mains [57]; however, if the data is actually labeled with imbalanced classes, then it can lower the
match between cluster and class labels. Assuming quasi-linear graph clustering, the worst case com-
plexity for this algorithm is O(n2kr). Punera and Ghosh [52] later proposed a soft version of CSPA,
i.e., one that works on soft base clusterings. Al-Razgan and Domeniconi [3] proposed an alternative
way of obtaining nonbinary co-association matrices when given access to the raw data.
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The Evidence Accumulation approach [21] obtains individual co-association matrices by ran-
dom initializations of the k-means algorithm, causing some variation in the base cluster solutions.
This algorithm is used with a much higher value of k than the range finally desired. The ensemble
co-association matrix is then formed, each entry of which signifies the relative co-occurrence of
two data points in the same cluster. A minimum spanning tree (MST) algorithm (also called the
single-link or nearest neighbor hierarchical clustering algorithm) is then applied on the ensemble
co-association matrix. This allows one to obtain nonconvex shaped clusters. Essentially, this ap-
proach assumes the designer has access to the raw data, and the consensus mechanism is used to get
a more robust solution than what can be achieved by directly applying MST to the raw data.

A related approach is taken by Monti et al [48], where the perturbations in the base clustering
are achieved by resampling. Any of bootstrapping, data subsampling, or feature subsampling can
be used as a resampling scheme. If either of the first two options is selected, then it is possible
that certain objects will be missing in a given base clustering. Hence, when collating the r base co-
association matrices, the (i, j)th entry needs to be divided by the number of solutions that included
both objects rather than by a fixed r. This work also incorporates a model selection procedure as
follows: The consensus co-association matrix is formed multiple times. The number of clusters is
kept at ki for each base clustering during the ith experiment, but this number is changed from one
experiment to another. A measurement termed as consensus distribution describes how the elements
of a consensus matrix are distributed within the 0–1 range. The extent to which the consensus matrix
is skewed toward a binary matrix denotes how good the base clusterings match one another. This
enables one to choose the most appropriate number of consensus clusters k̂. Once k̂ is chosen, the
corresponding ensemble co-association matrix is fed to a hierarchical clustering algorithm with
average linkage. Agglomeration of clusters is stopped when k̂ branches are left.

The Iterative Pairwise Consensus (IPC) Algorithm [49] essentially applies model-based k-
means [72] to the ensemble co-association matrix S. The consensus clustering solution λ̂ = {C�}k̂

�=1
is initialized to some solution, after which a reassignment of points is carried out based on the
current configuration of λ̂. The point xi gets assigned to cluster C�, if xi has maximum average sim-
ilarity with the points belonging to cluster C�. Then the consensus solution is updated, and the cycle
starts again.

However, both Mirkin [47] and Li et al. [43] show that the problem of consensus clustering
can be framed in a different way than what has been discussed so far. In these works, the distance
d(λ(q1),λ(q2)) between two clusterings λ(q1) and λ(q2) is defined as the number of pairs of objects
that are placed in the same cluster in one of λ(q1) or λ(q2) and in a different cluster in the other,
essentially considering the (unadjusted) Rand Index. Using this definition, the consensus clustering
problem is formulated as

argmin
λ̂

J = argmin
λ̂

1
r

r

∑
q=1

d(λ(q), λ̂) (22.13)

= argmin
Ŝ

1
r

r

∑
q=1

wq ∑
i< j

[S(q)i j − Ŝi j]
2

Mirkin [47, section 5.3.4, p. 260] further proved that the consensus clustering according to
criterion (22.13) is equivalent to clustering over the ensemble co-association matrix by subtracting
a “soft” and “uniform” threshold from each of the different consensus clusters. This soft threshold,
in fact, serves as a tool to balance cluster sizes in the final clustering. The subtracted threshold has
also been used in [59] for consensus clustering of gene-expression data.

In [63], a consensus clustering result is obtained by minimizing a weighted sum of the Bregman
divergence [8] between the consensus partition and the input partitions w.r.t their co-association ma-
trices. In addition, the authors also show how to generalize their framework in order to incorporate
must-link and cannot-link constraints between objects.
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Note that the optimization problem in (22.13) is over the domain of Ŝ. The difference between
the matrices S and Ŝ lies in the way the optimization problem is posed. If optimization is performed
with cluster labels only (as illustrated in Section 22.4.3), there is no guarantee of achieving the
optimum value Ŝ = S. However, if we are optimizing over the domain of the co-association matrix,
we can achieve this optimum value in theory.

22.4.2.2 Relating Consensus Clustering to Other Optimization Formulations

The co-association representation of clustering has been used to relate consensus clustering with
two other well-known problems.

1. Consensus Clustering as Nonnegative Matrix Factorization (NNMF)

Li et al [43, 42], using the same objective function as mentioned in (22.13), show that the
problem of consensus clustering can be reduced to an NNMF problem. Assuming Ui j = Ŝi j

to be a solution to this optimization problem, we can rewrite (22.13) as:

argmin
U

n

∑
i, j=1

(Si j−Ui j)
2 = argmin

U
‖S−U‖2F (22.14)

where the matrix norm is the Frobenius norm. This problem formulation is similar to the
NNMF formulation [41] and can be solved using an iterative update procedure. In [27], the
cost function J used in Equation (22.13) was further modified via normalization to make it
consistent with data sets with different numbers of data points (n) and different numbers of
base clusterings (r).

2. Consensus Clustering as Correlation Clustering

Gionis et al. [26] show that a certain formulation of consensus clustering is a special case of
correlation clustering. Suppose we have a data set X and some kind of dissimilarity measure-
ment (distance) between every pair of points in X . This dissimilarity measure is denoted by
di j ∈ [0,1]∀xi,x j ∈ X . The objective of correlation clustering [9] is to find a partition λ̂ such
that

λ̂ = argmin
λ

d(λ)

= argmin
λ

⎡

⎢
⎣ ∑

(i, j) : λ(xi) = λ(x j)

di j + ∑
(i, j) : λ(xi) 
= λ(x j)

(1− di j)

⎤

⎥
⎦ (22.15)

In the above equation, λ(xi) is the cluster label imposed by λ on xi. The co-association view
of the cluster ensemble problem reduces to correlation clustering if the distance di j is defined
as di j =

1
r |{λ(q) : λ(q)(xi) 
= λ(q)(x j)}| ∀ i, j.

22.4.3 Direct Approaches Using Cluster Labels

Several consensus mechanisms take only the cluster labels provided by the base clusterings as
input and try to optimize an objective function such as (22.2), without computing the co-association
matrix.

22.4.3.1 Graph Partitioning

In addition to CSPA, Strehl and Ghosh [56] propose two direct approaches to cluster ensem-
bles: Hyper Graph Partitioning Algorithm (HGPA) which clusters the objects based on their cluster
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memberships, and Meta Clustering Algorithm (MCLA), which groups the clusters based on which
objects are contained in them. HGPA considers a graph with each object being a vertex. A cluster
in any base clustering is represented by a hyper-edge connecting the member vertices. The hyper-
graph clustering package HMETIS (Karypis et al. [35]) was used as it gives quality clusterings and
is very scalable. As with CSPA, employing a graph clustering algorithm adds a constraint that favors
clusterings of comparable size. Though HGPA is fast with a worst case complexity of O(nkr), it suf-
fers from an additional problem: if all members of a base cluster are not assigned the same cluster
in the consensus solution, the corresponding hyper-edge is broken and incurs a constant penalty;
however it cannot distinguish between a situation where only one object was clustered differently
and one where several objects were allocated to other groups. Due to this issue, HGPA is often not
competitive in terms of cluster quality.

MCLA first forms a meta-graph with a vertex for each base cluster. The edge weights of this
graph are proportional to the similarity between vertices, computed using the binary Jaccard mea-
sure (number of elements in common divided by the total number of distinct elements). Since the
base clusterings are partitional, this results in an r-partite graph. The meta-graph is then partitioned
into k balanced meta-clusters. Each meta-cluster, therefore, contains approximately r vertices. Fi-
nally, each object is assigned to its most closely associated meta-cluster. Ties are broken randomly.
The worst case complexity is O(nk2r2).

Noting that CSPA and MCLA consider either the similarity of objects or the similarity of clus-
ters only, a Hybrid Bipartite Graph Formulation (HBGF) was proposed in [16]. A bipartite graph
models both data points and clusters as vertices, wherein an edge exists only between a cluster
vertex and a object vertex if the latter is a member of the former. Either METIS or other multi-
way spectral clustering methods are used to partition this bipartite graph. The corresponding soft
versions of CSPA, MCLA and HBGF have also been developed by Punera and Ghosh [52]. It
should be noted that all of CSPA, MCLA, and HGPA were compared with one other using the NMI
measure in [56].

22.4.3.2 Cumulative Voting

The concept of cumulative voting was first introduced in [15] where the authors used bagging
to improve the accuracy of clustering procedure. Once clustering is done on a bootstrapped sample,
the cluster correspondence problem is solved using iterative relabeling via Hungarian algorithm.
Clustering on each bootstrapped sample gives some votes corresponding to each data point and
cluster label pair which, in aggregate, decide the final cluster assignment.

A similar approach was adopted in [6]. Each base clustering in this contribution is thought of
as providing a soft or probabilistic vote on to which clusters in the consensus solution its data
points should belong. These votes are then gathered across the base solutions and thresholded to
determine the membership of each object to the consensus clusters. Again, this requires a mapping
function from the base clusterings to a stochastic one. An information-theoretic criterion based on
the information bottleneck principle was used in [6] for this purpose. The mean of all the stochastic
clusterings then yields the consensus partition. This approach is able to cater to a range of k in the
base clusterings, is fast as it avoids the quadratic time/space complexity of forming a co-association
matrix, and has shown good empirical results as well. Noting that the information bottleneck solu-
tions can be obtained as a special case of Bregman clustering [8], it should be possible to recast this
approach as a probabilistic one.

A variety of heuristic search procedures has also been suggested to hunt for a suitable consensus
solution. These include a genetic algorithm formulation [71] and one using a multi-ant colony [69].
These approaches tend to be computationally expensive and the lack of extensive comparisons
with the methods covered in this article currently make it difficult to assess their quality. Also,
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one can use several heuristics suggested in [18] to select only a few clustering solutions from a large
ensemble.

22.5 Applications of Consensus Clustering

The motivation for consensus clustering has already been introduced in Section 22.1. Since
cluster ensemble improves the quality of clustering solution, it can be used for any cluster analy-
sis problem, e.g., image segmentation [67], bioinformatics, document retrieval [28], and automatic
malware categorization [70], just to name a few. Gionis et al. [26] show how clustering ensemble
algorithms can be used to improve the robustness of clustering solution, for clustering categorical
data [29] and heterogeneous data, for identifying the correct number of clusters, and for detecting
outliers. Fischer and Buhmann [20] showed how resampling the data and subsequent aggregation
of the clustering solutions from the sampled sets can improve the quality of clustering solution.
Sawtooth Software (http://www.sawtoothsoftware.com/) has commercialized some of the al-
gorithms in [56] for applications in marketing. A package consisting of implementations of all the
algorithms in [56] is also available on http://strehl.com/soft.html. In this section, we briefly
discuss two major application domains.

22.5.1 Gene Expression Data Analysis

Consensus clustering has been applied to microarray data to improve the quality and robustness
of the resulting clusters. A resampling based approach is used by Monti et al. [48], in which the
agreement across the results obtained by executing a base clustering algorithm on several pertur-
bations of the original dataset is used to obtain the final clustering. Swift et al. [58] use a variety
of clustering algorithms on the same dataset to generate different base clustering results and try to
find clusters that are consistent across all the base results using simulated annealing. In [19] the
consensus clustering problem is treated as a median partition problem, where the aim is to find a
partitioning of the data points that minimizes the distance to all the other partitionings. The authors
propose greedy heuristic solutions to find a local optimum. Additionally, Deodhar and Ghosh [14]
use consensus clustering to find overlapping clusters in microarray data. In this work, two different
techniques are used to generate the consensus clustering solution from the candidate solutions. The
first one is MCLA with some adjustable threshold, and the second one is soft kernelized k-means
that works on an ensemble co-association matrix. In [12], gene expression time-series data is clus-
tered at different time intervals and the solutions from different timestamps are merged into a single
solution using graph partitioning of the ensemble co-association matrix.

22.5.2 Image Segmentation

Though there exist several image segmentation algorithms, depending on the application data,
some perform better than the others and it is almost impossible to know beforehand which one
should be used. The authors in [55] used the cluster ensemble formulation to aggregate the results
of multiple segmentation algorithms such as (a) Normalized Cuts, (b) Energy Minimization by
Graph Cuts, and (c) Curve Evolution to generate image segmentation. However, they found that the
ensemble segmentation outperforms any individual segmentation algorithm. One of such results is
shown in Figure 22.4. The first result corresponds to Normalized Cuts, the second one is from Graph
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FIGURE 22.4: Segmentation result 1 from [55]

Cuts, the third and fourth ones are from Curve Evolution, and the last one is due to the ensemble
segmentation.

In another similar application, the same authors show the utility of ensemble methods for better
visualization and interpretation of images obtained from Diffusion Tensor Imaging (DTI) technique
(Figure 22.5). DTI images have become popular within neuroimaging because they are useful to
infer the underlying structure and organizational pattern in the body (e.g., neural pathways in the
brain). To simplify the processing of such images, a number of different measures (or channels)
are calculated from the diffusion tensor image. Some of these channels are Apparent Diffusion

FIGURE 22.5: Segmentation result 2 from [55]
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Coefficient (ADC), Fractional Anisotropy (FA), Mean Diffusivity (MD), Planar Anisotropy (PA).3

Segmentations obtained from 10 of such channels of a brain are given in the first two rows of Figure
22.5. The last row shows the segmentation obtained using the ensemble strategy.

22.6 Concluding Remarks

This article first showed that cluster ensembles are beneficial in a wide variety of scenarios. It
then provided a framework for understanding many of the approaches taken so far to design such en-
sembles. Even though there seems to be many different algorithms for this problem, we showed that
there are several commonalities among these approaches. The design domain, however, is still quite
rich leaving space for more efficient heuristics as well as formulations that place additional domain
constraints to yield consensus solutions that are useful and actionable in diverse applications.
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23.1 Introduction

Clustering, one of the most important unsupervised learning problems, is the task of dividing
a set of objects into clusters such that objects within the same cluster are similar while objects in
different clusters are distinct. Clustering is widely used in many fields, such as text mining, image
analysis, and bioinformatics [16, 69, 17]. As an unsupervised learning task, it is necessary to find a
way to validate the goodness of partitions after clustering. Otherwise, it would be difficult to make
use of different clustering results.

Clustering validation, which evaluates the goodness of clustering results [41], has long been
recognized as one of the vital issues essential to the success of clustering applications [26]. Despite
the vast amount of expert endeavor spent on this problem [18, 19, 5], there is no consistent and
conclusive solution to cluster validation. The best suitable measures to use in practice remain un-
known. Indeed, there are many challenging validation issues which have not been fully addressed
in the clustering literature. For instance, the importance of normalizing validation measures has
not been fully established. Also, the relationship between different validation measures is not clear.
Moreover, there are important properties associated with validation measures which are important
to the selection of the use of these measures but have not been well characterized. Finally, given
the fact that different validation measures may be appropriate for different clustering algorithms,
it is necessary to provide a focused study of cluster validation measures on specified clustering
algorithms.

Clustering validation measures can be categorized into two main types: external clustering vali-
dation and internal clustering validation. The main difference is whether or not external information
is used for clustering validation. External validation measures use external information not present
in the data to evaluate the extent to which the clustering structure discovered by a clustering algo-
rithm matches some external structure, e.g., the one specified by the given class labels. One example
of external validation measure is entropy, which evaluates the “purity” of clusters based on the given
class labels [54]. On the other hand, internal measures evaluate the goodness of a clustering struc-
ture without respect to external information [57, 6, 53, 34]. For example, the Silhouette index [49]
validates the clustering performance based only on the pairwise difference of between- and within-
cluster distances of all data points.

Both external and internal validation measures are crucial for many application scenarios. Since
external validation measures know the “true” cluster number in advance, they can be used for choos-
ing an optimal clustering algorithm on a specific data set. For instance, if external validation mea-
sures show that a document clustering algorithm can lead to the clustering results which can match
the categorization performance by human experts, there is a good reason to believe this clustering
algorithm has a practical impact on document clustering. On the other hand, internal validation
measures can be used to choose the best clustering algorithm as well as the optimal cluster num-
ber without any additional information. In practice, external information such as class labels is not
available in some real world applications. In that case, internal validation measures are the only
option for cluster validation when there is no external information available.

However, there are still scenarios that clustering validations measures have limitations in eval-
uating the goodness of the clustering results. For example, in the case when external criteria are
not available and internal validation measures are not very robust, subjective evaluations such as
case studies are often used in many contexts, which is particularly common in network clustering
algorithms [56, 70, 66]. Another example would be the case that class labels may not reflect clus-
ter structure well, when the class labels do not necessarily correspond to locality. Some clusters
may contain a mixture of objects from different classes, thus objects in widely separated clusters
may belong to the same class. In this circumstance, using clustering techniques to reveal the data
characteristics may not even be a good idea.
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In literature, there is a list of clustering validation measures for soft (fuzzy) clustering algo-
rithms. A fuzzy clustering algorithm generates a fuzzy partition to provide a degree of membership
of each object to a given cluster. A fuzzy clustering approach is less prone to local minimum than
crisp clustering algorithms since it makes soft decisions in each iteration through the use of mem-
bership functions [4]. Kim et al. propose a cluster validation measure for fuzzy partitions obtained
from fuzzy C-Means algorithm [31]. The proposed validity index exploits an intercluster proxim-
ity between fuzzy clusters, which is used to measure the degree of overlap between clusters. The
best fuzzy c-partition is obtained by minimizing the intercluster proximity with respect to c. Smyth
proposes a cross-validated likelihood measure to determine the appropriate number of clusters in
the context of model-based probabilistic clustering [52]. The Xie-Beni index (XB) [63] defines a
fuzzy clustering validation function to measure the overall average compactness and separation of a
fuzzy c-partition. The intercluster separation is the minimum square distance between cluster cen-
ters, and the intracluster compactness is the mean square distance between each data object and its
cluster center. The optimal cluster number is reached when the minimum of XB is found. Gath and
Geva also proposed a fuzzy validation index which is based on the concepts of hypervolume and
density [14].

Another category of related works is validation measures for subspace clustering algorithms.
Subspace clustering is an extension of traditional clustering that seeks to find clusters in different
subspaces within a data set [45]. Often in high-dimensional data, many dimensions are irrelevant
and can mask existing clusters in noisy data. Subspace clustering algorithms localize the search
for relevant dimensions allowing them to find clusters that exist in multiple, possibly overlapping,
subspaces. Many of the existing validation measures for traditional clustering approaches, such as
entropy [1], F-measure [2], and classification error [46], are also used as validation measures for
subspace clustering. Muller et al. [44] provide a systematic and thorough evaluation of subspace
clustering paradigms.

This chapter focuses on providing a comprehensive study on various aspects of both the ex-
ternal and internal clustering validation measures for crisp clustering algorithms. The sections of
this chapter are organized as follows. In Section 23.2, an organized study on 16 external validation
measures for K-means clustering is presented. The importance of measure normalization in cluster
evaluation on data with imbalanced class distributions is demonstrated, and the normalization solu-
tions for several measures are also provided. Major properties of the external measures, as well as
their interrelationships, are presented [62]. Section 23.3 presents a detailed study on 12 widely used
internal validation measures for crisp clustering [37, 38]. Properties of these internal measures in
different aspects, such as the impact of data with noise, subclusters, and arbitrary shapes, are well
investigated. We conclude this chapter with a summary in Section 23.4.

23.2 External Clustering Validation Measures

In literature, a number of external validation measures for crisp clustering have been proposed.
In this section, an organized study on a suite of 16 widely used external clustering validation mea-
sures as shown in Table 23.1 is presented for the K-means clustering algorithm. These measures
represent a good coverage of the external validation measures available in different fields such as
data mining, information retrieval, machine learning, and statistics. A common ground of these
measures is that they can be computed by the contingency matrix as follows.

The Contingency Matrix. Given a data set D with n objects, assume that there is a partition
P = {P1, · · · ,PK} of D, where

⋃K
i=1 Pi = D and Pi

⋂
Pj = φ for 1 ≤ i 
= j ≤ K, and K is the number

of clusters. If the “true” class labels for the data are given, another partition can be generated on D:
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TABLE 23.1: External Cluster Validation Measures
Measure Definition Range

1 Entropy (E) −∑i pi(∑ j
pi j
pi

log
pi j
pi
) [0, log K′]

2 Purity (P) ∑i pi(max j
pi j
pi
) (0,1]

3 F-measure (F) ∑ j p j maxi[2
pi j
pi

pi j
p j
/(

pi j
pi

+
pi j
p j
)] (0,1]

4 Variation of Information (V I) −∑i pi log pi−∑ j p j log pj−2∑i ∑ j pi j log
pi j

pi p j
[0,2log max(K,K′)]

5 Mutual Information (MI) ∑i ∑ j pi j log
pi j

pi p j
(0, log K′]

6 Rand statistic (R) [
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]/
(n

2

)
(0,1]

7 Jaccard coefficient (J) ∑i j
(ni j

2

)
/[∑i
(ni·

2

)
+∑ j

(n· j
2

)−∑i j
(ni j

2

)
] [0,1]

8 Fowlkes & Mallows index (FM) ∑i j
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)
/
√
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2

)−2∑ j
(n· j

2

)
+4∑i j

(ni j
2

)
]/
(n

2

)
[0,1]

11 Minkowski score (MS)
√

∑i
(ni·

2

)
+∑ j

(n· j
2

)−2∑i j
(ni j

2

)
/
√

∑ j
(n· j

2

)
[0,+∞)

12 classification error (ε) 1− 1
n maxσ ∑ j nσ( j), j [0,1)

13 van Dongen criterion (V D) (2n−∑i max j ni j−∑ j maxi ni j)/2n [0,1)

14 micro-average precision (MAP) ∑i pi(max j
pi j
pi
) (0,1]

15 Goodman-Kruskal coeff (GK) ∑i pi(1−max j
pi j
pi
) [0,1)

16 Mirkin metric (M) ∑i n2
i·+∑ j n2· j−2∑i ∑ j n2

i j [0,2
(n

2

)
)

Note: pi j = ni j/n, pi = ni·/n, pj = n· j/n.

TABLE 23.2: The Contingency Matrix.
Partition C

C1 C2 · · · CK′ ∑
P1 n11 n12 · · · n1K′ n1·

Partition P P2 n21 n22 · · · n2K′ n2·
· · · · · · · ·

PK nK1 nK2 · · · nKK′ nK·
∑ n·1 n·2 · · · n·K′ n

C = {C1, · · · ,CK′ }, where
⋃K′

i=1 Ci = D and Ci
⋂

Cj = φ for 1 ≤ i 
= j ≤ K′, where K′ is the number
of classes. Let ni j denote the number of objects in cluster Pi from class Cj, then the information
on the overlap between the two partitions can be written in the form of a contingency matrix, as
shown in Table 23.2. Consistent notations in this contingency matrix will be used throughout this
section.

23.2.1 An Overview of External Clustering Validation Measures

Table 23.1 shows the list of measures to be studied. The “Definition” column gives the compu-
tation forms of the measures by using the notations in the contingency matrix. The 16 measures are
briefly introduced as follows.

Entropy and purity are frequently used external measures for K-means [54, 67]. They measure
the “purity” of the clusters with respect to the given class labels.

F-measure was originally designed for the evaluation of hierarchical clustering [48, 36], but has
also been employed for partitional clustering. It combines the precision and recall concepts from
the information retrieval community.

The Mutual Information (MI) and Variation of Information (VI) were developed in the field of
information theory [8]. MI measures how much information one random variable can tell about
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another one [55]. VI measures the amount of information that is lost or gained in changing from the
class set to the cluster set [42].

The Rand statistic [47], Jaccard coefficient, Fowlkes and Mallows index [13], and Hubert’s two
statistics [23, 24] evaluate the clustering quality by the agreements and/or disagreements of the pairs
of data objects in different partitions.

The Minkowski score [3] measures the difference between the clustering results and a reference
clustering (true clusters). And the difference is computed by counting the disagreements of the pairs
of data objects in two partitions.

The classification error takes a classification view on clustering [6]. It tries to map each class
to a different cluster so as to minimize the total misclassification rate. The “σ” in Table 23.1 is the
mapping of class j to cluster σ( j).

The van Dongen criterion [60] was originally proposed for evaluating graph clustering. It mea-
sures the representativeness of the majority objects in each class and each cluster.

Finally, the micro-average precision, Goodman-Kruskal coefficient [15], and Mirkin metric [43]
are also popular measures. However, the former two are equivalent to the purity measure and the
Mirkin metric is equivalent to the Rand statistic (M/2

(n
2

)
+R = 1). Some discussion on GoodMan–

Kruskal and Mirkin can be found in Section 23.2.4.3.
In summary, there are 13 (out of 16) candidate measures. Among them, P, F , MI, R, J, FM,

Γ, and Γ′ are positive measures—a higher value indicates a better clustering performance. The
remainder, however, consists of measures based on the distance notion. The acronyms of these
measures will be used throughout this section.

23.2.2 Defective Validation Measures

In this section, some validation measures which produce misleading validation results for K-
means on data with skewed class distributions are presented.

23.2.2.1 K-Means: The Uniform Effect

One of the unique characteristic of K-means clustering is the so-called uniform effect; that
is, K-means tends to produce clusters with relatively uniform sizes [64]. The coefficient of vari-
ation (CV ) [10], a statistic which measures the dispersion degree of a random distribution, is
used to quantify the uniform effect. CV is defined as the ratio of the standard deviation to the
mean. Given a sample of data objects X = {x1,x2, . . . ,xn}, CV = s/x̄, where x̄ = ∑n

i=1 xi/n and
s =

√
∑n

i=1(xi− x̄)2/(n− 1). CV is a dimensionless number that allows the comparison of the
variations of populations that have significantly different mean values. In general, the larger the CV
value is, the greater the variability in the data.

Example. Let CV0 denote the CV value of the “true” class sizes and CV1 denote the CV value
of the resultant cluster sizes. The sports data set [59] is used to illustrate the uniform effect by
K-means. The “true” class sizes of sports have CV0 = 1.02. Then the CLUTO implementation of
K-means [27] with default settings is employed to cluster sports into seven clusters, and the CV
value of the resultant cluster sizes is 0.42. Therefore, the CV difference is DCV =CV1−CV0 =−0.6,
which indicates a significant uniform effect in the clustering result.

Indeed, it has been empirically validated that the 95% confidence interval of CV1 values pro-
duced by K-means is in [0.09, 0.85] [61]. In other words, for data sets with CV0 values greater than
0.85, the uniform effect of K-means can distort the cluster distribution significantly.

Now the question is: Can these widely used validation measures capture the negative uniform
effect by K-means clustering? Next, a necessary but not sufficient criterion is provided to testify
whether a validation measure can be effectively used to evaluate K-means clustering.
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TABLE 23.3: Two Clustering Results
I C1 C2 C3 C4 C5

P1 10 0 0 0 0
P2 10 0 0 0 0
P3 10 0 0 0 0
P4 0 0 0 10 0
P5 0 2 6 0 2

II C1 C2 C3 C4 C5

P1 27 0 0 2 0
P2 0 2 0 0 0
P3 0 0 6 0 0
P4 3 0 0 8 0
P5 0 0 0 0 2

23.2.2.2 A Necessary Selection Criterion

Assume that there is a sample document data containing 50 documents from 5 classes. The class
sizes are 30, 2, 6, 10 and 2. Thus, CV0 = 1.166, which implies a skewed class distribution.

For this sample data set, assume that there are two clustering results as shown in Table 23.3.
In the table, the first result consists of five clusters with extremely balanced sizes. This is also
indicated by CV1 = 0. In contrast, for the second result, the five clusters have varied cluster sizes
with CV1 = 1.125, much closer to the CV value of the “true” class sizes. Therefore, from a data
distribution point of view, the second result should be better than the first one.

Indeed, by taking a closer look on contingency Matrix I in Table 23.3, one can find that the first
clustering partitions the objects of the largest class C1 into three balanced subclusters. Meanwhile,
the two small classes C2 and C5 have totally “disappeared”—they are overwhelmed in cluster P5 by
the objects from class C3. In contrast, it is easy to identify all the classes in the second clustering
result, since they have the majority of objects in the corresponding clusters. Therefore, it is the
conclusion that the first clustering is indeed much worse than the second one.

As shown in Section 23.2.2.1, K-means tends to produce clusters with relatively uniform sizes.
Thus the first clustering in Table 23.3 can be regarded as the negative result of the uniform effect. So
the first necessary but not sufficient criterion for selecting the measures for K-means is as follows.

Criterion 1 If an external validation measure cannot capture the uniform effect by K-means on
data with skewed class distributions, this measure is not suitable for validating the results of K-
means clustering.

The performance of existing external cluster validation measures for this criterion is presented
in next section.

23.2.2.3 The Cluster Validation Results

Table 23.4 shows the validation results for the two clusterings in Table 23.3 by all 13 external
validation measures. The better evaluation of each validation measure is highlighted.

As shown in Table 23.4, only three measures, E , P, and MI, cannot capture the uniform effect
by K-means and their validation results can be misleading. In other words, these measures are
not suitable for evaluating the K-means clustering. These three measures are defective validation
measures.

TABLE 23.4: The Cluster Validation Results
E P F MI V I R J FM Γ Γ′ MS ε V D

I 0.274 0.920 0.617 1.371 1.225 0.732 0.375 0.589 0.454 0.464 0.812 0.480 0.240
II 0.396 0.9 0.902 1.249 0.822 0.857 0.696 0.821 0.702 0.714 0.593 0.100 0.100
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23.2.2.4 The Issues with the Defective Measures

First, the problem of the entropy measure lies in the fact that it cannot evaluate the integrity
of the classes since E = −∑i pi ∑ j

pi j
pi

log
pi j
pi
. If a random variable view on cluster P and class C

is taken, then pi j = ni j/n is the joint probability of the event: {P = Pi
∧

C =Cj}, and pi = ni·/n is
the marginal probability. Therefore, E = ∑i pi ∑ j−p(Cj|Pi) log p(Cj|Pi) = ∑i piH(C|Pi) = H(C|P),
where H(·) is the Shannon entropy [8]. The above implies that the entropy measure is nothing but
the conditional entropy of C on P. In other words, if the objects in each large partition are mostly
from the same class, the entropy value tends to be small (indicating a better clustering quality). This
is usually the case for K-means clustering on highly imbalanced data sets, since K-means tends to
partition a large class into several pure subclusters. This leads to the problem that the integrity of the
objects from the same class has been damaged. The entropy measure cannot capture this information
and penalize it.

The mutual information is strongly related to the entropy measure, which is illustrated by the
following lemma.

Lemma 23.2.1 The mutual information measure is equivalent to the entropy measure for cluster
validation.
PROOF. By information theory, MI = ∑i ∑ j pi j log

pi j
pi p j

= H(C)−H(C|P) = H(C)−E . Since H(C)

is a constant for any given data set, MI is essentially equivalent to E . �
The purity measure works in a similar fashion as the entropy measure. That is, it measures the

“purity” of each cluster by the ratio of the objects from the majority class. Thus, it has the same
problem as the entropy measure for evaluating K-means clustering.

In summary, entropy, purity, and mutual information are defective measures for validating K-
means clustering.

23.2.2.5 Improving the Defective Measures

In this section, the improved versions of the above three defective measures entropy, mutual
information, and purity are provided.

Lemma 23.2.2 The Variation of Information measure is an improved version of the entropy mea-
sure.
PROOF. Cluster P and class C can be viewed as two random variables, and it has been shown that
VI = H(C) +H(P)− 2MI = H(C|P) +H(P|C) [42]. The component H(C|P) is nothing but the
entropy measure, and the component H(P|C) is a valuable supplement to H(C|P). That is, H(P|C)
evaluates the integrity of each class along different clusters. �

Since MI is equivalent to E according to Lemma 23.2.1, therefore, VI is also an improved
version of MI.

Lemma 23.2.3 The van Dongen criterion is an improved version of the purity measure.
PROOF. VD =

2n−∑i max j ni j−∑ j maxi ni j
2n = 1− 1

2 P− ∑ j maxi ni j
2n . Apparently, ∑ j maxi ni j/n reflects the

integrity of the classes and is a supplement to the purity measure. �

23.2.3 Measure Normalization

In this section, discussions on the importance of measure normalization and the normalization
solutions of different measures are presented.
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23.2.3.1 Normalizing the Measures

Generally speaking, normalizing techniques can be divided into two categories. One is based on
a statistical view, which formulates a baseline distribution to correct the measure for randomness.
A clustering can then be termed “valid” if it has an unusually high or low value, as measured with
respect to the baseline distribution. The other technique uses the minimum and maximum values
to normalize the measure into the [0,1] range. From a statistical view, it is equivalent to view this
technique with the assumption that each measure takes a uniform distribution over the value interval.

The Normalizations of R, FM, Γ, Γ′, J, and MS. The normalization scheme can take the form:

Sn =
S−E(S)

max(S)−E(S)
(23.1)

where max(S) is the maximum value of the measure S and E(S) is the expected value of S based on
the baseline distribution. Some measures derived from the statistics community, such as R, FM, Γ,
and Γ′, usually take this scheme.

Specifically, Hubert and Arabie (1985) [24] suggested using the multivariate hypergeometric
distribution as the baseline distribution in which the row and column sums are fixed in Table 23.2,
but the partitions are randomly selected. This determines the expected value as follows:

E(∑
i
∑

j

(
ni j

2

)
) =

∑i

(ni·
2

)
∑ j

(n· j
2

)

(n
2

) (23.2)

Based on this value, it is easy to compute the expected values of R, FM, Γ, and Γ′ since they
are the linear functions of ∑i ∑ j

(ni j
2

)
under the hypergeometric distribution assumption. Further-

more, although the exact maximum values of the measures are computationally prohibited under
the hypergeometric distribution assumption, it is still reasonable to approximate them by 1. Then,
according to Equations (23.1) and (23.2), the normalized R, FM, Γ, and Γ′ measures can be calcu-
lated as shown in Table 23.5.

The normalization of J and MS is a little bit complex, since they are not linear to ∑i ∑ j

(ni j
2

)
.

Nevertheless, one can still normalize the equivalent measures converted from them. Let J′ = 1−J
1+J =

2
1+J − 1 and MS′ = MS2.

It is easy to show J′ ⇔ J and MS′ ⇔ MS. Then, based on the hypergeometric distribution as-
sumption, the normalized J′ and MS′ can be calculated as shown in Table 23.5. Since J′ and MS′ are

TABLE 23.5: The Normalized Measures
Measure Normalization

1 Rn (m−m1m2/M)/(m1/2+m2/2−m1m2/M)
2 FMn (m−m1m2/M)/(

√
m1m2−m1m2/M)

3 Γn (mM−m1m2)/
√

m1m2(M−m1)(M−m2)
4 Γ′n (m−m1m2/M)/(m1/2+m2/2−m1m2/M)
5 J′n (m1 +m2− 2m)/(m1 +m2− 2m1m2/M)
6 MS′n (m1 +m2− 2m)/(m1 +m2− 2m1m2/M)

7 VIn 1+ 2 ∑i ∑ j pi j log(pi j/pi p j)

(∑i pi log pi+∑ j p j log p j)

8 VDn
(2n−∑i max j ni j−∑ j maxi ni j)

(2n−maxi ni·−max j n· j)
9 Fn (F−F−)/(1−F−)

10 εn (1− 1
n maxσ ∑ j nσ( j), j)/(1− 1/max(K,K′))

Note: (1) m = ∑i, j

(ni j
2

)
, m1 = ∑i

(ni·
2

)
, m2 = ∑ j

(n· j
2

)
, M =

(n
2

)
.

(2) pi = ni·/n, p j = n· j/n, pi j = ni j/n.
(3) Refer to Table 23.1 for F , and Procedure 1 for F−.
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negative measures—a lower value implies a better clustering—they are normalized by modifying
Equation (23.1) as Sn = (S−min(S))/(E(S)−min(S)).

Finally, there are some interrelationships between these measures as follows.

Proposition 23.2.1
(1) (Rn ≡ Γ′n)⇔ (J′n ≡MS′n)
(2) Γn ≡ Γ

The above proposition indicates that the normalized Hubert Γ statistic I (Γn) is the same as Γ.
Also, the normalized Rand statistic (Rn) is the same as the normalized Hubert Γ statistic II (Γ′n). In
addition, the normalized Rand statistic (Rn) is equivalent to J′n, which is the same as MS′n. There-
fore, there are only three independent normalized measures, Rn, FMn, and Γn, needed for further
study. The proposition can be easily proved by mathematical transformation, and due to the space
limitation, the proof is omitted.

The Normalizations of VI and VD. Another normalization scheme is formalized as

Sn =
S−min(S)

max(S)−min(S)
(23.3)

Some measures, such as VI and VD, often take this scheme. However, to know the exact maximum
and minimum values is often impossible. So it usually turns to a reasonable approximation, e.g., the
upper bound for the maximum or the lower bound for the minimum.

When the cluster structure matches the class structure perfectly, VI = 0. So, min(VI) = 0. How-
ever, finding the exact value of max(VI) is computationally infeasible. Meila [42] suggested using
2 logmax(K,K′) to approximate max(V I), so the normalized V I is V I

2 logmax(K,K′) .
The VD in Table 23.1 can be regarded as a normalized measure. In this measure, 2n has been

taken as the upper bound [60], and min(VD) = 0.
However, the above normalized VI and VD cannot well capture the uniform effect of K-means,

because the proposed upper bound for VI or V D is not tight enough. Two new tighter upper bounds
are introduced as follows.

Lemma 23.2.4 Let random variables C and P denote the class and cluster sizes, respectively, and
H(·) be the entropy function; then VI ≤ H(C)+H(P)≤ 2logmax(K′,K).

Lemma 23.2.4 gives a tighter upper bound H(C)+H(P) than 2 logmax(K′,K) which was pro-
vided by Meila [42]. With this new upper bound, the normalized V In can be calculated as shown
in Table 23.5. In addition, if H(P)/2+H(C)/2 is used as the upper bound to normalize mutual
information, the VIn can be equivalent to the normalized mutual information MIn (VIn +MIn = 1).

Lemma 23.2.5 Let ni·, n· j , and n be the values in Table 23.2, then VD ≤ (2n − maxi ni· −
max j n· j)/2n≤ 1.

Due to space limitations, the proofs are omitted. The above two lemmas imply that the tighter
upper bounds of VI and VD are the functions of the class and cluster sizes. Using these two new
upper bounds, the normalized VIn and VDn can be derived as in Table 23.5.

The Normalization of F and ε have seldom been discussed in the literature. Since max(F) = 1,
now the goal is to find a tight lower bound for F , which can be found by Procedure 1.

With Procedure 1, the following lemma can find a lower bound for F .

Lemma 23.2.6 Given F− computed by Procedure 1, F ≥ F−.
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Procedure 1: The computation of F−.
1: Let n∗ = maxi ni·.
2: Sort the class sizes so that n·[1] ≤ n·[2] ≤ ·· · ≤ n·[K′].
3: Let a j = 0, for j = 1,2, · · · ,K′.
4: for j = 1 : K′
5: if n∗ ≤ n·[ j], a j = n∗, break.
6: else a j = n·[ j], n∗ ← n∗ − n·[ j].
7: F− = (2/n)∑K′

j=1 a j/(1+maxi ni·/n·[ j]).

PROOF. It is easy to show

F =∑
j

n· j
n

max
i

2ni j

ni·+ n· j
≥ 2

n
max

i
∑

j

ni j

ni·/n· j + 1
(23.4)

Consider an optimization problem as follows:

min
xi j

∑
j

xi j

ni·/n· j + 1

s.t. ∑
j

xi j = ni·; ∀ j, xi j ≤ n· j; ∀ j, xi j ∈ Z+

For this optimization problem, to have the minimum objective value, as many objects as possible
need to be assigned to the cluster with highest ni·/n· j + 1, or equivalently, with smallest n· j. Let
n·[0] ≤ n·[1] ≤ ·· · ≤ n·[K′] where the virtual n·[0] = 0, and assume ∑l

j=0 n·[ j] < ni· ≤ ∑l+1
j=0 n·[ j], l ∈

{0,1, · · · ,K′ − 1}. The optimal solution is given as

xi[ j] =

⎧
⎪⎪⎨

⎪⎪⎩

n·[ j], 1≤ j ≤ l

ni· −∑l
k=1 n·[k], j = l + 1

0, l + 1 < j ≤ K′

Therefore, according to (23.4), F ≥ 2
n maxi ∑K′

j=1
xi[ j]

ni·/n·[ j]+1 .

Let Fi =
2
n ∑K′

j=1
xi[ j]

ni·/n·[ j]+1 = 2
n ∑K′

j=1
xi[ j]/ni·

1/n·[ j]+1/ni· . Denote “xi[ j]/ni·” by “yi[ j]”, and “ 1
1/n·[ j]+1/ni· ” by

“pi[ j]”, then Fi =
2
n ∑K′

j=1 pi[ j]yi[ j]. Next, it remains to show

argmax
i

Fi = argmax
i

ni·

Assume ni· ≤ ni′·, and for some l, ∑l
j=0 n·[ j] < ni· ≤ ∑l+1

j=0 n·[ j], l ∈ {0,1, · · · ,K′ − 1}. This implies
that

yi[ j]

{ ≥ yi′[ j], 1≤ j ≤ l

≤ yi′[ j], l + 1 < j ≤ K′

Since ∑K′
j=1 yi[ j] =∑K′

j=1 yi′[ j] = 1 and j ↑ ⇒ pi[ j] ↑, thus ∑K′
j=1 pi[ j]yi[ j]≤∑K′

j=1 pi[ j]yi′[ j]. Furthermore,
according to the definition of pi[ j], pi[ j] ≤ pi′[ j], ∀ j ∈ {1, · · · ,K′}. Therefore,

Fi =
2
n

K′

∑
j=1

pi[ j]yi[ j] ≤
2
n

K′

∑
j=1

pi[ j]yi′[ j] ≤
2
n

K′

∑
j=1

pi′[ j]yi′[ j] = F ′i

which implies that ni· ≤ ni′· is the sufficient condition for Fi ≤ F ′i . Therefore, by Procedure 1, F− =
maxi Fi, which finally leads to F ≥ F−. �
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Therefore, Fn = (F−F−)/(1−F−), as listed in Table 23.5. Finally, the following lemma pro-
vides an upper bound of ε.

Lemma 23.2.7 Given K′ ≤ K, ε≤ 1− 1/K.
PROOF. Assume σ1 : {1, · · · ,K′} → {1, · · · ,K} is the optimal mapping of the classes to different
clusters, i.e.,

ε = 1− ∑K′
j=1 nσ1( j), j

n

Then construct a series of mappings σs : {1, · · · ,K′} &→ {1, · · · ,K} (s = 2, · · · ,K) which satisfy

σs+1( j) = mod(σs( j),K)+ 1, ∀ j ∈ {1, · · · ,K′}
where “mod(x,y)” returns the remainder of positive integer x divided by positive integer y. By
definition, σs (s = 2, · · · ,K) can also map {1, · · · ,K′} to K′ different indices in {1, · · · ,K} as σ1.
More importantly, ∑K′

j=1 nσ1( j), j ≥ ∑K′
j=1 nσs( j), j, ∀s = 2, · · · ,K, and ∑K

s=1 ∑K′
j=1 nσs( j), j = n. There-

fore, ∑K′
j=1 nσ1( j), j ≥ n

K , which implies ε≤ 1− 1/K. The proof is completed. �

Therefore, 1− 1/K can be used as the upper bound of ε, and the normalized εn is shown in
Table 23.5.

23.2.3.2 The DCV Criterion

In this section, some experiments are presented to show the importance of DCV (CV1−CV0) for
selecting validation measures.

Experimental Data Sets. Some synthetic data sets were generated as follows. Assume there is
a two-dimensional mixture of two Gaussian distributions. The means of the two distributions are
[-2,0] and [2,0]. And their covariance matrices are exactly the same as [σ2 0; 0 σ2].

Therefore, given any specific value of σ2, one can generate a simulated data set with 6000
instances, n1 instances from the first distribution, and n2 instances from the second one, where
n1 + n2 = 6000. To produce simulated data sets with imbalanced class sizes, set a series of n1

values: {3000, 2600, 2200, 1800, 1400, 1000, 600, 200}. If n1 = 200, n2 = 5800, the data set is
highly imbalanced with CV0 = 1.320. For each mixture model, 8 simulated data sets were generated
with CV0 ranging from 0 to 1.320. Further, to produce data sets with different clustering tendencies,
set a series of σ2 values: {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. As σ2 increases, the mixture model
tends to be more unidentifiable. Finally, for each pair of σ2 and n1, the sampling was repeated 10
times to have the average performance evaluation. In summary, 8× 10× 10 = 800 data sets were
produced. Figure 23.1 shows a sample data set with n1 = 1000 and σ2 = 2.5.

A sampling on a real-world data set hitech was also conducted to get some sample data sets
with imbalanced class distributions. This data set was derived from the San Jose Mercury news-
paper articles [59], which contains 2301 documents about computers, electronics, health, medical,
research, and technology. Each document is characterized by 126373 terms, and the class sizes are
485, 116, 429, 603, 481, and 187. Carefully setting the sampling ratio for each class, 8 sample data
sets were extracted with the class-size distributions (CV0) ranging from 0.490 to 1.862, as shown in
Table 23.6. For each data set, the sampling was repeated 10 times to observe the averaged clustering
performance.

Experimental Tools. The MATLAB 7.1 [40] and CLUTO 2.1.2 [27] implementations of K-
means were employed for the experiment. The MATLAB version with the squared Euclidean dis-
tance is suitable for low-dimensional and dense data sets, while CLUTO with the cosine similarity
is used to handle high-dimensional and sparse data sets. Note that the number of clusters, i.e., K,
was set to match the number of “true” classes.

The Application of Criterion 1. Here, how Criterion 1 can be applied for selecting measures is
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FIGURE 23.1 (See color insert): A simulated data set (n1 = 1000, σ2 = 2.5).

presented. As pointed out in Section 23.2.2.1, K-means tends to have the uniform effect on imbal-
anced data sets. This implies that for data sets with skewed class distributions, the clustering results
by K-means tend to be away from “true” class distributions.

To further illustrate this, take a look at Figure 23.2(a) of the simulated data sets. As can be seen,
for the extreme case of σ2 = 5, the DCV values decrease as the CV0 values increase. Note that DCV
values are usually negative since K-means tends to produce clustering results with relative uniform
cluster sizes (CV1 < CV0). This means that when data become more skewed, the clustering results
by K-means tend to be worse. Therefore, the selection of measures can be done by observing the
relationship between the measures and the DCV values. As the DCV values go down, the good
measures are expected to show worse clustering performances. In this experiment, the MATLAB
version of K-means was applied.

A similar trend can be found in Figure 23.2(b) of the sampled data sets. That is, as the CV0

values go up, the DCV values decrease, which implies worse clustering performances. Indeed, DCV
is a good indicator for finding the measures which cannot capture the uniform effect by K-means
clustering. In this experiment, the CLUTO version of K-means clustering was applied.

In Section 23.2.4, the Kendall’s rank correlation is used (κ) [30] to measure the relationships
between external validation measures and DCV. Note that, κ ∈ [−1,1]. κ = 1 indicates a perfect
positive rank correlation, whereas κ =−1 indicates an extremely negative rank correlation.

TABLE 23.6: The Sizes of the Sampled Data Sets
Data Set 1 2 3 4 5 6 7 8
Class 1 100 90 80 70 60 50 40 30
Class 2 100 90 80 70 60 50 40 30
Class 3 100 90 80 70 60 50 40 30
Class 4 250 300 350 400 450 500 550 600
Class 5 100 90 80 70 60 50 40 30
Class 6 100 90 80 70 60 50 40 30

CV0 0.49 0.686 0.88 1.078 1.27 1.47 1.666 1.862
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FIGURE 23.2: Relationship of CV0 and DCV .

23.2.3.3 The Effect of Normalization

The importance of measure normalization is presented in this section. Along this line, K-means
clustering is first applied on the simulated data sets with σ2 = 5 and the sampled data sets from
hitech. Then, both unnormalized and normalized measures are used for cluster validation. Finally,
the rank correlation between DCV and the measures are computed and the results are shown in
Table 23.7.

As can be seen in the table, if the unnormalized measures are used to do cluster validation, only
three measures, namely R, Γ, Γ′, have strong consistency with DCV on both groups of data sets. VI,
VD and MS even show strong conflict with DCV on the sampled data sets, since their κ values are
all close to−1 on sampled data. In addition, notice that F , ε, J, and FM show weak correlation with
DCV .

Table 23.7 shows the rank correlations between DCV and the normalized measures. As can be
seen, all the normalized measures show perfect consistency with DCV except for Fn and εn. This
indicates that the normalization is crucial for evaluating K-means clustering. The proposed bounds
for the measures are tight enough to capture the uniform effect in the clustering results.

In Table 23.7, it can be observed that both Fn and εn are not consistent with DCV . This indi-
cates that normalization does not help F and ε too much. The reason is that the proposed lower
bound for F and upper bound for ε are not very tight. Indeed, the normalizations of F and ε are
very challenging due to the fact that they both exploit relatively complex optimization schemes in

TABLE 23.7: The Correlation between DCV and the Validation Measures
κ VI VD MS ε F R J FM Γ Γ′

Simulated Data -0.71 0.79 -0.79 1.00 1.00 1.00 0.91 0.71 1.00 1.00
Sampled Data -0.93 -1.00 -1.00 0.50 0.21 1.00 0.50 -0.43 0.93 1.00

κ VIn VDn MS′n εn Fn Rn J′n FMn Γn Γ′n
Simulated Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sampled Data 1.00 1.00 1.00 0.50 0.79 1.00 1.00 1.00 0.93 1.00

Note: Poor or even negative correlations have been highlighted by the bold and italic fonts.
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the computations. As a result, it is not easy to compute the expected values from a multivariate
hypergeometric distribution perspective, and it is also difficult to find tighter bounds.

Nevertheless, the above experiments show that the normalization is very valuable. In addition,
Figure 23.3 shows the cluster validation results of the measures on all the simulated data sets with
σ2 ranging from 0.5 to 5. It is clear that the normalized measures have much wider value range than
the unnormalized ones along [0, 1]. This indicates that the values of normalized measures are more
spread in [0, 1].

In summary, to compare cluster validation results across different data sets, normalized measures
should be used.

23.2.4 Measure Properties

Measure properties, which can serve as the guidance for the selection of measures, are investi-
gated in this section.

23.2.4.1 The Consistency Between Measures

Here, the consistency between a pair of measures is defined as the similarity between their
rankings on a series of clustering results. The similarity is measured by the Kendall’s rank correla-
tion. And the clustering results are produced by the CLUTO version of K-means clustering on 29
benchmark real-world data sets listed in Table 23.8. In the experiment, for each data set, the cluster
number is set to be the same as the “true” class number.

Figures 23.4(a) and 23.4(b) show the correlations between the unnormalized and normalized
measures, respectively. One interesting observation is that the normalized measures have a much
stronger consistency than the unnormalized measures. For instance, the correlation between VI and
R is merely−0.21, but it reaches 0.74 for the corresponding normalized measures. This observation
indeed implies that the normalized measures tend to give more robust validation results, which also
agrees with previous analysis.

According to the colors in Figure 23.4(b) on the normalized measures, it can be roughly found
that Rn, Γ′n, J′n, MS′n, FMn, and Γn are more similar to one another, while VDn, Fn, VIn, and εn

show inconsistency with others in varying degrees. To gain the precise understanding, a hierarchical
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FIGURE 23.4 (See color insert): Correlations of the measures.

clustering on the measures is performed by using their correlation matrix. The resultant hierarchy
can be found in Figure 23.5 (“s” means the similarity). As mentioned before, Rn, Γ′n, J′n, and MS′n are
equivalent, so they have perfect correlation with one another and form the first group. The second
group contains FMn and Γn. These two measures behave similarly, and have just slightly weaker
consistency with the measures in the first group. Finally, VDn, Fn, εn, and VIn have obviously weaker
consistency with other measures in a descending order.

Furthermore, the data sets in Table 23.8 are divided into two repositories to explore the source
of the inconsistency among the measures, where R1 contains data sets with CV0 < 0.8, and R2

contains the rest. After computing the correlation matrices of the measures on the two repositories
(denoted by M(R1) and M(R2)), their difference (M(R1)−M(R2)) can be calculated as shown in
Table 23.9. As can be seen, roughly speaking, all the measures except VIn show weaker consistency
with one another on data sets in R2. In other words, while VIn acts in the opposite way, most
measures tend to disagree with one another on data sets with highly imbalanced classes.

Rn Γ′
n J ′

n MS′
n FMn V InεnFnV DnΓn

s=1 s=0.98

s=0.95
s=0.89

s=0.85
s=0.77

s=0.75

FIGURE 23.5: The measure similarity hierarchy.
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TABLE 23.8: The Benchmark Data Sets
Data Set Source #Class #Case #Feature CV0

cacmcisi CA/CI 2 4663 41681 0.53
classic CA/CI 4 7094 41681 0.55

cranmed CR/ME 2 2431 41681 0.21
fbis TREC 17 2463 2000 0.96

hitech TREC 6 2301 126373 0.50
k1a WebACE 20 2340 21839 1.00
k1b WebACE 6 2340 21839 1.32
la1 TREC 6 3204 31472 0.49
la2 TREC 6 3075 31472 0.52

la12 TREC 6 6279 31472 0.50
mm TREC 2 2521 126373 0.14

ohscal OHSUMED 10 11162 11465 0.27
re0 Reuters 13 1504 2886 1.50
re1 Reuters 25 1657 3758 1.39

sports TREC 7 8580 126373 1.02
tr11 TREC 9 414 6429 0.88
tr12 TREC 8 313 5804 0.64
tr23 TREC 6 204 5832 0.93
tr31 TREC 7 927 10128 0.94
tr41 TREC 10 878 7454 0.91
tr45 TREC 10 690 8261 0.67
wap WebACE 20 1560 8460 1.04

DLBCL KRBDSR 3 77 7129 0.25
Leukemia KRBDSR 7 325 12558 0.58

LungCancer KRBDSR 5 203 12600 1.36
ecoli UCI 8 336 7 1.16

pageblocks UCI 5 5473 10 1.95
letter UCI 26 20000 16 0.03

pendigits UCI 10 10992 16 0.04
MIN - 2 77 7 0.03
MAX - 26 20000 126373 1.95

Note: CA-CACM, CI-CISI, CR-CRANFIELD, ME-MEDLINE.

TABLE 23.9: M(R1)−M(R2)
Rn FMn Γn VDn Fn εn V In

Rn 0.00 0.09 0.13 0.08 0.10 0.26 -0.01
FMn 0.09 0.00 0.04 0.00 0.10 0.22 -0.10

Γn 0.13 0.04 0.00 0.04 0.14 0.22 -0.06
VDn 0.08 0.00 0.04 0.00 0.05 0.20 -0.18

Fn 0.10 0.10 0.14 0.05 0.00 0.08 -0.08
εn 0.26 0.22 0.22 0.20 0.08 0.00 0.04

VIn -0.01 -0.10 -0.06 -0.18 -0.08 0.04 0.00

23.2.4.2 Properties of Measures

In this section, some key properties of external clustering validation measures are discussed.
The Sensitivity. The measures have different sensitivity to the clustering results. It can be illus-

trated by an example. For two clustering results in Table 23.10, the differences between them are
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TABLE 23.10: Two Clustering Results
I C1 C2 C3 ∑

P1 3 4 12 19
P2 8 3 12 23
P3 12 12 0 24
∑ 23 19 24 66

II C1 C2 C3 ∑
P1 0 7 12 19
P2 11 0 12 23
P3 12 12 0 24
∑ 23 19 24 66

TABLE 23.11: The Cluster Validation Results
Rn FMn Γn VDn Fn εn V In

I 0.16 0.16 0.16 0.71 0.32 0.77 0.78
II 0.24 0.24 0.24 0.71 0.32 0.70 0.62

the numbers in bold. Validation results of the measures on these two clusterings are shown in Ta-
ble 23.11. As can be seen, all the measures show different validation results for the two clusterings
except for VDn and Fn. This implies that VDn and Fn are less sensitive than other measures. This is
due to the fact that both VDn and Fn use maximum functions, which may lose some information in
the contingency matrix. Furthermore, VIn is the most sensitive measure, since the difference of VIn

values for the two clusterings is the largest.
Impact of the Number of Clusters. The impact of the number of clusters on the validation

measures is evaluated on data set la2 in Table 23.8. Here, the cluster number ranges from 2 to 15.
As shown in Figure 23.6, the measurement values for all the measures will change as the cluster
numbers increase. However, the normalized measures including VIn, VDn, and Rn can capture the
same optimal cluster number 5. Similar results can also be observed for other normalized measures,
such as Fn, FMn, and Γn.

Property 23.2.1 (n-Invariance) For a contingence matrix M and a positive integer λ, a measure O
is n-invariant, if O(λM) = O(M), where n is the number of objects.

A Summary of Math Properties. Five math properties of measures are listed as follows (see
Table 23.12). Due to space limitation, the proofs are omitted here.

Property 23.2.2 (Symmetry) A measure O is symmetric, if O(MT ) = O(M) for any contingence
matrix M.
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TABLE 23.12: Math Properties of Measures
Fn VIn VDn εn Rn FMn Γn

P1 No Yes Yes Yes** Yes Yes Yes
P2 Yes Yes Yes Yes No No No
P3 Yes* Yes* Yes* Yes* No No No
P4 No Yes Yes No No No No
P5 Yes Yes Yes Yes Yes Yes Yes
Note: Yes* — Yes for the unnormalized measures.

Yes** — Yes for K = K′.

The symmetry property treats the predefined class structure as one of the partitions. Therefore,
the task of cluster validation is the same as the comparison of partitions. This means transposing
two partitions in the contingency matrix should not bring any difference to the measure value. This
property is not true for Fn which is a typical measure in asymmetry. Also, εn is symmetric if and
only if K = K′.

Intuitively, a mathematically sound validation measure should satisfy the n-invariance property.
However, three measures, namely, Rn, FMn, and Γn cannot fulfill this requirement. Nevertheless,
they can still be treated as the asymptotically n-invariant measures, since they tend to be n-invariant
with the increase of n.

Property 23.2.3 (Convex additivity) Let P = {P1, · · · , PK} be a clustering, P′ be a refinement
of P1, and P′l be the partitioning induced by P′ on Pl. Then a measure O is convex additive, if
O(M(P,P′)) = ∑K

l=1
nl
n O(M(IPl ,P

′
l )), where nl is the number of data points in Pl, IPl represents the

partitioning on Pl into one cluster, and M(X ,Y ) is the contingency matrix of X and Y .

The convex additivity property was introduced by Meila [42]. It requires the measures to show
additivity along the lattice of partitions. Unnormalized measures including F , VD, VI, and ε
hold this property. However, none of the normalized measures studied in this chapter holds this
property.

Property 23.2.4 (Left-domain-completeness) A measure O is left-domain-complete, if for any
contingence matrix M with statistically independent rows and columns,

O(M) =

{
0, O is a positive measure
1, O is a negative measure

When the rows and columns in the contingency matrix are statistically independent, the poorest
values of the measures are expected to be seen, i.e., 0 for positive measures and 1 for negative
measures. Among all the measures, however, only VIn and VDn can meet this requirement.

Property 23.2.5 (Right-domain-completeness) A measure O is right-domain-complete, if for any
contingence matrix M with perfectly matched rows and columns,

O(M) =

{
1, O is a positive measure
0, O is a negative measure

This property requires measures to show optimal values when the class structure matches the
cluster structure perfectly. The above normalized measures hold this property.

1“P′ be a refinement of P” means P′ is the descendant node of node P in the lattice of partitions. See [42] for details.
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23.2.4.3 Discussions

In a nutshell, among 16 external validation measures shown in Table 23.1, it is first known
that Mirkin metric (M) is equivalent to Rand statistic (R), and micro-average precision (MAP) and
Goodman–Kruskal coefficient (GK) are equivalent to the purity measure (P) by observing their
computational forms. Therefore, the scope of the study reduces from 16 measures to 13 measures.
In Section 23.2.2, analysis shows that P, mutual information (MI), and entropy (E) are defective
measures for evaluating K-means clustering. Also, it is proved that variation of information (VI) is
an improved version of MI and E , and van Dongen criterion (VD) is an improved version of P. As
a result, the selection pool is further reduced to 10 measures.

In addition, as shown in Section 23.2.3, it is necessary to use the normalized measures for
evaluating K-means clustering, since the normalized measures can capture the uniform effect by
K-means and allow the evaluation of different clustering results on different data sets. Proposition
23.2.1 on page 579 shows that the normalized Rand statistic (Rn) is the same as the normalized
Hubert Γ statistic II (Γ′n). Also, the normalized Rand statistic is equivalent to J′n, which is the same as
MS′n. Therefore, only Rn needs further consideration and J′n, Γ′n as well as MS′n can be excluded. The
results in Section 23.2.3 show that the normalized F-measure (Fn) and classification error (εn) cannot
well capture the uniform effect by K-means. Also, these two measures do not satisfy some math
properties in Table 23.12. As a result, they are excluded as well. Now, there are only five normalized
measures left: VIn, VDn, Rn, FMn, and Γn. Figure 23.5 shows that the validation performances of
Rn, FMn, and Γn are very similar to each other. Therefore, only Rn needs to be considered.

Based on the above study, it is most suitable to use the normalized van Dongen criterion (VDn)
in most of the general cases, since V Dn has a simple computation form, satisfies all mathematically
sound properties as shown in Table 23.12, and can measure well on the data with imbalanced class
distributions. However, for the case that the clustering performances are hard to distinguish, one may
want to use the normalized variation of information (VIn) instead,2 since VIn has high sensitivity on
detecting the clustering changes. Finally, Rn can also be used as a complementary to the above two
measures.

23.3 Internal Clustering Validation Measures

In the literature, a number of internal validation measures for crisp clustering have been pro-
posed. In this section, an organized study on a suite of 12 widely used internal clustering validation
measures as shown in Table 23.13 are provided for different clustering algorithms. These measures
represent a good coverage of the internal validation measures available in different fields such as
data mining, information retrieval, machine learning, and statistics. The properties of these vali-
dation measures are investigated in six different aspects: monotonicity, noise, density, subclusters,
skewed distribution, and arbitrary shapes data. For each aspect, a synthetic data set which best rep-
resents the property is generated for studies. Results and discussions will be presented at the end
of this section. First, some basic concepts of internal clustering validation measures, as well as the
suite of 12 widely used internal clustering validation measures, are introduced.

23.3.1 An Overview of Internal Clustering Validation Measures

As the goal of clustering is to make objects within the same cluster similar and objects in dif-
ferent clusters distinct, internal validation measures are often based on the following two criteria
[57, 68, 33].

2Note that the normalized variation of information is equivalent to the normalized mutual information.
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TABLE 23.13: Internal Clustering Validation Measures.

Measure Definition

1 RMSSTD1 {∑i ∑x∈Ci
‖ x−ci ‖2/[P∑i(ni−1)]} 1

2

2 R-squared (RS) (∑x∈D ‖ x−c ‖2 −∑i ∑x∈Ci
‖ x−ci ‖2)/∑x∈D ‖ x−c ‖2

3 Modified Hubert Γ statistic (Γ) 2
n(n−1) ∑x∈D ∑y∈D d(x,y)dx∈Ci,y∈Cj(ci,c j)

4 Calinski-Harabasz index (CH) ∑i nid2(ci,c)/(NC−1)
∑i ∑x∈Ci

d2(x,ci)/(n−NC)

5 I index (I) ( 1
NC · ∑x∈D d(x,c)

∑i ∑x∈Ci
d(x,ci)

·maxi, j d(ci,c j))
p

6 Dunn’s indices (D) mini{min j(
minx∈Ci ,y∈C j d(x,y)

maxk{maxx,y∈Ck
d(x,y)} )}

7 Silhouette index (S) 1
NC ∑i{ 1

ni
∑x∈Ci

b(x)−a(x)
max[b(x),a(x)]}

a(x) = 1
ni−1 ∑y∈Ci,y 
=x d(x,y),b(x) = min j, j 
=i[

1
nj

∑y∈Cj
d(x,y)]

8 Davies-Bouldin index (DB) 1
NC ∑i max j, j 
=i{[ 1

ni
∑x∈Ci

d(x,ci)+
1
nj

∑x∈Cj
d(x,c j)]/d(ci,c j)}

9 Xie-Beni index (XB) [∑i ∑x∈Ci
d2(x,ci)]/[n·mini, j 
=id

2(ci,c j)]

10 SD validity index (SD) Dis(NCmax)Scat(NC)+Dis(NC)

Scat(NC) = 1
NC ∑i ‖ σ(Ci) ‖ / ‖ σ(D) ‖

Dis(NC) =
maxi, jd(ci,c j)
mini, jd(ci,c j)

∑i(∑ j d(ci,c j))
−1

11 S Dbw validity index (S Dbw) Scat(NC)+Dens bw(NC)

Dens bw(NC) = 1
NC(NC−1) ∑i[∑ j, j 
=i

∑x∈Ci
⋃

C j
f (x,ui j)

max{∑x∈Ci
f (x,ci),∑x∈C j

f (x,c j)} ]

12 CV NN2 index Sep(NC,k)/maxNC Sep(NC,k)+Com(NC)/maxNC Com(NC)

Com(NC) = ∑i[
2

ni·(ni−1)Σx,y∈Ci d(x,y)]

Sep(NC,k) = maxi(
1
ni

∑ j=1,2,...,ni

q j
k )

Note: D: data set; n: number of objects in D; c: center of D; P: attributes number of D;
NC: number of clusters; Ci: the ith cluster; ni: number of objects in Ci; ci: center of Ci;
k: number of nearest neighbors; q j: number of Ci’s jth object’s nearest neighbors which are not in cluster Ci;
σ(Ci): variance vector of Ci; d(x,y): distance between x and y; ‖ Xi ‖= (XT

i ·Xi)
1/2.

1RMSST D: Root-mean-square standard deviation.
2CV NN: Clustering Validation index based on Nearest Neighbors.

I. Compactness. This measures how closely related the objects in a cluster are. A group of
measures evaluates cluster compactness based on variance. Lower variance indicates better com-
pactness. In addition, numerous measures estimate the cluster compactness based on distance, such
as maximum or average pairwise distance, and maximum or average center-based distance.

II. Separation. This measures how distinct or well-separated a cluster is from other clusters.
For example, the pairwise distances between cluster centers and the pairwise minimum distances
between objects in different clusters are widely used as measures of separation. Also, measures
based on density are used in some indices.

The general procedure to determine the best partition and optimal cluster number of a set of
objects by using internal validation measures is as follows.

Step 1: Initialize a list of clustering algorithms which will be applied to the data set.
Step 2: For each clustering algorithm, use different combinations of parameters to get different

clustering results.
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Step 3: Compute the corresponding internal validation index of each partition which was ob-
tained in Step 2.

Step 4: Choose the best partition and the optimal cluster number according to the criteria.
Table 23.13 lists the measures to be studied in this section. The “Definition” column gives the

computation forms of the measures. While most indices, such as DB, XB, and S Dbw, consider both
of the evaluation criteria (compactness and separation) in the way of ratio or summation some such
as RMSSTD, RS, and Γ consider only one aspect. The 12 measures are briefly introduced as follows.

The root-mean-square standard deviation (RMSSTD) is the square root of the pooled sample
variance of all the attributes [51]. It measures the homogeneity of the formed clusters. R-squared
(RS) is the ratio of sum of squares between clusters to the total sum of squares of the whole data
set. It measures the degree of difference between clusters [51, 19]. The Modified Hubert Γ statistic
(Γ) [25] evaluates the difference between clusters by counting the disagreements of pairs of data
objects in two partitions.

The Calinski–Harabasz index (CH) [7] evaluates the cluster validity based on the average
between- and within-cluster sum of squares. Index I (I) [41] measures separation based on the
maximum distance between cluster centers, and measures compactness based on the sum of dis-
tances between objects and their cluster center. Dunn’s index (D) [11] uses the minimum pair-
wise distance between objects in different clusters as the intercluster separation and the maximum
diameter among all clusters as the intracluster compactness. These three indices take a form of
Index = (a·Separation)/(b ·Compactness), where a and b are weights. The optimal cluster num-
ber is determined by maximizing the value of these indices.

The Silhouette index (S) [49] validates the clustering performance based on the pairwise differ-
ence of between- and within-cluster distances. In addition, the optimal cluster number is determined
by maximizing the value of this index.

The Davies–Bouldin index (DB) [9] is calculated as follows. For each cluster C, the similarities
between C and all other clusters are computed, and the highest value is assigned to C as its cluster
similarity. Then the DB index can be obtained by averaging all the cluster similarities. The smaller
the index is, the better the clustering result is. By minimizing this index, clusters are the most distinct
from each other and, therefore, achieve the best partition. The Xie-Beni index (XB) [63] defines the
intercluster separation as the minimum square distance between cluster centers, and the intraclus-
ter compactness as the mean square distance between each data object and its cluster center. The
optimal cluster number is reached when the minimum of XB is found. Kim and Ramakrishna [32]
proposed indices DB∗∗ and XB∗∗ in 2005 as the improvements of DB and XB. The two improved
measures will be used in this study.

The idea of SD index (SD) [22] is based on the concepts of the average scattering and the total
separation of clusters. The first term evaluates compactness based on variances of cluster objects,
and the second term evaluates separation difference based on distances between cluster centers. The
SD index is the summation of these two terms, and the optimal number of clusters can be obtained
by minimizing the value of SD.

The S Dbw index (S Dbw) [20] takes density into account to measure the intercluster separation.
The basic idea is that for each pair of cluster centers, at least one of their densities should be larger
than the density of their midpoint. The intracluster compactness is the same as it is in SD. Similarly,
the index is the summation of these two terms and the minimum value of S Dbw indicates the
optimal cluster number.

Different from the existing measures, the Clustering Validation index based on Nearest Neigh-
bors (CVNN) [38] evaluates the intercluster separation based on objects that carry the geometrical
information of each cluster. Sharing the same idea with kNN consistency, CVNN uses dynamic
multiple objects as representatives for different clusters in different situations when measuring the
intercluster separation. If an object is located in the center of a cluster and is surrounded by objects
in the same cluster, it is well separated from other clusters and thus contributes little to the inter-
cluster separation; If an object is located at the edge of a cluster and is surrounded mostly by objects
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in other clusters, it connects to other clusters tightly and thus contributes a lot to the intercluster
separation. CVNN also employs the average pairwise distance between objects in the same cluster
as the measurement of intracluster compactness. Finally, the CV NN index takes a form of the sum-
mation of the intercluster separation and the intracluster compactness after the normalization for
both of them.

There are some other internal validation measures in the literature [50, 21, 58, 35]. However,
some have poor performance while some are designed for data sets with specific structures. Take
Composed Density between and within clusters index (CDbw) and Symmetry distance-based index
(Sym–index) for examples. It is hard for CDbw to find the representatives for each cluster, which
makes the result of CDbw unstable. On the other hand, Sym–index can handle only data sets which
are internally symmetrical. A focused study on the above mentioned 12 internal validation measures
will be presented in the following sections, and acronyms for these measures will be used.

23.3.2 Understanding of Internal Clustering Validation Measures

In this section, a study of the 12 internal validation measures mentioned in Section 23.3.1 is
presented to investigate the validation properties of different internal validation measures in differ-
ent aspects, which can be helpful for the index selection. If not mentioned, K-means is used [39]
(implemented by CLUTO) [27] as the clustering algorithm, and the parameter k is set to be 10 for
CVNN.

23.3.2.1 The Impact of Monotonicity

The monotonicity of different internal validation indices is studied in this subsection. K-means
algorithm is applied on the data set Wellseparated to get the clustering results for different numbers
of clusters. As shown in Figure 23.7, Wellseparated is a synthetic data set composed of 1000 data
objects, which are well separated into five clusters.

As the results shown in Table 23.14, the first three indices monotonically increase or decrease
as the cluster number NC increases. On the other hand, the remaining nine indices reach their max-
imum or minimum value as NC equals the true cluster number. There are certain reasons for the
monotonicity of the first three indices.

RMSSTD =
√

SSE/P(n−NC), and SSE (Sum of Square Error) decreases as NC increases. In
practice NC� n; thus, n−NC can be viewed as a constant number. Therefore, RMSSTD decreases

FIGURE 23.7: The data set Wellseparated.
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TABLE 23.14: Results of the Impact of Monotonicity, True NC = 5
RMSST D RS Γ CH I D S DB∗∗ SD S Dbw XB∗∗ CVNN

2 28.50 0.63 2973 1683 3384 0.49 0.61 0.72 0.22 61.84 0.27 1.00
3 20.80 0.80 3678 2016 5759 0.55 0.71 0.68 0.12 0.15 0.37 0.64
4 14.83 0.90 4007 2968 11230 0.58 0.83 0.52 0.08 0.06 0.50 0.38
5 3.20 0.99 4342 52863 106163 2.23 0.91 0.12 0.05 0.004 0.25 0.12
6 3.08 1.00 4343 45641 82239 0.03 0.72 0.52 0.50 0.07 35.10 0.74
7 2.96 1.00 4344 41291 68894 0.02 0.58 0.80 0.49 0.10 35.10 1.05
8 2.83 1.00 4346 38580 58420 0.01 0.48 1.02 0.54 0.08 36.51 1.11
9 2.72 1.00 4347 36788 50259 0.01 0.39 1.17 0.55 0.11 38.01 1.10

as NC increases. Also RS = (T SS−SSE)/TSS (TSS-Total Sum of Squares), and T SS = SSE+SSB
(SSB-Between group Sum of Squares) which is a constant number for a certain data set. Thus, RS
increases as NC increases.

From the definition of Γ, only data objects in different clusters will be counted in the equation.
As a result, if the data set is divided into two equal clusters, each cluster will have n/2 objects, and
n2/4 pairs of distances will be actually counted. If the data set is divided into three equal clusters,
each cluster will have n/3 objects, and n2/3 pairs of distances will be counted. Therefore, with the
increasing of the cluster number NC, more pairs of distances are counted, which makes Γ increase.

Looking further into these three indices, one can discover that they only take either separation
or compactness into account. (RS and Γ consider only separation, and RMSSTD considers only
compactness). As the property of monotonicity, the curves of RMSSTD, RS, and Γ will be either
upward or downward. It is claimed that the optimal cluster number is reached at the shift point of
the curves, which is also known as “the elbow” [19]. However, since the judgment of the shift point
is very subjective and hard to determine, these three measures are excluded from future studies. The
focus will be on the remaining 9 measures.

23.3.2.2 The Impact of Noise

The following study on the data set Wellseparated.noise evaluates the influence of noise on
internal validation indices. As shown in Figure 23.8, Wellseparated.noise is a synthetic data set
formulated by adding 5% noise to the data set Wellseparated. The cluster numbers selected by
indices are shown in Table 23.15. Results show that D and CH choose the wrong cluster number.
There are certain reasons that D and CH are significantly affected by noise.

D uses the minimum pairwise distance between objects in different clusters (minx∈Ci,y∈Cj d(x,y))
as the intercluster separation, and the maximum diameter among all clusters

FIGURE 23.8: The data set Wellseparated-noise.
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TABLE 23.15: Results of the Impact of Noise, True NC = 5
CH I D S DB∗∗ SD S Dbw XB∗∗ CVNN

2 1626 3213 0.0493 0.590 0.739 0.069 20.368 0.264 1.01
3 1846 5073 0.0574 0.670 0.721 0.061 0.523 0.380 0.69
4 2554 9005 0.0844 0.783 0.560 0.050 0.087 0.444 0.44
5 10174 51530 0.0532 0.870 0.183 0.045 0.025 0.251 0.19
6 14677 48682 0.0774 0.802 0.508 0.046 0.044 0.445 0.51
7 12429 37568 0.0682 0.653 0.710 0.055 0.070 0.647 0.92
8 11593 29693 0.0692 0.626 0.863 0.109 0.052 2.404 1.15
9 11088 25191 0.0788 0.596 0.993 0.121 0.056 3.706 0.98

(maxk{maxx,y∈Ck d(x,y)}) as the intracluster compactness. And the optimal number of clusters can
be obtained by maximizing the value of D. When noise is introduced, the intercluster separation can
decrease sharply since it uses only the minimum pairwise distance, rather than the average pairwise
distance, between objects in different clusters. Thus, the value of D may change dramatically and
the corresponding optimal cluster number will be influenced by the noise.

Since CH = (SSB/SSE)·((n−NC)/(NC− 1)) and ((n−NC)/(NC− 1)) is constant for the
same NC, only (SSB/SSE) needs to be considered. By introducing noise, SSE increases in a more
significant way compared with SSB. Therefore, for the same NC, CH will decrease by the influence
of noise, which makes the value of CH instable. Finally, the optimal cluster number will be affected
by noise.

Moreover, the indices other than CH and D will also be influenced by noise in a less sensitive
way. Comparing Table 23.15 with Table 23.14, it is clear that the values of other indices change
to some degree. If adding 20% noise to the data set Wellseparated, the optimal cluster number
suggested by I will also be incorrect. Thus, in order to minimize the adverse effect of noise, in
practice it is always good to remove noise before clustering.

23.3.2.3 The Impact of Density

A data set with various densities is challenging for many clustering algorithms. Therefore, it
is a very interesting topic whether data with different densities also affect the performance of the
internal validation measures. A study is conducted on a synthetic data set with different density

FIGURE 23.9: The data set Differentdensity.
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TABLE 23.16: Results of the Impact of Density, True NC = 3
CH I D S DB∗∗ SD S Dbw XB∗∗ CV NN

2 1172 120.1 0.0493 0.587 0.658 0.705 0.603 0.408 1.03
3 1197 104.3 0.0764 0.646 0.498 0.371 0.275 0.313 0.84
4 1122 93.5 0.0048 0.463 1.001 0.672 0.401 3.188 0.92
5 932 78.6 0.0049 0.372 1.186 0.692 0.367 3.078 1.22
6 811 59.9 0.0049 0.312 1.457 0.952 0.312 6.192 1.32
7 734 56.1 0.0026 0.278 1.688 1.192 0.298 9.082 1.28
8 657 44.8 0.0026 0.244 1.654 1.103 0.291 8.897 1.26
9 591 45.5 0.0026 0.236 1.696 1.142 0.287 8.897 1.59

named Differentdensity. Differentdensity has 650 data objects and the details are shown in Figure
23.9. The results listed in Table 23.16 show that only I selects the wrong optimal cluster number.

The reason I does not choose the right cluster number is not easy to explain. One can observe
that I keeps decreasing as cluster number NC increases. One possible reason is the uniform effect
of the K-means algorithm, which tends to divide objects into relatively equal sizes [64]. I measures
compactness based on the sum of distances between objects and their cluster center. When NC is
small, objects with high density are likely in the same cluster, which makes the sum of distances
remain almost the same. Since most of the objects are in one cluster, the total sum will not change
too much. Therefore, as NC increases, I will decrease since NC is in the denominator.

23.3.2.4 The Impact of Subclusters

Subclusters are clusters that are close to each other. Figure 23.10 shows a synthetic data set
Subcluster which contains five clusters, and four of them are subclusters since they can form two
pairs of clusters, respectively. The total number of data objects in Subcluster is 1000.

Results presented in Table 23.17 evaluate whether the internal validation measures can handle
data set with subclusters. For this data set, D, S, DB∗∗, SD, and XB∗∗ get the wrong optimal cluster
numbers, while I, CH, S Dbw, and CVNN have the correct ones. Intercluster separation is supposed
to have a sharp decrease when cluster number changes from NCoptimal to NCoptimal+1 [32]. However,
for D, S, DB∗∗, SD, and XB∗∗, sharper decreases can be observed at NC < NCoptimal . The reasons
are as follows.

FIGURE 23.10: The data set Subcluster.
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TABLE 23.17: Results of the Impact of Subclusters, True NC = 5
CH I D S DB∗∗ SD S Dbw XB∗∗ CVNN

2 3474 2616 0.7410 0.736 0.445 0.156 0.207 0.378 1.00
3 7851 5008 0.7864 0.803 0.353 0.096 0.056 0.264 0.54
4 8670 5594 0.0818 0.737 0.540 0.164 0.039 1.420 0.47
5 16630 9242 0.0243 0.709 0.414 0.165 0.026 1.215 0.43
6 14310 7021 0.0243 0.587 0.723 0.522 0.063 12.538 0.79
7 12900 5745 0.0167 0.490 0.953 0.526 0.101 12.978 1.26
8 11948 4803 0.0167 0.402 1.159 0.535 0.105 14.037 1.25
9 11354 4248 0.0107 0.350 1.301 0.545 0.108 14.858 1.06

S uses the average minimum distance between clusters as the intercluster separation. For a data
set with subclusters, the intercluster separation will achieve its maximum value when subclusters
close to each other are considered as one big cluster. Therefore, the wrong optimal cluster number
will be chosen due to subclusters. XB∗∗ uses the minimum pairwise distance between cluster centers
as the evaluation of separation. For a data set with subclusters, the measure of separation will achieve
its maximum value when subclusters close to each other are considered as a big cluster. As a result,
the correct cluster number will not be found by using XB∗∗. The reasons for D, SD, and DB∗∗ are
very similar to the reason of XB∗∗, which will not be elaborated here due to the limit of space.

23.3.2.5 The Impact of Skewed Distributions

It is common that clusters in a data set have unequal sizes. Figure 23.11 shows a synthetic
data set Skewdistribution with skewed distributions, which contains 1500 data objects. It consists
of one large cluster and two small ones. Since K-means has the uniform effect of tending to divide
objects into relatively equal sizes, it does not have a good performance when dealing with skewed
distributed data sets [65]. In order to demonstrate this statement, four widely used algorithms are
employed from four different categories: K-means (prototype-based), DBSCAN (density-based)
[12], Agglo (based on average-link, hierarchical) [26], and Chameleon (graph-based) [29]. Each
of them are applied on Skewdistribution to divide the data set into three clusters, which is the true
cluster number. As shown in Figure 23.12, K-means performs the worst while Chameleon is the
best.

FIGURE 23.11: The data set Skewdistribution.
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(d) Clustering by Chameleon

FIGURE 23.12: Clustering results on data set Skewdistribution by different algorithms where
NC = 3.

TABLE 23.18: Results of the Impact of Skewed Distributions, True NC = 3
CH I D S DB∗∗ SD S Dbw XB∗∗ CV NN

2 788 232.3 0.0286 0.621 0.571 0.327 0.651 0.369 1.04
3 1590 417.9 0.0342 0.691 0.466 0.187 0.309 0.264 0.73
4 1714 334.5 0.0055 0.538 0.844 0.294 0.379 1.102 0.85
5 1905 282.9 0.0069 0.486 0.807 0.274 0.445 0.865 0.87
6 1886 226.7 0.0075 0.457 0.851 0.308 0.547 1.305 0.96
7 1680 187.1 0.0071 0.371 1.181 0.478 0.378 3.249 1.10
8 1745 172.9 0.0075 0.370 1.212 0.474 0.409 3.463 1.03
9 1317 125.5 0.0061 0.301 1.875 0.681 0.398 7.716 1.41

A study was conducted on the data set Skewdistribution to evaluate the performance of different
indices on a data set with skewed distributions. Chameleon is applied as the clustering algorithm.
Results listed in Table 23.18 show that only CH cannot give the right optimal cluster number. CH =
(T SS/SSE−1)·((n−NC)/(NC−1)) and T SS is a constant number of a certain data set. Thus, CH
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FIGURE 23.13: The data set T4.8k.modified.

is essentially based on SSE , which shares the same basis with K-means algorithm. As mentioned
above, K-means cannot handle skewed distributed data sets. Therefore, the similar conclusion can
be applied to CH.

23.3.2.6 The Impact of Arbitrary Shapes

A data set with arbitrary shapes is always hard to handle. Figure 23.13 shows a synthetic data
set T4.8k.modified which consists of six irregular shape of clusters. It is generated by removing 10%
noise from the original data set T4.8k which contains 8000 objects[28]. As in the last subsection, the
same four algorithms are employed to run on T4.8k.modified to divide the data set into six clusters,
which is the true cluster number. As shown in Figure 23.14, Chameleon performs the best among
these four clustering algorithms.

A study on the data set T4.8k.modified was performed to evaluate whether the nine internal val-
idation indices could handle a data set with arbitrary shapes. Chameleon is applied as the clustering
algorithm. Results listed in Table 23.19 show that only CVNN can deal with data set with arbitrary
structures. The reasons are as follows.

D uses the minimum pairwise distance between objects in different clusters to measure the
intercluster separation. When dealing with arbitrary shaped data sets, this can be misleading. For
example, consider cluster A and cluster B′ shown in Figure 23.15. The minimum pairwise distance
between these two clusters is almost zero while they are still separable.

For CH, I, DB∗∗, SD, S Dbw, and XB∗∗, these six indices use the cluster center of each cluster as

TABLE 23.19: Results of the Impact of Arbitrary Shapes, True NC = 6
CH I D S DB∗∗ SD S Dbw XB∗∗ CVNN

2 301 1808 0.0110 0.231 2.927 0.0442 1.790 7.824 1.03
3 5484 32080 0.0117 0.401 0.984 0.0219 0.579 1.271 0.75
4 8213 34532 0.0183 0.438 0.769 0.0197 0.680 1.143 0.65
5 6838 24902 0.0142 0.384 0.828 0.0299 0.509 3.032 0.62
6 7560 24721 0.0074 0.333 1.038 0.0286 ∞ 2.685 0.58
7 7151 20753 0.0080 0.343 0.984 0.0290 0.426 2.674 0.89
8 6445 16922 0.0072 0.367 0.896 0.0293 0.416 2.892 1.39
9 6636 22365 0.0067 0.376 0.865 0.0312 0.281 2.755 1.36
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FIGURE 23.14: Clustering results on data set T4.8k.modified by different algorithms where NC =
6.

the representative for that cluster when evaluating the intercluster separation. In addition, S uses the
average minimum pairwise distance between objects in each cluster as the separation measurement,
which can be viewed as equivalent to the minimum pairwise distance between cluster centers in a
sense. Since it is meaningful to use the center to represent the entire cluster only for the sphere-
shaped cluster, this implies that these indices can work only in the hypersphere condition. Figure
23.15 gives an illustration for this argument. In this figure, both clusters A and B have an arcuate
structure, and the cluster centers are not even in the clusters. If one moves cluster B from the real-line
place to the dash-line place B′, A and B are getting closer while the distance between their centers
becomes larger. In this case, it is meaningless and incorrect to make cluster center representative for
the entire cluster.

The above 8 measures use either the average (minimum) pairwise distance between objects in
different clusters or one single object (the cluster center) as the representative of the entire cluster
when calculating the intercluster separation. These measures consider only the positions of the ob-
jects in clusters and fail to take into account the object distributions which form the geometrical
information of the cluster. On the other hand, CVNN evaluates the intercluster separation based on
objects that carry the geometrical information of each cluster. Sharing the same idea with kNN con-
sistency, CVNN uses dynamic multiple objects as representatives for different clusters in different



600 Data Clustering: Algorithms and Applications

c�B'�c�A�

A�
B'�c�B� B�
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FIGURE 23.16: An illustration of the dynamic effect of cluster representatives of CVNN.

situations when measuring the intercluster separation. Figure 23.16 illustrates the dynamic effect of
how representatives of clusters evolve in different situations. In this example, both clusters A and B
have an arcuate structure and solid objects are the representatives selected by the CVNN measure.
Comparing subfigure (a) with (b), one can see that A and B′ are closer than A and B, which indicates
that the intercluster separation is getting worse. Meanwhile, the numbers of representatives for both
clusters are growing as well as the intercluster separation measure Sep within CVNN, which agree
with the indication that clusters are becoming more separated. This example illustrates the dynamic
effect of CVNN’s intercluster separation measure, since the representatives for the same two clusters
in different situations are different.

23.3.3 Properties of Measures

Table 23.20 summarizes the properties of different internal validation measures in different as-
pects, which can be helpful for the index selection. “–” indicates property not tested, and “×”
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TABLE 23.20: Overall Performance of Different Measures
Measure Monotonicity Noise Density Subcluster Skew Distr. Arbit. Shape
RMSSTD × – – – – –
RS × – – – – –
Γ × – – – – –
CH × × ×
I × ×
D × × ×
S × ×
DB∗∗ × ×
SD × ×
S Dbw ×
XB∗∗ × ×
CVNN

denotes situation cannot be handled. It suggests that, while the other 11 measures have certain lim-
itations in different scenarios, especially in the aspect of handling data set with arbitrary structures,
CVNN performs well in all six aspects. CVNN exploits the notion of nearest neighbors and uses dy-
namic multiple objects as representatives for different clusters in different situations, which makes
it particularly useful when the data set includes clusters with arbitrary shapes. Thus, CVNN can play
an important role as a valuable complementary measure in the suite of internal clustering validation
measures.

23.4 Summary

This chapter presents detailed studies on 16 external validation measures and 12 internal val-
idation measures in a comprehensive way on various aspects of these validation measure. For the
external validation part, different measures are compared and contrasted for K-means clustering. As
results revealed, it is necessary to normalize validation measures before they can be employed for
clustering validation, since unnormalized measures may lead to inconsistent or even misleading re-
sults. This is particularly true for data with imbalanced class distributions. Normalization solutions
are also provided for some validation measures. Furthermore, lemmas are provided to show that
some validation measures are mathematically equivalent and some measures have very similar val-
idation performances. Finally, key properties of the 16 measures are summarized. These properties
should be considered before deciding what is the right measure to use in practice.

For the internal validation part, the validation properties of a suite of 12 existing internal clus-
tering validation measures for crisp clustering are studied in six different aspects: monotonicity,
noise, density, subclusters, skewed distribution, and arbitrary shapes data. Six synthetic data sets
which best represent the above six aspects are used to evaluate the performance of the 12 validation
measures. The results of the studies demonstrate that all measures except for the CVNN index have
certain limitations in different application scenarios, especially showing difficulties in handling data
set with arbitrary structures. On the other hand, CVNN exploits the notion of nearest neighbors and
uses dynamic multiple objects as representatives for different clusters in different situations, which
makes it particularly useful when the data set includes clusters with arbitrary shapes. The summa-
rized validation properties of the 12 internal validation measures may serve as a guide for index
selection in practice.
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24.1 Introduction

Since data clustering is a vast area, it is impossible to cover all the material on the topic in a
single book. Therefore, this chapter will summarize the key resources in this area. In general, the
resources on data clustering can be divided into the categories of (i) books, (ii) survey articles, and
(iii) software.

The books on data clustering are mostly generic and are not specific to any particular area or
topic. On the other hand, since surveys are generally more focussed, many more surveys have been
written, which are specific to particular topics, such as high-dimensional data, nonnegative matrix
factorization, spectral clustering, or text data. Finally, since clustering is used extensively in the
industry, a significant number of software packages are available for data clustering.

The last of the aforementioned categories is an ever changing landscape, since advancements in
data clustering make older software packages obsolete. Therefore, it is possible that the software
resources listed in this chapter will eventually become obsolete. Furthermore, it is impossible to
fully list all the possible resources available in terms of the different kinds of software. Neverthe-
less, some of the key commercial and noncommercial sources from which data clustering software
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can be used will be listed. Commercial software packages are generally based on the classical clus-
tering algorithms, whereas open-source packages are often much more advanced and sometimes
implement the latest algorithms available in the literature.

This chapter is organized as follows. Section 24.2 presents educational resources on data clus-
tering. This section is itself divided into two subsections. The key books are discussed in section
24.2.1, whereas the survey papers on data clustering are discussed in section 24.2.2. Finally, the
software on data clustering will be discussed in section 24.3. Section 24.4 presents the conclusions
and summary.

24.2 Educational Resources

Educational resources are either generic in the form of books or more focussed on the research
communities in the form of surveys. Books are generally more useful from a practical perspective,
whereas survey articles are more useful for an academic perspective.

24.2.1 Books on Data Clustering

Some of the earlier books on data clustering are by Anderberg [3], Duran [9], and Hartigan
[15]. Much of the developments in data clustering occurred after the writing of these books. Fur-
thermore, these books were written before the advent of the modern computer age. Therefore, the
perspective in these books is not necessarily optimized toward the computational design of clus-
tering algorithms. Many of the classical clustering algorithms were developed after the writing of
these algorithms, primarily because of the ease in implementation which arose with the use of mod-
ern computers.

Two of the earliest and most well-known books after the advent of the modern computer age
were written by Jain and Dubes [18] and by Kaufman and Rousseauw [21]. These books discuss
most of the classical clustering literature, in a way which is easy to understand and comprehend. In
particular, the book by Kaufman and Rousseauw, written in 2005, was updated to the most recent
developments in the field at that time. Some of the recent books on data clustering, for example, Xu
and Wunsch [33], are focused on the classical methods on data clustering. Mirkin [26] addresses the
topic from the perspective of data recovery.

With the advent of database technology and the large amounts of data in the nineties, the issue
of scalability has become increasingly important. Therefore, a number of algorithms have been
proposed over the last 15 years, which have been designed in order to improve the scalability of
the approach. The work in [14] is one of the recent books, which addresses many of the algorithms
developed by the database community. Nevertheless, the work over the last 15 years is much broader
and addresses many different domains of data, along with scalability issues. To the best of our
knowledge, there is no single book addressing all these issues. This book is therefore an attempt to
fill the void in the field.

24.2.2 Popular Survey Papers on Data Clustering

There are numerous surveys on the topic of data clustering. The area of data clustering is so vast,
that many surveys have been written, which address a specific area of data clustering. The surveys
broadly fall into three categories:
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• General Data Clustering Survey: In these surveys, the problems of data clustering is ad-
dressed in a very general way and is not specific to a particular technique or data type. How-
ever, the area of clustering is so vast, that most of these surveys tend to be overview articles.

• Technique-Centered Survey: In these surveys, a specific technique such as spectral clustering
or k-means clustering is addressed in detail.

• Data Type-Centered Survey: In such surveys, a specific kind of data type such as time-series
data, high-dimensional data, or text data is addressed by the survey. Different data types pro-
vide different challenges to clustering algorithms. Therefore, the clustering methods for a
specific data type are often closely related and addressed in a specific survey.

An excellent review article on the topic of data clustering is available in [19]. This article provides
an overview of the main issues in data clustering. Two other excellent survey articles are available
in [32, 6]. These provide a good overview of the landscape, though not in much detail. This is to be
expected, since the area of clustering is too vast to be easily covered by a single publication on the
topic.

Many articles have also been written, which cover specific techniques of data clustering. An
excellent overview article on the k-means algorithm, which also provides a historical perspective, is
presented in [17]. The k-means method is a classical technique, which is closely related to hierar-
chical clustering algorithms. This is covered extensively in [28]. Hierarchical clustering algorithms
are also used quite frequently for document data for organization of large corpora. A survey of
such algorithms for document data is presented in [31, 34]. Spectral clustering techniques are an
important class of methods which have found significant popularity in the clustering literature. Two
surveys on spectral clustering may be found in [24, 11]. The survey in [24] is considered classical.
While evolutionary clustering algorithms have not found much popularity in the research literature,
they have often turned out be quite useful for practitioners. A survey on evolutionary clustering
algorithms may be found in [16].

Probabilistic clustering algorithms are very popular in the data mining literature because of
their natural interpretability. A closely related class of algorithms is the fuzzy clustering method.
Techniques for fuzzy clustering are covered extensively in [4, 5].

Numerous articles have also been written on clustering in specific data types or domains. The
problem of clustering high dimensional data was first covered in [29] and more recently in [22].
Since high-dimensional clustering is a recent topic, and much research on the area has been per-
formed recently, the latter survey [22] is much more extensive. Document data is a particular case
of sparse high-dimensional data, for which clustering methods provide a tremendous challenge. For
example, hierarchical methods for document clustering have been studied in [31, 34], and a more
general survey on text clustering is provided in [2].

Many data types are contextual in which dependencies exist between the data items. Examples of
such data sets include (continuous) time-series data, discrete sequential data (which could be either
temporal or biological), and graph data. Contextual domains provide a special challenge because
the dependencies between the data items need to be accounted for during the clustering process.
Numerous surveys have been written to address such contextual domains. An excellent survey on
time-series data clustering may be found in [23], while the biological data domain is addressed in
[20, 25]. Graph clustering is a recent area which has been popularized by the advent of social and
information networks. Graph data clustering is addressed in [12, 30]. The review in [12] is recent
and particularly extensive.
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24.3 Software for Data Clustering

A significant amount of software is available for data clustering. Interestingly, most of the so-
phisticated software on data clustering is open-source software, which is freely available at different
web sites. On the other hand, most of the commercial software comprises implementations of sim-
pler and more classical algorithms such as k-means or agglomerative clustering.

24.3.1 Free and Open-Source Software

In this section, we will first address the widely used general purpose clustering software. Later,
we will provide some additional specialized software that are used for specific data clustering ap-
plications.

24.3.1.1 General Clustering Software

The most well-known general purpose site offering open source software is the WEKA machine
learning repository [39]. This is a general purpose repository which contains software not just for
clustering, but also for other data mining related tasks such as data preprocessing, classification, and
visualization. However, much of the software can also be used for data clustering.

Spider is another widely used data mining software which contains the implementations of sev-
eral popular clustering algorithms [54]. It is an object-oriented environment for machine learning in
MATLAB. Its recent version also provides WEKA interfaces to the machine learning libraries built
in Spider.

Cluster is another widely used open-source clustering software that contains several clustering
and visualization algorithms [45]. It is very popular in the bioinformatics community. In addition to
the standard clustering algorithms, it also provides an excellent graphical environment for analyzing
complex datasets. The other advantage of this software is that it has interfaces to allows users to use
the clustering algorithms in other programming environments such as Python, MATLAB, and R. In
addition to the above mentioned software, programming platforms such as MATLAB and R already
have their own implementations of some of the commonly used data clustering algorithms.

Another comprehensive set of data clustering packages is provided in the ELKI [1] suite of al-
gorithms that include many classical partitioning algorithms, EM-based probabilistic algorithms,
density-based algorithms, and subspace clustering algorithms. The KDnuggets web site [42] also
provides access to a significant number of open-source software sites for clustering and segmenta-
tion. This can be considered a meta-repository, in that it provides pointers to other relevant sites.

24.3.1.2 Specialized Clustering Software

OpenSubspace is an open-source software that contains the implementations of several subspace
clustering algorithms [41]. A more detailed description is provided in [27]. It integrates state-of-
the-art performance measures and visualization techniques for analyzing subspace clusters in the
WEKA environment. The MOA framework also implements a number of stream clustering algo-
rithms and provides tools for their evaluation [7]. Related to Weka, it supports the extension with
new clustering algorithms, new stream generators, and new evaluation measures. The Weka imple-
mentation of the framework may be found in [86].

For text data clustering, the cross-bow method is available for download from [43]. This tech-
nique uses EM-clustering of text data, with the use of hierarchical partitioning of text documents.
There are also other specialized software such as MALLET [35] which performs clustering along
with some statistical natural language processing and topic modeling. CLUTO [46] is a software
package for clustering low- and high-dimensional data sets and for analyzing the characteristics of
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the various clusters. One advantage of this software is that it is rather general purpose. It can be used
for text data, multi-dimensional data, or even transaction data. There are also some other packages
that perform traditional clustering on text documents [44].

A significant amount of software is also available for contextual data types. For time-series data
clustering, an open-source software Gait-CAD is publicly available under the GNU public license.
This is downloadable from sourceforge [49] and is a MATLAB toolbox. For gene expression data
clustering, one of the most popular tools is Cluster, which has an associated TreeView software for
better visualization [10]. A more detailed discussion of the available software for analyzing gene
expression and other forms of biological data can be found in the biological data clustering chapter
of this book (Chapter 16).

Numerous clustering tools are available for graph-partitioning and clustering. The network anal-
ysis tools (NeAT) [8] provides a number of tools for the analysis of network data, though the focus
is primarily on biological networks. In addition, many individual graph clustering tools are available
for download at different sites. One of the most famous family of graph partitioning algorithms is
METIS [48]. In spite of being one of the earlier methods, it seems to perform competitively with
most of the graph clustering algorithms, in terms of both effectiveness and efficiency. CFinder is a
free software for finding and visualizing overlapping dense groups of nodes in networks, based on
the Clique Percolation Method (CPM) [53]. Another software for Markov Clustering of networks is
available at [55]. This approach provides high scalability for the clustering process. For semisuper-
vised clustering, many implementations of different algorithms that perform constrained clustering
are available in [57].

24.3.2 Commercial Packages

Many mathematical tools such as MATLAB [52] come with built-in methods for data clustering.
However, typically, such methods use classical techniques such as the k-means algorithm. This is
because these are very general purpose tools, and the clustering capability is not the main purpose
of such software. However, numerous other commercial tools have been constructed, with a specific
goal of clustering different kinds of data.

The KDnuggets site [42] provides a link to some of the more popular forms of software in this
domain. This site provides pointers to software developed by other vendors such as IBM and SAS
rather than only its own dedicated software. One of the most well-known ones is the IBM SPSS
data mining workbench [50]. This includes two step, k-means, and Kohonen clustering algorithms.
Another well-known package is the SAS Enterprise Modeler [51]. In this case, the clustering tool is
available with other forms of visual and decision support. SAS contains built-in procedures that can
perform clustering of even large-scale datasets.

Providing full graphics and visualization capabilities is often important for getting an intuitive
understanding of the clustering process. Clustan [56] offers such capabilities with strong graphics
support. The NeuroXL Clusterizer [58] is a commercial tool for clustering with neural networks.
The advantage of this tool is that it naturally integrates with Microsoft Excel and can, therefore, be
easily used for spreadsheet data.

24.3.3 Data Benchmarks for Software and Research

Numerous data sets are available for testing clustering software and research. Some of the data
sets and web sites are general purpose, whereas other web sites are tailored to specific kinds of data.
The most well-known among the general-purpose web sites is the UCI machine learning repository
[13]. This resource is generally intended for classification, though many of the data sets can also be
used for clustering. The KDnuggets web site [38] also provides access to many general-purpose data
sets. This can be considered a meta-repository, in that it provides pointers to other sites containing
data sets. Similar to this, the other popularly known meta-repositories that give a wide range of



612 Data Clustering: Algorithms and Applications

links to other data repositories are STATOO [71] and David Dowe’s data links [72]. The latter also
provides several online resources on data mining case studies and competitions.

More large-scale datasets are available from the KDD Cup dataset repository [73] and other
data mining competitions [74]. These datasets are not only large scale but are also directly collected
from complex real-world problems and hence provide several challenges. Clustering is often used
in solving such real-world challenges since many of these issues typically fall into the unsupervised
category. For the statistics community, Statlib dataset archive [75] is a widely used data collection.

In addition to the above mentioned real-world datasets, there is also a Fundamental Clustering
Problem Suite [47] that provides a simple collection of different synthetically generated 2-D and
3-D datasets. This provides some test datasets with different sizes, shapes, and densities.

For specific data types, numerous resources are available. For time-series clustering, the UCR
time-series web site [36] provides access to very long continuous series of data for clustering. An-
other time-series data library is available at [37]. For the case of network data, the SNAP repository
[40] hosted by Jure Leskovec at Stanford University provides access to a large number of network
data sets.

For testing the performance of text document clustering algorithm, there are several publicly
available text document repositories available. Some of the most popular text document collections
include Reuters [76], 20NewsGroups [77], TREC [78], and Cora [79].

To evaluate the biological data clustering, there is a plethora of websites that host gene expres-
sion datasets which can be used to evaluate the clustering algorithms. Gene Expression Omnibus
(GEO) repository [68] contains a comprehensive collection of gene expression datasets along with
raw source files used to generate this data. Gene Expression Model Selector provides a simple repos-
itory of the most widely studied gene expression datasets [69] and several other cancer-specific gene
expression datasets are available at [70]. Similarly, to test the performance of biological network
clustering algorithms, there are a plenty of databases that contain protein-protein interactions. The
most popular ones are DIP (Database of Interacting Proteins) [66], BioGRID [67], STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) [65] and MIPS (Mammalian Protein-Protein
Interaction Database) [64]. The last resource contains links to several other interaction network
databases.

To evaluate the sequence data clustering algorithms, several biological sequence database repos-
itories are available at [63]. The most widely used repositories are GenBank [61] and EMBL [62] for
nucleic acid sequences and Protein Information Resources (PIR) [60] and UniProt [59] for protein
sequences.

In the context of image applications, researchers in machine learning and computer vision com-
munities have used clustering for solving automatic grouping of images and image segmentation
problems. Clustering can help in efficient organization and retrieval of image databases. ImageCLEF
[82] and ImageNet [83] are two widely used image data repositories which are used to demonstrate
the performance of image data retrieval tasks. Data clustering can also be used in the context of im-
age segmentation. Vision and Autonomous Systems Center’s Image Database [80] from Carnegie
Mellon University and the Berkeley Segmentation dataset [81] can be used to test the performance
of clustering for image segementation problems. An extensive list of websites that provide image
databases is given in [84] and [85].

24.4 Summary

This chapter presents a summary of the key resources for data clustering in terms of books,
surveys, and commercial and noncommercial software packages. While many of the books and
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surveys address different aspects of data clustering in terms of either techniques or data types, there
seems to be a gap in creating a single integrated book, which covers the modern literature on this
topic. This book is intended to fill that gap.
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WaveCluster, 134
Web Snippet Clustering, 325
Weighted K-Means Clustering, 98
Whiskers, 433
Wikipedia, 324
WordNet, 324
Wrapper Model, 35

X-Means Clustering, 95



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




