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Conditional Expectation

Definition
Let X and Y be a discrete random variables that take values
from the set A×B. The Conditional Expectation of Y given X is
defined by

E [Y | X = a] =
∑
b∈B

bPXY (a,b)

E [Y | X ] is a function of the various values that X can take.
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The Event (c j , ck ,d)

Recall

PTA(c j , ck ,d) = PTA(c j , ck |d)P(d)
= PT (c j |d)PA(ck |d)P(d)

=
PT (d |c j)PT (c j)

P(d)
PA(ck |d)P(d)

= PT (d |c j)PA(ck |d)PT (c j)

PAT (ck ,d |c j) =
PTA(c j , ck ,d)

PT (c j)

= PT (d |c j)PA(ck |d) = PT (d |c j)fd(ck )
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Expected Conditional Economic Gain Given Class

Definition

The conditional expectation of the economic gain given class c j

for decision rule f is defined by

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )PTA(c j , ck ,d)

=
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j)fd(ck )

=
K∑

k=1

e(c j , ck )
∑
d∈D

P(d | c j)fd(ck )

where fd(c) is the conditional probability that the decision rule
assigns class c given measurement d .
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Class Conditional Probability and Prior Probability

P(d |c)
Conditional probability of measurement d given class c
Class conditional probability

P(c)
Prior probability of class c
Prior probability
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Economic Gain

The Expected economic gain can be related to the class
conditional expected economic gain and prior probabilities.

E [e; f ] =
∑
d∈D

K∑
k=1

K∑
j=1

e(c j , ck )P(c j ,d)fd(ck )

=
K∑

j=1

K∑
k=1

∑
d∈D

e(c j , ck )P(d | c j)P(c j)fd(ck )

=
K∑

j=1

[
K∑

k=1

∑
d∈D

e(c j , ck )P(d | c j)fd(ck )

]
P(c j)

=
K∑

j=1

E [e | c j ; f ]P(c j)
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Economic Gain

When the economic gain is represented in terms of the prior
class probabilities, we write

E [e; f ,P(c1), . . . ,P(cK )]

When f is a Bayes decision rule,

E [e; f ,P(c1), . . . ,P(cK )] ≥ E [e;g,P(c1), . . . ,P(cK )]

for any other decision rule g.

Definition

When f is a Bayes decision rule, E [e; f ,P(c1), . . . ,P(cK )] is
called the Bayes gain.
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The Geometry of a Bayes Rule

We will show that the geometry of a Bayes Rule is related to
convex combinations and convex sets
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Convex Combinations

Definition

Let x , y ∈ RN and 0 ≤ λ ≤ 1. Then λx + (1− λ)y is called a
convex combination of x and y .

Proposition

If 0 ≤ x , y , λ ≤ 1, then 0 ≤ λx + (1− λ)y ≤ 1

Proof.
0 ≤ x , y , λ implies λx + (1− λ)y ≤ λ+ (1− λ) = 1.
λ ≤ 1 implies 0 ≤ 1− λ.
x , y , λ,1− λ ≥ 0 implies λx + (1− λ)y ≥ 0.
Therefore, 0 ≤ λx + (1− λ)y ≤ 1.
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Structure of Decision Rules

Consider the structure of a decision rule fd(c).
Suppose D = {d1, . . . ,dQ} and C = {c1, . . . , cK}.
Then this decision rule f can be thought of as a vector in RKQ

f ′ = (fd1(c1), . . . , fd1(cK ), . . . , fdQ (c1), . . . , fdQ (cK ))

There are some constraints:
For q ∈ {1, . . . ,Q} and k ∈ {1, . . . ,K}, 0 ≤ fdq (ck ) ≤ 1
For q ∈ {1, . . . ,Q},

∑K
k=1 fdq (ck ) = 1

Therefore, a decision rule must lie in the unit hypercube of RQK

and it must lie in the manifold defined by the Q linear
constraints

K∑
k=1

fdq (ck ) = 1, q = 1, . . . ,Q
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8 Possible Deterministic Decision Rules

d1 d2 d3

f 1
d c1 c1 c1

f 2
d c1 c1 c2

f 3
d c1 c2 c1

f 4
d c1 c2 c2

f 5
d c2 c1 c1

f 6
d c2 c1 c2

f 7
d c2 c2 c1

f 8
d c2 c2 c2
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Deterministic Decision Rules Written as Probabilistic

f 1
d (c1) is the probability that decision rule f 1 assigns class c1 to d1

f 1
d (c2) is the probability that decision rule f 1 assigns class c2 to d1

f n
d f n

d1(c1) f n
d1(c2) f n

d2(c1) f n
d2(c2) f n

d3(c1) f n
d3(c2)

f 1
d 1 0 1 0 1 0
f 2
d 1 0 1 0 0 1
f 3
d 1 0 0 1 1 0
f 4
d 1 0 0 1 0 1
f 5
d 0 1 1 0 1 0
f 6
d 0 1 1 0 0 1
f 7
d 0 1 0 1 1 0
f 8
d 0 1 0 1 0 1

fdn(c1) + fdn(c2) = 1, n = 1,2,3
0 ≤ fdn(ck ) ≤ 1, n = 1,2,3; k = 1,2
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Deterministic Decision Rule Written Probabilisticly

fdn(c2) = 1− fdn(c1), n = 1,2,3
0 ≤ fdn(c1) ≤ 1, n = 1,2,3

f n
d (c

1) d1 d2 d3

f 1
d 1 1 1

f 2
d 1 1 0

f 3
d 1 0 1

f 4
d 1 0 0

f 5
d 0 1 1

f 6
d 0 1 0

f 7
d 0 0 1

f 8
d 0 0 0
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Mixture Decision Rules

Let 0 ≤ λ ≤ 1 What does gd = λf 2
d + (1− λ)f 7

d mean?
With probability λ choose decision rule f 2

d and with probability
1− λ choose decision rule f 7

d

d1 d2 d3

gd(c1) λ λ 1− λ
gd(c2) 1− λ 1− λ λ

F = {fd(c1) | fd(c1) =
8∑

n=1

λnf n
d (c

1), for some 0 ≤ λn ≤ 1,
8∑

n=1

λn = 1}

F is the set of all convex combinations of the decision rules f 1
d , . . . , f

8
d .

The convex combinations are probabilistic decision rules.
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Convex Combinations of Probabilistic Decision Rules

Proposition
Convex combinations of decision rules are decision rules

Proof.
Let f and g be two decision rules. Let 0 ≤ λ ≤ 1. Consider
λfd(c) + (1− λ)gd(c). We have already proven that
0 ≤ λfd(c) + (1− λ)gd(c) ≤ 1. Consider the convex
combination:

∑
c∈C

[λfd(c) + (1− λ)gd(c)] = λ
∑
c∈C

fd(c) + (1− λ)
∑
c∈C

gd(c)

= λ+ (1− λ)
= 1
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Convex Sets

Definition

A set C ⊆ RN is a convex set if and only if x , y ∈ C imply
λx + (1− λ)y ∈ C for every 0 ≤ λ ≤ 1.

Proposition
The set F of all convex combinations of decision rules is a
convex set.

Example

F = {fd(c1) | fd(c1) =
8∑

n=1

λnf n
d (c

1), for some 0 ≤ λn ≤ 1,
8∑

n=1

λn = 1}
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Intersection of Convex Sets are Convex

Proposition
Let C and D be convex sets. Then C ∩ D is a convex set.

Proof.
Let x , y ∈ C ∩ D and 0 ≤ λ ≤ 1. Consider λx + (1− λ)y.
Since x , y ∈ C ∩ D, x , y ∈ C and x , y ∈ D.
Since C is convex and 0 ≤ λ ≤ 1, λx + (1− λ)y ∈ C.
Since D is convex and 0 ≤ λ ≤ 1, λx + (1− λ)y ∈ D.
λx + (1− λ)y ∈ C and λx + (1− λ)y ∈ D imply
λx + (1− λ)y ∈ C ∩ D.
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Mixed Decision Rules

Definition
Let f and g be decision rules and 0 ≤ λ ≤ 1.
Then

hd(c) = λfd(c) + (1− λ)gd(c)

is called a mixed decision rule of f and g.

With probability λ apply decision rule f and probability 1− λ apply
decision rule g.

If we apply decision rule f , the we assign class c with probability f (c|d)
If we apply decision rule g, then we assign class c with probability
g(c|d)

18 / 32



Extreme Points

Definition

Let A ⊆ RN . A point e ∈ A is called an Extreme Point of A if and
only if b, c ∈ A with e = b+c

2 implies e = b = c.

e

A

If e is an extreme point of A and if b, c ∈ A and for some λ, 0 ≤ λ ≤ 1
then

e = λb + (1− λ)c implies e = b = c

If e is an extreme point of A then there is no convex combination of a distinct
pair of points in A that equals e.

19 / 32



Deterministic Decision Rules are Extreme Points

Proposition

Let F be the set of all convex combinations of decision rules. Let f be
a deterministic decision rule. Then f is an extreme point of F .

Proof.

Let g,h ∈ F satisfy f = g+h
2 . Hence for every d ∈ D and c ∈ C,

fd (c) =
gd (c) + hd (c)

2

Since f is a deterministic decision rule, for some c∗ ∈ C, fd (c∗) = 1
and for all c ∈ C − {c∗}, fd (c) = 0. Consider c ∈ C for which
fd (c) = 0.

fd (c) = 0 =
gd (c) + hd (c)

2
Since gd (c),hd (c) ≥ 0 and since gd (c) + hd (c) = 0, it follows that
gd (c) = hd (c) = 0.
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Proof Continued

Proof.
Now consider c∗.

fd(c∗) = 1 =
gd(c∗) + hd(c∗)

2
Hence, gd(c∗) + hd(c∗) = 2. But gd(c∗),hd(c∗) ≤ 1. Therefore,
gd(c∗) = 1 and hd(c∗) = 1.

Now, by definition of extreme point, a deterministic decision rule
f ∈ F is an extreme point of F , the set of all convex
combinations of decision rules.
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Convex Polyhedrons

Definition
A Closed Convex Polyhedron is a non-empty set P formed as
the solutions to a matrix equation Ax ≤ b.

P = {x | Ax ≤ b}

Each row of the matrix equation specifies a hyperplane half
space and P is the intersection of these hyperplane half
spaces.

Definition
A bounded polyhedron is a polytope.
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Closed Convex Polytope Example Tetrahedron

P = {x | Ax ≤ b}

A =


1 1 1
1 −1 −1
−1 1 −1
−1 −1 1



b =


2
0
0
0


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The Set of Decision Rules is a Closed Convex
Polytope

Proposition
Let F be the set of all decision rules formed from the finite set
C of classes and the finite set D of measurements.
The set F is a closed convex polytope lying in a linear manifold
of dimension |C| |D| − |D|.

Proof.

Let f ∈ F. We already know that f ∈ R|C| |D|. The |D| linear
constraints are formed from the requirement that∑

c∈C fd(c) = 1. The remaining constraints are of the form
fd(c) ≥ 0 which is equivalent to −fd(c) ≤ 0
fd(c) ≤ 1
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Minkowski’s Theorem

Definition

Let X = {x1, . . . , xM} ⊂ RN . The Convex Hull of X is defined by

CH(X ) = {y ∈ RN | y =
M∑

m=1

λmxm,where λm ≥ 0,
M∑

m=1

λm = 1}

Theorem
Any closed convex polytope is the convex hull of its extreme
points.
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Probabilistic Decision Rules

Any Probabilistic Decision Rule can be represented as a
convex combination of the deterministic decision rules.

Theorem

Let f be a probabilistic decision rule and let f 1, . . . , f M be the
set of all possible deterministic decision rules. Then there
exists a convex combination λ1, . . . , λM such that

fd(c) =
M∑

m=1

λmf m
d (c)
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Extreme Points Convex Sets

Proposition

Let C ⊆ RN be a convex set. Let e be an extreme point of C.
Let D be a convex subset of C. If e ∈ D, then e is an extreme
point of D.

Proof.
Let e be an extreme point of C. Suppose e ∈ D. Let a,b ∈ D
satisfy e = a+b

2 . Since D ⊆ C, a,b ∈ C. Now, a,b ∈ D ⊆ C,
with e = a+b

2 . Since e is an extreme point of C, e = a = b. But
now we have e ∈ D and a,b ∈ D satisfying e = a+b

2 . And we
have just proved that e = a = b. Therefore, e is an extreme
point of D.
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Expected Conditional Gain: Mixed Decision Rules

Proposition

E [e | c j ;λf + (1− λ)g] = λE [e | c j ; f ] + (1− λ)E [e | c j ;g]

Proof.

E [e | c j ;λf + (1− λ)g] =
K∑

k=1

∑
d∈D

e(c j , ck )P(d | c j ){λf (ck | d) + (1− λ)g(ck | d)}

= λ
K∑

k=1

∑
d∈D

e(c j , ck )P(d | c j )f (ck |d) +

(1− λ)
K∑

k=1

∑
d∈D

e(c j , ck )P(d | c j )g(ck | d)

= λE [e | c j ; f ] + (1− λ)E [e | c j ; g]
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Example

e Assigned
True c1 c2

c1 2 -1
c2 -1 2

P(d | c) Measurement
True Class d1 d2 d3

c1 .2 .3 .5
c2 .5 .4 .1

fd (c) Measurement
True Class d1 d2 d3

c1 1 0 0
c2 0 1 1

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j)fd (ck )

E [e | c1; f ] = e(c1, c1)P(d1 | c1)fd1(c1) + e(c1, c2)P(d1 | c1)fd1(c2) +

e(c1, c1)P(d2 | c1)fd2(c1) + e(c1, c2)P(d2 | c1)fd2(c2 +

e(c1, c1)P(d3 | c1)fd3(c1) + e(c1, c2)P(d3 | c1)fd3(c2)

= 2 ∗ .2 ∗ 1 + (−1) ∗ .2 ∗ 0 +

2 ∗ .3 ∗ 0 + (−1) ∗ .3 ∗ 1 +

2 ∗ .5 ∗ 0 + (−1) ∗ .5 ∗ 1

= .4− .3− .5 = −.4

29 / 32



Example

e Assigned
True c1 c2

c1 2 -1
c2 -1 2

P(d | c) Measurement
True Class d1 d2 d3

c1 .2 .3 .5
c2 .5 .4 .1

fd (c) Measurement
True Class d1 d2 d3

c1 1 0 0
c2 0 1 1

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j)fd (ck )

E [e | c2; f ] = e(c2, c1)P(d1 | c2)fd1(c1) + e(c2, c2)P(d1 | c2)fd1(c2) +

e(c2, c1)P(d2 | c2)fd2(c1) + e(c2, c2)P(d2 | c2)fd2(c2) +

e(c2, c1)P(d3 | c2)fd3(c1) + e(c2, c2)P(d3 | c2)fd3(c2)

= (−1) ∗ .5 ∗ 1 + 2 ∗ .5 ∗ 0 +

(−1) ∗ .4 ∗ 0 + 2 ∗ .4 ∗ 1 +

(−1) ∗ .1 ∗ 0 + 2 ∗ .1 ∗ 1

= −.5 + .8 + .2 = .5

30 / 32



Example

e Assigned
True c1 c2

c1 2 -1
c2 -1 2

P(d | c) Measurement
True Class d1 d2 d3

c1 .2 .3 .5
c2 .5 .4 .1

E [e | c j ; f ] =
∑
d∈D

K∑
k=1

e(c j , ck )P(d | c j)fd (ck )

Measurements Conditional Gain
f d1 d2 d3 E [e|c1; f ] E [e|c2; f ]
f 1 c1 c1 c1 2.0 -1.0
f 2 c1 c1 c2 .5 -.7
f 3 c1 c2 c1 1.1 .2
f 4 c1 c2 c2 -.4 .5
f 5 c2 c1 c1 1.4 .5
f 6 c2 c1 c2 -.1 .8
f 7 c2 c2 c1 .5 1.7
f 8 c2 c2 c2 -1. 2.0

31 / 32



Conditional Expected Gains: All Decision Rules

f 8

f 1

f 5

f 7

f2

f3
f4

f6

E [e|c1; f ]

E [e|c2; f ]

-1
-.7 -.4 -.1 .2

.5
.8 1.1 1.4 1.7

2
-1

-.7

-.4

-.1

.2

.5
.8

1.1

1.4

1.7

2
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