Conditional Expected Gain

Robert M. Haralick

Computer Science, Graduate Center
City University of New York



Conditional Expectation

Definition
Let X and Y be a discrete random variables that take values
from the set A x B. The Conditional Expectation of Y given X is

defined by

E[Y|X=a =) bPxy(ab)
beB

E[Y | X] is a function of the various values that X can take.
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The Event (¢/, ¢¥, d)

Recall

Pa(c,ck.d) = P(d,cX|d)P(d)
= Pr(c/|d)Pa(c¥|d)P(d)
/
= T A PLa)
= Pr(d|d))Pa(c¥|d)Pr(c))
PTA(Cj,Ck,d)
Pr(c/)
= Pr(d|c/)Pa(c|d) = Pr(d|c)fy(ck)

Par(ck,d|d)) =
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Expected Conditional Economic Gain Given Class

The conditional expectation of the economic gain given class ¢/
for decision rule f is defined by

Ele|d;f] = ZZ e(d, cf)Pra(c, ¥, d)

dEDk 1
= ZZ e(d,c*)P(d | d)fa(c")
deD k=1
K
= e(d,c¥) Y P(d | d)fy(c)
k=1 deD

where fy(c) is the conditional probability that the decision rule
assigns class c¢ given measurement d.
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Class Conditional Probability and Prior Probability

@ P(d|c)
e Conditional probability of measurement d given class ¢
e Class conditional probability
@ P(c)
e Prior probability of class ¢
e Prior probability
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Economic Gain

The Expected economic gain can be related to the class
conditional expected economic gain and prior probabilities.

Elef] = ZZZG(C’ c")P(c/, d)fy(c)

deD k= 1/ 1
— ZZZe(cf P(d | ¢)P(c/)fy(c¥)
j=1 k=1deD
K [ K .
= > DD e(d,)P(d | )fy(ch) | P(C)

=1 Lk=1deD

K

= Ele| ¢; flP(d)
j=1

—
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Economic Gain

When the economic gain is represented in terms of the prior
class probabilities, we write

Ele; f, P(c"),...,P(cf)]
When f is a Bayes decision rule,
Ele;f,P(c"),...,P(c")] > Ele;g, P(c"),..., P(c")]

for any other decision rule g.

Definition

When f is a Bayes decision rule, E[e; f, P(c!),..., P(cK)] is
called the Bayes gain.
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The Geometry of a Bayes Rule

We will show that the geometry of a Bayes Rule is related to
convex combinations and convex sets
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Convex Combinations

Definition

Letx,y c RV and 0 < A < 1. Then Ax + (1 — \)y is called a
convex combination of x and y.

IfO<x,y,A<1,then0 <Xx+(1-X\)y <1

0< x,y,Aimplies \x +(1 = A)y <A+ (1—-X)=1.
A<1implies0 <1— A\

X,¥,A\, 1 —X>0implies \x + (1 — \)y > 0.

Therefore, 0 < Ax + (1 — Ay < 1. O
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Structure of Decision Rules

Consider the structure of a decision rule fy(c).
Suppose D = {d',...,d% and C = {c',...,cX}.
Then this decision rule f can be thought of as a vector in RX@

f = (fu(ch),... . fu(cf), ... fa(c!), ..., fa(ck))
There are some constraints:

@ Forge{1,...,QYand ke {1,...,K}, 0 < fya(c¥) <1
@ Forge{1,...,Q}, YK, fya(ck) =1

Therefore, a decision rule must lie in the unit hypercube of RK
and it must lie in the manifold defined by the Q linear
constraints

K
> faa(d)=1,9=1,...,Q
k=1
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8 Possible Deterministic Decision Rules

f C} Cq Cq Cq
f 5 Cq Cq Co
f 3 Cq Co C
f ;’ Cq Co Co
f g C (4 Cq
f g C 4 Co
f ; Co C (4
f g’ Co C O©Co
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Deterministic Decision Rules Written as Probabilistic

fl(c1) is the probability that decision rule f! assigns class ¢; to d"
fl(c2) is the probability that decision rule f' assigns class ¢, to d"

fg | 17i(c1) flhi(c) (c1) (c2) (1) fu(e)

f fio 1
1 0 1
1 0 0
0 1 1
0 1 0
1 0 1
1 0 0
0 1 1
0 1 0

fan(c!) + fgn(c®) =1, n=1,2,3
1, n=1,23 k=1,2




Deterministic Decision Rule Written Probabilisticly

fin(c®)=1—fp(c'), n=1,2,3
0<fm(c)<1, n=1,23

e ]d & &
p T 1 1
i 1 1 0
& 1 0 1
f 1 0 0
f o 1 1
b 0 1 0
f? 0 0 1
f8 0 0 0
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Mixture Decision Rules

Let 0 < A < 1 What does gg = A7 + (1 — \)f] mean?
With probability A choose decision rule f3 and with probability
1 — X choose decision rule £}

a' a? a®
ga(c) | A A =
ga() [ 1A 1=X] )

8
F = {fy(c") | f4(c Z)\nfd ), forsome0 <X, <1, ) N\, =1}
n=1
F is the set of all convex combinations of the decision rules f},. .., .

The convex combinations are probabilistic decision rules.
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Convex Combinations of Probabilistic Decision Rules

Proposition
Convex combinations of decision rules are decision rules

Proof

Let f and g be two decision rules. Let0 < X\ < 1. Consider
My(c) + (1 — N)gq(c). We have already proven that

0 < My(c)+ (1 — N)gq(c) < 1. Consider the convex
combination:

> M)+ (1= Nga(0)] = AD fa(e)+(1=2)> ga(c)

ceC ceC ceC
= A+(1-N)




Definition

A set C C RV is a convex set if and only if x, y € C imply
AX+(1—A)yeCforevery0 < A <1.

Proposition

The set F of all convex combinations of decision rules is a
convex set.

Example

8
F = {fy(c") | f4(c Z)\nfd ), forsome0 <X, <1, ) N\, =1}

n=1
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Intersection of Convex Sets are Convex

Let C and D be convex sets. Then C N D is a convex set.

Letx,ye CnDand0 < X <1. Consider \x + (1 — \)y.
Sincex,y e CND,x,ye Candx,y € D.

Since C isconvex and0 < A <1, Ax+ (1 -y € C.
Since D is convex and0 < A <1, A\x+ (1 —\)y € D.
AX+(1—=XNye CandAx+ (1 —X\)y e Dimply
X+(1-ANyecCnD. O
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Mixed Decision Rules

Definition

Let f and g be decision rulesand 0 < A < 1.
Then

ha(c) = Afa(c) + (1 — A)ga(c)
is called a mixed decision rule of f and g.

@ With probability A apply decision rule f and probability 1 — X apply
decision rule g.

@ If we apply decision rule f, the we assign class ¢ with probability f(c|d)

@ If we apply decision rule g, then we assign class ¢ with probability
g(cld)
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Extreme Points

Definition

Let AC RN. A point e € Ais called an Extreme Point of A if and
only if b, c € Awith e = 25¢ implies e = b = c.

/4\
If e is an extreme point of Aand if b, ¢ € Aand for some A\, 0 < A <1
then

e=Xb+ (1 —X)cimpliese=b=c

If e is an extreme point of A then there is no convex combination of a distinct
pair of points in A that equals e.
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Deterministic Decision Rules are Extreme Points

Let F be the set of all convex combinations of decision rules. Let f be
a deterministic decision rule. Then f is an extreme point of F.

Proof

Letg, h € F satisfy f = g?”’. Hence for everyd € D and c € C,

f1(c) = gd(c );rhd(c)

Since f is a deterministic decision rule, for some c* € C, fy(c*) =1
and for all c € C — {c*}, fy(c) = 0. Consider c € C for which

fd(C) =0.

f(c) = 0 = ga(c) Z ha(c)
Since gd(c) hq(c) > 0 and since gq4(c) + hq(c) = 0, it follows that
ga(c) = ha(c) = 0. O

\
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Proof Continued

Proof.
Now consider c*.

() =1= gd(c )‘;hd(c )
Hence, gq(c*) + hg(c*) = 2. But g4(c*), hy(c*) < 1. Therefore,
ga(c*) =1 and hy(c*) = 1.

fa

Now, by definition of extreme point, a deterministic decision rule
f € F is an extreme point of F, the set of all convex
combinations of decision rules. O
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Convex Polyhedrons

Definition

A Closed Convex Polyhedron is a non-empty set P formed as
the solutions to a matrix equation Ax < b.

P={x|Ax < b}

Each row of the matrix equation specifies a hyperplane half
space and P is the intersection of these hyperplane half
spaces.

Definition
A bounded polyhedron is a polytope.
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Closed Convex Polytope Example Tetrahedron

P={x|Ax < b}

1 1 1

1 -1 —1
11—
1 -1 1
2

0
0
0




The Set of Decision Rules is a Closed Convex
Polytope

Let F be the set of all decision rules formed from the finite set
C of classes and the finite set D of measurements.

The set F is a closed convex polytope lying in a linear manifold
of dimension |C| |D| — |D|.

Proof.

Let f € F. We already know that f € RICI IPI. The |D| linear
constraints are formed from the requirement that
> cec fa(€) = 1. The remaining constraints are of the form

@ fy(c) > 0 which is equivalent to —fy(c) <0
° fy(c) <1

Ol

v
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Minkowski’'s Theorem

Let X = {xy,...,xy} € RN. The Convex Hull of X is defined by

M M

m=1 m=1

Theorem

Any closed convex polytope is the convex hull of its extreme
points.
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Probabilistic Decision Rules

Any Probabilistic Decision Rule can be represented as a
convex combination of the deterministic decision rules.

Theorem

Let f be a probabilistic decision rule and let f', . .., fM be the
set of all possible deterministic decision rules. Then there
exists a convex combination \1, ..., Ay Ssuch that

M
fa(c) = Amf(c)
m=1
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Extreme Points Convex Sets

Let C C RN be a convex set. Let e be an extreme point of C.
Let D be a convex subset of C. If e € D, then e is an extreme
point of D.

Let e be an extreme point of C. Suppose e € D. Leta,b € D
satisfy e = 252 Since D C C, a,b € C. Now, a,b€ D C C,
with e = %’. Since e is an extreme point of C, e = a = b. But
now we have e € D and a, b € D satisfying e = %’. And we
have just proved that e = a = b. Therefore, e is an extreme
point of D. O

<
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Expected Conditional Gain: Mixed Decision Rules

Ele| d;Af+ (1 —X)g]l = AE[e| ¢; fl+ (1 — N)E[e | ¢/; ]

Proof.

K
Ele| dixf+(1 =gl =>"> e(c,c)P(d| ) {M(c" | d) + (1 - N)g(ck | d)}
k=1deD

K
A" D " e(d, )P(d | d)f(ck |d) +

k=1deD

K
(=X > e, c)P(d | )g(c" | d)

k=1deD
ME[e | c;fl+ (1 — NE[e]| ¢;g]
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e Assigned P(d|c) Measurement fa(c) Measurement
True | ' | C° TrueClass | d" [ 6 | &® || TrueClass | d" | &% | &°

c' 2 | -1 c' 2] 3|5 3 1]0]o0

¢ [ 1] 2 & 5] 4] A c? 0| 1 1

K
Ele|cifl = 3.3 e(d,c¥)P(d] d)fu(c¥)

deD k=1

Ele|c';f] = e(c',c)Pd"|cYfu(c")+e(c',P)P(d" | c")fu(c?) +
e(c',c")P(d? | c')ipe(c") + e(c', )P(d? | ¢')ie(c® +
e(c',c")P(a® | ¢')ipn(c") + e(c', ¢*)P(d® | ¢')fp(c?)

= 2x2x14+(—-1)*x2x0+

2x3x04+(—1)*.3x1+

2% 5%04+(—1)*.5x%1

4-3-5=—4
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e Assigned P(d|c) Measurement fa(c) Measurement
True [ ¢ [ & TrueClass | d" [ d° [ d° || TrueClass | d" [ &° | d°
c’ 2 | c 2| 3] 5 c' 1]o0]o0
c | - 2 c? 51 4] A & 0 | 1 1
Ele|cifl = > > e(d,c)P(d]d)fs(c)
deD k=1
Ele|c*f] = e(c? c)Pd" | P)fu(c') + e(c? P)P(d" | @) (c?) +

)
e(c?, c")P(d® | ®)fe(c') + e(c?, ¢*)P(a? | ¢®)fe(c®) +
e(c?, c')P(d® | ®)fp(c') + e(c?, ¢*)P(d® | ¢®)fn(c®)
= (-1)*5+%1+2x5x0+
(1)« 4x0+2x.4x1+
(1)« 1x04+2x.1%1
= —-5+8+2=15
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e Assigned P(d|c) Measurement
True [ ¢c' [ ¢ || TrueClass | d" [ &? | d°
c" | 2] - & 23] 5
| - 2 A 51 4] A
) K
Ele| c;f] > > e(d,c)P(d] d)fs(c")
deD k=1
Measurements Conditional Gain
fld" ] &® | Elelc’;f] | E[e|c® 1]
e ] ¢ 2.0 -1.0
Plc ]| & 5 -7
Pflc ] ¢ 1.1 2
Al &F -4 5
Pl | 1.4 5
Flce|c | &2 -1 8
Tl | E| 5 1.7
Bflcc|E| &2 -1. 2.0
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Conditional Expected Gains: All Decision Rules

E[e|c?; f]
f8

2 .\\\\\{

17

1.4 N

1.1 \\

8 ofs A :

5 L 3 \‘

2 of

A\

D \\

-7 sz f

1.

-1 1 -7 -4 -1 2 5 8 11 14 1.7\2 E[e‘c 'f]




